qemu/compiler: Remove QEMU_GENERIC
[qemu/kevin.git] / target / ppc / machine.c
blob93972df58ea95235c9b70d835b20efe1a36e5c05
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "helper_regs.h"
6 #include "mmu-hash64.h"
7 #include "migration/cpu.h"
8 #include "qapi/error.h"
9 #include "qemu/main-loop.h"
10 #include "kvm_ppc.h"
12 static void post_load_update_msr(CPUPPCState *env)
14 target_ulong msr = env->msr;
17 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
18 * before restoring. Note that this recomputes hflags.
20 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
21 ppc_store_msr(env, msr);
24 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
26 PowerPCCPU *cpu = opaque;
27 CPUPPCState *env = &cpu->env;
28 unsigned int i, j;
29 target_ulong sdr1;
30 uint32_t fpscr, vscr;
31 #if defined(TARGET_PPC64)
32 int32_t slb_nr;
33 #endif
34 target_ulong xer;
36 for (i = 0; i < 32; i++) {
37 qemu_get_betls(f, &env->gpr[i]);
39 #if !defined(TARGET_PPC64)
40 for (i = 0; i < 32; i++) {
41 qemu_get_betls(f, &env->gprh[i]);
43 #endif
44 qemu_get_betls(f, &env->lr);
45 qemu_get_betls(f, &env->ctr);
46 for (i = 0; i < 8; i++) {
47 qemu_get_be32s(f, &env->crf[i]);
49 qemu_get_betls(f, &xer);
50 cpu_write_xer(env, xer);
51 qemu_get_betls(f, &env->reserve_addr);
52 qemu_get_betls(f, &env->msr);
53 for (i = 0; i < 4; i++) {
54 qemu_get_betls(f, &env->tgpr[i]);
56 for (i = 0; i < 32; i++) {
57 union {
58 float64 d;
59 uint64_t l;
60 } u;
61 u.l = qemu_get_be64(f);
62 *cpu_fpr_ptr(env, i) = u.d;
64 qemu_get_be32s(f, &fpscr);
65 env->fpscr = fpscr;
66 qemu_get_sbe32s(f, &env->access_type);
67 #if defined(TARGET_PPC64)
68 qemu_get_betls(f, &env->spr[SPR_ASR]);
69 qemu_get_sbe32s(f, &slb_nr);
70 #endif
71 qemu_get_betls(f, &sdr1);
72 for (i = 0; i < 32; i++) {
73 qemu_get_betls(f, &env->sr[i]);
75 for (i = 0; i < 2; i++) {
76 for (j = 0; j < 8; j++) {
77 qemu_get_betls(f, &env->DBAT[i][j]);
80 for (i = 0; i < 2; i++) {
81 for (j = 0; j < 8; j++) {
82 qemu_get_betls(f, &env->IBAT[i][j]);
85 qemu_get_sbe32s(f, &env->nb_tlb);
86 qemu_get_sbe32s(f, &env->tlb_per_way);
87 qemu_get_sbe32s(f, &env->nb_ways);
88 qemu_get_sbe32s(f, &env->last_way);
89 qemu_get_sbe32s(f, &env->id_tlbs);
90 qemu_get_sbe32s(f, &env->nb_pids);
91 if (env->tlb.tlb6) {
92 /* XXX assumes 6xx */
93 for (i = 0; i < env->nb_tlb; i++) {
94 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
95 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
96 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
99 for (i = 0; i < 4; i++) {
100 qemu_get_betls(f, &env->pb[i]);
102 for (i = 0; i < 1024; i++) {
103 qemu_get_betls(f, &env->spr[i]);
105 if (!cpu->vhyp) {
106 ppc_store_sdr1(env, sdr1);
108 qemu_get_be32s(f, &vscr);
109 ppc_store_vscr(env, vscr);
110 qemu_get_be64s(f, &env->spe_acc);
111 qemu_get_be32s(f, &env->spe_fscr);
112 qemu_get_betls(f, &env->msr_mask);
113 qemu_get_be32s(f, &env->flags);
114 qemu_get_sbe32s(f, &env->error_code);
115 qemu_get_be32s(f, &env->pending_interrupts);
116 qemu_get_be32s(f, &env->irq_input_state);
117 for (i = 0; i < POWERPC_EXCP_NB; i++) {
118 qemu_get_betls(f, &env->excp_vectors[i]);
120 qemu_get_betls(f, &env->excp_prefix);
121 qemu_get_betls(f, &env->ivor_mask);
122 qemu_get_betls(f, &env->ivpr_mask);
123 qemu_get_betls(f, &env->hreset_vector);
124 qemu_get_betls(f, &env->nip);
125 qemu_get_sbetl(f); /* Discard unused hflags */
126 qemu_get_sbetl(f); /* Discard unused hflags_nmsr */
127 qemu_get_sbe32(f); /* Discard unused mmu_idx */
128 qemu_get_sbe32(f); /* Discard unused power_mode */
130 post_load_update_msr(env);
132 return 0;
135 static int get_avr(QEMUFile *f, void *pv, size_t size,
136 const VMStateField *field)
138 ppc_avr_t *v = pv;
140 v->u64[0] = qemu_get_be64(f);
141 v->u64[1] = qemu_get_be64(f);
143 return 0;
146 static int put_avr(QEMUFile *f, void *pv, size_t size,
147 const VMStateField *field, JSONWriter *vmdesc)
149 ppc_avr_t *v = pv;
151 qemu_put_be64(f, v->u64[0]);
152 qemu_put_be64(f, v->u64[1]);
153 return 0;
156 static const VMStateInfo vmstate_info_avr = {
157 .name = "avr",
158 .get = get_avr,
159 .put = put_avr,
162 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
163 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
165 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
166 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
168 static int get_fpr(QEMUFile *f, void *pv, size_t size,
169 const VMStateField *field)
171 ppc_vsr_t *v = pv;
173 v->VsrD(0) = qemu_get_be64(f);
175 return 0;
178 static int put_fpr(QEMUFile *f, void *pv, size_t size,
179 const VMStateField *field, JSONWriter *vmdesc)
181 ppc_vsr_t *v = pv;
183 qemu_put_be64(f, v->VsrD(0));
184 return 0;
187 static const VMStateInfo vmstate_info_fpr = {
188 .name = "fpr",
189 .get = get_fpr,
190 .put = put_fpr,
193 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
194 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
196 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
197 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
199 static int get_vsr(QEMUFile *f, void *pv, size_t size,
200 const VMStateField *field)
202 ppc_vsr_t *v = pv;
204 v->VsrD(1) = qemu_get_be64(f);
206 return 0;
209 static int put_vsr(QEMUFile *f, void *pv, size_t size,
210 const VMStateField *field, JSONWriter *vmdesc)
212 ppc_vsr_t *v = pv;
214 qemu_put_be64(f, v->VsrD(1));
215 return 0;
218 static const VMStateInfo vmstate_info_vsr = {
219 .name = "vsr",
220 .get = get_vsr,
221 .put = put_vsr,
224 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
225 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
227 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
228 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
230 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
232 PowerPCCPU *cpu = opaque;
234 return cpu->pre_2_8_migration;
237 #if defined(TARGET_PPC64)
238 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
240 PowerPCCPU *cpu = opaque;
242 return cpu->pre_3_0_migration;
244 #endif
246 static int cpu_pre_save(void *opaque)
248 PowerPCCPU *cpu = opaque;
249 CPUPPCState *env = &cpu->env;
250 int i;
251 uint64_t insns_compat_mask =
252 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
253 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
254 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
255 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
256 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
257 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
258 | PPC_64B | PPC_64BX | PPC_ALTIVEC
259 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
260 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
261 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
262 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
263 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
264 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
265 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
267 env->spr[SPR_LR] = env->lr;
268 env->spr[SPR_CTR] = env->ctr;
269 env->spr[SPR_XER] = cpu_read_xer(env);
270 #if defined(TARGET_PPC64)
271 env->spr[SPR_CFAR] = env->cfar;
272 #endif
273 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
275 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
276 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
277 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
278 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
279 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
281 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
282 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
283 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
284 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
285 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
288 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
289 if (cpu->pre_2_8_migration) {
291 * Mask out bits that got added to msr_mask since the versions
292 * which stupidly included it in the migration stream.
294 target_ulong metamask = 0
295 #if defined(TARGET_PPC64)
296 | (1ULL << MSR_TS0)
297 | (1ULL << MSR_TS1)
298 #endif
300 cpu->mig_msr_mask = env->msr_mask & ~metamask;
301 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
303 * CPU models supported by old machines all have
304 * PPC_MEM_TLBIE, so we set it unconditionally to allow
305 * backward migration from a POWER9 host to a POWER8 host.
307 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
308 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
309 cpu->mig_nb_BATs = env->nb_BATs;
311 if (cpu->pre_3_0_migration) {
312 if (cpu->hash64_opts) {
313 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
317 /* Retain migration compatibility for pre 6.0 for 601 machines. */
318 env->hflags_compat_nmsr = (env->flags & POWERPC_FLAG_HID0_LE
319 ? env->hflags & MSR_LE : 0);
321 return 0;
325 * Determine if a given PVR is a "close enough" match to the CPU
326 * object. For TCG and KVM PR it would probably be sufficient to
327 * require an exact PVR match. However for KVM HV the user is
328 * restricted to a PVR exactly matching the host CPU. The correct way
329 * to handle this is to put the guest into an architected
330 * compatibility mode. However, to allow a more forgiving transition
331 * and migration from before this was widely done, we allow migration
332 * between sufficiently similar PVRs, as determined by the CPU class's
333 * pvr_match() hook.
335 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
337 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
339 if (pvr == pcc->pvr) {
340 return true;
342 return pcc->pvr_match(pcc, pvr);
345 static int cpu_post_load(void *opaque, int version_id)
347 PowerPCCPU *cpu = opaque;
348 CPUPPCState *env = &cpu->env;
349 int i;
352 * If we're operating in compat mode, we should be ok as long as
353 * the destination supports the same compatibility mode.
355 * Otherwise, however, we require that the destination has exactly
356 * the same CPU model as the source.
359 #if defined(TARGET_PPC64)
360 if (cpu->compat_pvr) {
361 uint32_t compat_pvr = cpu->compat_pvr;
362 Error *local_err = NULL;
363 int ret;
365 cpu->compat_pvr = 0;
366 ret = ppc_set_compat(cpu, compat_pvr, &local_err);
367 if (ret < 0) {
368 error_report_err(local_err);
369 return ret;
371 } else
372 #endif
374 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
375 return -EINVAL;
380 * If we're running with KVM HV, there is a chance that the guest
381 * is running with KVM HV and its kernel does not have the
382 * capability of dealing with a different PVR other than this
383 * exact host PVR in KVM_SET_SREGS. If that happens, the
384 * guest freezes after migration.
386 * The function kvmppc_pvr_workaround_required does this verification
387 * by first checking if the kernel has the cap, returning true immediately
388 * if that is the case. Otherwise, it checks if we're running in KVM PR.
389 * If the guest kernel does not have the cap and we're not running KVM-PR
390 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
391 * receive the PVR it expects as a workaround.
394 if (kvmppc_pvr_workaround_required(cpu)) {
395 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
398 env->lr = env->spr[SPR_LR];
399 env->ctr = env->spr[SPR_CTR];
400 cpu_write_xer(env, env->spr[SPR_XER]);
401 #if defined(TARGET_PPC64)
402 env->cfar = env->spr[SPR_CFAR];
403 #endif
404 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
406 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
407 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
408 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
409 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
410 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
412 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
413 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
414 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
415 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
416 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
419 if (!cpu->vhyp) {
420 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
423 post_load_update_msr(env);
425 return 0;
428 static bool fpu_needed(void *opaque)
430 PowerPCCPU *cpu = opaque;
432 return cpu->env.insns_flags & PPC_FLOAT;
435 static const VMStateDescription vmstate_fpu = {
436 .name = "cpu/fpu",
437 .version_id = 1,
438 .minimum_version_id = 1,
439 .needed = fpu_needed,
440 .fields = (VMStateField[]) {
441 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
442 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
443 VMSTATE_END_OF_LIST()
447 static bool altivec_needed(void *opaque)
449 PowerPCCPU *cpu = opaque;
451 return cpu->env.insns_flags & PPC_ALTIVEC;
454 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
455 const VMStateField *field)
457 PowerPCCPU *cpu = opaque;
458 ppc_store_vscr(&cpu->env, qemu_get_be32(f));
459 return 0;
462 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
463 const VMStateField *field, JSONWriter *vmdesc)
465 PowerPCCPU *cpu = opaque;
466 qemu_put_be32(f, ppc_get_vscr(&cpu->env));
467 return 0;
470 static const VMStateInfo vmstate_vscr = {
471 .name = "cpu/altivec/vscr",
472 .get = get_vscr,
473 .put = put_vscr,
476 static const VMStateDescription vmstate_altivec = {
477 .name = "cpu/altivec",
478 .version_id = 1,
479 .minimum_version_id = 1,
480 .needed = altivec_needed,
481 .fields = (VMStateField[]) {
482 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
484 * Save the architecture value of the vscr, not the internally
485 * expanded version. Since this architecture value does not
486 * exist in memory to be stored, this requires a but of hoop
487 * jumping. We want OFFSET=0 so that we effectively pass CPU
488 * to the helper functions.
491 .name = "vscr",
492 .version_id = 0,
493 .size = sizeof(uint32_t),
494 .info = &vmstate_vscr,
495 .flags = VMS_SINGLE,
496 .offset = 0
498 VMSTATE_END_OF_LIST()
502 static bool vsx_needed(void *opaque)
504 PowerPCCPU *cpu = opaque;
506 return cpu->env.insns_flags2 & PPC2_VSX;
509 static const VMStateDescription vmstate_vsx = {
510 .name = "cpu/vsx",
511 .version_id = 1,
512 .minimum_version_id = 1,
513 .needed = vsx_needed,
514 .fields = (VMStateField[]) {
515 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
516 VMSTATE_END_OF_LIST()
520 #ifdef TARGET_PPC64
521 /* Transactional memory state */
522 static bool tm_needed(void *opaque)
524 PowerPCCPU *cpu = opaque;
525 CPUPPCState *env = &cpu->env;
526 return msr_ts;
529 static const VMStateDescription vmstate_tm = {
530 .name = "cpu/tm",
531 .version_id = 1,
532 .minimum_version_id = 1,
533 .minimum_version_id_old = 1,
534 .needed = tm_needed,
535 .fields = (VMStateField []) {
536 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
537 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
538 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
539 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
540 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
541 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
542 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
543 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
544 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
545 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
546 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
547 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
548 VMSTATE_END_OF_LIST()
551 #endif
553 static bool sr_needed(void *opaque)
555 #ifdef TARGET_PPC64
556 PowerPCCPU *cpu = opaque;
558 return !mmu_is_64bit(cpu->env.mmu_model);
559 #else
560 return true;
561 #endif
564 static const VMStateDescription vmstate_sr = {
565 .name = "cpu/sr",
566 .version_id = 1,
567 .minimum_version_id = 1,
568 .needed = sr_needed,
569 .fields = (VMStateField[]) {
570 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
571 VMSTATE_END_OF_LIST()
575 #ifdef TARGET_PPC64
576 static int get_slbe(QEMUFile *f, void *pv, size_t size,
577 const VMStateField *field)
579 ppc_slb_t *v = pv;
581 v->esid = qemu_get_be64(f);
582 v->vsid = qemu_get_be64(f);
584 return 0;
587 static int put_slbe(QEMUFile *f, void *pv, size_t size,
588 const VMStateField *field, JSONWriter *vmdesc)
590 ppc_slb_t *v = pv;
592 qemu_put_be64(f, v->esid);
593 qemu_put_be64(f, v->vsid);
594 return 0;
597 static const VMStateInfo vmstate_info_slbe = {
598 .name = "slbe",
599 .get = get_slbe,
600 .put = put_slbe,
603 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
604 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
606 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
607 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
609 static bool slb_needed(void *opaque)
611 PowerPCCPU *cpu = opaque;
613 /* We don't support any of the old segment table based 64-bit CPUs */
614 return mmu_is_64bit(cpu->env.mmu_model);
617 static int slb_post_load(void *opaque, int version_id)
619 PowerPCCPU *cpu = opaque;
620 CPUPPCState *env = &cpu->env;
621 int i;
624 * We've pulled in the raw esid and vsid values from the migration
625 * stream, but we need to recompute the page size pointers
627 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
628 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
629 /* Migration source had bad values in its SLB */
630 return -1;
634 return 0;
637 static const VMStateDescription vmstate_slb = {
638 .name = "cpu/slb",
639 .version_id = 1,
640 .minimum_version_id = 1,
641 .needed = slb_needed,
642 .post_load = slb_post_load,
643 .fields = (VMStateField[]) {
644 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
645 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
646 VMSTATE_END_OF_LIST()
649 #endif /* TARGET_PPC64 */
651 static const VMStateDescription vmstate_tlb6xx_entry = {
652 .name = "cpu/tlb6xx_entry",
653 .version_id = 1,
654 .minimum_version_id = 1,
655 .fields = (VMStateField[]) {
656 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
657 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
658 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
659 VMSTATE_END_OF_LIST()
663 static bool tlb6xx_needed(void *opaque)
665 PowerPCCPU *cpu = opaque;
666 CPUPPCState *env = &cpu->env;
668 return env->nb_tlb && (env->tlb_type == TLB_6XX);
671 static const VMStateDescription vmstate_tlb6xx = {
672 .name = "cpu/tlb6xx",
673 .version_id = 1,
674 .minimum_version_id = 1,
675 .needed = tlb6xx_needed,
676 .fields = (VMStateField[]) {
677 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
678 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
679 env.nb_tlb,
680 vmstate_tlb6xx_entry,
681 ppc6xx_tlb_t),
682 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
683 VMSTATE_END_OF_LIST()
687 static const VMStateDescription vmstate_tlbemb_entry = {
688 .name = "cpu/tlbemb_entry",
689 .version_id = 1,
690 .minimum_version_id = 1,
691 .fields = (VMStateField[]) {
692 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
693 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
694 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
695 VMSTATE_UINTTL(size, ppcemb_tlb_t),
696 VMSTATE_UINT32(prot, ppcemb_tlb_t),
697 VMSTATE_UINT32(attr, ppcemb_tlb_t),
698 VMSTATE_END_OF_LIST()
702 static bool tlbemb_needed(void *opaque)
704 PowerPCCPU *cpu = opaque;
705 CPUPPCState *env = &cpu->env;
707 return env->nb_tlb && (env->tlb_type == TLB_EMB);
710 static bool pbr403_needed(void *opaque)
712 PowerPCCPU *cpu = opaque;
713 uint32_t pvr = cpu->env.spr[SPR_PVR];
715 return (pvr & 0xffff0000) == 0x00200000;
718 static const VMStateDescription vmstate_pbr403 = {
719 .name = "cpu/pbr403",
720 .version_id = 1,
721 .minimum_version_id = 1,
722 .needed = pbr403_needed,
723 .fields = (VMStateField[]) {
724 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
725 VMSTATE_END_OF_LIST()
729 static const VMStateDescription vmstate_tlbemb = {
730 .name = "cpu/tlb6xx",
731 .version_id = 1,
732 .minimum_version_id = 1,
733 .needed = tlbemb_needed,
734 .fields = (VMStateField[]) {
735 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
736 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
737 env.nb_tlb,
738 vmstate_tlbemb_entry,
739 ppcemb_tlb_t),
740 /* 403 protection registers */
741 VMSTATE_END_OF_LIST()
743 .subsections = (const VMStateDescription*[]) {
744 &vmstate_pbr403,
745 NULL
749 static const VMStateDescription vmstate_tlbmas_entry = {
750 .name = "cpu/tlbmas_entry",
751 .version_id = 1,
752 .minimum_version_id = 1,
753 .fields = (VMStateField[]) {
754 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
755 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
756 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
757 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
758 VMSTATE_END_OF_LIST()
762 static bool tlbmas_needed(void *opaque)
764 PowerPCCPU *cpu = opaque;
765 CPUPPCState *env = &cpu->env;
767 return env->nb_tlb && (env->tlb_type == TLB_MAS);
770 static const VMStateDescription vmstate_tlbmas = {
771 .name = "cpu/tlbmas",
772 .version_id = 1,
773 .minimum_version_id = 1,
774 .needed = tlbmas_needed,
775 .fields = (VMStateField[]) {
776 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
777 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
778 env.nb_tlb,
779 vmstate_tlbmas_entry,
780 ppcmas_tlb_t),
781 VMSTATE_END_OF_LIST()
785 static bool compat_needed(void *opaque)
787 PowerPCCPU *cpu = opaque;
789 assert(!(cpu->compat_pvr && !cpu->vhyp));
790 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
793 static const VMStateDescription vmstate_compat = {
794 .name = "cpu/compat",
795 .version_id = 1,
796 .minimum_version_id = 1,
797 .needed = compat_needed,
798 .fields = (VMStateField[]) {
799 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
800 VMSTATE_END_OF_LIST()
804 const VMStateDescription vmstate_ppc_cpu = {
805 .name = "cpu",
806 .version_id = 5,
807 .minimum_version_id = 5,
808 .minimum_version_id_old = 4,
809 .load_state_old = cpu_load_old,
810 .pre_save = cpu_pre_save,
811 .post_load = cpu_post_load,
812 .fields = (VMStateField[]) {
813 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
815 /* User mode architected state */
816 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
817 #if !defined(TARGET_PPC64)
818 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
819 #endif
820 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
821 VMSTATE_UINTTL(env.nip, PowerPCCPU),
823 /* SPRs */
824 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
825 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
827 /* Reservation */
828 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
830 /* Supervisor mode architected state */
831 VMSTATE_UINTTL(env.msr, PowerPCCPU),
833 /* Backward compatible internal state */
834 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
836 /* Sanity checking */
837 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
838 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
839 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
840 cpu_pre_2_8_migration),
841 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
842 VMSTATE_END_OF_LIST()
844 .subsections = (const VMStateDescription*[]) {
845 &vmstate_fpu,
846 &vmstate_altivec,
847 &vmstate_vsx,
848 &vmstate_sr,
849 #ifdef TARGET_PPC64
850 &vmstate_tm,
851 &vmstate_slb,
852 #endif /* TARGET_PPC64 */
853 &vmstate_tlb6xx,
854 &vmstate_tlbemb,
855 &vmstate_tlbmas,
856 &vmstate_compat,
857 NULL