4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
32 #include "monitor/monitor.h"
33 #include "sysemu/char.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu/sockets.h"
42 #include "sysemu/kvm.h"
43 #include "qemu/bitops.h"
45 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
46 static inline int target_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
47 uint8_t *buf
, int len
, int is_write
)
49 return cpu_memory_rw_debug(env
, addr
, buf
, len
, is_write
);
52 /* target_memory_rw_debug() defined in cpu.h */
64 GDB_SIGNAL_UNKNOWN
= 143
67 #ifdef CONFIG_USER_ONLY
69 /* Map target signal numbers to GDB protocol signal numbers and vice
70 * versa. For user emulation's currently supported systems, we can
71 * assume most signals are defined.
74 static int gdb_signal_table
[] = {
234 /* In system mode we only need SIGINT and SIGTRAP; other signals
235 are not yet supported. */
242 static int gdb_signal_table
[] = {
252 #ifdef CONFIG_USER_ONLY
253 static int target_signal_to_gdb (int sig
)
256 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
257 if (gdb_signal_table
[i
] == sig
)
259 return GDB_SIGNAL_UNKNOWN
;
263 static int gdb_signal_to_target (int sig
)
265 if (sig
< ARRAY_SIZE (gdb_signal_table
))
266 return gdb_signal_table
[sig
];
273 typedef struct GDBRegisterState
{
279 struct GDBRegisterState
*next
;
289 typedef struct GDBState
{
290 CPUArchState
*c_cpu
; /* current CPU for step/continue ops */
291 CPUArchState
*g_cpu
; /* current CPU for other ops */
292 CPUArchState
*query_cpu
; /* for q{f|s}ThreadInfo */
293 enum RSState state
; /* parsing state */
294 char line_buf
[MAX_PACKET_LENGTH
];
297 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
300 #ifdef CONFIG_USER_ONLY
304 CharDriverState
*chr
;
305 CharDriverState
*mon_chr
;
307 char syscall_buf
[256];
308 gdb_syscall_complete_cb current_syscall_cb
;
311 /* By default use no IRQs and no timers while single stepping so as to
312 * make single stepping like an ICE HW step.
314 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
316 static GDBState
*gdbserver_state
;
318 /* This is an ugly hack to cope with both new and old gdb.
319 If gdb sends qXfer:features:read then assume we're talking to a newish
320 gdb that understands target descriptions. */
321 static int gdb_has_xml
;
323 #ifdef CONFIG_USER_ONLY
324 /* XXX: This is not thread safe. Do we care? */
325 static int gdbserver_fd
= -1;
327 static int get_char(GDBState
*s
)
333 ret
= qemu_recv(s
->fd
, &ch
, 1, 0);
335 if (errno
== ECONNRESET
)
337 if (errno
!= EINTR
&& errno
!= EAGAIN
)
339 } else if (ret
== 0) {
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
361 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
362 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
365 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState
*s
)
371 #ifdef CONFIG_USER_ONLY
372 s
->running_state
= 1;
374 if (runstate_check(RUN_STATE_GUEST_PANICKED
)) {
375 runstate_set(RUN_STATE_DEBUG
);
377 if (!runstate_needs_reset()) {
383 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
385 #ifdef CONFIG_USER_ONLY
389 ret
= send(s
->fd
, buf
, len
, 0);
391 if (errno
!= EINTR
&& errno
!= EAGAIN
)
399 qemu_chr_fe_write(s
->chr
, buf
, len
);
403 static inline int fromhex(int v
)
405 if (v
>= '0' && v
<= '9')
407 else if (v
>= 'A' && v
<= 'F')
409 else if (v
>= 'a' && v
<= 'f')
415 static inline int tohex(int v
)
423 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
428 for(i
= 0; i
< len
; i
++) {
430 *q
++ = tohex(c
>> 4);
431 *q
++ = tohex(c
& 0xf);
436 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
440 for(i
= 0; i
< len
; i
++) {
441 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
446 /* return -1 if error, 0 if OK */
447 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
458 for(i
= 0; i
< len
; i
++) {
462 *(p
++) = tohex((csum
>> 4) & 0xf);
463 *(p
++) = tohex((csum
) & 0xf);
465 s
->last_packet_len
= p
- s
->last_packet
;
466 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
468 #ifdef CONFIG_USER_ONLY
481 /* return -1 if error, 0 if OK */
482 static int put_packet(GDBState
*s
, const char *buf
)
485 printf("reply='%s'\n", buf
);
488 return put_packet_binary(s
, buf
, strlen(buf
));
491 /* The GDB remote protocol transfers values in target byte order. This means
492 we can use the raw memory access routines to access the value buffer.
493 Conveniently, these also handle the case where the buffer is mis-aligned.
495 #define GET_REG8(val) do { \
496 stb_p(mem_buf, val); \
499 #define GET_REG16(val) do { \
500 stw_p(mem_buf, val); \
503 #define GET_REG32(val) do { \
504 stl_p(mem_buf, val); \
507 #define GET_REG64(val) do { \
508 stq_p(mem_buf, val); \
512 #if TARGET_LONG_BITS == 64
513 #define GET_REGL(val) GET_REG64(val)
514 #define ldtul_p(addr) ldq_p(addr)
516 #define GET_REGL(val) GET_REG32(val)
517 #define ldtul_p(addr) ldl_p(addr)
520 #if defined(TARGET_I386)
523 static const int gpr_map
[16] = {
524 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
525 8, 9, 10, 11, 12, 13, 14, 15
528 #define gpr_map gpr_map32
530 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
532 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
534 #define IDX_IP_REG CPU_NB_REGS
535 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
536 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
537 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
538 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
539 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
541 static int cpu_gdb_read_register(CPUX86State
*env
, uint8_t *mem_buf
, int n
)
543 if (n
< CPU_NB_REGS
) {
544 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
545 GET_REG64(env
->regs
[gpr_map
[n
]]);
546 } else if (n
< CPU_NB_REGS32
) {
547 GET_REG32(env
->regs
[gpr_map32
[n
]]);
549 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
550 #ifdef USE_X86LDOUBLE
551 /* FIXME: byteswap float values - after fixing fpregs layout. */
552 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
554 memset(mem_buf
, 0, 10);
557 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
559 if (n
< CPU_NB_REGS32
||
560 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
561 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
562 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
568 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
573 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
575 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
576 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
577 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
578 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
579 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
580 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
582 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
583 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
584 (env
->fpstt
& 0x7) << 11);
585 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
586 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
587 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
588 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
589 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
590 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
592 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
598 static int cpu_x86_gdb_load_seg(CPUX86State
*env
, int sreg
, uint8_t *mem_buf
)
600 uint16_t selector
= ldl_p(mem_buf
);
602 if (selector
!= env
->segs
[sreg
].selector
) {
603 #if defined(CONFIG_USER_ONLY)
604 cpu_x86_load_seg(env
, sreg
, selector
);
606 unsigned int limit
, flags
;
609 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
610 base
= selector
<< 4;
614 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
617 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
623 static int cpu_gdb_write_register(CPUX86State
*env
, uint8_t *mem_buf
, int n
)
627 if (n
< CPU_NB_REGS
) {
628 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
629 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
630 return sizeof(target_ulong
);
631 } else if (n
< CPU_NB_REGS32
) {
633 env
->regs
[n
] &= ~0xffffffffUL
;
634 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
637 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
638 #ifdef USE_X86LDOUBLE
639 /* FIXME: byteswap float values - after fixing fpregs layout. */
640 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
643 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
645 if (n
< CPU_NB_REGS32
||
646 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
647 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
648 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
654 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
655 env
->eip
= ldq_p(mem_buf
);
658 env
->eip
&= ~0xffffffffUL
;
659 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
663 env
->eflags
= ldl_p(mem_buf
);
666 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
667 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
668 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
669 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
670 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
671 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
673 case IDX_FP_REGS
+ 8:
674 env
->fpuc
= ldl_p(mem_buf
);
676 case IDX_FP_REGS
+ 9:
677 tmp
= ldl_p(mem_buf
);
678 env
->fpstt
= (tmp
>> 11) & 7;
679 env
->fpus
= tmp
& ~0x3800;
681 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
682 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
683 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
684 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
685 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
686 case IDX_FP_REGS
+ 15: /* fop */ return 4;
689 env
->mxcsr
= ldl_p(mem_buf
);
693 /* Unrecognised register. */
697 #elif defined (TARGET_PPC)
699 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
700 expects whatever the target description contains. Due to a
701 historical mishap the FP registers appear in between core integer
702 regs and PC, MSR, CR, and so forth. We hack round this by giving the
703 FP regs zero size when talking to a newer gdb. */
704 #define NUM_CORE_REGS 71
705 #if defined (TARGET_PPC64)
706 #define GDB_CORE_XML "power64-core.xml"
708 #define GDB_CORE_XML "power-core.xml"
711 static int cpu_gdb_read_register(CPUPPCState
*env
, uint8_t *mem_buf
, int n
)
715 GET_REGL(env
->gpr
[n
]);
720 stfq_p(mem_buf
, env
->fpr
[n
-32]);
724 case 64: GET_REGL(env
->nip
);
725 case 65: GET_REGL(env
->msr
);
730 for (i
= 0; i
< 8; i
++)
731 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
734 case 67: GET_REGL(env
->lr
);
735 case 68: GET_REGL(env
->ctr
);
736 case 69: GET_REGL(env
->xer
);
741 GET_REG32(env
->fpscr
);
748 static int cpu_gdb_write_register(CPUPPCState
*env
, uint8_t *mem_buf
, int n
)
752 env
->gpr
[n
] = ldtul_p(mem_buf
);
753 return sizeof(target_ulong
);
758 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
763 env
->nip
= ldtul_p(mem_buf
);
764 return sizeof(target_ulong
);
766 ppc_store_msr(env
, ldtul_p(mem_buf
));
767 return sizeof(target_ulong
);
770 uint32_t cr
= ldl_p(mem_buf
);
772 for (i
= 0; i
< 8; i
++)
773 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
777 env
->lr
= ldtul_p(mem_buf
);
778 return sizeof(target_ulong
);
780 env
->ctr
= ldtul_p(mem_buf
);
781 return sizeof(target_ulong
);
783 env
->xer
= ldtul_p(mem_buf
);
784 return sizeof(target_ulong
);
789 store_fpscr(env
, ldtul_p(mem_buf
), 0xffffffff);
790 return sizeof(target_ulong
);
796 #elif defined (TARGET_SPARC)
798 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
799 #define NUM_CORE_REGS 86
801 #define NUM_CORE_REGS 72
805 #define GET_REGA(val) GET_REG32(val)
807 #define GET_REGA(val) GET_REGL(val)
810 static int cpu_gdb_read_register(CPUSPARCState
*env
, uint8_t *mem_buf
, int n
)
814 GET_REGA(env
->gregs
[n
]);
817 /* register window */
818 GET_REGA(env
->regwptr
[n
- 8]);
820 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
824 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
826 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
829 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
831 case 64: GET_REGA(env
->y
);
832 case 65: GET_REGA(cpu_get_psr(env
));
833 case 66: GET_REGA(env
->wim
);
834 case 67: GET_REGA(env
->tbr
);
835 case 68: GET_REGA(env
->pc
);
836 case 69: GET_REGA(env
->npc
);
837 case 70: GET_REGA(env
->fsr
);
838 case 71: GET_REGA(0); /* csr */
839 default: GET_REGA(0);
845 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
847 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
851 /* f32-f62 (double width, even numbers only) */
852 GET_REG64(env
->fpr
[(n
- 32) / 2].ll
);
855 case 80: GET_REGL(env
->pc
);
856 case 81: GET_REGL(env
->npc
);
857 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
858 ((env
->asi
& 0xff) << 24) |
859 ((env
->pstate
& 0xfff) << 8) |
861 case 83: GET_REGL(env
->fsr
);
862 case 84: GET_REGL(env
->fprs
);
863 case 85: GET_REGL(env
->y
);
869 static int cpu_gdb_write_register(CPUSPARCState
*env
, uint8_t *mem_buf
, int n
)
871 #if defined(TARGET_ABI32)
874 tmp
= ldl_p(mem_buf
);
878 tmp
= ldtul_p(mem_buf
);
885 /* register window */
886 env
->regwptr
[n
- 8] = tmp
;
888 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
893 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
895 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
898 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
900 case 64: env
->y
= tmp
; break;
901 case 65: cpu_put_psr(env
, tmp
); break;
902 case 66: env
->wim
= tmp
; break;
903 case 67: env
->tbr
= tmp
; break;
904 case 68: env
->pc
= tmp
; break;
905 case 69: env
->npc
= tmp
; break;
906 case 70: env
->fsr
= tmp
; break;
914 tmp
= ldl_p(mem_buf
);
916 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
918 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
922 /* f32-f62 (double width, even numbers only) */
923 env
->fpr
[(n
- 32) / 2].ll
= tmp
;
926 case 80: env
->pc
= tmp
; break;
927 case 81: env
->npc
= tmp
; break;
929 cpu_put_ccr(env
, tmp
>> 32);
930 env
->asi
= (tmp
>> 24) & 0xff;
931 env
->pstate
= (tmp
>> 8) & 0xfff;
932 cpu_put_cwp64(env
, tmp
& 0xff);
934 case 83: env
->fsr
= tmp
; break;
935 case 84: env
->fprs
= tmp
; break;
936 case 85: env
->y
= tmp
; break;
943 #elif defined (TARGET_ARM)
945 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
946 whatever the target description contains. Due to a historical mishap
947 the FPA registers appear in between core integer regs and the CPSR.
948 We hack round this by giving the FPA regs zero size when talking to a
950 #define NUM_CORE_REGS 26
951 #define GDB_CORE_XML "arm-core.xml"
953 static int cpu_gdb_read_register(CPUARMState
*env
, uint8_t *mem_buf
, int n
)
956 /* Core integer register. */
957 GET_REG32(env
->regs
[n
]);
963 memset(mem_buf
, 0, 12);
968 /* FPA status register. */
974 GET_REG32(cpsr_read(env
));
976 /* Unknown register. */
980 static int cpu_gdb_write_register(CPUARMState
*env
, uint8_t *mem_buf
, int n
)
984 tmp
= ldl_p(mem_buf
);
986 /* Mask out low bit of PC to workaround gdb bugs. This will probably
987 cause problems if we ever implement the Jazelle DBX extensions. */
992 /* Core integer register. */
996 if (n
< 24) { /* 16-23 */
997 /* FPA registers (ignored). */
1004 /* FPA status register (ignored). */
1010 cpsr_write (env
, tmp
, 0xffffffff);
1013 /* Unknown register. */
1017 #elif defined (TARGET_M68K)
1019 #define NUM_CORE_REGS 18
1021 #define GDB_CORE_XML "cf-core.xml"
1023 static int cpu_gdb_read_register(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
1027 GET_REG32(env
->dregs
[n
]);
1028 } else if (n
< 16) {
1030 GET_REG32(env
->aregs
[n
- 8]);
1033 case 16: GET_REG32(env
->sr
);
1034 case 17: GET_REG32(env
->pc
);
1037 /* FP registers not included here because they vary between
1038 ColdFire and m68k. Use XML bits for these. */
1042 static int cpu_gdb_write_register(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
1046 tmp
= ldl_p(mem_buf
);
1050 env
->dregs
[n
] = tmp
;
1051 } else if (n
< 16) {
1053 env
->aregs
[n
- 8] = tmp
;
1056 case 16: env
->sr
= tmp
; break;
1057 case 17: env
->pc
= tmp
; break;
1063 #elif defined (TARGET_MIPS)
1065 #define NUM_CORE_REGS 73
1067 static int cpu_gdb_read_register(CPUMIPSState
*env
, uint8_t *mem_buf
, int n
)
1070 GET_REGL(env
->active_tc
.gpr
[n
]);
1072 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1073 if (n
>= 38 && n
< 70) {
1074 if (env
->CP0_Status
& (1 << CP0St_FR
))
1075 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1077 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1080 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1081 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1085 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1086 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1087 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1088 case 35: GET_REGL(env
->CP0_BadVAddr
);
1089 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1090 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1091 case 72: GET_REGL(0); /* fp */
1092 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1094 if (n
>= 73 && n
<= 88) {
1095 /* 16 embedded regs. */
1102 /* convert MIPS rounding mode in FCR31 to IEEE library */
1103 static unsigned int ieee_rm
[] =
1105 float_round_nearest_even
,
1106 float_round_to_zero
,
1110 #define RESTORE_ROUNDING_MODE \
1111 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1113 static int cpu_gdb_write_register(CPUMIPSState
*env
, uint8_t *mem_buf
, int n
)
1117 tmp
= ldtul_p(mem_buf
);
1120 env
->active_tc
.gpr
[n
] = tmp
;
1121 return sizeof(target_ulong
);
1123 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1124 && n
>= 38 && n
< 73) {
1126 if (env
->CP0_Status
& (1 << CP0St_FR
))
1127 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1129 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1133 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1134 /* set rounding mode */
1135 RESTORE_ROUNDING_MODE
;
1137 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1139 return sizeof(target_ulong
);
1142 case 32: env
->CP0_Status
= tmp
; break;
1143 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1144 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1145 case 35: env
->CP0_BadVAddr
= tmp
; break;
1146 case 36: env
->CP0_Cause
= tmp
; break;
1148 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1150 env
->hflags
|= MIPS_HFLAG_M16
;
1152 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1155 case 72: /* fp, ignored */ break;
1159 /* Other registers are readonly. Ignore writes. */
1163 return sizeof(target_ulong
);
1165 #elif defined(TARGET_OPENRISC)
1167 #define NUM_CORE_REGS (32 + 3)
1169 static int cpu_gdb_read_register(CPUOpenRISCState
*env
, uint8_t *mem_buf
, int n
)
1172 GET_REG32(env
->gpr
[n
]);
1176 GET_REG32(env
->ppc
);
1180 GET_REG32(env
->npc
);
1194 static int cpu_gdb_write_register(CPUOpenRISCState
*env
,
1195 uint8_t *mem_buf
, int n
)
1199 if (n
> NUM_CORE_REGS
) {
1203 tmp
= ldl_p(mem_buf
);
1227 #elif defined (TARGET_SH4)
1229 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1230 /* FIXME: We should use XML for this. */
1232 #define NUM_CORE_REGS 59
1234 static int cpu_gdb_read_register(CPUSH4State
*env
, uint8_t *mem_buf
, int n
)
1238 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1239 GET_REGL(env
->gregs
[n
+ 16]);
1241 GET_REGL(env
->gregs
[n
]);
1244 GET_REGL(env
->gregs
[n
]);
1254 GET_REGL(env
->mach
);
1256 GET_REGL(env
->macl
);
1260 GET_REGL(env
->fpul
);
1262 GET_REGL(env
->fpscr
);
1264 if (env
->fpscr
& FPSCR_FR
) {
1265 stfl_p(mem_buf
, env
->fregs
[n
- 9]);
1267 stfl_p(mem_buf
, env
->fregs
[n
- 25]);
1275 GET_REGL(env
->gregs
[n
- 43]);
1277 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1283 static int cpu_gdb_write_register(CPUSH4State
*env
, uint8_t *mem_buf
, int n
)
1287 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1288 env
->gregs
[n
+ 16] = ldl_p(mem_buf
);
1290 env
->gregs
[n
] = ldl_p(mem_buf
);
1294 env
->gregs
[n
] = ldl_p(mem_buf
);
1297 env
->pc
= ldl_p(mem_buf
);
1300 env
->pr
= ldl_p(mem_buf
);
1303 env
->gbr
= ldl_p(mem_buf
);
1306 env
->vbr
= ldl_p(mem_buf
);
1309 env
->mach
= ldl_p(mem_buf
);
1312 env
->macl
= ldl_p(mem_buf
);
1315 env
->sr
= ldl_p(mem_buf
);
1318 env
->fpul
= ldl_p(mem_buf
);
1321 env
->fpscr
= ldl_p(mem_buf
);
1324 if (env
->fpscr
& FPSCR_FR
) {
1325 env
->fregs
[n
- 9] = ldfl_p(mem_buf
);
1327 env
->fregs
[n
- 25] = ldfl_p(mem_buf
);
1331 env
->ssr
= ldl_p(mem_buf
);
1334 env
->spc
= ldl_p(mem_buf
);
1337 env
->gregs
[n
- 43] = ldl_p(mem_buf
);
1340 env
->gregs
[n
- (51 - 16)] = ldl_p(mem_buf
);
1347 #elif defined (TARGET_MICROBLAZE)
1349 #define NUM_CORE_REGS (32 + 5)
1351 static int cpu_gdb_read_register(CPUMBState
*env
, uint8_t *mem_buf
, int n
)
1354 GET_REG32(env
->regs
[n
]);
1356 GET_REG32(env
->sregs
[n
- 32]);
1361 static int cpu_gdb_write_register(CPUMBState
*env
, uint8_t *mem_buf
, int n
)
1365 if (n
> NUM_CORE_REGS
)
1368 tmp
= ldl_p(mem_buf
);
1373 env
->sregs
[n
- 32] = tmp
;
1377 #elif defined (TARGET_CRIS)
1379 #define NUM_CORE_REGS 49
1382 read_register_crisv10(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1385 GET_REG32(env
->regs
[n
]);
1395 GET_REG8(env
->pregs
[n
- 16]);
1398 GET_REG8(env
->pregs
[n
- 16]);
1402 GET_REG16(env
->pregs
[n
- 16]);
1406 GET_REG32(env
->pregs
[n
- 16]);
1414 static int cpu_gdb_read_register(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1418 if (env
->pregs
[PR_VR
] < 32)
1419 return read_register_crisv10(env
, mem_buf
, n
);
1421 srs
= env
->pregs
[PR_SRS
];
1423 GET_REG32(env
->regs
[n
]);
1426 if (n
>= 21 && n
< 32) {
1427 GET_REG32(env
->pregs
[n
- 16]);
1429 if (n
>= 33 && n
< 49) {
1430 GET_REG32(env
->sregs
[srs
][n
- 33]);
1433 case 16: GET_REG8(env
->pregs
[0]);
1434 case 17: GET_REG8(env
->pregs
[1]);
1435 case 18: GET_REG32(env
->pregs
[2]);
1436 case 19: GET_REG8(srs
);
1437 case 20: GET_REG16(env
->pregs
[4]);
1438 case 32: GET_REG32(env
->pc
);
1444 static int cpu_gdb_write_register(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1451 tmp
= ldl_p(mem_buf
);
1457 if (n
>= 21 && n
< 32) {
1458 env
->pregs
[n
- 16] = tmp
;
1461 /* FIXME: Should support function regs be writable? */
1465 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1468 case 32: env
->pc
= tmp
; break;
1473 #elif defined (TARGET_ALPHA)
1475 #define NUM_CORE_REGS 67
1477 static int cpu_gdb_read_register(CPUAlphaState
*env
, uint8_t *mem_buf
, int n
)
1487 d
.d
= env
->fir
[n
- 32];
1491 val
= cpu_alpha_load_fpcr(env
);
1501 /* 31 really is the zero register; 65 is unassigned in the
1502 gdb protocol, but is still required to occupy 8 bytes. */
1511 static int cpu_gdb_write_register(CPUAlphaState
*env
, uint8_t *mem_buf
, int n
)
1513 target_ulong tmp
= ldtul_p(mem_buf
);
1522 env
->fir
[n
- 32] = d
.d
;
1525 cpu_alpha_store_fpcr(env
, tmp
);
1535 /* 31 really is the zero register; 65 is unassigned in the
1536 gdb protocol, but is still required to occupy 8 bytes. */
1543 #elif defined (TARGET_S390X)
1545 #define NUM_CORE_REGS S390_NUM_REGS
1547 static int cpu_gdb_read_register(CPUS390XState
*env
, uint8_t *mem_buf
, int n
)
1553 case S390_PSWM_REGNUM
:
1554 cc_op
= calc_cc(env
, env
->cc_op
, env
->cc_src
, env
->cc_dst
, env
->cc_vr
);
1555 val
= deposit64(env
->psw
.mask
, 44, 2, cc_op
);
1558 case S390_PSWA_REGNUM
:
1559 GET_REGL(env
->psw
.addr
);
1561 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1562 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]);
1564 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1565 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]);
1567 case S390_FPC_REGNUM
:
1568 GET_REG32(env
->fpc
);
1570 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1571 GET_REG64(env
->fregs
[n
-S390_F0_REGNUM
].ll
);
1578 static int cpu_gdb_write_register(CPUS390XState
*env
, uint8_t *mem_buf
, int n
)
1583 tmpl
= ldtul_p(mem_buf
);
1584 tmp32
= ldl_p(mem_buf
);
1587 case S390_PSWM_REGNUM
:
1588 env
->psw
.mask
= tmpl
;
1589 env
->cc_op
= extract64(tmpl
, 44, 2);
1591 case S390_PSWA_REGNUM
:
1592 env
->psw
.addr
= tmpl
;
1594 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1595 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
;
1597 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1598 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
;
1601 case S390_FPC_REGNUM
:
1605 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1606 env
->fregs
[n
-S390_F0_REGNUM
].ll
= tmpl
;
1613 #elif defined (TARGET_LM32)
1615 #include "hw/lm32/lm32_pic.h"
1616 #define NUM_CORE_REGS (32 + 7)
1618 static int cpu_gdb_read_register(CPULM32State
*env
, uint8_t *mem_buf
, int n
)
1621 GET_REG32(env
->regs
[n
]);
1627 /* FIXME: put in right exception ID */
1632 GET_REG32(env
->eba
);
1635 GET_REG32(env
->deba
);
1641 GET_REG32(lm32_pic_get_im(env
->pic_state
));
1644 GET_REG32(lm32_pic_get_ip(env
->pic_state
));
1651 static int cpu_gdb_write_register(CPULM32State
*env
, uint8_t *mem_buf
, int n
)
1655 if (n
> NUM_CORE_REGS
) {
1659 tmp
= ldl_p(mem_buf
);
1678 lm32_pic_set_im(env
->pic_state
, tmp
);
1681 lm32_pic_set_ip(env
->pic_state
, tmp
);
1687 #elif defined(TARGET_XTENSA)
1689 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1690 * Use num_regs to see all registers. gdb modification is required for that:
1691 * reset bit 0 in the 'flags' field of the registers definitions in the
1692 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1694 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1695 #define num_g_regs NUM_CORE_REGS
1697 static int cpu_gdb_read_register(CPUXtensaState
*env
, uint8_t *mem_buf
, int n
)
1699 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1701 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1705 switch (reg
->type
) {
1711 xtensa_sync_phys_from_window(env
);
1712 GET_REG32(env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
]);
1716 GET_REG32(env
->sregs
[reg
->targno
& 0xff]);
1720 GET_REG32(env
->uregs
[reg
->targno
& 0xff]);
1724 GET_REG32(float32_val(env
->fregs
[reg
->targno
& 0x0f]));
1728 GET_REG32(env
->regs
[reg
->targno
& 0x0f]);
1732 qemu_log("%s from reg %d of unsupported type %d\n",
1733 __func__
, n
, reg
->type
);
1738 static int cpu_gdb_write_register(CPUXtensaState
*env
, uint8_t *mem_buf
, int n
)
1741 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1743 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1747 tmp
= ldl_p(mem_buf
);
1749 switch (reg
->type
) {
1755 env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
] = tmp
;
1756 xtensa_sync_window_from_phys(env
);
1760 env
->sregs
[reg
->targno
& 0xff] = tmp
;
1764 env
->uregs
[reg
->targno
& 0xff] = tmp
;
1768 env
->fregs
[reg
->targno
& 0x0f] = make_float32(tmp
);
1772 env
->regs
[reg
->targno
& 0x0f] = tmp
;
1776 qemu_log("%s to reg %d of unsupported type %d\n",
1777 __func__
, n
, reg
->type
);
1785 #define NUM_CORE_REGS 0
1787 static int cpu_gdb_read_register(CPUArchState
*env
, uint8_t *mem_buf
, int n
)
1792 static int cpu_gdb_write_register(CPUArchState
*env
, uint8_t *mem_buf
, int n
)
1799 #if !defined(TARGET_XTENSA)
1800 static int num_g_regs
= NUM_CORE_REGS
;
1804 /* Encode data using the encoding for 'x' packets. */
1805 static int memtox(char *buf
, const char *mem
, int len
)
1813 case '#': case '$': case '*': case '}':
1825 static const char *get_feature_xml(const char *p
, const char **newp
)
1830 static char target_xml
[1024];
1833 while (p
[len
] && p
[len
] != ':')
1838 if (strncmp(p
, "target.xml", len
) == 0) {
1839 /* Generate the XML description for this CPU. */
1840 if (!target_xml
[0]) {
1841 GDBRegisterState
*r
;
1842 CPUArchState
*env
= first_cpu
->env_ptr
;
1844 snprintf(target_xml
, sizeof(target_xml
),
1845 "<?xml version=\"1.0\"?>"
1846 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1848 "<xi:include href=\"%s\"/>",
1851 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1852 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1853 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1854 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1856 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1860 for (i
= 0; ; i
++) {
1861 name
= xml_builtin
[i
][0];
1862 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1865 return name
? xml_builtin
[i
][1] : NULL
;
1869 static int gdb_read_register(CPUArchState
*env
, uint8_t *mem_buf
, int reg
)
1871 GDBRegisterState
*r
;
1873 if (reg
< NUM_CORE_REGS
)
1874 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1876 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1877 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1878 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1884 static int gdb_write_register(CPUArchState
*env
, uint8_t *mem_buf
, int reg
)
1886 GDBRegisterState
*r
;
1888 if (reg
< NUM_CORE_REGS
)
1889 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1891 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1892 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1893 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1899 #if !defined(TARGET_XTENSA)
1900 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1901 specifies the first register number and these registers are included in
1902 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1903 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1906 void gdb_register_coprocessor(CPUArchState
* env
,
1907 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1908 int num_regs
, const char *xml
, int g_pos
)
1910 GDBRegisterState
*s
;
1911 GDBRegisterState
**p
;
1912 static int last_reg
= NUM_CORE_REGS
;
1916 /* Check for duplicates. */
1917 if (strcmp((*p
)->xml
, xml
) == 0)
1922 s
= g_new0(GDBRegisterState
, 1);
1923 s
->base_reg
= last_reg
;
1924 s
->num_regs
= num_regs
;
1925 s
->get_reg
= get_reg
;
1926 s
->set_reg
= set_reg
;
1929 /* Add to end of list. */
1930 last_reg
+= num_regs
;
1933 if (g_pos
!= s
->base_reg
) {
1934 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1935 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1937 num_g_regs
= last_reg
;
1943 #ifndef CONFIG_USER_ONLY
1944 static const int xlat_gdb_type
[] = {
1945 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1946 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1947 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1951 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1958 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1961 case GDB_BREAKPOINT_SW
:
1962 case GDB_BREAKPOINT_HW
:
1963 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
1965 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1970 #ifndef CONFIG_USER_ONLY
1971 case GDB_WATCHPOINT_WRITE
:
1972 case GDB_WATCHPOINT_READ
:
1973 case GDB_WATCHPOINT_ACCESS
:
1974 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
1976 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1988 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1995 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1998 case GDB_BREAKPOINT_SW
:
1999 case GDB_BREAKPOINT_HW
:
2000 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
2002 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
2007 #ifndef CONFIG_USER_ONLY
2008 case GDB_WATCHPOINT_WRITE
:
2009 case GDB_WATCHPOINT_READ
:
2010 case GDB_WATCHPOINT_ACCESS
:
2011 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
2013 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
2024 static void gdb_breakpoint_remove_all(void)
2029 if (kvm_enabled()) {
2030 kvm_remove_all_breakpoints(ENV_GET_CPU(gdbserver_state
->c_cpu
));
2034 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
2036 cpu_breakpoint_remove_all(env
, BP_GDB
);
2037 #ifndef CONFIG_USER_ONLY
2038 cpu_watchpoint_remove_all(env
, BP_GDB
);
2043 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
2045 cpu_synchronize_state(ENV_GET_CPU(s
->c_cpu
));
2046 #if defined(TARGET_I386)
2048 #elif defined (TARGET_PPC)
2050 #elif defined (TARGET_SPARC)
2052 s
->c_cpu
->npc
= pc
+ 4;
2053 #elif defined (TARGET_ARM)
2054 s
->c_cpu
->regs
[15] = pc
;
2055 #elif defined (TARGET_SH4)
2057 #elif defined (TARGET_MIPS)
2058 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
2060 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
2062 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
2064 #elif defined (TARGET_MICROBLAZE)
2065 s
->c_cpu
->sregs
[SR_PC
] = pc
;
2066 #elif defined(TARGET_OPENRISC)
2068 #elif defined (TARGET_CRIS)
2070 #elif defined (TARGET_ALPHA)
2072 #elif defined (TARGET_S390X)
2073 s
->c_cpu
->psw
.addr
= pc
;
2074 #elif defined (TARGET_LM32)
2076 #elif defined(TARGET_XTENSA)
2081 static CPUArchState
*find_cpu(uint32_t thread_id
)
2085 for (cpu
= first_cpu
; cpu
!= NULL
; cpu
= cpu
->next_cpu
) {
2086 if (cpu_index(cpu
) == thread_id
) {
2087 return cpu
->env_ptr
;
2094 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
2099 int ch
, reg_size
, type
, res
;
2100 char buf
[MAX_PACKET_LENGTH
];
2101 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
2103 target_ulong addr
, len
;
2106 printf("command='%s'\n", line_buf
);
2112 /* TODO: Make this return the correct value for user-mode. */
2113 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
2114 cpu_index(ENV_GET_CPU(s
->c_cpu
)));
2116 /* Remove all the breakpoints when this query is issued,
2117 * because gdb is doing and initial connect and the state
2118 * should be cleaned up.
2120 gdb_breakpoint_remove_all();
2124 addr
= strtoull(p
, (char **)&p
, 16);
2125 gdb_set_cpu_pc(s
, addr
);
2131 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
2132 if (s
->signal
== -1)
2137 if (strncmp(p
, "Cont", 4) == 0) {
2138 int res_signal
, res_thread
;
2142 put_packet(s
, "vCont;c;C;s;S");
2157 if (action
== 'C' || action
== 'S') {
2158 signal
= strtoul(p
, (char **)&p
, 16);
2159 } else if (action
!= 'c' && action
!= 's') {
2165 thread
= strtoull(p
+1, (char **)&p
, 16);
2167 action
= tolower(action
);
2168 if (res
== 0 || (res
== 'c' && action
== 's')) {
2170 res_signal
= signal
;
2171 res_thread
= thread
;
2175 if (res_thread
!= -1 && res_thread
!= 0) {
2176 env
= find_cpu(res_thread
);
2178 put_packet(s
, "E22");
2184 cpu_single_step(s
->c_cpu
, sstep_flags
);
2186 s
->signal
= res_signal
;
2192 goto unknown_command
;
2195 #ifdef CONFIG_USER_ONLY
2196 /* Kill the target */
2197 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
2202 gdb_breakpoint_remove_all();
2203 gdb_syscall_mode
= GDB_SYS_DISABLED
;
2205 put_packet(s
, "OK");
2209 addr
= strtoull(p
, (char **)&p
, 16);
2210 gdb_set_cpu_pc(s
, addr
);
2212 cpu_single_step(s
->c_cpu
, sstep_flags
);
2220 ret
= strtoull(p
, (char **)&p
, 16);
2223 err
= strtoull(p
, (char **)&p
, 16);
2230 if (s
->current_syscall_cb
) {
2231 s
->current_syscall_cb(s
->c_cpu
, ret
, err
);
2232 s
->current_syscall_cb
= NULL
;
2235 put_packet(s
, "T02");
2242 cpu_synchronize_state(ENV_GET_CPU(s
->g_cpu
));
2245 for (addr
= 0; addr
< num_g_regs
; addr
++) {
2246 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
2249 memtohex(buf
, mem_buf
, len
);
2253 cpu_synchronize_state(ENV_GET_CPU(s
->g_cpu
));
2255 registers
= mem_buf
;
2256 len
= strlen(p
) / 2;
2257 hextomem((uint8_t *)registers
, p
, len
);
2258 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
2259 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
2261 registers
+= reg_size
;
2263 put_packet(s
, "OK");
2266 addr
= strtoull(p
, (char **)&p
, 16);
2269 len
= strtoull(p
, NULL
, 16);
2270 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
2271 put_packet (s
, "E14");
2273 memtohex(buf
, mem_buf
, len
);
2278 addr
= strtoull(p
, (char **)&p
, 16);
2281 len
= strtoull(p
, (char **)&p
, 16);
2284 hextomem(mem_buf
, p
, len
);
2285 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0) {
2286 put_packet(s
, "E14");
2288 put_packet(s
, "OK");
2292 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2293 This works, but can be very slow. Anything new enough to
2294 understand XML also knows how to use this properly. */
2296 goto unknown_command
;
2297 addr
= strtoull(p
, (char **)&p
, 16);
2298 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
2300 memtohex(buf
, mem_buf
, reg_size
);
2303 put_packet(s
, "E14");
2308 goto unknown_command
;
2309 addr
= strtoull(p
, (char **)&p
, 16);
2312 reg_size
= strlen(p
) / 2;
2313 hextomem(mem_buf
, p
, reg_size
);
2314 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
2315 put_packet(s
, "OK");
2319 type
= strtoul(p
, (char **)&p
, 16);
2322 addr
= strtoull(p
, (char **)&p
, 16);
2325 len
= strtoull(p
, (char **)&p
, 16);
2327 res
= gdb_breakpoint_insert(addr
, len
, type
);
2329 res
= gdb_breakpoint_remove(addr
, len
, type
);
2331 put_packet(s
, "OK");
2332 else if (res
== -ENOSYS
)
2335 put_packet(s
, "E22");
2339 thread
= strtoull(p
, (char **)&p
, 16);
2340 if (thread
== -1 || thread
== 0) {
2341 put_packet(s
, "OK");
2344 env
= find_cpu(thread
);
2346 put_packet(s
, "E22");
2352 put_packet(s
, "OK");
2356 put_packet(s
, "OK");
2359 put_packet(s
, "E22");
2364 thread
= strtoull(p
, (char **)&p
, 16);
2365 env
= find_cpu(thread
);
2368 put_packet(s
, "OK");
2370 put_packet(s
, "E22");
2375 /* parse any 'q' packets here */
2376 if (!strcmp(p
,"qemu.sstepbits")) {
2377 /* Query Breakpoint bit definitions */
2378 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2384 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2385 /* Display or change the sstep_flags */
2388 /* Display current setting */
2389 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2394 type
= strtoul(p
, (char **)&p
, 16);
2396 put_packet(s
, "OK");
2398 } else if (strcmp(p
,"C") == 0) {
2399 /* "Current thread" remains vague in the spec, so always return
2400 * the first CPU (gdb returns the first thread). */
2401 put_packet(s
, "QC1");
2403 } else if (strcmp(p
,"fThreadInfo") == 0) {
2404 s
->query_cpu
= first_cpu
->env_ptr
;
2405 goto report_cpuinfo
;
2406 } else if (strcmp(p
,"sThreadInfo") == 0) {
2409 snprintf(buf
, sizeof(buf
), "m%x",
2410 cpu_index(ENV_GET_CPU(s
->query_cpu
)));
2412 s
->query_cpu
= ENV_GET_CPU(s
->query_cpu
)->next_cpu
->env_ptr
;
2416 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2417 thread
= strtoull(p
+16, (char **)&p
, 16);
2418 env
= find_cpu(thread
);
2420 CPUState
*cpu
= ENV_GET_CPU(env
);
2421 cpu_synchronize_state(cpu
);
2422 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2423 "CPU#%d [%s]", cpu
->cpu_index
,
2424 cpu
->halted
? "halted " : "running");
2425 memtohex(buf
, mem_buf
, len
);
2430 #ifdef CONFIG_USER_ONLY
2431 else if (strncmp(p
, "Offsets", 7) == 0) {
2432 TaskState
*ts
= s
->c_cpu
->opaque
;
2434 snprintf(buf
, sizeof(buf
),
2435 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2436 ";Bss=" TARGET_ABI_FMT_lx
,
2437 ts
->info
->code_offset
,
2438 ts
->info
->data_offset
,
2439 ts
->info
->data_offset
);
2443 #else /* !CONFIG_USER_ONLY */
2444 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2445 int len
= strlen(p
+ 5);
2447 if ((len
% 2) != 0) {
2448 put_packet(s
, "E01");
2451 hextomem(mem_buf
, p
+ 5, len
);
2454 qemu_chr_be_write(s
->mon_chr
, mem_buf
, len
);
2455 put_packet(s
, "OK");
2458 #endif /* !CONFIG_USER_ONLY */
2459 if (strncmp(p
, "Supported", 9) == 0) {
2460 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2462 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2468 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2470 target_ulong total_len
;
2474 xml
= get_feature_xml(p
, &p
);
2476 snprintf(buf
, sizeof(buf
), "E00");
2483 addr
= strtoul(p
, (char **)&p
, 16);
2486 len
= strtoul(p
, (char **)&p
, 16);
2488 total_len
= strlen(xml
);
2489 if (addr
> total_len
) {
2490 snprintf(buf
, sizeof(buf
), "E00");
2494 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2495 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2496 if (len
< total_len
- addr
) {
2498 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2501 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2503 put_packet_binary(s
, buf
, len
+ 1);
2507 /* Unrecognised 'q' command. */
2508 goto unknown_command
;
2512 /* put empty packet */
2520 void gdb_set_stop_cpu(CPUState
*cpu
)
2522 CPUArchState
*env
= cpu
->env_ptr
;
2524 gdbserver_state
->c_cpu
= env
;
2525 gdbserver_state
->g_cpu
= env
;
2528 #ifndef CONFIG_USER_ONLY
2529 static void gdb_vm_state_change(void *opaque
, int running
, RunState state
)
2531 GDBState
*s
= gdbserver_state
;
2532 CPUArchState
*env
= s
->c_cpu
;
2533 CPUState
*cpu
= ENV_GET_CPU(env
);
2538 if (running
|| s
->state
== RS_INACTIVE
) {
2541 /* Is there a GDB syscall waiting to be sent? */
2542 if (s
->current_syscall_cb
) {
2543 put_packet(s
, s
->syscall_buf
);
2547 case RUN_STATE_DEBUG
:
2548 if (env
->watchpoint_hit
) {
2549 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2560 snprintf(buf
, sizeof(buf
),
2561 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2562 GDB_SIGNAL_TRAP
, cpu_index(cpu
), type
,
2563 env
->watchpoint_hit
->vaddr
);
2564 env
->watchpoint_hit
= NULL
;
2568 ret
= GDB_SIGNAL_TRAP
;
2570 case RUN_STATE_PAUSED
:
2571 ret
= GDB_SIGNAL_INT
;
2573 case RUN_STATE_SHUTDOWN
:
2574 ret
= GDB_SIGNAL_QUIT
;
2576 case RUN_STATE_IO_ERROR
:
2577 ret
= GDB_SIGNAL_IO
;
2579 case RUN_STATE_WATCHDOG
:
2580 ret
= GDB_SIGNAL_ALRM
;
2582 case RUN_STATE_INTERNAL_ERROR
:
2583 ret
= GDB_SIGNAL_ABRT
;
2585 case RUN_STATE_SAVE_VM
:
2586 case RUN_STATE_RESTORE_VM
:
2588 case RUN_STATE_FINISH_MIGRATE
:
2589 ret
= GDB_SIGNAL_XCPU
;
2592 ret
= GDB_SIGNAL_UNKNOWN
;
2595 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, cpu_index(cpu
));
2600 /* disable single step if it was enabled */
2601 cpu_single_step(env
, 0);
2605 /* Send a gdb syscall request.
2606 This accepts limited printf-style format specifiers, specifically:
2607 %x - target_ulong argument printed in hex.
2608 %lx - 64-bit argument printed in hex.
2609 %s - string pointer (target_ulong) and length (int) pair. */
2610 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2619 s
= gdbserver_state
;
2622 s
->current_syscall_cb
= cb
;
2623 #ifndef CONFIG_USER_ONLY
2624 vm_stop(RUN_STATE_DEBUG
);
2628 p_end
= &s
->syscall_buf
[sizeof(s
->syscall_buf
)];
2635 addr
= va_arg(va
, target_ulong
);
2636 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
, addr
);
2639 if (*(fmt
++) != 'x')
2641 i64
= va_arg(va
, uint64_t);
2642 p
+= snprintf(p
, p_end
- p
, "%" PRIx64
, i64
);
2645 addr
= va_arg(va
, target_ulong
);
2646 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
"/%x",
2647 addr
, va_arg(va
, int));
2651 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2661 #ifdef CONFIG_USER_ONLY
2662 put_packet(s
, s
->syscall_buf
);
2663 gdb_handlesig(s
->c_cpu
, 0);
2665 /* In this case wait to send the syscall packet until notification that
2666 the CPU has stopped. This must be done because if the packet is sent
2667 now the reply from the syscall request could be received while the CPU
2668 is still in the running state, which can cause packets to be dropped
2669 and state transition 'T' packets to be sent while the syscall is still
2671 cpu_exit(ENV_GET_CPU(s
->c_cpu
));
2675 static void gdb_read_byte(GDBState
*s
, int ch
)
2680 #ifndef CONFIG_USER_ONLY
2681 if (s
->last_packet_len
) {
2682 /* Waiting for a response to the last packet. If we see the start
2683 of a new command then abandon the previous response. */
2686 printf("Got NACK, retransmitting\n");
2688 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2692 printf("Got ACK\n");
2694 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2696 if (ch
== '+' || ch
== '$')
2697 s
->last_packet_len
= 0;
2701 if (runstate_is_running()) {
2702 /* when the CPU is running, we cannot do anything except stop
2703 it when receiving a char */
2704 vm_stop(RUN_STATE_PAUSED
);
2711 s
->line_buf_index
= 0;
2712 s
->state
= RS_GETLINE
;
2717 s
->state
= RS_CHKSUM1
;
2718 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2721 s
->line_buf
[s
->line_buf_index
++] = ch
;
2725 s
->line_buf
[s
->line_buf_index
] = '\0';
2726 s
->line_csum
= fromhex(ch
) << 4;
2727 s
->state
= RS_CHKSUM2
;
2730 s
->line_csum
|= fromhex(ch
);
2732 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2733 csum
+= s
->line_buf
[i
];
2735 if (s
->line_csum
!= (csum
& 0xff)) {
2737 put_buffer(s
, &reply
, 1);
2741 put_buffer(s
, &reply
, 1);
2742 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2751 /* Tell the remote gdb that the process has exited. */
2752 void gdb_exit(CPUArchState
*env
, int code
)
2757 s
= gdbserver_state
;
2761 #ifdef CONFIG_USER_ONLY
2762 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2767 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2770 #ifndef CONFIG_USER_ONLY
2772 qemu_chr_delete(s
->chr
);
2777 #ifdef CONFIG_USER_ONLY
2783 s
= gdbserver_state
;
2785 if (gdbserver_fd
< 0 || s
->fd
< 0)
2792 gdb_handlesig (CPUArchState
*env
, int sig
)
2798 s
= gdbserver_state
;
2799 if (gdbserver_fd
< 0 || s
->fd
< 0)
2802 /* disable single step if it was enabled */
2803 cpu_single_step(env
, 0);
2808 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2811 /* put_packet() might have detected that the peer terminated the
2818 s
->running_state
= 0;
2819 while (s
->running_state
== 0) {
2820 n
= read (s
->fd
, buf
, 256);
2825 for (i
= 0; i
< n
; i
++)
2826 gdb_read_byte (s
, buf
[i
]);
2828 else if (n
== 0 || errno
!= EAGAIN
)
2830 /* XXX: Connection closed. Should probably wait for another
2831 connection before continuing. */
2840 /* Tell the remote gdb that the process has exited due to SIG. */
2841 void gdb_signalled(CPUArchState
*env
, int sig
)
2846 s
= gdbserver_state
;
2847 if (gdbserver_fd
< 0 || s
->fd
< 0)
2850 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2854 static void gdb_accept(void)
2857 struct sockaddr_in sockaddr
;
2862 len
= sizeof(sockaddr
);
2863 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2864 if (fd
< 0 && errno
!= EINTR
) {
2867 } else if (fd
>= 0) {
2869 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2875 /* set short latency */
2876 socket_set_nodelay(fd
);
2878 s
= g_malloc0(sizeof(GDBState
));
2879 s
->c_cpu
= first_cpu
->env_ptr
;
2880 s
->g_cpu
= first_cpu
->env_ptr
;
2884 gdbserver_state
= s
;
2886 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2889 static int gdbserver_open(int port
)
2891 struct sockaddr_in sockaddr
;
2894 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2900 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2903 /* allow fast reuse */
2905 qemu_setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, &val
, sizeof(val
));
2907 sockaddr
.sin_family
= AF_INET
;
2908 sockaddr
.sin_port
= htons(port
);
2909 sockaddr
.sin_addr
.s_addr
= 0;
2910 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2916 ret
= listen(fd
, 0);
2925 int gdbserver_start(int port
)
2927 gdbserver_fd
= gdbserver_open(port
);
2928 if (gdbserver_fd
< 0)
2930 /* accept connections */
2935 /* Disable gdb stub for child processes. */
2936 void gdbserver_fork(CPUArchState
*env
)
2938 GDBState
*s
= gdbserver_state
;
2939 if (gdbserver_fd
< 0 || s
->fd
< 0)
2943 cpu_breakpoint_remove_all(env
, BP_GDB
);
2944 cpu_watchpoint_remove_all(env
, BP_GDB
);
2947 static int gdb_chr_can_receive(void *opaque
)
2949 /* We can handle an arbitrarily large amount of data.
2950 Pick the maximum packet size, which is as good as anything. */
2951 return MAX_PACKET_LENGTH
;
2954 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2958 for (i
= 0; i
< size
; i
++) {
2959 gdb_read_byte(gdbserver_state
, buf
[i
]);
2963 static void gdb_chr_event(void *opaque
, int event
)
2966 case CHR_EVENT_OPENED
:
2967 vm_stop(RUN_STATE_PAUSED
);
2975 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2977 char buf
[MAX_PACKET_LENGTH
];
2980 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2981 len
= (MAX_PACKET_LENGTH
/2) - 1;
2982 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2986 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2988 const char *p
= (const char *)buf
;
2991 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2993 if (len
<= max_sz
) {
2994 gdb_monitor_output(gdbserver_state
, p
, len
);
2997 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
3005 static void gdb_sigterm_handler(int signal
)
3007 if (runstate_is_running()) {
3008 vm_stop(RUN_STATE_PAUSED
);
3013 int gdbserver_start(const char *device
)
3016 char gdbstub_device_name
[128];
3017 CharDriverState
*chr
= NULL
;
3018 CharDriverState
*mon_chr
;
3022 if (strcmp(device
, "none") != 0) {
3023 if (strstart(device
, "tcp:", NULL
)) {
3024 /* enforce required TCP attributes */
3025 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
3026 "%s,nowait,nodelay,server", device
);
3027 device
= gdbstub_device_name
;
3030 else if (strcmp(device
, "stdio") == 0) {
3031 struct sigaction act
;
3033 memset(&act
, 0, sizeof(act
));
3034 act
.sa_handler
= gdb_sigterm_handler
;
3035 sigaction(SIGINT
, &act
, NULL
);
3038 chr
= qemu_chr_new("gdb", device
, NULL
);
3042 qemu_chr_fe_claim_no_fail(chr
);
3043 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
3044 gdb_chr_event
, NULL
);
3047 s
= gdbserver_state
;
3049 s
= g_malloc0(sizeof(GDBState
));
3050 gdbserver_state
= s
;
3052 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
3054 /* Initialize a monitor terminal for gdb */
3055 mon_chr
= g_malloc0(sizeof(*mon_chr
));
3056 mon_chr
->chr_write
= gdb_monitor_write
;
3057 monitor_init(mon_chr
, 0);
3060 qemu_chr_delete(s
->chr
);
3061 mon_chr
= s
->mon_chr
;
3062 memset(s
, 0, sizeof(GDBState
));
3064 s
->c_cpu
= first_cpu
->env_ptr
;
3065 s
->g_cpu
= first_cpu
->env_ptr
;
3067 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
3068 s
->mon_chr
= mon_chr
;
3069 s
->current_syscall_cb
= NULL
;