gdbstub: lightly refactor connection to avoid snprintf
[qemu/kevin.git] / bsd-user / signal.c
blobf4e078ee1da28febfc4f569af6fa2a4b2971e979
1 /*
2 * Emulation of BSD signals
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "gdbstub/user.h"
25 #include "signal-common.h"
26 #include "trace.h"
27 #include "hw/core/tcg-cpu-ops.h"
28 #include "host-signal.h"
30 static struct target_sigaction sigact_table[TARGET_NSIG];
31 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
32 static void target_to_host_sigset_internal(sigset_t *d,
33 const target_sigset_t *s);
35 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
37 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
40 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
42 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
43 on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
47 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
48 * (unlike Linux) these functions are just the identity mapping. This might not
49 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
51 int host_to_target_signal(int sig)
53 return sig;
56 int target_to_host_signal(int sig)
58 return sig;
61 static inline void target_sigemptyset(target_sigset_t *set)
63 memset(set, 0, sizeof(*set));
66 static inline void target_sigaddset(target_sigset_t *set, int signum)
68 signum--;
69 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
70 set->__bits[signum / TARGET_NSIG_BPW] |= mask;
73 static inline int target_sigismember(const target_sigset_t *set, int signum)
75 signum--;
76 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
77 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
80 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
81 static inline void rewind_if_in_safe_syscall(void *puc)
83 ucontext_t *uc = (ucontext_t *)puc;
84 uintptr_t pcreg = host_signal_pc(uc);
86 if (pcreg > (uintptr_t)safe_syscall_start
87 && pcreg < (uintptr_t)safe_syscall_end) {
88 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
93 * Note: The following take advantage of the BSD signal property that all
94 * signals are available on all architectures.
96 static void host_to_target_sigset_internal(target_sigset_t *d,
97 const sigset_t *s)
99 int i;
101 target_sigemptyset(d);
102 for (i = 1; i <= NSIG; i++) {
103 if (sigismember(s, i)) {
104 target_sigaddset(d, host_to_target_signal(i));
109 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
111 target_sigset_t d1;
112 int i;
114 host_to_target_sigset_internal(&d1, s);
115 for (i = 0; i < _SIG_WORDS; i++) {
116 d->__bits[i] = tswap32(d1.__bits[i]);
120 static void target_to_host_sigset_internal(sigset_t *d,
121 const target_sigset_t *s)
123 int i;
125 sigemptyset(d);
126 for (i = 1; i <= TARGET_NSIG; i++) {
127 if (target_sigismember(s, i)) {
128 sigaddset(d, target_to_host_signal(i));
133 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
135 target_sigset_t s1;
136 int i;
138 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
139 s1.__bits[i] = tswap32(s->__bits[i]);
141 target_to_host_sigset_internal(d, &s1);
144 static bool has_trapno(int tsig)
146 return tsig == TARGET_SIGILL ||
147 tsig == TARGET_SIGFPE ||
148 tsig == TARGET_SIGSEGV ||
149 tsig == TARGET_SIGBUS ||
150 tsig == TARGET_SIGTRAP;
153 /* Siginfo conversion. */
156 * Populate tinfo w/o swapping based on guessing which fields are valid.
158 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
159 const siginfo_t *info)
161 int sig = host_to_target_signal(info->si_signo);
162 int si_code = info->si_code;
163 int si_type;
166 * Make sure we that the variable portion of the target siginfo is zeroed
167 * out so we don't leak anything into that.
169 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
172 * This is awkward, because we have to use a combination of the si_code and
173 * si_signo to figure out which of the union's members are valid.o We
174 * therefore make our best guess.
176 * Once we have made our guess, we record it in the top 16 bits of
177 * the si_code, so that tswap_siginfo() later can use it.
178 * tswap_siginfo() will strip these top bits out before writing
179 * si_code to the guest (sign-extending the lower bits).
181 tinfo->si_signo = sig;
182 tinfo->si_errno = info->si_errno;
183 tinfo->si_code = info->si_code;
184 tinfo->si_pid = info->si_pid;
185 tinfo->si_uid = info->si_uid;
186 tinfo->si_status = info->si_status;
187 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
189 * si_value is opaque to kernel. On all FreeBSD platforms,
190 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
191 * always will copy the larger element.
193 tinfo->si_value.sival_ptr =
194 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
196 switch (si_code) {
198 * All the SI_xxx codes that are defined here are global to
199 * all the signals (they have values that none of the other,
200 * more specific signal info will set).
202 case SI_USER:
203 case SI_LWP:
204 case SI_KERNEL:
205 case SI_QUEUE:
206 case SI_ASYNCIO:
208 * Only the fixed parts are valid (though FreeBSD doesn't always
209 * set all the fields to non-zero values.
211 si_type = QEMU_SI_NOINFO;
212 break;
213 case SI_TIMER:
214 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
215 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
216 si_type = QEMU_SI_TIMER;
217 break;
218 case SI_MESGQ:
219 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
220 si_type = QEMU_SI_MESGQ;
221 break;
222 default:
224 * We have to go based on the signal number now to figure out
225 * what's valid.
227 si_type = QEMU_SI_NOINFO;
228 if (has_trapno(sig)) {
229 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
230 si_type = QEMU_SI_FAULT;
232 #ifdef TARGET_SIGPOLL
234 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
235 * a chance it may popup in the future.
237 if (sig == TARGET_SIGPOLL) {
238 tinfo->_reason._poll._band = info->_reason._poll._band;
239 si_type = QEMU_SI_POLL;
241 #endif
243 * Unsure that this can actually be generated, and our support for
244 * capsicum is somewhere between weak and non-existant, but if we get
245 * one, then we know what to save.
247 #ifdef QEMU_SI_CAPSICUM
248 if (sig == TARGET_SIGTRAP) {
249 tinfo->_reason._capsicum._syscall =
250 info->_reason._capsicum._syscall;
251 si_type = QEMU_SI_CAPSICUM;
253 #endif
254 break;
256 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
259 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
261 int si_type = extract32(info->si_code, 24, 8);
262 int si_code = sextract32(info->si_code, 0, 24);
264 __put_user(info->si_signo, &tinfo->si_signo);
265 __put_user(info->si_errno, &tinfo->si_errno);
266 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
267 __put_user(info->si_pid, &tinfo->si_pid);
268 __put_user(info->si_uid, &tinfo->si_uid);
269 __put_user(info->si_status, &tinfo->si_status);
270 __put_user(info->si_addr, &tinfo->si_addr);
272 * Unswapped, because we passed it through mostly untouched. si_value is
273 * opaque to the kernel, so we didn't bother with potentially wasting cycles
274 * to swap it into host byte order.
276 tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
279 * We can use our internal marker of which fields in the structure
280 * are valid, rather than duplicating the guesswork of
281 * host_to_target_siginfo_noswap() here.
283 switch (si_type) {
284 case QEMU_SI_NOINFO: /* No additional info */
285 break;
286 case QEMU_SI_FAULT:
287 __put_user(info->_reason._fault._trapno,
288 &tinfo->_reason._fault._trapno);
289 break;
290 case QEMU_SI_TIMER:
291 __put_user(info->_reason._timer._timerid,
292 &tinfo->_reason._timer._timerid);
293 __put_user(info->_reason._timer._overrun,
294 &tinfo->_reason._timer._overrun);
295 break;
296 case QEMU_SI_MESGQ:
297 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
298 break;
299 case QEMU_SI_POLL:
300 /* Note: Not generated on FreeBSD */
301 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
302 break;
303 #ifdef QEMU_SI_CAPSICUM
304 case QEMU_SI_CAPSICUM:
305 __put_user(info->_reason._capsicum._syscall,
306 &tinfo->_reason._capsicum._syscall);
307 break;
308 #endif
309 default:
310 g_assert_not_reached();
314 int block_signals(void)
316 TaskState *ts = (TaskState *)thread_cpu->opaque;
317 sigset_t set;
320 * It's OK to block everything including SIGSEGV, because we won't run any
321 * further guest code before unblocking signals in
322 * process_pending_signals(). We depend on the FreeBSD behaivor here where
323 * this will only affect this thread's signal mask. We don't use
324 * pthread_sigmask which might seem more correct because that routine also
325 * does odd things with SIGCANCEL to implement pthread_cancel().
327 sigfillset(&set);
328 sigprocmask(SIG_SETMASK, &set, 0);
330 return qatomic_xchg(&ts->signal_pending, 1);
333 /* Returns 1 if given signal should dump core if not handled. */
334 static int core_dump_signal(int sig)
336 switch (sig) {
337 case TARGET_SIGABRT:
338 case TARGET_SIGFPE:
339 case TARGET_SIGILL:
340 case TARGET_SIGQUIT:
341 case TARGET_SIGSEGV:
342 case TARGET_SIGTRAP:
343 case TARGET_SIGBUS:
344 return 1;
345 default:
346 return 0;
350 /* Abort execution with signal. */
351 static G_NORETURN
352 void dump_core_and_abort(int target_sig)
354 CPUArchState *env = thread_cpu->env_ptr;
355 CPUState *cpu = env_cpu(env);
356 TaskState *ts = cpu->opaque;
357 int core_dumped = 0;
358 int host_sig;
359 struct sigaction act;
361 host_sig = target_to_host_signal(target_sig);
362 gdb_signalled(env, target_sig);
364 /* Dump core if supported by target binary format */
365 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
366 stop_all_tasks();
367 core_dumped =
368 ((*ts->bprm->core_dump)(target_sig, env) == 0);
370 if (core_dumped) {
371 struct rlimit nodump;
374 * We already dumped the core of target process, we don't want
375 * a coredump of qemu itself.
377 getrlimit(RLIMIT_CORE, &nodump);
378 nodump.rlim_cur = 0;
379 setrlimit(RLIMIT_CORE, &nodump);
380 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
381 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
385 * The proper exit code for dying from an uncaught signal is
386 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
387 * a negative value. To get the proper exit code we need to
388 * actually die from an uncaught signal. Here the default signal
389 * handler is installed, we send ourself a signal and we wait for
390 * it to arrive.
392 memset(&act, 0, sizeof(act));
393 sigfillset(&act.sa_mask);
394 act.sa_handler = SIG_DFL;
395 sigaction(host_sig, &act, NULL);
397 kill(getpid(), host_sig);
400 * Make sure the signal isn't masked (just reuse the mask inside
401 * of act).
403 sigdelset(&act.sa_mask, host_sig);
404 sigsuspend(&act.sa_mask);
406 /* unreachable */
407 abort();
411 * Queue a signal so that it will be send to the virtual CPU as soon as
412 * possible.
414 void queue_signal(CPUArchState *env, int sig, int si_type,
415 target_siginfo_t *info)
417 CPUState *cpu = env_cpu(env);
418 TaskState *ts = cpu->opaque;
420 trace_user_queue_signal(env, sig);
422 info->si_code = deposit32(info->si_code, 24, 8, si_type);
424 ts->sync_signal.info = *info;
425 ts->sync_signal.pending = sig;
426 /* Signal that a new signal is pending. */
427 qatomic_set(&ts->signal_pending, 1);
428 return;
431 static int fatal_signal(int sig)
434 switch (sig) {
435 case TARGET_SIGCHLD:
436 case TARGET_SIGURG:
437 case TARGET_SIGWINCH:
438 case TARGET_SIGINFO:
439 /* Ignored by default. */
440 return 0;
441 case TARGET_SIGCONT:
442 case TARGET_SIGSTOP:
443 case TARGET_SIGTSTP:
444 case TARGET_SIGTTIN:
445 case TARGET_SIGTTOU:
446 /* Job control signals. */
447 return 0;
448 default:
449 return 1;
454 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
455 * 'force' part is handled in process_pending_signals().
457 void force_sig_fault(int sig, int code, abi_ulong addr)
459 CPUState *cpu = thread_cpu;
460 CPUArchState *env = cpu->env_ptr;
461 target_siginfo_t info = {};
463 info.si_signo = sig;
464 info.si_errno = 0;
465 info.si_code = code;
466 info.si_addr = addr;
467 queue_signal(env, sig, QEMU_SI_FAULT, &info);
470 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
472 CPUArchState *env = thread_cpu->env_ptr;
473 CPUState *cpu = env_cpu(env);
474 TaskState *ts = cpu->opaque;
475 target_siginfo_t tinfo;
476 ucontext_t *uc = puc;
477 struct emulated_sigtable *k;
478 int guest_sig;
479 uintptr_t pc = 0;
480 bool sync_sig = false;
483 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
484 * handling wrt signal blocking and unwinding.
486 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
487 MMUAccessType access_type;
488 uintptr_t host_addr;
489 abi_ptr guest_addr;
490 bool is_write;
492 host_addr = (uintptr_t)info->si_addr;
495 * Convert forcefully to guest address space: addresses outside
496 * reserved_va are still valid to report via SEGV_MAPERR.
498 guest_addr = h2g_nocheck(host_addr);
500 pc = host_signal_pc(uc);
501 is_write = host_signal_write(info, uc);
502 access_type = adjust_signal_pc(&pc, is_write);
504 if (host_sig == SIGSEGV) {
505 bool maperr = true;
507 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
508 /* If this was a write to a TB protected page, restart. */
509 if (is_write &&
510 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
511 pc, guest_addr)) {
512 return;
516 * With reserved_va, the whole address space is PROT_NONE,
517 * which means that we may get ACCERR when we want MAPERR.
519 if (page_get_flags(guest_addr) & PAGE_VALID) {
520 maperr = false;
521 } else {
522 info->si_code = SEGV_MAPERR;
526 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
527 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
528 } else {
529 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
530 if (info->si_code == BUS_ADRALN) {
531 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
535 sync_sig = true;
538 /* Get the target signal number. */
539 guest_sig = host_to_target_signal(host_sig);
540 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
541 return;
543 trace_user_host_signal(cpu, host_sig, guest_sig);
545 host_to_target_siginfo_noswap(&tinfo, info);
547 k = &ts->sigtab[guest_sig - 1];
548 k->info = tinfo;
549 k->pending = guest_sig;
550 ts->signal_pending = 1;
553 * For synchronous signals, unwind the cpu state to the faulting
554 * insn and then exit back to the main loop so that the signal
555 * is delivered immediately.
557 if (sync_sig) {
558 cpu->exception_index = EXCP_INTERRUPT;
559 cpu_loop_exit_restore(cpu, pc);
562 rewind_if_in_safe_syscall(puc);
565 * Block host signals until target signal handler entered. We
566 * can't block SIGSEGV or SIGBUS while we're executing guest
567 * code in case the guest code provokes one in the window between
568 * now and it getting out to the main loop. Signals will be
569 * unblocked again in process_pending_signals().
571 sigfillset(&uc->uc_sigmask);
572 sigdelset(&uc->uc_sigmask, SIGSEGV);
573 sigdelset(&uc->uc_sigmask, SIGBUS);
575 /* Interrupt the virtual CPU as soon as possible. */
576 cpu_exit(thread_cpu);
579 /* do_sigaltstack() returns target values and errnos. */
580 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
581 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
583 TaskState *ts = (TaskState *)thread_cpu->opaque;
584 int ret;
585 target_stack_t oss;
587 if (uoss_addr) {
588 /* Save current signal stack params */
589 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
590 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
591 oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
594 if (uss_addr) {
595 target_stack_t *uss;
596 target_stack_t ss;
597 size_t minstacksize = TARGET_MINSIGSTKSZ;
599 ret = -TARGET_EFAULT;
600 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
601 goto out;
603 __get_user(ss.ss_sp, &uss->ss_sp);
604 __get_user(ss.ss_size, &uss->ss_size);
605 __get_user(ss.ss_flags, &uss->ss_flags);
606 unlock_user_struct(uss, uss_addr, 0);
608 ret = -TARGET_EPERM;
609 if (on_sig_stack(ts, sp)) {
610 goto out;
613 ret = -TARGET_EINVAL;
614 if (ss.ss_flags != TARGET_SS_DISABLE
615 && ss.ss_flags != TARGET_SS_ONSTACK
616 && ss.ss_flags != 0) {
617 goto out;
620 if (ss.ss_flags == TARGET_SS_DISABLE) {
621 ss.ss_size = 0;
622 ss.ss_sp = 0;
623 } else {
624 ret = -TARGET_ENOMEM;
625 if (ss.ss_size < minstacksize) {
626 goto out;
630 ts->sigaltstack_used.ss_sp = ss.ss_sp;
631 ts->sigaltstack_used.ss_size = ss.ss_size;
634 if (uoss_addr) {
635 ret = -TARGET_EFAULT;
636 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
637 goto out;
641 ret = 0;
642 out:
643 return ret;
646 /* do_sigaction() return host values and errnos */
647 int do_sigaction(int sig, const struct target_sigaction *act,
648 struct target_sigaction *oact)
650 struct target_sigaction *k;
651 struct sigaction act1;
652 int host_sig;
653 int ret = 0;
655 if (sig < 1 || sig > TARGET_NSIG) {
656 return -TARGET_EINVAL;
659 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
660 act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
661 return -TARGET_EINVAL;
664 if (block_signals()) {
665 return -TARGET_ERESTART;
668 k = &sigact_table[sig - 1];
669 if (oact) {
670 oact->_sa_handler = tswapal(k->_sa_handler);
671 oact->sa_flags = tswap32(k->sa_flags);
672 oact->sa_mask = k->sa_mask;
674 if (act) {
675 k->_sa_handler = tswapal(act->_sa_handler);
676 k->sa_flags = tswap32(act->sa_flags);
677 k->sa_mask = act->sa_mask;
679 /* Update the host signal state. */
680 host_sig = target_to_host_signal(sig);
681 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
682 memset(&act1, 0, sizeof(struct sigaction));
683 sigfillset(&act1.sa_mask);
684 act1.sa_flags = SA_SIGINFO;
685 if (k->sa_flags & TARGET_SA_RESTART) {
686 act1.sa_flags |= SA_RESTART;
689 * Note: It is important to update the host kernel signal mask to
690 * avoid getting unexpected interrupted system calls.
692 if (k->_sa_handler == TARGET_SIG_IGN) {
693 act1.sa_sigaction = (void *)SIG_IGN;
694 } else if (k->_sa_handler == TARGET_SIG_DFL) {
695 if (fatal_signal(sig)) {
696 act1.sa_sigaction = host_signal_handler;
697 } else {
698 act1.sa_sigaction = (void *)SIG_DFL;
700 } else {
701 act1.sa_sigaction = host_signal_handler;
703 ret = sigaction(host_sig, &act1, NULL);
706 return ret;
709 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
710 CPUArchState *env, size_t frame_size)
712 TaskState *ts = (TaskState *)thread_cpu->opaque;
713 abi_ulong sp;
715 /* Use default user stack */
716 sp = get_sp_from_cpustate(env);
718 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
719 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
722 /* TODO: make this a target_arch function / define */
723 #if defined(TARGET_ARM)
724 return (sp - frame_size) & ~7;
725 #elif defined(TARGET_AARCH64)
726 return (sp - frame_size) & ~15;
727 #else
728 return sp - frame_size;
729 #endif
732 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
734 static void setup_frame(int sig, int code, struct target_sigaction *ka,
735 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
737 struct target_sigframe *frame;
738 abi_ulong frame_addr;
739 int i;
741 frame_addr = get_sigframe(ka, env, sizeof(*frame));
742 trace_user_setup_frame(env, frame_addr);
743 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
744 unlock_user_struct(frame, frame_addr, 1);
745 dump_core_and_abort(TARGET_SIGILL);
746 return;
749 memset(frame, 0, sizeof(*frame));
750 setup_sigframe_arch(env, frame_addr, frame, 0);
752 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
753 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
756 if (tinfo) {
757 frame->sf_si.si_signo = tinfo->si_signo;
758 frame->sf_si.si_errno = tinfo->si_errno;
759 frame->sf_si.si_code = tinfo->si_code;
760 frame->sf_si.si_pid = tinfo->si_pid;
761 frame->sf_si.si_uid = tinfo->si_uid;
762 frame->sf_si.si_status = tinfo->si_status;
763 frame->sf_si.si_addr = tinfo->si_addr;
764 /* see host_to_target_siginfo_noswap() for more details */
765 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
767 * At this point, whatever is in the _reason union is complete
768 * and in target order, so just copy the whole thing over, even
769 * if it's too large for this specific signal.
770 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
771 * that's so.
773 memcpy(&frame->sf_si._reason, &tinfo->_reason,
774 sizeof(tinfo->_reason));
777 set_sigtramp_args(env, sig, frame, frame_addr, ka);
779 unlock_user_struct(frame, frame_addr, 1);
782 static int reset_signal_mask(target_ucontext_t *ucontext)
784 int i;
785 sigset_t blocked;
786 target_sigset_t target_set;
787 TaskState *ts = (TaskState *)thread_cpu->opaque;
789 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
790 if (__get_user(target_set.__bits[i],
791 &ucontext->uc_sigmask.__bits[i])) {
792 return -TARGET_EFAULT;
795 target_to_host_sigset_internal(&blocked, &target_set);
796 ts->signal_mask = blocked;
798 return 0;
801 /* See sys/$M/$M/exec_machdep.c sigreturn() */
802 long do_sigreturn(CPUArchState *env, abi_ulong addr)
804 long ret;
805 abi_ulong target_ucontext;
806 target_ucontext_t *ucontext = NULL;
808 /* Get the target ucontext address from the stack frame */
809 ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
810 if (is_error(ret)) {
811 return ret;
813 trace_user_do_sigreturn(env, addr);
814 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
815 goto badframe;
818 /* Set the register state back to before the signal. */
819 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
820 goto badframe;
823 /* And reset the signal mask. */
824 if (reset_signal_mask(ucontext)) {
825 goto badframe;
828 unlock_user_struct(ucontext, target_ucontext, 0);
829 return -TARGET_EJUSTRETURN;
831 badframe:
832 if (ucontext != NULL) {
833 unlock_user_struct(ucontext, target_ucontext, 0);
835 return -TARGET_EFAULT;
838 void signal_init(void)
840 TaskState *ts = (TaskState *)thread_cpu->opaque;
841 struct sigaction act;
842 struct sigaction oact;
843 int i;
844 int host_sig;
846 /* Set the signal mask from the host mask. */
847 sigprocmask(0, 0, &ts->signal_mask);
849 sigfillset(&act.sa_mask);
850 act.sa_sigaction = host_signal_handler;
851 act.sa_flags = SA_SIGINFO;
853 for (i = 1; i <= TARGET_NSIG; i++) {
854 #ifdef CONFIG_GPROF
855 if (i == TARGET_SIGPROF) {
856 continue;
858 #endif
859 host_sig = target_to_host_signal(i);
860 sigaction(host_sig, NULL, &oact);
861 if (oact.sa_sigaction == (void *)SIG_IGN) {
862 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
863 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
864 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
867 * If there's already a handler installed then something has
868 * gone horribly wrong, so don't even try to handle that case.
869 * Install some handlers for our own use. We need at least
870 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
871 * trap all signals because it affects syscall interrupt
872 * behavior. But do trap all default-fatal signals.
874 if (fatal_signal(i)) {
875 sigaction(host_sig, &act, NULL);
880 static void handle_pending_signal(CPUArchState *env, int sig,
881 struct emulated_sigtable *k)
883 CPUState *cpu = env_cpu(env);
884 TaskState *ts = cpu->opaque;
885 struct target_sigaction *sa;
886 int code;
887 sigset_t set;
888 abi_ulong handler;
889 target_siginfo_t tinfo;
890 target_sigset_t target_old_set;
892 trace_user_handle_signal(env, sig);
894 k->pending = 0;
896 sig = gdb_handlesig(cpu, sig);
897 if (!sig) {
898 sa = NULL;
899 handler = TARGET_SIG_IGN;
900 } else {
901 sa = &sigact_table[sig - 1];
902 handler = sa->_sa_handler;
905 if (do_strace) {
906 print_taken_signal(sig, &k->info);
909 if (handler == TARGET_SIG_DFL) {
911 * default handler : ignore some signal. The other are job
912 * control or fatal.
914 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
915 sig == TARGET_SIGTTOU) {
916 kill(getpid(), SIGSTOP);
917 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
918 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
919 sig != TARGET_SIGCONT) {
920 dump_core_and_abort(sig);
922 } else if (handler == TARGET_SIG_IGN) {
923 /* ignore sig */
924 } else if (handler == TARGET_SIG_ERR) {
925 dump_core_and_abort(sig);
926 } else {
927 /* compute the blocked signals during the handler execution */
928 sigset_t *blocked_set;
930 target_to_host_sigset(&set, &sa->sa_mask);
932 * SA_NODEFER indicates that the current signal should not be
933 * blocked during the handler.
935 if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
936 sigaddset(&set, target_to_host_signal(sig));
940 * Save the previous blocked signal state to restore it at the
941 * end of the signal execution (see do_sigreturn).
943 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
945 blocked_set = ts->in_sigsuspend ?
946 &ts->sigsuspend_mask : &ts->signal_mask;
947 sigorset(&ts->signal_mask, blocked_set, &set);
948 ts->in_sigsuspend = false;
949 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
951 /* XXX VM86 on x86 ??? */
953 code = k->info.si_code; /* From host, so no si_type */
954 /* prepare the stack frame of the virtual CPU */
955 if (sa->sa_flags & TARGET_SA_SIGINFO) {
956 tswap_siginfo(&tinfo, &k->info);
957 setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
958 } else {
959 setup_frame(sig, code, sa, &target_old_set, NULL, env);
961 if (sa->sa_flags & TARGET_SA_RESETHAND) {
962 sa->_sa_handler = TARGET_SIG_DFL;
967 void process_pending_signals(CPUArchState *env)
969 CPUState *cpu = env_cpu(env);
970 int sig;
971 sigset_t *blocked_set, set;
972 struct emulated_sigtable *k;
973 TaskState *ts = cpu->opaque;
975 while (qatomic_read(&ts->signal_pending)) {
976 sigfillset(&set);
977 sigprocmask(SIG_SETMASK, &set, 0);
979 restart_scan:
980 sig = ts->sync_signal.pending;
981 if (sig) {
983 * Synchronous signals are forced by the emulated CPU in some way.
984 * If they are set to ignore, restore the default handler (see
985 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
986 * though maybe this is done only when forcing exit for non SIGCHLD.
988 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
989 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
990 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
991 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
993 handle_pending_signal(env, sig, &ts->sync_signal);
996 k = ts->sigtab;
997 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
998 blocked_set = ts->in_sigsuspend ?
999 &ts->sigsuspend_mask : &ts->signal_mask;
1000 if (k->pending &&
1001 !sigismember(blocked_set, target_to_host_signal(sig))) {
1002 handle_pending_signal(env, sig, k);
1004 * Restart scan from the beginning, as handle_pending_signal
1005 * might have resulted in a new synchronous signal (eg SIGSEGV).
1007 goto restart_scan;
1012 * Unblock signals and check one more time. Unblocking signals may cause
1013 * us to take another host signal, which will set signal_pending again.
1015 qatomic_set(&ts->signal_pending, 0);
1016 ts->in_sigsuspend = false;
1017 set = ts->signal_mask;
1018 sigdelset(&set, SIGSEGV);
1019 sigdelset(&set, SIGBUS);
1020 sigprocmask(SIG_SETMASK, &set, 0);
1022 ts->in_sigsuspend = false;
1025 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1026 MMUAccessType access_type, bool maperr, uintptr_t ra)
1028 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1030 if (tcg_ops->record_sigsegv) {
1031 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1034 force_sig_fault(TARGET_SIGSEGV,
1035 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1036 addr);
1037 cpu->exception_index = EXCP_INTERRUPT;
1038 cpu_loop_exit_restore(cpu, ra);
1041 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1042 MMUAccessType access_type, uintptr_t ra)
1044 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1046 if (tcg_ops->record_sigbus) {
1047 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1050 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1051 cpu->exception_index = EXCP_INTERRUPT;
1052 cpu_loop_exit_restore(cpu, ra);