e1000e: Fix build with gcc 4.6.3 and ust tracing
[qemu/kevin.git] / hw / net / e1000e.c
blob692283fdd7c1546138479793e84d47c34a07b391
1 /*
2 * QEMU INTEL 82574 GbE NIC emulation
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2 of the License, or (at your option) any later version.
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
36 #include "qemu/osdep.h"
37 #include "net/net.h"
38 #include "net/tap.h"
39 #include "qemu/range.h"
40 #include "sysemu/sysemu.h"
41 #include "hw/pci/msi.h"
42 #include "hw/pci/msix.h"
44 #include "hw/net/e1000_regs.h"
46 #include "e1000x_common.h"
47 #include "e1000e_core.h"
49 #include "trace.h"
51 #define TYPE_E1000E "e1000e"
52 #define E1000E(obj) OBJECT_CHECK(E1000EState, (obj), TYPE_E1000E)
54 typedef struct E1000EState {
55 PCIDevice parent_obj;
56 NICState *nic;
57 NICConf conf;
59 MemoryRegion mmio;
60 MemoryRegion flash;
61 MemoryRegion io;
62 MemoryRegion msix;
64 uint32_t ioaddr;
66 uint16_t subsys_ven;
67 uint16_t subsys;
69 uint16_t subsys_ven_used;
70 uint16_t subsys_used;
72 uint32_t intr_state;
73 bool disable_vnet;
75 E1000ECore core;
77 } E1000EState;
79 #define E1000E_MMIO_IDX 0
80 #define E1000E_FLASH_IDX 1
81 #define E1000E_IO_IDX 2
82 #define E1000E_MSIX_IDX 3
84 #define E1000E_MMIO_SIZE (128 * 1024)
85 #define E1000E_FLASH_SIZE (128 * 1024)
86 #define E1000E_IO_SIZE (32)
87 #define E1000E_MSIX_SIZE (16 * 1024)
89 #define E1000E_MSIX_TABLE (0x0000)
90 #define E1000E_MSIX_PBA (0x2000)
92 #define E1000E_USE_MSI BIT(0)
93 #define E1000E_USE_MSIX BIT(1)
95 static uint64_t
96 e1000e_mmio_read(void *opaque, hwaddr addr, unsigned size)
98 E1000EState *s = opaque;
99 return e1000e_core_read(&s->core, addr, size);
102 static void
103 e1000e_mmio_write(void *opaque, hwaddr addr,
104 uint64_t val, unsigned size)
106 E1000EState *s = opaque;
107 e1000e_core_write(&s->core, addr, val, size);
110 static bool
111 e1000e_io_get_reg_index(E1000EState *s, uint32_t *idx)
113 if (s->ioaddr < 0x1FFFF) {
114 *idx = s->ioaddr;
115 return true;
118 if (s->ioaddr < 0x7FFFF) {
119 trace_e1000e_wrn_io_addr_undefined(s->ioaddr);
120 return false;
123 if (s->ioaddr < 0xFFFFF) {
124 trace_e1000e_wrn_io_addr_flash(s->ioaddr);
125 return false;
128 trace_e1000e_wrn_io_addr_unknown(s->ioaddr);
129 return false;
132 static uint64_t
133 e1000e_io_read(void *opaque, hwaddr addr, unsigned size)
135 E1000EState *s = opaque;
136 uint32_t idx = 0;
137 uint64_t val;
139 switch (addr) {
140 case E1000_IOADDR:
141 trace_e1000e_io_read_addr(s->ioaddr);
142 return s->ioaddr;
143 case E1000_IODATA:
144 if (e1000e_io_get_reg_index(s, &idx)) {
145 val = e1000e_core_read(&s->core, idx, sizeof(val));
146 trace_e1000e_io_read_data(idx, val);
147 return val;
149 return 0;
150 default:
151 trace_e1000e_wrn_io_read_unknown(addr);
152 return 0;
156 static void
157 e1000e_io_write(void *opaque, hwaddr addr,
158 uint64_t val, unsigned size)
160 E1000EState *s = opaque;
161 uint32_t idx = 0;
163 switch (addr) {
164 case E1000_IOADDR:
165 trace_e1000e_io_write_addr(val);
166 s->ioaddr = (uint32_t) val;
167 return;
168 case E1000_IODATA:
169 if (e1000e_io_get_reg_index(s, &idx)) {
170 trace_e1000e_io_write_data(idx, val);
171 e1000e_core_write(&s->core, idx, val, sizeof(val));
173 return;
174 default:
175 trace_e1000e_wrn_io_write_unknown(addr);
176 return;
180 static const MemoryRegionOps mmio_ops = {
181 .read = e1000e_mmio_read,
182 .write = e1000e_mmio_write,
183 .endianness = DEVICE_LITTLE_ENDIAN,
184 .impl = {
185 .min_access_size = 4,
186 .max_access_size = 4,
190 static const MemoryRegionOps io_ops = {
191 .read = e1000e_io_read,
192 .write = e1000e_io_write,
193 .endianness = DEVICE_LITTLE_ENDIAN,
194 .impl = {
195 .min_access_size = 4,
196 .max_access_size = 4,
200 static int
201 e1000e_nc_can_receive(NetClientState *nc)
203 E1000EState *s = qemu_get_nic_opaque(nc);
204 return e1000e_can_receive(&s->core);
207 static ssize_t
208 e1000e_nc_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
210 E1000EState *s = qemu_get_nic_opaque(nc);
211 return e1000e_receive_iov(&s->core, iov, iovcnt);
214 static ssize_t
215 e1000e_nc_receive(NetClientState *nc, const uint8_t *buf, size_t size)
217 E1000EState *s = qemu_get_nic_opaque(nc);
218 return e1000e_receive(&s->core, buf, size);
221 static void
222 e1000e_set_link_status(NetClientState *nc)
224 E1000EState *s = qemu_get_nic_opaque(nc);
225 e1000e_core_set_link_status(&s->core);
228 static NetClientInfo net_e1000e_info = {
229 .type = NET_CLIENT_OPTIONS_KIND_NIC,
230 .size = sizeof(NICState),
231 .can_receive = e1000e_nc_can_receive,
232 .receive = e1000e_nc_receive,
233 .receive_iov = e1000e_nc_receive_iov,
234 .link_status_changed = e1000e_set_link_status,
238 * EEPROM (NVM) contents documented in Table 36, section 6.1
239 * and generally 6.1.2 Software accessed words.
241 static const uint16_t e1000e_eeprom_template[64] = {
242 /* Address | Compat. | ImVer | Compat. */
243 0x0000, 0x0000, 0x0000, 0x0420, 0xf746, 0x2010, 0xffff, 0xffff,
244 /* PBA |ICtrl1 | SSID | SVID | DevID |-------|ICtrl2 */
245 0x0000, 0x0000, 0x026b, 0x0000, 0x8086, 0x0000, 0x0000, 0x8058,
246 /* NVM words 1,2,3 |-------------------------------|PCI-EID*/
247 0x0000, 0x2001, 0x7e7c, 0xffff, 0x1000, 0x00c8, 0x0000, 0x2704,
248 /* PCIe Init. Conf 1,2,3 |PCICtrl|PHY|LD1|-------| RevID | LD0,2 */
249 0x6cc9, 0x3150, 0x070e, 0x460b, 0x2d84, 0x0100, 0xf000, 0x0706,
250 /* FLPAR |FLANADD|LAN-PWR|FlVndr |ICtrl3 |APTSMBA|APTRxEP|APTSMBC*/
251 0x6000, 0x0080, 0x0f04, 0x7fff, 0x4f01, 0xc600, 0x0000, 0x20ff,
252 /* APTIF | APTMC |APTuCP |LSWFWID|MSWFWID|NC-SIMC|NC-SIC | VPDP */
253 0x0028, 0x0003, 0x0000, 0x0000, 0x0000, 0x0003, 0x0000, 0xffff,
254 /* SW Section */
255 0x0100, 0xc000, 0x121c, 0xc007, 0xffff, 0xffff, 0xffff, 0xffff,
256 /* SW Section |CHKSUM */
257 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0120, 0xffff, 0x0000,
260 static void e1000e_core_realize(E1000EState *s)
262 s->core.owner = &s->parent_obj;
263 s->core.owner_nic = s->nic;
266 static void
267 e1000e_init_msi(E1000EState *s)
269 int res;
271 res = msi_init(PCI_DEVICE(s),
272 0xD0, /* MSI capability offset */
273 1, /* MAC MSI interrupts */
274 true, /* 64-bit message addresses supported */
275 false); /* Per vector mask supported */
277 if (res > 0) {
278 s->intr_state |= E1000E_USE_MSI;
279 } else {
280 trace_e1000e_msi_init_fail(res);
284 static void
285 e1000e_cleanup_msi(E1000EState *s)
287 if (s->intr_state & E1000E_USE_MSI) {
288 msi_uninit(PCI_DEVICE(s));
292 static void
293 e1000e_unuse_msix_vectors(E1000EState *s, int num_vectors)
295 int i;
296 for (i = 0; i < num_vectors; i++) {
297 msix_vector_unuse(PCI_DEVICE(s), i);
301 static bool
302 e1000e_use_msix_vectors(E1000EState *s, int num_vectors)
304 int i;
305 for (i = 0; i < num_vectors; i++) {
306 int res = msix_vector_use(PCI_DEVICE(s), i);
307 if (res < 0) {
308 trace_e1000e_msix_use_vector_fail(i, res);
309 e1000e_unuse_msix_vectors(s, i);
310 return false;
313 return true;
316 static void
317 e1000e_init_msix(E1000EState *s)
319 PCIDevice *d = PCI_DEVICE(s);
320 int res = msix_init(PCI_DEVICE(s), E1000E_MSIX_VEC_NUM,
321 &s->msix,
322 E1000E_MSIX_IDX, E1000E_MSIX_TABLE,
323 &s->msix,
324 E1000E_MSIX_IDX, E1000E_MSIX_PBA,
325 0xA0);
327 if (res < 0) {
328 trace_e1000e_msix_init_fail(res);
329 } else {
330 if (!e1000e_use_msix_vectors(s, E1000E_MSIX_VEC_NUM)) {
331 msix_uninit(d, &s->msix, &s->msix);
332 } else {
333 s->intr_state |= E1000E_USE_MSIX;
338 static void
339 e1000e_cleanup_msix(E1000EState *s)
341 if (s->intr_state & E1000E_USE_MSIX) {
342 e1000e_unuse_msix_vectors(s, E1000E_MSIX_VEC_NUM);
343 msix_uninit(PCI_DEVICE(s), &s->msix, &s->msix);
347 static void
348 e1000e_init_net_peer(E1000EState *s, PCIDevice *pci_dev, uint8_t *macaddr)
350 DeviceState *dev = DEVICE(pci_dev);
351 NetClientState *nc;
352 int i;
354 s->nic = qemu_new_nic(&net_e1000e_info, &s->conf,
355 object_get_typename(OBJECT(s)), dev->id, s);
357 s->core.max_queue_num = s->conf.peers.queues - 1;
359 trace_e1000e_mac_set_permanent(MAC_ARG(macaddr));
360 memcpy(s->core.permanent_mac, macaddr, sizeof(s->core.permanent_mac));
362 qemu_format_nic_info_str(qemu_get_queue(s->nic), macaddr);
364 /* Setup virtio headers */
365 if (s->disable_vnet) {
366 s->core.has_vnet = false;
367 trace_e1000e_cfg_support_virtio(false);
368 return;
369 } else {
370 s->core.has_vnet = true;
373 for (i = 0; i < s->conf.peers.queues; i++) {
374 nc = qemu_get_subqueue(s->nic, i);
375 if (!nc->peer || !qemu_has_vnet_hdr(nc->peer)) {
376 s->core.has_vnet = false;
377 trace_e1000e_cfg_support_virtio(false);
378 return;
382 trace_e1000e_cfg_support_virtio(true);
384 for (i = 0; i < s->conf.peers.queues; i++) {
385 nc = qemu_get_subqueue(s->nic, i);
386 qemu_set_vnet_hdr_len(nc->peer, sizeof(struct virtio_net_hdr));
387 qemu_using_vnet_hdr(nc->peer, true);
391 static inline uint64_t
392 e1000e_gen_dsn(uint8_t *mac)
394 return (uint64_t)(mac[5]) |
395 (uint64_t)(mac[4]) << 8 |
396 (uint64_t)(mac[3]) << 16 |
397 (uint64_t)(0x00FF) << 24 |
398 (uint64_t)(0x00FF) << 32 |
399 (uint64_t)(mac[2]) << 40 |
400 (uint64_t)(mac[1]) << 48 |
401 (uint64_t)(mac[0]) << 56;
404 static int
405 e1000e_add_pm_capability(PCIDevice *pdev, uint8_t offset, uint16_t pmc)
407 int ret = pci_add_capability(pdev, PCI_CAP_ID_PM, offset, PCI_PM_SIZEOF);
409 if (ret >= 0) {
410 pci_set_word(pdev->config + offset + PCI_PM_PMC,
411 PCI_PM_CAP_VER_1_1 |
412 pmc);
414 pci_set_word(pdev->wmask + offset + PCI_PM_CTRL,
415 PCI_PM_CTRL_STATE_MASK |
416 PCI_PM_CTRL_PME_ENABLE |
417 PCI_PM_CTRL_DATA_SEL_MASK);
419 pci_set_word(pdev->w1cmask + offset + PCI_PM_CTRL,
420 PCI_PM_CTRL_PME_STATUS);
423 return ret;
426 static void e1000e_write_config(PCIDevice *pci_dev, uint32_t address,
427 uint32_t val, int len)
429 E1000EState *s = E1000E(pci_dev);
431 pci_default_write_config(pci_dev, address, val, len);
433 if (range_covers_byte(address, len, PCI_COMMAND) &&
434 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
435 qemu_flush_queued_packets(qemu_get_queue(s->nic));
439 static void e1000e_pci_realize(PCIDevice *pci_dev, Error **errp)
441 static const uint16_t e1000e_pmrb_offset = 0x0C8;
442 static const uint16_t e1000e_pcie_offset = 0x0E0;
443 static const uint16_t e1000e_aer_offset = 0x100;
444 static const uint16_t e1000e_dsn_offset = 0x140;
445 E1000EState *s = E1000E(pci_dev);
446 uint8_t *macaddr;
448 trace_e1000e_cb_pci_realize();
450 pci_dev->config_write = e1000e_write_config;
452 pci_dev->config[PCI_CACHE_LINE_SIZE] = 0x10;
453 pci_dev->config[PCI_INTERRUPT_PIN] = 1;
455 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, s->subsys_ven);
456 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, s->subsys);
458 s->subsys_ven_used = s->subsys_ven;
459 s->subsys_used = s->subsys;
461 /* Define IO/MMIO regions */
462 memory_region_init_io(&s->mmio, OBJECT(s), &mmio_ops, s,
463 "e1000e-mmio", E1000E_MMIO_SIZE);
464 pci_register_bar(pci_dev, E1000E_MMIO_IDX,
465 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio);
468 * We provide a dummy implementation for the flash BAR
469 * for drivers that may theoretically probe for its presence.
471 memory_region_init(&s->flash, OBJECT(s),
472 "e1000e-flash", E1000E_FLASH_SIZE);
473 pci_register_bar(pci_dev, E1000E_FLASH_IDX,
474 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->flash);
476 memory_region_init_io(&s->io, OBJECT(s), &io_ops, s,
477 "e1000e-io", E1000E_IO_SIZE);
478 pci_register_bar(pci_dev, E1000E_IO_IDX,
479 PCI_BASE_ADDRESS_SPACE_IO, &s->io);
481 memory_region_init(&s->msix, OBJECT(s), "e1000e-msix",
482 E1000E_MSIX_SIZE);
483 pci_register_bar(pci_dev, E1000E_MSIX_IDX,
484 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->msix);
486 /* Create networking backend */
487 qemu_macaddr_default_if_unset(&s->conf.macaddr);
488 macaddr = s->conf.macaddr.a;
490 e1000e_init_msix(s);
492 if (pcie_endpoint_cap_v1_init(pci_dev, e1000e_pcie_offset) < 0) {
493 hw_error("Failed to initialize PCIe capability");
496 e1000e_init_msi(s);
498 if (e1000e_add_pm_capability(pci_dev, e1000e_pmrb_offset,
499 PCI_PM_CAP_DSI) < 0) {
500 hw_error("Failed to initialize PM capability");
503 if (pcie_aer_init(pci_dev, e1000e_aer_offset, PCI_ERR_SIZEOF) < 0) {
504 hw_error("Failed to initialize AER capability");
507 pcie_dev_ser_num_init(pci_dev, e1000e_dsn_offset,
508 e1000e_gen_dsn(macaddr));
510 e1000e_init_net_peer(s, pci_dev, macaddr);
512 /* Initialize core */
513 e1000e_core_realize(s);
515 e1000e_core_pci_realize(&s->core,
516 e1000e_eeprom_template,
517 sizeof(e1000e_eeprom_template),
518 macaddr);
521 static void e1000e_pci_uninit(PCIDevice *pci_dev)
523 E1000EState *s = E1000E(pci_dev);
525 trace_e1000e_cb_pci_uninit();
527 e1000e_core_pci_uninit(&s->core);
529 pcie_aer_exit(pci_dev);
530 pcie_cap_exit(pci_dev);
532 qemu_del_nic(s->nic);
534 e1000e_cleanup_msix(s);
535 e1000e_cleanup_msi(s);
538 static void e1000e_qdev_reset(DeviceState *dev)
540 E1000EState *s = E1000E(dev);
542 trace_e1000e_cb_qdev_reset();
544 e1000e_core_reset(&s->core);
547 static void e1000e_pre_save(void *opaque)
549 E1000EState *s = opaque;
551 trace_e1000e_cb_pre_save();
553 e1000e_core_pre_save(&s->core);
556 static int e1000e_post_load(void *opaque, int version_id)
558 E1000EState *s = opaque;
560 trace_e1000e_cb_post_load();
562 if ((s->subsys != s->subsys_used) ||
563 (s->subsys_ven != s->subsys_ven_used)) {
564 fprintf(stderr,
565 "ERROR: Cannot migrate while device properties "
566 "(subsys/subsys_ven) differ");
567 return -1;
570 return e1000e_core_post_load(&s->core);
573 static const VMStateDescription e1000e_vmstate_tx = {
574 .name = "e1000e-tx",
575 .version_id = 1,
576 .minimum_version_id = 1,
577 .fields = (VMStateField[]) {
578 VMSTATE_UINT8(props.sum_needed, struct e1000e_tx),
579 VMSTATE_UINT8(props.ipcss, struct e1000e_tx),
580 VMSTATE_UINT8(props.ipcso, struct e1000e_tx),
581 VMSTATE_UINT16(props.ipcse, struct e1000e_tx),
582 VMSTATE_UINT8(props.tucss, struct e1000e_tx),
583 VMSTATE_UINT8(props.tucso, struct e1000e_tx),
584 VMSTATE_UINT16(props.tucse, struct e1000e_tx),
585 VMSTATE_UINT8(props.hdr_len, struct e1000e_tx),
586 VMSTATE_UINT16(props.mss, struct e1000e_tx),
587 VMSTATE_UINT32(props.paylen, struct e1000e_tx),
588 VMSTATE_INT8(props.ip, struct e1000e_tx),
589 VMSTATE_INT8(props.tcp, struct e1000e_tx),
590 VMSTATE_BOOL(props.tse, struct e1000e_tx),
591 VMSTATE_BOOL(props.cptse, struct e1000e_tx),
592 VMSTATE_BOOL(skip_cp, struct e1000e_tx),
593 VMSTATE_END_OF_LIST()
597 static const VMStateDescription e1000e_vmstate_intr_timer = {
598 .name = "e1000e-intr-timer",
599 .version_id = 1,
600 .minimum_version_id = 1,
601 .fields = (VMStateField[]) {
602 VMSTATE_TIMER_PTR(timer, E1000IntrDelayTimer),
603 VMSTATE_BOOL(running, E1000IntrDelayTimer),
604 VMSTATE_END_OF_LIST()
608 #define VMSTATE_E1000E_INTR_DELAY_TIMER(_f, _s) \
609 VMSTATE_STRUCT(_f, _s, 0, \
610 e1000e_vmstate_intr_timer, E1000IntrDelayTimer)
612 #define VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(_f, _s, _num) \
613 VMSTATE_STRUCT_ARRAY(_f, _s, _num, 0, \
614 e1000e_vmstate_intr_timer, E1000IntrDelayTimer)
616 static const VMStateDescription e1000e_vmstate = {
617 .name = "e1000e",
618 .version_id = 1,
619 .minimum_version_id = 1,
620 .pre_save = e1000e_pre_save,
621 .post_load = e1000e_post_load,
622 .fields = (VMStateField[]) {
623 VMSTATE_PCIE_DEVICE(parent_obj, E1000EState),
624 VMSTATE_MSIX(parent_obj, E1000EState),
626 VMSTATE_UINT32(ioaddr, E1000EState),
627 VMSTATE_UINT32(intr_state, E1000EState),
628 VMSTATE_UINT32(core.rxbuf_min_shift, E1000EState),
629 VMSTATE_UINT8(core.rx_desc_len, E1000EState),
630 VMSTATE_UINT32_ARRAY(core.rxbuf_sizes, E1000EState,
631 E1000_PSRCTL_BUFFS_PER_DESC),
632 VMSTATE_UINT32(core.rx_desc_buf_size, E1000EState),
633 VMSTATE_UINT16_ARRAY(core.eeprom, E1000EState, E1000E_EEPROM_SIZE),
634 VMSTATE_UINT16_2DARRAY(core.phy, E1000EState,
635 E1000E_PHY_PAGES, E1000E_PHY_PAGE_SIZE),
636 VMSTATE_UINT32_ARRAY(core.mac, E1000EState, E1000E_MAC_SIZE),
637 VMSTATE_UINT8_ARRAY(core.permanent_mac, E1000EState, ETH_ALEN),
639 VMSTATE_UINT32(core.delayed_causes, E1000EState),
641 VMSTATE_UINT16(subsys, E1000EState),
642 VMSTATE_UINT16(subsys_ven, E1000EState),
644 VMSTATE_E1000E_INTR_DELAY_TIMER(core.rdtr, E1000EState),
645 VMSTATE_E1000E_INTR_DELAY_TIMER(core.radv, E1000EState),
646 VMSTATE_E1000E_INTR_DELAY_TIMER(core.raid, E1000EState),
647 VMSTATE_E1000E_INTR_DELAY_TIMER(core.tadv, E1000EState),
648 VMSTATE_E1000E_INTR_DELAY_TIMER(core.tidv, E1000EState),
650 VMSTATE_E1000E_INTR_DELAY_TIMER(core.itr, E1000EState),
651 VMSTATE_BOOL(core.itr_intr_pending, E1000EState),
653 VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(core.eitr, E1000EState,
654 E1000E_MSIX_VEC_NUM),
655 VMSTATE_BOOL_ARRAY(core.eitr_intr_pending, E1000EState,
656 E1000E_MSIX_VEC_NUM),
658 VMSTATE_UINT32(core.itr_guest_value, E1000EState),
659 VMSTATE_UINT32_ARRAY(core.eitr_guest_value, E1000EState,
660 E1000E_MSIX_VEC_NUM),
662 VMSTATE_UINT16(core.vet, E1000EState),
664 VMSTATE_STRUCT_ARRAY(core.tx, E1000EState, E1000E_NUM_QUEUES, 0,
665 e1000e_vmstate_tx, struct e1000e_tx),
666 VMSTATE_END_OF_LIST()
670 static PropertyInfo e1000e_prop_disable_vnet,
671 e1000e_prop_subsys_ven,
672 e1000e_prop_subsys;
674 static Property e1000e_properties[] = {
675 DEFINE_NIC_PROPERTIES(E1000EState, conf),
676 DEFINE_PROP_DEFAULT("disable_vnet_hdr", E1000EState, disable_vnet, false,
677 e1000e_prop_disable_vnet, bool),
678 DEFINE_PROP_DEFAULT("subsys_ven", E1000EState, subsys_ven,
679 PCI_VENDOR_ID_INTEL,
680 e1000e_prop_subsys_ven, uint16_t),
681 DEFINE_PROP_DEFAULT("subsys", E1000EState, subsys, 0,
682 e1000e_prop_subsys, uint16_t),
683 DEFINE_PROP_END_OF_LIST(),
686 static void e1000e_class_init(ObjectClass *class, void *data)
688 DeviceClass *dc = DEVICE_CLASS(class);
689 PCIDeviceClass *c = PCI_DEVICE_CLASS(class);
691 c->realize = e1000e_pci_realize;
692 c->exit = e1000e_pci_uninit;
693 c->vendor_id = PCI_VENDOR_ID_INTEL;
694 c->device_id = E1000_DEV_ID_82574L;
695 c->revision = 0;
696 c->class_id = PCI_CLASS_NETWORK_ETHERNET;
697 c->is_express = 1;
699 dc->desc = "Intel 82574L GbE Controller";
700 dc->reset = e1000e_qdev_reset;
701 dc->vmsd = &e1000e_vmstate;
702 dc->props = e1000e_properties;
704 e1000e_prop_disable_vnet = qdev_prop_uint8;
705 e1000e_prop_disable_vnet.description = "Do not use virtio headers, "
706 "perform SW offloads emulation "
707 "instead";
709 e1000e_prop_subsys_ven = qdev_prop_uint16;
710 e1000e_prop_subsys_ven.description = "PCI device Subsystem Vendor ID";
712 e1000e_prop_subsys = qdev_prop_uint16;
713 e1000e_prop_subsys.description = "PCI device Subsystem ID";
715 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
718 static void e1000e_instance_init(Object *obj)
720 E1000EState *s = E1000E(obj);
721 device_add_bootindex_property(obj, &s->conf.bootindex,
722 "bootindex", "/ethernet-phy@0",
723 DEVICE(obj), NULL);
726 static const TypeInfo e1000e_info = {
727 .name = TYPE_E1000E,
728 .parent = TYPE_PCI_DEVICE,
729 .instance_size = sizeof(E1000EState),
730 .class_init = e1000e_class_init,
731 .instance_init = e1000e_instance_init,
734 static void e1000e_register_types(void)
736 type_register_static(&e1000e_info);
739 type_init(e1000e_register_types)