hw/watchdog: Implement full i.MX watchdog support
[qemu/kevin.git] / hw / acpi / nvdimm.c
blob9316d12b7026978285cd492ae40aa6b5c3a3e0f5
1 /*
2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
6 * Author:
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "qemu/uuid.h"
31 #include "hw/acpi/acpi.h"
32 #include "hw/acpi/aml-build.h"
33 #include "hw/acpi/bios-linker-loader.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/mem/nvdimm.h"
36 #include "qemu/nvdimm-utils.h"
39 * define Byte Addressable Persistent Memory (PM) Region according to
40 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
42 static const uint8_t nvdimm_nfit_spa_uuid[] =
43 UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
44 0x18, 0xb7, 0x8c, 0xdb);
47 * NVDIMM Firmware Interface Table
48 * @signature: "NFIT"
50 * It provides information that allows OSPM to enumerate NVDIMM present in
51 * the platform and associate system physical address ranges created by the
52 * NVDIMMs.
54 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
56 struct NvdimmNfitHeader {
57 ACPI_TABLE_HEADER_DEF
58 uint32_t reserved;
59 } QEMU_PACKED;
60 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
63 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
64 * Interface Table (NFIT).
68 * System Physical Address Range Structure
70 * It describes the system physical address ranges occupied by NVDIMMs and
71 * the types of the regions.
73 struct NvdimmNfitSpa {
74 uint16_t type;
75 uint16_t length;
76 uint16_t spa_index;
77 uint16_t flags;
78 uint32_t reserved;
79 uint32_t proximity_domain;
80 uint8_t type_guid[16];
81 uint64_t spa_base;
82 uint64_t spa_length;
83 uint64_t mem_attr;
84 } QEMU_PACKED;
85 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
88 * Memory Device to System Physical Address Range Mapping Structure
90 * It enables identifying each NVDIMM region and the corresponding SPA
91 * describing the memory interleave
93 struct NvdimmNfitMemDev {
94 uint16_t type;
95 uint16_t length;
96 uint32_t nfit_handle;
97 uint16_t phys_id;
98 uint16_t region_id;
99 uint16_t spa_index;
100 uint16_t dcr_index;
101 uint64_t region_len;
102 uint64_t region_offset;
103 uint64_t region_dpa;
104 uint16_t interleave_index;
105 uint16_t interleave_ways;
106 uint16_t flags;
107 uint16_t reserved;
108 } QEMU_PACKED;
109 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
111 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3)
114 * NVDIMM Control Region Structure
116 * It describes the NVDIMM and if applicable, Block Control Window.
118 struct NvdimmNfitControlRegion {
119 uint16_t type;
120 uint16_t length;
121 uint16_t dcr_index;
122 uint16_t vendor_id;
123 uint16_t device_id;
124 uint16_t revision_id;
125 uint16_t sub_vendor_id;
126 uint16_t sub_device_id;
127 uint16_t sub_revision_id;
128 uint8_t reserved[6];
129 uint32_t serial_number;
130 uint16_t fic;
131 uint16_t num_bcw;
132 uint64_t bcw_size;
133 uint64_t cmd_offset;
134 uint64_t cmd_size;
135 uint64_t status_offset;
136 uint64_t status_size;
137 uint16_t flags;
138 uint8_t reserved2[6];
139 } QEMU_PACKED;
140 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
143 * NVDIMM Platform Capabilities Structure
145 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
147 struct NvdimmNfitPlatformCaps {
148 uint16_t type;
149 uint16_t length;
150 uint8_t highest_cap;
151 uint8_t reserved[3];
152 uint32_t capabilities;
153 uint8_t reserved2[4];
154 } QEMU_PACKED;
155 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
158 * Module serial number is a unique number for each device. We use the
159 * slot id of NVDIMM device to generate this number so that each device
160 * associates with a different number.
162 * 0x123456 is a magic number we arbitrarily chose.
164 static uint32_t nvdimm_slot_to_sn(int slot)
166 return 0x123456 + slot;
170 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
171 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
172 * by ACPI device _ADR method.
174 * We generate the handle with the slot id of NVDIMM device and reserve
175 * 0 for NVDIMM root device.
177 static uint32_t nvdimm_slot_to_handle(int slot)
179 return slot + 1;
183 * index uniquely identifies the structure, 0 is reserved which indicates
184 * that the structure is not valid or the associated structure is not
185 * present.
187 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
188 * nfit_dc which are generated by the slot id of NVDIMM device.
190 static uint16_t nvdimm_slot_to_spa_index(int slot)
192 return (slot + 1) << 1;
195 /* See the comments of nvdimm_slot_to_spa_index(). */
196 static uint32_t nvdimm_slot_to_dcr_index(int slot)
198 return nvdimm_slot_to_spa_index(slot) + 1;
201 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
203 NVDIMMDevice *nvdimm = NULL;
204 GSList *list, *device_list = nvdimm_get_device_list();
206 for (list = device_list; list; list = list->next) {
207 NVDIMMDevice *nvd = list->data;
208 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
209 NULL);
211 if (nvdimm_slot_to_handle(slot) == handle) {
212 nvdimm = nvd;
213 break;
217 g_slist_free(device_list);
218 return nvdimm;
221 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
222 static void
223 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
225 NvdimmNfitSpa *nfit_spa;
226 uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
227 NULL);
228 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
229 NULL);
230 uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
231 NULL);
232 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
233 NULL);
235 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
237 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
238 Structure */);
239 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
240 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
243 * Control region is strict as all the device info, such as SN, index,
244 * is associated with slot id.
246 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
247 management during hot add/online
248 operation */ |
249 2 /* Data in Proximity Domain field is
250 valid*/);
252 /* NUMA node. */
253 nfit_spa->proximity_domain = cpu_to_le32(node);
254 /* the region reported as PMEM. */
255 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
256 sizeof(nvdimm_nfit_spa_uuid));
258 nfit_spa->spa_base = cpu_to_le64(addr);
259 nfit_spa->spa_length = cpu_to_le64(size);
261 /* It is the PMEM and can be cached as writeback. */
262 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
263 0x8000ULL /* EFI_MEMORY_NV */);
267 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
268 * Structure
270 static void
271 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
273 NvdimmNfitMemDev *nfit_memdev;
274 NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
275 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
276 NULL);
277 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
278 NULL);
279 uint32_t handle = nvdimm_slot_to_handle(slot);
281 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
283 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
284 Range Map Structure*/);
285 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
286 nfit_memdev->nfit_handle = cpu_to_le32(handle);
289 * associate memory device with System Physical Address Range
290 * Structure.
292 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
293 /* associate memory device with Control Region Structure. */
294 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
296 /* The memory region on the device. */
297 nfit_memdev->region_len = cpu_to_le64(size);
298 /* The device address starts from 0. */
299 nfit_memdev->region_dpa = cpu_to_le64(0);
301 /* Only one interleave for PMEM. */
302 nfit_memdev->interleave_ways = cpu_to_le16(1);
304 if (nvdimm->unarmed) {
305 nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
310 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
312 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
314 NvdimmNfitControlRegion *nfit_dcr;
315 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
316 NULL);
317 uint32_t sn = nvdimm_slot_to_sn(slot);
319 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
321 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
322 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
323 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
325 /* vendor: Intel. */
326 nfit_dcr->vendor_id = cpu_to_le16(0x8086);
327 nfit_dcr->device_id = cpu_to_le16(1);
329 /* The _DSM method is following Intel's DSM specification. */
330 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
331 in ACPI 6.0 is 1. */);
332 nfit_dcr->serial_number = cpu_to_le32(sn);
333 nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
334 Byte addressable, no energy backed.
335 See ACPI 6.2, sect 5.2.25.6 and
336 JEDEC Annex L Release 3. */);
340 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
342 static void
343 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
345 NvdimmNfitPlatformCaps *nfit_caps;
347 nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
349 nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
350 nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
351 nfit_caps->highest_cap = 31 - clz32(capabilities);
352 nfit_caps->capabilities = cpu_to_le32(capabilities);
355 static GArray *nvdimm_build_device_structure(NVDIMMState *state)
357 GSList *device_list = nvdimm_get_device_list();
358 GArray *structures = g_array_new(false, true /* clear */, 1);
360 for (; device_list; device_list = device_list->next) {
361 DeviceState *dev = device_list->data;
363 /* build System Physical Address Range Structure. */
364 nvdimm_build_structure_spa(structures, dev);
367 * build Memory Device to System Physical Address Range Mapping
368 * Structure.
370 nvdimm_build_structure_memdev(structures, dev);
372 /* build NVDIMM Control Region Structure. */
373 nvdimm_build_structure_dcr(structures, dev);
375 g_slist_free(device_list);
377 if (state->persistence) {
378 nvdimm_build_structure_caps(structures, state->persistence);
381 return structures;
384 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
386 fit_buf->fit = g_array_new(false, true /* clear */, 1);
389 static void nvdimm_build_fit_buffer(NVDIMMState *state)
391 NvdimmFitBuffer *fit_buf = &state->fit_buf;
393 g_array_free(fit_buf->fit, true);
394 fit_buf->fit = nvdimm_build_device_structure(state);
395 fit_buf->dirty = true;
398 void nvdimm_plug(NVDIMMState *state)
400 nvdimm_build_fit_buffer(state);
403 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
404 GArray *table_data, BIOSLinker *linker)
406 NvdimmFitBuffer *fit_buf = &state->fit_buf;
407 unsigned int header;
409 acpi_add_table(table_offsets, table_data);
411 /* NFIT header. */
412 header = table_data->len;
413 acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
414 /* NVDIMM device structures. */
415 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
417 build_header(linker, table_data,
418 (void *)(table_data->data + header), "NFIT",
419 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
422 #define NVDIMM_DSM_MEMORY_SIZE 4096
424 struct NvdimmDsmIn {
425 uint32_t handle;
426 uint32_t revision;
427 uint32_t function;
428 /* the remaining size in the page is used by arg3. */
429 union {
430 uint8_t arg3[4084];
432 } QEMU_PACKED;
433 typedef struct NvdimmDsmIn NvdimmDsmIn;
434 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
436 struct NvdimmDsmOut {
437 /* the size of buffer filled by QEMU. */
438 uint32_t len;
439 uint8_t data[4092];
440 } QEMU_PACKED;
441 typedef struct NvdimmDsmOut NvdimmDsmOut;
442 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
444 struct NvdimmDsmFunc0Out {
445 /* the size of buffer filled by QEMU. */
446 uint32_t len;
447 uint32_t supported_func;
448 } QEMU_PACKED;
449 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
451 struct NvdimmDsmFuncNoPayloadOut {
452 /* the size of buffer filled by QEMU. */
453 uint32_t len;
454 uint32_t func_ret_status;
455 } QEMU_PACKED;
456 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
458 struct NvdimmFuncGetLabelSizeOut {
459 /* the size of buffer filled by QEMU. */
460 uint32_t len;
461 uint32_t func_ret_status; /* return status code. */
462 uint32_t label_size; /* the size of label data area. */
464 * Maximum size of the namespace label data length supported by
465 * the platform in Get/Set Namespace Label Data functions.
467 uint32_t max_xfer;
468 } QEMU_PACKED;
469 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
470 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
472 struct NvdimmFuncGetLabelDataIn {
473 uint32_t offset; /* the offset in the namespace label data area. */
474 uint32_t length; /* the size of data is to be read via the function. */
475 } QEMU_PACKED;
476 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
477 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
478 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
480 struct NvdimmFuncGetLabelDataOut {
481 /* the size of buffer filled by QEMU. */
482 uint32_t len;
483 uint32_t func_ret_status; /* return status code. */
484 uint8_t out_buf[]; /* the data got via Get Namesapce Label function. */
485 } QEMU_PACKED;
486 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
487 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
489 struct NvdimmFuncSetLabelDataIn {
490 uint32_t offset; /* the offset in the namespace label data area. */
491 uint32_t length; /* the size of data is to be written via the function. */
492 uint8_t in_buf[]; /* the data written to label data area. */
493 } QEMU_PACKED;
494 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
495 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
496 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
498 struct NvdimmFuncReadFITIn {
499 uint32_t offset; /* the offset into FIT buffer. */
500 } QEMU_PACKED;
501 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
502 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
503 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
505 struct NvdimmFuncReadFITOut {
506 /* the size of buffer filled by QEMU. */
507 uint32_t len;
508 uint32_t func_ret_status; /* return status code. */
509 uint8_t fit[]; /* the FIT data. */
510 } QEMU_PACKED;
511 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
512 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
514 static void
515 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
517 NvdimmDsmFunc0Out func0 = {
518 .len = cpu_to_le32(sizeof(func0)),
519 .supported_func = cpu_to_le32(supported_func),
521 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
524 static void
525 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
527 NvdimmDsmFuncNoPayloadOut out = {
528 .len = cpu_to_le32(sizeof(out)),
529 .func_ret_status = cpu_to_le32(func_ret_status),
531 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
534 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */
535 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */
536 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */
537 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */
538 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */
540 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
542 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
543 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
544 hwaddr dsm_mem_addr)
546 NvdimmFitBuffer *fit_buf = &state->fit_buf;
547 NvdimmFuncReadFITIn *read_fit;
548 NvdimmFuncReadFITOut *read_fit_out;
549 GArray *fit;
550 uint32_t read_len = 0, func_ret_status;
551 int size;
553 read_fit = (NvdimmFuncReadFITIn *)in->arg3;
554 read_fit->offset = le32_to_cpu(read_fit->offset);
556 fit = fit_buf->fit;
558 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
559 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
561 if (read_fit->offset > fit->len) {
562 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
563 goto exit;
566 /* It is the first time to read FIT. */
567 if (!read_fit->offset) {
568 fit_buf->dirty = false;
569 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
570 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
571 goto exit;
574 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
575 read_len = MIN(fit->len - read_fit->offset,
576 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
578 exit:
579 size = sizeof(NvdimmFuncReadFITOut) + read_len;
580 read_fit_out = g_malloc(size);
582 read_fit_out->len = cpu_to_le32(size);
583 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
584 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
586 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
588 g_free(read_fit_out);
591 static void
592 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
593 NvdimmDsmIn *in, hwaddr dsm_mem_addr)
595 switch (in->function) {
596 case 0x0:
597 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
598 return;
599 case 0x1 /* Read FIT */:
600 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
601 return;
604 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
607 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
610 * function 0 is called to inquire which functions are supported by
611 * OSPM
613 if (!in->function) {
614 nvdimm_dsm_function0(0 /* No function supported other than
615 function 0 */, dsm_mem_addr);
616 return;
619 /* No function except function 0 is supported yet. */
620 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
624 * the max transfer size is the max size transferred by both a
625 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
626 * function.
628 static uint32_t nvdimm_get_max_xfer_label_size(void)
630 uint32_t max_get_size, max_set_size, dsm_memory_size;
632 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
635 * the max data ACPI can read one time which is transferred by
636 * the response of 'Get Namespace Label Data' function.
638 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
641 * the max data ACPI can write one time which is transferred by
642 * 'Set Namespace Label Data' function.
644 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
645 sizeof(NvdimmFuncSetLabelDataIn);
647 return MIN(max_get_size, max_set_size);
651 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
653 * It gets the size of Namespace Label data area and the max data size
654 * that Get/Set Namespace Label Data functions can transfer.
656 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
658 NvdimmFuncGetLabelSizeOut label_size_out = {
659 .len = cpu_to_le32(sizeof(label_size_out)),
661 uint32_t label_size, mxfer;
663 label_size = nvdimm->label_size;
664 mxfer = nvdimm_get_max_xfer_label_size();
666 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
668 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
669 label_size_out.label_size = cpu_to_le32(label_size);
670 label_size_out.max_xfer = cpu_to_le32(mxfer);
672 cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
673 sizeof(label_size_out));
676 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
677 uint32_t offset, uint32_t length)
679 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
681 if (offset + length < offset) {
682 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
683 length);
684 return ret;
687 if (nvdimm->label_size < offset + length) {
688 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
689 offset + length, nvdimm->label_size);
690 return ret;
693 if (length > nvdimm_get_max_xfer_label_size()) {
694 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
695 length, nvdimm_get_max_xfer_label_size());
696 return ret;
699 return NVDIMM_DSM_RET_STATUS_SUCCESS;
703 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
705 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
706 hwaddr dsm_mem_addr)
708 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
709 NvdimmFuncGetLabelDataIn *get_label_data;
710 NvdimmFuncGetLabelDataOut *get_label_data_out;
711 uint32_t status;
712 int size;
714 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
715 get_label_data->offset = le32_to_cpu(get_label_data->offset);
716 get_label_data->length = le32_to_cpu(get_label_data->length);
718 nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
719 get_label_data->offset, get_label_data->length);
721 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
722 get_label_data->length);
723 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
724 nvdimm_dsm_no_payload(status, dsm_mem_addr);
725 return;
728 size = sizeof(*get_label_data_out) + get_label_data->length;
729 assert(size <= NVDIMM_DSM_MEMORY_SIZE);
730 get_label_data_out = g_malloc(size);
732 get_label_data_out->len = cpu_to_le32(size);
733 get_label_data_out->func_ret_status =
734 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
735 nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
736 get_label_data->length, get_label_data->offset);
738 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
739 g_free(get_label_data_out);
743 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
745 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
746 hwaddr dsm_mem_addr)
748 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
749 NvdimmFuncSetLabelDataIn *set_label_data;
750 uint32_t status;
752 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
754 set_label_data->offset = le32_to_cpu(set_label_data->offset);
755 set_label_data->length = le32_to_cpu(set_label_data->length);
757 nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
758 set_label_data->offset, set_label_data->length);
760 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
761 set_label_data->length);
762 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
763 nvdimm_dsm_no_payload(status, dsm_mem_addr);
764 return;
767 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
768 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
770 nvc->write_label_data(nvdimm, set_label_data->in_buf,
771 set_label_data->length, set_label_data->offset);
772 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
775 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
777 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
779 /* See the comments in nvdimm_dsm_root(). */
780 if (!in->function) {
781 uint32_t supported_func = 0;
783 if (nvdimm && nvdimm->label_size) {
784 supported_func |= 0x1 /* Bit 0 indicates whether there is
785 support for any functions other
786 than function 0. */ |
787 1 << 4 /* Get Namespace Label Size */ |
788 1 << 5 /* Get Namespace Label Data */ |
789 1 << 6 /* Set Namespace Label Data */;
791 nvdimm_dsm_function0(supported_func, dsm_mem_addr);
792 return;
795 if (!nvdimm) {
796 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
797 dsm_mem_addr);
798 return;
801 /* Encode DSM function according to DSM Spec Rev1. */
802 switch (in->function) {
803 case 4 /* Get Namespace Label Size */:
804 if (nvdimm->label_size) {
805 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
806 return;
808 break;
809 case 5 /* Get Namespace Label Data */:
810 if (nvdimm->label_size) {
811 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
812 return;
814 break;
815 case 0x6 /* Set Namespace Label Data */:
816 if (nvdimm->label_size) {
817 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
818 return;
820 break;
823 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
826 static uint64_t
827 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
829 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
830 return 0;
833 static void
834 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
836 NVDIMMState *state = opaque;
837 NvdimmDsmIn *in;
838 hwaddr dsm_mem_addr = val;
840 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
843 * The DSM memory is mapped to guest address space so an evil guest
844 * can change its content while we are doing DSM emulation. Avoid
845 * this by copying DSM memory to QEMU local memory.
847 in = g_new(NvdimmDsmIn, 1);
848 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
850 in->revision = le32_to_cpu(in->revision);
851 in->function = le32_to_cpu(in->function);
852 in->handle = le32_to_cpu(in->handle);
854 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
855 in->handle, in->function);
857 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
858 nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
859 in->revision, 0x1);
860 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
861 goto exit;
864 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
865 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
866 goto exit;
869 /* Handle 0 is reserved for NVDIMM Root Device. */
870 if (!in->handle) {
871 nvdimm_dsm_root(in, dsm_mem_addr);
872 goto exit;
875 nvdimm_dsm_device(in, dsm_mem_addr);
877 exit:
878 g_free(in);
881 static const MemoryRegionOps nvdimm_dsm_ops = {
882 .read = nvdimm_dsm_read,
883 .write = nvdimm_dsm_write,
884 .endianness = DEVICE_LITTLE_ENDIAN,
885 .valid = {
886 .min_access_size = 4,
887 .max_access_size = 4,
891 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
893 if (dev->hotplugged) {
894 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
898 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
899 struct AcpiGenericAddress dsm_io,
900 FWCfgState *fw_cfg, Object *owner)
902 state->dsm_io = dsm_io;
903 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
904 "nvdimm-acpi-io", dsm_io.bit_width >> 3);
905 memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
907 state->dsm_mem = g_array_new(false, true /* clear */, 1);
908 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
909 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
910 state->dsm_mem->len);
912 nvdimm_init_fit_buffer(&state->fit_buf);
915 #define NVDIMM_COMMON_DSM "NCAL"
916 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
918 #define NVDIMM_DSM_MEMORY "NRAM"
919 #define NVDIMM_DSM_IOPORT "NPIO"
921 #define NVDIMM_DSM_NOTIFY "NTFI"
922 #define NVDIMM_DSM_HANDLE "HDLE"
923 #define NVDIMM_DSM_REVISION "REVS"
924 #define NVDIMM_DSM_FUNCTION "FUNC"
925 #define NVDIMM_DSM_ARG3 "FARG"
927 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
928 #define NVDIMM_DSM_OUT_BUF "ODAT"
930 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
932 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
934 static void nvdimm_build_common_dsm(Aml *dev,
935 NVDIMMState *nvdimm_state)
937 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
938 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
939 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
940 Aml *whilectx, *offset;
941 uint8_t byte_list[1];
942 AmlRegionSpace rs;
944 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
945 uuid = aml_arg(0);
946 function = aml_arg(2);
947 handle = aml_arg(4);
948 dsm_mem = aml_local(6);
949 dsm_out_buf = aml_local(7);
951 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
953 if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
954 rs = AML_SYSTEM_IO;
955 } else {
956 rs = AML_SYSTEM_MEMORY;
959 /* map DSM memory and IO into ACPI namespace. */
960 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
961 aml_int(nvdimm_state->dsm_io.address),
962 nvdimm_state->dsm_io.bit_width >> 3));
963 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
964 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
967 * DSM notifier:
968 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
969 * emulate the access.
971 * It is the IO port so that accessing them will cause VM-exit, the
972 * control will be transferred to QEMU.
974 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
975 AML_PRESERVE);
976 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
977 nvdimm_state->dsm_io.bit_width));
978 aml_append(method, field);
981 * DSM input:
982 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
983 * happens on NVDIMM Root Device.
984 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
985 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
986 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
987 * containing function-specific arguments.
989 * They are RAM mapping on host so that these accesses never cause
990 * VM-EXIT.
992 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
993 AML_PRESERVE);
994 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
995 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
996 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
997 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
998 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
999 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
1000 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
1001 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
1002 aml_append(method, field);
1005 * DSM output:
1006 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1007 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1009 * Since the page is reused by both input and out, the input data
1010 * will be lost after storing new result into ODAT so we should fetch
1011 * all the input data before writing the result.
1013 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1014 AML_PRESERVE);
1015 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1016 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1017 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1018 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1019 aml_append(method, field);
1022 * do not support any method if DSM memory address has not been
1023 * patched.
1025 unpatched = aml_equal(dsm_mem, aml_int(0x0));
1027 expected_uuid = aml_local(0);
1029 ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1030 aml_append(ifctx, aml_store(
1031 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1032 /* UUID for NVDIMM Root Device */, expected_uuid));
1033 aml_append(method, ifctx);
1034 elsectx = aml_else();
1035 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1036 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1037 /* UUID for QEMU internal use */), expected_uuid));
1038 aml_append(elsectx, ifctx);
1039 elsectx2 = aml_else();
1040 aml_append(elsectx2, aml_store(
1041 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1042 /* UUID for NVDIMM Devices */, expected_uuid));
1043 aml_append(elsectx, elsectx2);
1044 aml_append(method, elsectx);
1046 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1048 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1051 * function 0 is called to inquire what functions are supported by
1052 * OSPM
1054 ifctx = aml_if(aml_equal(function, aml_int(0)));
1055 byte_list[0] = 0 /* No function Supported */;
1056 aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1057 aml_append(unsupport, ifctx);
1059 /* No function is supported yet. */
1060 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1061 aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1062 aml_append(method, unsupport);
1065 * The HDLE indicates the DSM function is issued from which device,
1066 * it reserves 0 for root device and is the handle for NVDIMM devices.
1067 * See the comments in nvdimm_slot_to_handle().
1069 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1070 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1071 aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1074 * The fourth parameter (Arg3) of _DSM is a package which contains
1075 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1076 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1077 * in the DSM Spec.
1079 pckg = aml_arg(3);
1080 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1081 aml_int(4 /* Package */)) /* It is a Package? */,
1082 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1083 NULL));
1085 pckg_index = aml_local(2);
1086 pckg_buf = aml_local(3);
1087 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1088 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1089 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1090 aml_append(method, ifctx);
1093 * tell QEMU about the real address of DSM memory, then QEMU
1094 * gets the control and fills the result in DSM memory.
1096 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1098 dsm_out_buf_size = aml_local(1);
1099 /* RLEN is not included in the payload returned to guest. */
1100 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1101 aml_int(4), dsm_out_buf_size));
1104 * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1105 * the Buffer Field <= to the size of an Integer (in bits), it will
1106 * be treated as an integer. Moreover, the integer size depends on
1107 * DSDT tables revision number. If revision number is < 2, integer
1108 * size is 32 bits, otherwise it is 64 bits.
1109 * Because of this CreateField() canot be used if RLEN < Integer Size.
1111 * Also please note that APCI ASL operator SizeOf() doesn't support
1112 * Integer and there isn't any other way to figure out the Integer
1113 * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1114 * build dsm_out_buf byte by byte.
1116 ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1117 offset = aml_local(2);
1118 aml_append(ifctx, aml_store(aml_int(0), offset));
1119 aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1120 aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1122 whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1123 /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1124 aml_append(whilectx, aml_store(aml_derefof(aml_index(
1125 aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1126 aml_index(aml_name("TBUF"), aml_int(0))));
1127 aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1128 dsm_out_buf));
1129 aml_append(whilectx, aml_increment(offset));
1130 aml_append(ifctx, whilectx);
1132 aml_append(ifctx, aml_return(dsm_out_buf));
1133 aml_append(method, ifctx);
1135 /* If RLEN >= Integer size, just use CreateField() operator */
1136 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1137 dsm_out_buf_size));
1138 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1139 aml_int(0), dsm_out_buf_size, "OBUF"));
1140 aml_append(method, aml_return(aml_name("OBUF")));
1142 aml_append(dev, method);
1145 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1147 Aml *method;
1149 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1150 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1151 aml_arg(1), aml_arg(2), aml_arg(3),
1152 aml_int(handle))));
1153 aml_append(dev, method);
1156 static void nvdimm_build_fit(Aml *dev)
1158 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1159 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1161 buf = aml_local(0);
1162 buf_size = aml_local(1);
1163 fit = aml_local(2);
1165 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1167 /* build helper function, RFIT. */
1168 method = aml_method("RFIT", 1, AML_SERIALIZED);
1169 aml_append(method, aml_name_decl("OFST", aml_int(0)));
1171 /* prepare input package. */
1172 pkg = aml_package(1);
1173 aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1174 aml_append(pkg, aml_name("OFST"));
1176 /* call Read_FIT function. */
1177 call_result = aml_call5(NVDIMM_COMMON_DSM,
1178 aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1179 aml_int(1) /* Revision 1 */,
1180 aml_int(0x1) /* Read FIT */,
1181 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1182 aml_append(method, aml_store(call_result, buf));
1184 /* handle _DSM result. */
1185 aml_append(method, aml_create_dword_field(buf,
1186 aml_int(0) /* offset at byte 0 */, "STAU"));
1188 aml_append(method, aml_store(aml_name("STAU"),
1189 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1191 /* if something is wrong during _DSM. */
1192 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1193 aml_name("STAU"));
1194 ifctx = aml_if(aml_lnot(ifcond));
1195 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1196 aml_append(method, ifctx);
1198 aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1199 aml_append(method, aml_subtract(buf_size,
1200 aml_int(4) /* the size of "STAU" */,
1201 buf_size));
1203 /* if we read the end of fit. */
1204 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1205 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1206 aml_append(method, ifctx);
1208 aml_append(method, aml_create_field(buf,
1209 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1210 aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1211 aml_append(method, aml_return(aml_name("BUFF")));
1212 aml_append(dev, method);
1214 /* build _FIT. */
1215 method = aml_method("_FIT", 0, AML_SERIALIZED);
1216 offset = aml_local(3);
1218 aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1219 aml_append(method, aml_store(aml_int(0), offset));
1221 whilectx = aml_while(aml_int(1));
1222 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1223 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1226 * if fit buffer was changed during RFIT, read from the beginning
1227 * again.
1229 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1230 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1231 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1232 aml_append(ifctx, aml_store(aml_int(0), offset));
1233 aml_append(whilectx, ifctx);
1235 elsectx = aml_else();
1237 /* finish fit read if no data is read out. */
1238 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1239 aml_append(ifctx, aml_return(fit));
1240 aml_append(elsectx, ifctx);
1242 /* update the offset. */
1243 aml_append(elsectx, aml_add(offset, buf_size, offset));
1244 /* append the data we read out to the fit buffer. */
1245 aml_append(elsectx, aml_concatenate(fit, buf, fit));
1246 aml_append(whilectx, elsectx);
1247 aml_append(method, whilectx);
1249 aml_append(dev, method);
1252 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1254 uint32_t slot;
1256 for (slot = 0; slot < ram_slots; slot++) {
1257 uint32_t handle = nvdimm_slot_to_handle(slot);
1258 Aml *nvdimm_dev;
1260 nvdimm_dev = aml_device("NV%02X", slot);
1263 * ACPI 6.0: 9.20 NVDIMM Devices:
1265 * _ADR object that is used to supply OSPM with unique address
1266 * of the NVDIMM device. This is done by returning the NFIT Device
1267 * handle that is used to identify the associated entries in ACPI
1268 * table NFIT or _FIT.
1270 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1272 nvdimm_build_device_dsm(nvdimm_dev, handle);
1273 aml_append(root_dev, nvdimm_dev);
1277 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1278 BIOSLinker *linker,
1279 NVDIMMState *nvdimm_state,
1280 uint32_t ram_slots)
1282 Aml *ssdt, *sb_scope, *dev;
1283 int mem_addr_offset, nvdimm_ssdt;
1285 acpi_add_table(table_offsets, table_data);
1287 ssdt = init_aml_allocator();
1288 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1290 sb_scope = aml_scope("\\_SB");
1292 dev = aml_device("NVDR");
1295 * ACPI 6.0: 9.20 NVDIMM Devices:
1297 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1298 * NVDIMM interface device. Platform firmware is required to contain one
1299 * such device in _SB scope if NVDIMMs support is exposed by platform to
1300 * OSPM.
1301 * For each NVDIMM present or intended to be supported by platform,
1302 * platform firmware also exposes an ACPI Namespace Device under the
1303 * root device.
1305 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1307 nvdimm_build_common_dsm(dev, nvdimm_state);
1309 /* 0 is reserved for root device. */
1310 nvdimm_build_device_dsm(dev, 0);
1311 nvdimm_build_fit(dev);
1313 nvdimm_build_nvdimm_devices(dev, ram_slots);
1315 aml_append(sb_scope, dev);
1316 aml_append(ssdt, sb_scope);
1318 nvdimm_ssdt = table_data->len;
1320 /* copy AML table into ACPI tables blob and patch header there */
1321 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1322 mem_addr_offset = build_append_named_dword(table_data,
1323 NVDIMM_ACPI_MEM_ADDR);
1325 bios_linker_loader_alloc(linker,
1326 NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1327 sizeof(NvdimmDsmIn), false /* high memory */);
1328 bios_linker_loader_add_pointer(linker,
1329 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1330 NVDIMM_DSM_MEM_FILE, 0);
1331 build_header(linker, table_data,
1332 (void *)(table_data->data + nvdimm_ssdt),
1333 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1334 free_aml_allocator();
1337 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1338 BIOSLinker *linker, NVDIMMState *state,
1339 uint32_t ram_slots)
1341 GSList *device_list;
1343 /* no nvdimm device can be plugged. */
1344 if (!ram_slots) {
1345 return;
1348 nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1349 ram_slots);
1351 device_list = nvdimm_get_device_list();
1352 /* no NVDIMM device is plugged. */
1353 if (!device_list) {
1354 return;
1357 nvdimm_build_nfit(state, table_offsets, table_data, linker);
1358 g_slist_free(device_list);