target-i386: Move APIC ID compatibility code to pc.c
[qemu/kevin.git] / hw / i386 / pc.c
blob25192978904180d4b61272e6444f87c92a8806f8
1 /*
2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "monitor/monitor.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/i386/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/kvm.h"
47 #include "kvm_i386.h"
48 #include "hw/xen/xen.h"
49 #include "sysemu/block-backend.h"
50 #include "hw/block/block.h"
51 #include "ui/qemu-spice.h"
52 #include "exec/memory.h"
53 #include "exec/address-spaces.h"
54 #include "sysemu/arch_init.h"
55 #include "qemu/bitmap.h"
56 #include "qemu/config-file.h"
57 #include "hw/acpi/acpi.h"
58 #include "hw/acpi/cpu_hotplug.h"
59 #include "hw/cpu/icc_bus.h"
60 #include "hw/boards.h"
61 #include "hw/pci/pci_host.h"
62 #include "acpi-build.h"
63 #include "hw/mem/pc-dimm.h"
64 #include "trace.h"
65 #include "qapi/visitor.h"
66 #include "qapi-visit.h"
68 /* debug PC/ISA interrupts */
69 //#define DEBUG_IRQ
71 #ifdef DEBUG_IRQ
72 #define DPRINTF(fmt, ...) \
73 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
74 #else
75 #define DPRINTF(fmt, ...)
76 #endif
78 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
79 * (128K) and other BIOS datastructures (less than 4K reported to be used at
80 * the moment, 32K should be enough for a while). */
81 static unsigned acpi_data_size = 0x20000 + 0x8000;
82 void pc_set_legacy_acpi_data_size(void)
84 acpi_data_size = 0x10000;
87 #define BIOS_CFG_IOPORT 0x510
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
94 #define E820_NR_ENTRIES 16
96 struct e820_entry {
97 uint64_t address;
98 uint64_t length;
99 uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
102 struct e820_table {
103 uint32_t count;
104 struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
112 void gsi_handler(void *opaque, int n, int level)
114 GSIState *s = opaque;
116 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
117 if (n < ISA_NUM_IRQS) {
118 qemu_set_irq(s->i8259_irq[n], level);
120 qemu_set_irq(s->ioapic_irq[n], level);
123 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
124 unsigned size)
128 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
130 return 0xffffffffffffffffULL;
133 /* MSDOS compatibility mode FPU exception support */
134 static qemu_irq ferr_irq;
136 void pc_register_ferr_irq(qemu_irq irq)
138 ferr_irq = irq;
141 /* XXX: add IGNNE support */
142 void cpu_set_ferr(CPUX86State *s)
144 qemu_irq_raise(ferr_irq);
147 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
148 unsigned size)
150 qemu_irq_lower(ferr_irq);
153 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
155 return 0xffffffffffffffffULL;
158 /* TSC handling */
159 uint64_t cpu_get_tsc(CPUX86State *env)
161 return cpu_get_ticks();
164 /* SMM support */
166 static cpu_set_smm_t smm_set;
167 static void *smm_arg;
169 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
171 assert(smm_set == NULL);
172 assert(smm_arg == NULL);
173 smm_set = callback;
174 smm_arg = arg;
177 void cpu_smm_update(CPUX86State *env)
179 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
180 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
185 /* IRQ handling */
186 int cpu_get_pic_interrupt(CPUX86State *env)
188 X86CPU *cpu = x86_env_get_cpu(env);
189 int intno;
191 intno = apic_get_interrupt(cpu->apic_state);
192 if (intno >= 0) {
193 return intno;
195 /* read the irq from the PIC */
196 if (!apic_accept_pic_intr(cpu->apic_state)) {
197 return -1;
200 intno = pic_read_irq(isa_pic);
201 return intno;
204 static void pic_irq_request(void *opaque, int irq, int level)
206 CPUState *cs = first_cpu;
207 X86CPU *cpu = X86_CPU(cs);
209 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
210 if (cpu->apic_state) {
211 CPU_FOREACH(cs) {
212 cpu = X86_CPU(cs);
213 if (apic_accept_pic_intr(cpu->apic_state)) {
214 apic_deliver_pic_intr(cpu->apic_state, level);
217 } else {
218 if (level) {
219 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
220 } else {
221 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
226 /* PC cmos mappings */
228 #define REG_EQUIPMENT_BYTE 0x14
230 static int cmos_get_fd_drive_type(FDriveType fd0)
232 int val;
234 switch (fd0) {
235 case FDRIVE_DRV_144:
236 /* 1.44 Mb 3"5 drive */
237 val = 4;
238 break;
239 case FDRIVE_DRV_288:
240 /* 2.88 Mb 3"5 drive */
241 val = 5;
242 break;
243 case FDRIVE_DRV_120:
244 /* 1.2 Mb 5"5 drive */
245 val = 2;
246 break;
247 case FDRIVE_DRV_NONE:
248 default:
249 val = 0;
250 break;
252 return val;
255 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
256 int16_t cylinders, int8_t heads, int8_t sectors)
258 rtc_set_memory(s, type_ofs, 47);
259 rtc_set_memory(s, info_ofs, cylinders);
260 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
261 rtc_set_memory(s, info_ofs + 2, heads);
262 rtc_set_memory(s, info_ofs + 3, 0xff);
263 rtc_set_memory(s, info_ofs + 4, 0xff);
264 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
265 rtc_set_memory(s, info_ofs + 6, cylinders);
266 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
267 rtc_set_memory(s, info_ofs + 8, sectors);
270 /* convert boot_device letter to something recognizable by the bios */
271 static int boot_device2nibble(char boot_device)
273 switch(boot_device) {
274 case 'a':
275 case 'b':
276 return 0x01; /* floppy boot */
277 case 'c':
278 return 0x02; /* hard drive boot */
279 case 'd':
280 return 0x03; /* CD-ROM boot */
281 case 'n':
282 return 0x04; /* Network boot */
284 return 0;
287 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
289 #define PC_MAX_BOOT_DEVICES 3
290 int nbds, bds[3] = { 0, };
291 int i;
293 nbds = strlen(boot_device);
294 if (nbds > PC_MAX_BOOT_DEVICES) {
295 error_setg(errp, "Too many boot devices for PC");
296 return;
298 for (i = 0; i < nbds; i++) {
299 bds[i] = boot_device2nibble(boot_device[i]);
300 if (bds[i] == 0) {
301 error_setg(errp, "Invalid boot device for PC: '%c'",
302 boot_device[i]);
303 return;
306 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
307 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
310 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
312 set_boot_dev(opaque, boot_device, errp);
315 typedef struct pc_cmos_init_late_arg {
316 ISADevice *rtc_state;
317 BusState *idebus[2];
318 } pc_cmos_init_late_arg;
320 static void pc_cmos_init_late(void *opaque)
322 pc_cmos_init_late_arg *arg = opaque;
323 ISADevice *s = arg->rtc_state;
324 int16_t cylinders;
325 int8_t heads, sectors;
326 int val;
327 int i, trans;
329 val = 0;
330 if (ide_get_geometry(arg->idebus[0], 0,
331 &cylinders, &heads, &sectors) >= 0) {
332 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
333 val |= 0xf0;
335 if (ide_get_geometry(arg->idebus[0], 1,
336 &cylinders, &heads, &sectors) >= 0) {
337 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
338 val |= 0x0f;
340 rtc_set_memory(s, 0x12, val);
342 val = 0;
343 for (i = 0; i < 4; i++) {
344 /* NOTE: ide_get_geometry() returns the physical
345 geometry. It is always such that: 1 <= sects <= 63, 1
346 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
347 geometry can be different if a translation is done. */
348 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
349 &cylinders, &heads, &sectors) >= 0) {
350 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
351 assert((trans & ~3) == 0);
352 val |= trans << (i * 2);
355 rtc_set_memory(s, 0x39, val);
357 qemu_unregister_reset(pc_cmos_init_late, opaque);
360 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
361 const char *boot_device, MachineState *machine,
362 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
363 ISADevice *s)
365 int val, nb, i;
366 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
367 static pc_cmos_init_late_arg arg;
368 PCMachineState *pc_machine = PC_MACHINE(machine);
369 Error *local_err = NULL;
371 /* various important CMOS locations needed by PC/Bochs bios */
373 /* memory size */
374 /* base memory (first MiB) */
375 val = MIN(ram_size / 1024, 640);
376 rtc_set_memory(s, 0x15, val);
377 rtc_set_memory(s, 0x16, val >> 8);
378 /* extended memory (next 64MiB) */
379 if (ram_size > 1024 * 1024) {
380 val = (ram_size - 1024 * 1024) / 1024;
381 } else {
382 val = 0;
384 if (val > 65535)
385 val = 65535;
386 rtc_set_memory(s, 0x17, val);
387 rtc_set_memory(s, 0x18, val >> 8);
388 rtc_set_memory(s, 0x30, val);
389 rtc_set_memory(s, 0x31, val >> 8);
390 /* memory between 16MiB and 4GiB */
391 if (ram_size > 16 * 1024 * 1024) {
392 val = (ram_size - 16 * 1024 * 1024) / 65536;
393 } else {
394 val = 0;
396 if (val > 65535)
397 val = 65535;
398 rtc_set_memory(s, 0x34, val);
399 rtc_set_memory(s, 0x35, val >> 8);
400 /* memory above 4GiB */
401 val = above_4g_mem_size / 65536;
402 rtc_set_memory(s, 0x5b, val);
403 rtc_set_memory(s, 0x5c, val >> 8);
404 rtc_set_memory(s, 0x5d, val >> 16);
406 /* set the number of CPU */
407 rtc_set_memory(s, 0x5f, smp_cpus - 1);
409 object_property_add_link(OBJECT(machine), "rtc_state",
410 TYPE_ISA_DEVICE,
411 (Object **)&pc_machine->rtc,
412 object_property_allow_set_link,
413 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
414 object_property_set_link(OBJECT(machine), OBJECT(s),
415 "rtc_state", &error_abort);
417 set_boot_dev(s, boot_device, &local_err);
418 if (local_err) {
419 error_report("%s", error_get_pretty(local_err));
420 exit(1);
423 /* floppy type */
424 if (floppy) {
425 for (i = 0; i < 2; i++) {
426 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
429 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
430 cmos_get_fd_drive_type(fd_type[1]);
431 rtc_set_memory(s, 0x10, val);
433 val = 0;
434 nb = 0;
435 if (fd_type[0] < FDRIVE_DRV_NONE) {
436 nb++;
438 if (fd_type[1] < FDRIVE_DRV_NONE) {
439 nb++;
441 switch (nb) {
442 case 0:
443 break;
444 case 1:
445 val |= 0x01; /* 1 drive, ready for boot */
446 break;
447 case 2:
448 val |= 0x41; /* 2 drives, ready for boot */
449 break;
451 val |= 0x02; /* FPU is there */
452 val |= 0x04; /* PS/2 mouse installed */
453 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
455 /* hard drives */
456 arg.rtc_state = s;
457 arg.idebus[0] = idebus0;
458 arg.idebus[1] = idebus1;
459 qemu_register_reset(pc_cmos_init_late, &arg);
462 #define TYPE_PORT92 "port92"
463 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
465 /* port 92 stuff: could be split off */
466 typedef struct Port92State {
467 ISADevice parent_obj;
469 MemoryRegion io;
470 uint8_t outport;
471 qemu_irq *a20_out;
472 } Port92State;
474 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
475 unsigned size)
477 Port92State *s = opaque;
478 int oldval = s->outport;
480 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
481 s->outport = val;
482 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
483 if ((val & 1) && !(oldval & 1)) {
484 qemu_system_reset_request();
488 static uint64_t port92_read(void *opaque, hwaddr addr,
489 unsigned size)
491 Port92State *s = opaque;
492 uint32_t ret;
494 ret = s->outport;
495 DPRINTF("port92: read 0x%02x\n", ret);
496 return ret;
499 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
501 Port92State *s = PORT92(dev);
503 s->a20_out = a20_out;
506 static const VMStateDescription vmstate_port92_isa = {
507 .name = "port92",
508 .version_id = 1,
509 .minimum_version_id = 1,
510 .fields = (VMStateField[]) {
511 VMSTATE_UINT8(outport, Port92State),
512 VMSTATE_END_OF_LIST()
516 static void port92_reset(DeviceState *d)
518 Port92State *s = PORT92(d);
520 s->outport &= ~1;
523 static const MemoryRegionOps port92_ops = {
524 .read = port92_read,
525 .write = port92_write,
526 .impl = {
527 .min_access_size = 1,
528 .max_access_size = 1,
530 .endianness = DEVICE_LITTLE_ENDIAN,
533 static void port92_initfn(Object *obj)
535 Port92State *s = PORT92(obj);
537 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
539 s->outport = 0;
542 static void port92_realizefn(DeviceState *dev, Error **errp)
544 ISADevice *isadev = ISA_DEVICE(dev);
545 Port92State *s = PORT92(dev);
547 isa_register_ioport(isadev, &s->io, 0x92);
550 static void port92_class_initfn(ObjectClass *klass, void *data)
552 DeviceClass *dc = DEVICE_CLASS(klass);
554 dc->realize = port92_realizefn;
555 dc->reset = port92_reset;
556 dc->vmsd = &vmstate_port92_isa;
558 * Reason: unlike ordinary ISA devices, this one needs additional
559 * wiring: its A20 output line needs to be wired up by
560 * port92_init().
562 dc->cannot_instantiate_with_device_add_yet = true;
565 static const TypeInfo port92_info = {
566 .name = TYPE_PORT92,
567 .parent = TYPE_ISA_DEVICE,
568 .instance_size = sizeof(Port92State),
569 .instance_init = port92_initfn,
570 .class_init = port92_class_initfn,
573 static void port92_register_types(void)
575 type_register_static(&port92_info);
578 type_init(port92_register_types)
580 static void handle_a20_line_change(void *opaque, int irq, int level)
582 X86CPU *cpu = opaque;
584 /* XXX: send to all CPUs ? */
585 /* XXX: add logic to handle multiple A20 line sources */
586 x86_cpu_set_a20(cpu, level);
589 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
591 int index = le32_to_cpu(e820_reserve.count);
592 struct e820_entry *entry;
594 if (type != E820_RAM) {
595 /* old FW_CFG_E820_TABLE entry -- reservations only */
596 if (index >= E820_NR_ENTRIES) {
597 return -EBUSY;
599 entry = &e820_reserve.entry[index++];
601 entry->address = cpu_to_le64(address);
602 entry->length = cpu_to_le64(length);
603 entry->type = cpu_to_le32(type);
605 e820_reserve.count = cpu_to_le32(index);
608 /* new "etc/e820" file -- include ram too */
609 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
610 e820_table[e820_entries].address = cpu_to_le64(address);
611 e820_table[e820_entries].length = cpu_to_le64(length);
612 e820_table[e820_entries].type = cpu_to_le32(type);
613 e820_entries++;
615 return e820_entries;
618 int e820_get_num_entries(void)
620 return e820_entries;
623 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
625 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
626 *address = le64_to_cpu(e820_table[idx].address);
627 *length = le64_to_cpu(e820_table[idx].length);
628 return true;
630 return false;
633 /* Enables contiguous-apic-ID mode, for compatibility */
634 static bool compat_apic_id_mode;
636 void enable_compat_apic_id_mode(void)
638 compat_apic_id_mode = true;
641 /* Calculates initial APIC ID for a specific CPU index
643 * Currently we need to be able to calculate the APIC ID from the CPU index
644 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
645 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
646 * all CPUs up to max_cpus.
648 uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
650 uint32_t correct_id;
651 static bool warned;
653 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
654 if (compat_apic_id_mode) {
655 if (cpu_index != correct_id && !warned) {
656 error_report("APIC IDs set in compatibility mode, "
657 "CPU topology won't match the configuration");
658 warned = true;
660 return cpu_index;
661 } else {
662 return correct_id;
666 /* Calculates the limit to CPU APIC ID values
668 * This function returns the limit for the APIC ID value, so that all
669 * CPU APIC IDs are < pc_apic_id_limit().
671 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
673 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
675 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
678 static FWCfgState *bochs_bios_init(void)
680 FWCfgState *fw_cfg;
681 uint8_t *smbios_tables, *smbios_anchor;
682 size_t smbios_tables_len, smbios_anchor_len;
683 uint64_t *numa_fw_cfg;
684 int i, j;
685 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
687 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
688 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
690 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
691 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
692 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
693 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
694 * may see".
696 * So, this means we must not use max_cpus, here, but the maximum possible
697 * APIC ID value, plus one.
699 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
700 * the APIC ID, not the "CPU index"
702 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
703 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
704 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
705 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
706 acpi_tables, acpi_tables_len);
707 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
709 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
710 if (smbios_tables) {
711 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
712 smbios_tables, smbios_tables_len);
715 smbios_get_tables(&smbios_tables, &smbios_tables_len,
716 &smbios_anchor, &smbios_anchor_len);
717 if (smbios_anchor) {
718 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
719 smbios_tables, smbios_tables_len);
720 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
721 smbios_anchor, smbios_anchor_len);
724 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
725 &e820_reserve, sizeof(e820_reserve));
726 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
727 sizeof(struct e820_entry) * e820_entries);
729 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
730 /* allocate memory for the NUMA channel: one (64bit) word for the number
731 * of nodes, one word for each VCPU->node and one word for each node to
732 * hold the amount of memory.
734 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
735 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
736 for (i = 0; i < max_cpus; i++) {
737 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
738 assert(apic_id < apic_id_limit);
739 for (j = 0; j < nb_numa_nodes; j++) {
740 if (test_bit(i, numa_info[j].node_cpu)) {
741 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
742 break;
746 for (i = 0; i < nb_numa_nodes; i++) {
747 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
749 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
750 (1 + apic_id_limit + nb_numa_nodes) *
751 sizeof(*numa_fw_cfg));
753 return fw_cfg;
756 static long get_file_size(FILE *f)
758 long where, size;
760 /* XXX: on Unix systems, using fstat() probably makes more sense */
762 where = ftell(f);
763 fseek(f, 0, SEEK_END);
764 size = ftell(f);
765 fseek(f, where, SEEK_SET);
767 return size;
770 static void load_linux(FWCfgState *fw_cfg,
771 const char *kernel_filename,
772 const char *initrd_filename,
773 const char *kernel_cmdline,
774 hwaddr max_ram_size)
776 uint16_t protocol;
777 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
778 uint32_t initrd_max;
779 uint8_t header[8192], *setup, *kernel, *initrd_data;
780 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
781 FILE *f;
782 char *vmode;
784 /* Align to 16 bytes as a paranoia measure */
785 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
787 /* load the kernel header */
788 f = fopen(kernel_filename, "rb");
789 if (!f || !(kernel_size = get_file_size(f)) ||
790 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
791 MIN(ARRAY_SIZE(header), kernel_size)) {
792 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
793 kernel_filename, strerror(errno));
794 exit(1);
797 /* kernel protocol version */
798 #if 0
799 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
800 #endif
801 if (ldl_p(header+0x202) == 0x53726448) {
802 protocol = lduw_p(header+0x206);
803 } else {
804 /* This looks like a multiboot kernel. If it is, let's stop
805 treating it like a Linux kernel. */
806 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
807 kernel_cmdline, kernel_size, header)) {
808 return;
810 protocol = 0;
813 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
814 /* Low kernel */
815 real_addr = 0x90000;
816 cmdline_addr = 0x9a000 - cmdline_size;
817 prot_addr = 0x10000;
818 } else if (protocol < 0x202) {
819 /* High but ancient kernel */
820 real_addr = 0x90000;
821 cmdline_addr = 0x9a000 - cmdline_size;
822 prot_addr = 0x100000;
823 } else {
824 /* High and recent kernel */
825 real_addr = 0x10000;
826 cmdline_addr = 0x20000;
827 prot_addr = 0x100000;
830 #if 0
831 fprintf(stderr,
832 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
833 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
834 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
835 real_addr,
836 cmdline_addr,
837 prot_addr);
838 #endif
840 /* highest address for loading the initrd */
841 if (protocol >= 0x203) {
842 initrd_max = ldl_p(header+0x22c);
843 } else {
844 initrd_max = 0x37ffffff;
847 if (initrd_max >= max_ram_size - acpi_data_size) {
848 initrd_max = max_ram_size - acpi_data_size - 1;
851 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
852 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
853 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
855 if (protocol >= 0x202) {
856 stl_p(header+0x228, cmdline_addr);
857 } else {
858 stw_p(header+0x20, 0xA33F);
859 stw_p(header+0x22, cmdline_addr-real_addr);
862 /* handle vga= parameter */
863 vmode = strstr(kernel_cmdline, "vga=");
864 if (vmode) {
865 unsigned int video_mode;
866 /* skip "vga=" */
867 vmode += 4;
868 if (!strncmp(vmode, "normal", 6)) {
869 video_mode = 0xffff;
870 } else if (!strncmp(vmode, "ext", 3)) {
871 video_mode = 0xfffe;
872 } else if (!strncmp(vmode, "ask", 3)) {
873 video_mode = 0xfffd;
874 } else {
875 video_mode = strtol(vmode, NULL, 0);
877 stw_p(header+0x1fa, video_mode);
880 /* loader type */
881 /* High nybble = B reserved for QEMU; low nybble is revision number.
882 If this code is substantially changed, you may want to consider
883 incrementing the revision. */
884 if (protocol >= 0x200) {
885 header[0x210] = 0xB0;
887 /* heap */
888 if (protocol >= 0x201) {
889 header[0x211] |= 0x80; /* CAN_USE_HEAP */
890 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
893 /* load initrd */
894 if (initrd_filename) {
895 if (protocol < 0x200) {
896 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
897 exit(1);
900 initrd_size = get_image_size(initrd_filename);
901 if (initrd_size < 0) {
902 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
903 initrd_filename, strerror(errno));
904 exit(1);
907 initrd_addr = (initrd_max-initrd_size) & ~4095;
909 initrd_data = g_malloc(initrd_size);
910 load_image(initrd_filename, initrd_data);
912 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
913 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
914 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
916 stl_p(header+0x218, initrd_addr);
917 stl_p(header+0x21c, initrd_size);
920 /* load kernel and setup */
921 setup_size = header[0x1f1];
922 if (setup_size == 0) {
923 setup_size = 4;
925 setup_size = (setup_size+1)*512;
926 kernel_size -= setup_size;
928 setup = g_malloc(setup_size);
929 kernel = g_malloc(kernel_size);
930 fseek(f, 0, SEEK_SET);
931 if (fread(setup, 1, setup_size, f) != setup_size) {
932 fprintf(stderr, "fread() failed\n");
933 exit(1);
935 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
936 fprintf(stderr, "fread() failed\n");
937 exit(1);
939 fclose(f);
940 memcpy(setup, header, MIN(sizeof(header), setup_size));
942 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
943 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
944 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
946 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
947 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
948 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
950 option_rom[nb_option_roms].name = "linuxboot.bin";
951 option_rom[nb_option_roms].bootindex = 0;
952 nb_option_roms++;
955 #define NE2000_NB_MAX 6
957 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
958 0x280, 0x380 };
959 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
961 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
963 static int nb_ne2k = 0;
965 if (nb_ne2k == NE2000_NB_MAX)
966 return;
967 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
968 ne2000_irq[nb_ne2k], nd);
969 nb_ne2k++;
972 DeviceState *cpu_get_current_apic(void)
974 if (current_cpu) {
975 X86CPU *cpu = X86_CPU(current_cpu);
976 return cpu->apic_state;
977 } else {
978 return NULL;
982 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
984 X86CPU *cpu = opaque;
986 if (level) {
987 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
991 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
992 DeviceState *icc_bridge, Error **errp)
994 X86CPU *cpu;
995 Error *local_err = NULL;
997 cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
998 if (local_err != NULL) {
999 error_propagate(errp, local_err);
1000 return NULL;
1003 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1004 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1006 if (local_err) {
1007 error_propagate(errp, local_err);
1008 object_unref(OBJECT(cpu));
1009 cpu = NULL;
1011 return cpu;
1014 static const char *current_cpu_model;
1016 void pc_hot_add_cpu(const int64_t id, Error **errp)
1018 DeviceState *icc_bridge;
1019 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1021 if (id < 0) {
1022 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1023 return;
1026 if (cpu_exists(apic_id)) {
1027 error_setg(errp, "Unable to add CPU: %" PRIi64
1028 ", it already exists", id);
1029 return;
1032 if (id >= max_cpus) {
1033 error_setg(errp, "Unable to add CPU: %" PRIi64
1034 ", max allowed: %d", id, max_cpus - 1);
1035 return;
1038 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1039 error_setg(errp, "Unable to add CPU: %" PRIi64
1040 ", resulting APIC ID (%" PRIi64 ") is too large",
1041 id, apic_id);
1042 return;
1045 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
1046 TYPE_ICC_BRIDGE, NULL));
1047 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
1050 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
1052 int i;
1053 X86CPU *cpu = NULL;
1054 Error *error = NULL;
1055 unsigned long apic_id_limit;
1057 /* init CPUs */
1058 if (cpu_model == NULL) {
1059 #ifdef TARGET_X86_64
1060 cpu_model = "qemu64";
1061 #else
1062 cpu_model = "qemu32";
1063 #endif
1065 current_cpu_model = cpu_model;
1067 apic_id_limit = pc_apic_id_limit(max_cpus);
1068 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1069 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1070 apic_id_limit - 1);
1071 exit(1);
1074 for (i = 0; i < smp_cpus; i++) {
1075 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
1076 icc_bridge, &error);
1077 if (error) {
1078 error_report("%s", error_get_pretty(error));
1079 error_free(error);
1080 exit(1);
1084 /* map APIC MMIO area if CPU has APIC */
1085 if (cpu && cpu->apic_state) {
1086 /* XXX: what if the base changes? */
1087 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
1088 APIC_DEFAULT_ADDRESS, 0x1000);
1091 /* tell smbios about cpuid version and features */
1092 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1095 /* pci-info ROM file. Little endian format */
1096 typedef struct PcRomPciInfo {
1097 uint64_t w32_min;
1098 uint64_t w32_max;
1099 uint64_t w64_min;
1100 uint64_t w64_max;
1101 } PcRomPciInfo;
1103 typedef struct PcGuestInfoState {
1104 PcGuestInfo info;
1105 Notifier machine_done;
1106 } PcGuestInfoState;
1108 static
1109 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1111 PcGuestInfoState *guest_info_state = container_of(notifier,
1112 PcGuestInfoState,
1113 machine_done);
1114 acpi_setup(&guest_info_state->info);
1117 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1118 ram_addr_t above_4g_mem_size)
1120 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1121 PcGuestInfo *guest_info = &guest_info_state->info;
1122 int i, j;
1124 guest_info->ram_size_below_4g = below_4g_mem_size;
1125 guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
1126 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1127 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1128 guest_info->numa_nodes = nb_numa_nodes;
1129 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1130 sizeof *guest_info->node_mem);
1131 for (i = 0; i < nb_numa_nodes; i++) {
1132 guest_info->node_mem[i] = numa_info[i].node_mem;
1135 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1136 sizeof *guest_info->node_cpu);
1138 for (i = 0; i < max_cpus; i++) {
1139 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1140 assert(apic_id < guest_info->apic_id_limit);
1141 for (j = 0; j < nb_numa_nodes; j++) {
1142 if (test_bit(i, numa_info[j].node_cpu)) {
1143 guest_info->node_cpu[apic_id] = j;
1144 break;
1149 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1150 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1151 return guest_info;
1154 /* setup pci memory address space mapping into system address space */
1155 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1156 MemoryRegion *pci_address_space)
1158 /* Set to lower priority than RAM */
1159 memory_region_add_subregion_overlap(system_memory, 0x0,
1160 pci_address_space, -1);
1163 void pc_acpi_init(const char *default_dsdt)
1165 char *filename;
1167 if (acpi_tables != NULL) {
1168 /* manually set via -acpitable, leave it alone */
1169 return;
1172 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1173 if (filename == NULL) {
1174 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1175 } else {
1176 char *arg;
1177 QemuOpts *opts;
1178 Error *err = NULL;
1180 arg = g_strdup_printf("file=%s", filename);
1182 /* creates a deep copy of "arg" */
1183 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1184 g_assert(opts != NULL);
1186 acpi_table_add_builtin(opts, &err);
1187 if (err) {
1188 error_report("WARNING: failed to load %s: %s", filename,
1189 error_get_pretty(err));
1190 error_free(err);
1192 g_free(arg);
1193 g_free(filename);
1197 FWCfgState *xen_load_linux(const char *kernel_filename,
1198 const char *kernel_cmdline,
1199 const char *initrd_filename,
1200 ram_addr_t below_4g_mem_size,
1201 PcGuestInfo *guest_info)
1203 int i;
1204 FWCfgState *fw_cfg;
1206 assert(kernel_filename != NULL);
1208 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1209 rom_set_fw(fw_cfg);
1211 load_linux(fw_cfg, kernel_filename, initrd_filename,
1212 kernel_cmdline, below_4g_mem_size);
1213 for (i = 0; i < nb_option_roms; i++) {
1214 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1215 !strcmp(option_rom[i].name, "multiboot.bin"));
1216 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1218 guest_info->fw_cfg = fw_cfg;
1219 return fw_cfg;
1222 FWCfgState *pc_memory_init(MachineState *machine,
1223 MemoryRegion *system_memory,
1224 ram_addr_t below_4g_mem_size,
1225 ram_addr_t above_4g_mem_size,
1226 MemoryRegion *rom_memory,
1227 MemoryRegion **ram_memory,
1228 PcGuestInfo *guest_info)
1230 int linux_boot, i;
1231 MemoryRegion *ram, *option_rom_mr;
1232 MemoryRegion *ram_below_4g, *ram_above_4g;
1233 FWCfgState *fw_cfg;
1234 PCMachineState *pcms = PC_MACHINE(machine);
1236 assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
1238 linux_boot = (machine->kernel_filename != NULL);
1240 /* Allocate RAM. We allocate it as a single memory region and use
1241 * aliases to address portions of it, mostly for backwards compatibility
1242 * with older qemus that used qemu_ram_alloc().
1244 ram = g_malloc(sizeof(*ram));
1245 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1246 machine->ram_size);
1247 *ram_memory = ram;
1248 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1249 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1250 0, below_4g_mem_size);
1251 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1252 e820_add_entry(0, below_4g_mem_size, E820_RAM);
1253 if (above_4g_mem_size > 0) {
1254 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1255 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1256 below_4g_mem_size, above_4g_mem_size);
1257 memory_region_add_subregion(system_memory, 0x100000000ULL,
1258 ram_above_4g);
1259 e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
1262 if (!guest_info->has_reserved_memory &&
1263 (machine->ram_slots ||
1264 (machine->maxram_size > machine->ram_size))) {
1265 MachineClass *mc = MACHINE_GET_CLASS(machine);
1267 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1268 mc->name);
1269 exit(EXIT_FAILURE);
1272 /* initialize hotplug memory address space */
1273 if (guest_info->has_reserved_memory &&
1274 (machine->ram_size < machine->maxram_size)) {
1275 ram_addr_t hotplug_mem_size =
1276 machine->maxram_size - machine->ram_size;
1278 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1279 error_report("unsupported amount of memory slots: %"PRIu64,
1280 machine->ram_slots);
1281 exit(EXIT_FAILURE);
1284 pcms->hotplug_memory_base =
1285 ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
1287 if (pcms->enforce_aligned_dimm) {
1288 /* size hotplug region assuming 1G page max alignment per slot */
1289 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1292 if ((pcms->hotplug_memory_base + hotplug_mem_size) <
1293 hotplug_mem_size) {
1294 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1295 machine->maxram_size);
1296 exit(EXIT_FAILURE);
1299 memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
1300 "hotplug-memory", hotplug_mem_size);
1301 memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
1302 &pcms->hotplug_memory);
1305 /* Initialize PC system firmware */
1306 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1308 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1309 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1310 &error_abort);
1311 vmstate_register_ram_global(option_rom_mr);
1312 memory_region_add_subregion_overlap(rom_memory,
1313 PC_ROM_MIN_VGA,
1314 option_rom_mr,
1317 fw_cfg = bochs_bios_init();
1318 rom_set_fw(fw_cfg);
1320 if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
1321 uint64_t *val = g_malloc(sizeof(*val));
1322 *val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
1323 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1326 if (linux_boot) {
1327 load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
1328 machine->kernel_cmdline, below_4g_mem_size);
1331 for (i = 0; i < nb_option_roms; i++) {
1332 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1334 guest_info->fw_cfg = fw_cfg;
1335 return fw_cfg;
1338 qemu_irq *pc_allocate_cpu_irq(void)
1340 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1343 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1345 DeviceState *dev = NULL;
1347 if (pci_bus) {
1348 PCIDevice *pcidev = pci_vga_init(pci_bus);
1349 dev = pcidev ? &pcidev->qdev : NULL;
1350 } else if (isa_bus) {
1351 ISADevice *isadev = isa_vga_init(isa_bus);
1352 dev = isadev ? DEVICE(isadev) : NULL;
1354 return dev;
1357 static void cpu_request_exit(void *opaque, int irq, int level)
1359 CPUState *cpu = current_cpu;
1361 if (cpu && level) {
1362 cpu_exit(cpu);
1366 static const MemoryRegionOps ioport80_io_ops = {
1367 .write = ioport80_write,
1368 .read = ioport80_read,
1369 .endianness = DEVICE_NATIVE_ENDIAN,
1370 .impl = {
1371 .min_access_size = 1,
1372 .max_access_size = 1,
1376 static const MemoryRegionOps ioportF0_io_ops = {
1377 .write = ioportF0_write,
1378 .read = ioportF0_read,
1379 .endianness = DEVICE_NATIVE_ENDIAN,
1380 .impl = {
1381 .min_access_size = 1,
1382 .max_access_size = 1,
1386 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1387 ISADevice **rtc_state,
1388 ISADevice **floppy,
1389 bool no_vmport,
1390 uint32 hpet_irqs)
1392 int i;
1393 DriveInfo *fd[MAX_FD];
1394 DeviceState *hpet = NULL;
1395 int pit_isa_irq = 0;
1396 qemu_irq pit_alt_irq = NULL;
1397 qemu_irq rtc_irq = NULL;
1398 qemu_irq *a20_line;
1399 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1400 qemu_irq *cpu_exit_irq;
1401 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1402 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1404 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1405 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1407 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1408 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1411 * Check if an HPET shall be created.
1413 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1414 * when the HPET wants to take over. Thus we have to disable the latter.
1416 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1417 /* In order to set property, here not using sysbus_try_create_simple */
1418 hpet = qdev_try_create(NULL, TYPE_HPET);
1419 if (hpet) {
1420 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1421 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1422 * IRQ8 and IRQ2.
1424 uint8_t compat = object_property_get_int(OBJECT(hpet),
1425 HPET_INTCAP, NULL);
1426 if (!compat) {
1427 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1429 qdev_init_nofail(hpet);
1430 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1432 for (i = 0; i < GSI_NUM_PINS; i++) {
1433 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1435 pit_isa_irq = -1;
1436 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1437 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1440 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1442 qemu_register_boot_set(pc_boot_set, *rtc_state);
1444 if (!xen_enabled()) {
1445 if (kvm_irqchip_in_kernel()) {
1446 pit = kvm_pit_init(isa_bus, 0x40);
1447 } else {
1448 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1450 if (hpet) {
1451 /* connect PIT to output control line of the HPET */
1452 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1454 pcspk_init(isa_bus, pit);
1457 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1458 if (serial_hds[i]) {
1459 serial_isa_init(isa_bus, i, serial_hds[i]);
1463 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1464 if (parallel_hds[i]) {
1465 parallel_init(isa_bus, i, parallel_hds[i]);
1469 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1470 i8042 = isa_create_simple(isa_bus, "i8042");
1471 i8042_setup_a20_line(i8042, &a20_line[0]);
1472 if (!no_vmport) {
1473 vmport_init(isa_bus);
1474 vmmouse = isa_try_create(isa_bus, "vmmouse");
1475 } else {
1476 vmmouse = NULL;
1478 if (vmmouse) {
1479 DeviceState *dev = DEVICE(vmmouse);
1480 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1481 qdev_init_nofail(dev);
1483 port92 = isa_create_simple(isa_bus, "port92");
1484 port92_init(port92, &a20_line[1]);
1486 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1487 DMA_init(0, cpu_exit_irq);
1489 for(i = 0; i < MAX_FD; i++) {
1490 fd[i] = drive_get(IF_FLOPPY, 0, i);
1492 *floppy = fdctrl_init_isa(isa_bus, fd);
1495 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1497 int i;
1499 for (i = 0; i < nb_nics; i++) {
1500 NICInfo *nd = &nd_table[i];
1502 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1503 pc_init_ne2k_isa(isa_bus, nd);
1504 } else {
1505 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1510 void pc_pci_device_init(PCIBus *pci_bus)
1512 int max_bus;
1513 int bus;
1515 max_bus = drive_get_max_bus(IF_SCSI);
1516 for (bus = 0; bus <= max_bus; bus++) {
1517 pci_create_simple(pci_bus, -1, "lsi53c895a");
1521 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1523 DeviceState *dev;
1524 SysBusDevice *d;
1525 unsigned int i;
1527 if (kvm_irqchip_in_kernel()) {
1528 dev = qdev_create(NULL, "kvm-ioapic");
1529 } else {
1530 dev = qdev_create(NULL, "ioapic");
1532 if (parent_name) {
1533 object_property_add_child(object_resolve_path(parent_name, NULL),
1534 "ioapic", OBJECT(dev), NULL);
1536 qdev_init_nofail(dev);
1537 d = SYS_BUS_DEVICE(dev);
1538 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1540 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1541 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1545 static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
1547 MachineClass *mc = MACHINE_CLASS(oc);
1548 QEMUMachine *qm = data;
1550 mc->family = qm->family;
1551 mc->name = qm->name;
1552 mc->alias = qm->alias;
1553 mc->desc = qm->desc;
1554 mc->init = qm->init;
1555 mc->reset = qm->reset;
1556 mc->hot_add_cpu = qm->hot_add_cpu;
1557 mc->kvm_type = qm->kvm_type;
1558 mc->block_default_type = qm->block_default_type;
1559 mc->units_per_default_bus = qm->units_per_default_bus;
1560 mc->max_cpus = qm->max_cpus;
1561 mc->no_serial = qm->no_serial;
1562 mc->no_parallel = qm->no_parallel;
1563 mc->use_virtcon = qm->use_virtcon;
1564 mc->use_sclp = qm->use_sclp;
1565 mc->no_floppy = qm->no_floppy;
1566 mc->no_cdrom = qm->no_cdrom;
1567 mc->no_sdcard = qm->no_sdcard;
1568 mc->is_default = qm->is_default;
1569 mc->default_machine_opts = qm->default_machine_opts;
1570 mc->default_boot_order = qm->default_boot_order;
1571 mc->default_display = qm->default_display;
1572 mc->compat_props = qm->compat_props;
1573 mc->hw_version = qm->hw_version;
1576 void qemu_register_pc_machine(QEMUMachine *m)
1578 char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
1579 TypeInfo ti = {
1580 .name = name,
1581 .parent = TYPE_PC_MACHINE,
1582 .class_init = pc_generic_machine_class_init,
1583 .class_data = (void *)m,
1586 type_register(&ti);
1587 g_free(name);
1590 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1591 DeviceState *dev, Error **errp)
1593 int slot;
1594 HotplugHandlerClass *hhc;
1595 Error *local_err = NULL;
1596 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1597 MachineState *machine = MACHINE(hotplug_dev);
1598 PCDIMMDevice *dimm = PC_DIMM(dev);
1599 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1600 MemoryRegion *mr = ddc->get_memory_region(dimm);
1601 uint64_t existing_dimms_capacity = 0;
1602 uint64_t align = TARGET_PAGE_SIZE;
1603 uint64_t addr;
1605 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
1606 if (local_err) {
1607 goto out;
1610 if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1611 align = memory_region_get_alignment(mr);
1614 addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
1615 memory_region_size(&pcms->hotplug_memory),
1616 !addr ? NULL : &addr, align,
1617 memory_region_size(mr), &local_err);
1618 if (local_err) {
1619 goto out;
1622 existing_dimms_capacity = pc_existing_dimms_capacity(&local_err);
1623 if (local_err) {
1624 goto out;
1627 if (existing_dimms_capacity + memory_region_size(mr) >
1628 machine->maxram_size - machine->ram_size) {
1629 error_setg(&local_err, "not enough space, currently 0x%" PRIx64
1630 " in use of total hot pluggable 0x" RAM_ADDR_FMT,
1631 existing_dimms_capacity,
1632 machine->maxram_size - machine->ram_size);
1633 goto out;
1636 object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
1637 if (local_err) {
1638 goto out;
1640 trace_mhp_pc_dimm_assigned_address(addr);
1642 slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
1643 if (local_err) {
1644 goto out;
1647 slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
1648 machine->ram_slots, &local_err);
1649 if (local_err) {
1650 goto out;
1652 object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
1653 if (local_err) {
1654 goto out;
1656 trace_mhp_pc_dimm_assigned_slot(slot);
1658 if (!pcms->acpi_dev) {
1659 error_setg(&local_err,
1660 "memory hotplug is not enabled: missing acpi device");
1661 goto out;
1664 if (kvm_enabled() && !kvm_has_free_slot(machine)) {
1665 error_setg(&local_err, "hypervisor has no free memory slots left");
1666 goto out;
1669 memory_region_add_subregion(&pcms->hotplug_memory,
1670 addr - pcms->hotplug_memory_base, mr);
1671 vmstate_register_ram(mr, dev);
1673 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1674 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1675 out:
1676 error_propagate(errp, local_err);
1679 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1680 DeviceState *dev, Error **errp)
1682 HotplugHandlerClass *hhc;
1683 Error *local_err = NULL;
1684 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1686 if (!dev->hotplugged) {
1687 goto out;
1690 if (!pcms->acpi_dev) {
1691 error_setg(&local_err,
1692 "cpu hotplug is not enabled: missing acpi device");
1693 goto out;
1696 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1697 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1698 if (local_err) {
1699 goto out;
1702 /* increment the number of CPUs */
1703 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1704 out:
1705 error_propagate(errp, local_err);
1708 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1709 DeviceState *dev, Error **errp)
1711 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1712 pc_dimm_plug(hotplug_dev, dev, errp);
1713 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1714 pc_cpu_plug(hotplug_dev, dev, errp);
1718 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1719 DeviceState *dev)
1721 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1723 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1724 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1725 return HOTPLUG_HANDLER(machine);
1728 return pcmc->get_hotplug_handler ?
1729 pcmc->get_hotplug_handler(machine, dev) : NULL;
1732 static void
1733 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1734 const char *name, Error **errp)
1736 PCMachineState *pcms = PC_MACHINE(obj);
1737 int64_t value = memory_region_size(&pcms->hotplug_memory);
1739 visit_type_int(v, &value, name, errp);
1742 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1743 void *opaque, const char *name,
1744 Error **errp)
1746 PCMachineState *pcms = PC_MACHINE(obj);
1747 uint64_t value = pcms->max_ram_below_4g;
1749 visit_type_size(v, &value, name, errp);
1752 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1753 void *opaque, const char *name,
1754 Error **errp)
1756 PCMachineState *pcms = PC_MACHINE(obj);
1757 Error *error = NULL;
1758 uint64_t value;
1760 visit_type_size(v, &value, name, &error);
1761 if (error) {
1762 error_propagate(errp, error);
1763 return;
1765 if (value > (1ULL << 32)) {
1766 error_set(&error, ERROR_CLASS_GENERIC_ERROR,
1767 "Machine option 'max-ram-below-4g=%"PRIu64
1768 "' expects size less than or equal to 4G", value);
1769 error_propagate(errp, error);
1770 return;
1773 if (value < (1ULL << 20)) {
1774 error_report("Warning: small max_ram_below_4g(%"PRIu64
1775 ") less than 1M. BIOS may not work..",
1776 value);
1779 pcms->max_ram_below_4g = value;
1782 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1783 const char *name, Error **errp)
1785 PCMachineState *pcms = PC_MACHINE(obj);
1786 OnOffAuto vmport = pcms->vmport;
1788 visit_type_OnOffAuto(v, &vmport, name, errp);
1791 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1792 const char *name, Error **errp)
1794 PCMachineState *pcms = PC_MACHINE(obj);
1796 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1799 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1801 PCMachineState *pcms = PC_MACHINE(obj);
1803 return pcms->enforce_aligned_dimm;
1806 static void pc_machine_initfn(Object *obj)
1808 PCMachineState *pcms = PC_MACHINE(obj);
1810 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1811 pc_machine_get_hotplug_memory_region_size,
1812 NULL, NULL, NULL, NULL);
1814 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1815 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1816 pc_machine_get_max_ram_below_4g,
1817 pc_machine_set_max_ram_below_4g,
1818 NULL, NULL, NULL);
1819 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1820 "Maximum ram below the 4G boundary (32bit boundary)",
1821 NULL);
1823 pcms->vmport = ON_OFF_AUTO_AUTO;
1824 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1825 pc_machine_get_vmport,
1826 pc_machine_set_vmport,
1827 NULL, NULL, NULL);
1828 object_property_set_description(obj, PC_MACHINE_VMPORT,
1829 "Enable vmport (pc & q35)",
1830 NULL);
1832 pcms->enforce_aligned_dimm = true;
1833 object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1834 pc_machine_get_aligned_dimm,
1835 NULL, NULL);
1838 static void pc_machine_class_init(ObjectClass *oc, void *data)
1840 MachineClass *mc = MACHINE_CLASS(oc);
1841 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1842 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1844 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1845 mc->get_hotplug_handler = pc_get_hotpug_handler;
1846 hc->plug = pc_machine_device_plug_cb;
1849 static const TypeInfo pc_machine_info = {
1850 .name = TYPE_PC_MACHINE,
1851 .parent = TYPE_MACHINE,
1852 .abstract = true,
1853 .instance_size = sizeof(PCMachineState),
1854 .instance_init = pc_machine_initfn,
1855 .class_size = sizeof(PCMachineClass),
1856 .class_init = pc_machine_class_init,
1857 .interfaces = (InterfaceInfo[]) {
1858 { TYPE_HOTPLUG_HANDLER },
1863 static void pc_machine_register_types(void)
1865 type_register_static(&pc_machine_info);
1868 type_init(pc_machine_register_types)