gdbstub: rename cpu_index -> cpu_gdb_index
[qemu/kevin.git] / exec.c
blob2e8bc43421985e118694c3ed535252270a14b7ec
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/boards.h"
32 #include "hw/xen/xen.h"
33 #endif
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "qemu/error-report.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #else /* !CONFIG_USER_ONLY */
42 #include "hw/hw.h"
43 #include "exec/memory.h"
44 #include "exec/ioport.h"
45 #include "sysemu/dma.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/hw_accel.h"
48 #include "exec/address-spaces.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <fcntl.h>
54 #include <linux/falloc.h>
55 #endif
57 #endif
58 #include "exec/cpu-all.h"
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
103 #define RAM_RESIZEABLE (1 << 2)
105 #endif
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits;
109 bool target_page_bits_decided;
110 #endif
112 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 __thread CPUState *current_cpu;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount;
121 uintptr_t qemu_host_page_size;
122 intptr_t qemu_host_page_mask;
123 uintptr_t qemu_real_host_page_size;
124 intptr_t qemu_real_host_page_mask;
126 bool set_preferred_target_page_bits(int bits)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
139 target_page_bits = bits;
141 #endif
142 return true;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
153 target_page_bits_decided = true;
154 #endif
157 typedef struct PhysPageEntry PhysPageEntry;
159 struct PhysPageEntry {
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
161 uint32_t skip : 6;
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
163 uint32_t ptr : 26;
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
171 #define P_L2_BITS 9
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node[P_L2_SIZE];
178 typedef struct PhysPageMap {
179 struct rcu_head rcu;
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187 } PhysPageMap;
189 struct AddressSpaceDispatch {
190 struct rcu_head rcu;
192 MemoryRegionSection *mru_section;
193 /* This is a multi-level map on the physical address space.
194 * The bottom level has pointers to MemoryRegionSections.
196 PhysPageEntry phys_map;
197 PhysPageMap map;
198 AddressSpace *as;
201 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
202 typedef struct subpage_t {
203 MemoryRegion iomem;
204 AddressSpace *as;
205 hwaddr base;
206 uint16_t sub_section[];
207 } subpage_t;
209 #define PHYS_SECTION_UNASSIGNED 0
210 #define PHYS_SECTION_NOTDIRTY 1
211 #define PHYS_SECTION_ROM 2
212 #define PHYS_SECTION_WATCH 3
214 static void io_mem_init(void);
215 static void memory_map_init(void);
216 static void tcg_commit(MemoryListener *listener);
218 static MemoryRegion io_mem_watch;
221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
222 * @cpu: the CPU whose AddressSpace this is
223 * @as: the AddressSpace itself
224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
227 struct CPUAddressSpace {
228 CPUState *cpu;
229 AddressSpace *as;
230 struct AddressSpaceDispatch *memory_dispatch;
231 MemoryListener tcg_as_listener;
234 struct DirtyBitmapSnapshot {
235 ram_addr_t start;
236 ram_addr_t end;
237 unsigned long dirty[];
240 #endif
242 #if !defined(CONFIG_USER_ONLY)
244 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
246 static unsigned alloc_hint = 16;
247 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
248 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
249 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
250 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
251 alloc_hint = map->nodes_nb_alloc;
255 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
257 unsigned i;
258 uint32_t ret;
259 PhysPageEntry e;
260 PhysPageEntry *p;
262 ret = map->nodes_nb++;
263 p = map->nodes[ret];
264 assert(ret != PHYS_MAP_NODE_NIL);
265 assert(ret != map->nodes_nb_alloc);
267 e.skip = leaf ? 0 : 1;
268 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
269 for (i = 0; i < P_L2_SIZE; ++i) {
270 memcpy(&p[i], &e, sizeof(e));
272 return ret;
275 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
276 hwaddr *index, hwaddr *nb, uint16_t leaf,
277 int level)
279 PhysPageEntry *p;
280 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
282 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
283 lp->ptr = phys_map_node_alloc(map, level == 0);
285 p = map->nodes[lp->ptr];
286 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
288 while (*nb && lp < &p[P_L2_SIZE]) {
289 if ((*index & (step - 1)) == 0 && *nb >= step) {
290 lp->skip = 0;
291 lp->ptr = leaf;
292 *index += step;
293 *nb -= step;
294 } else {
295 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
297 ++lp;
301 static void phys_page_set(AddressSpaceDispatch *d,
302 hwaddr index, hwaddr nb,
303 uint16_t leaf)
305 /* Wildly overreserve - it doesn't matter much. */
306 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
308 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
311 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
312 * and update our entry so we can skip it and go directly to the destination.
314 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
316 unsigned valid_ptr = P_L2_SIZE;
317 int valid = 0;
318 PhysPageEntry *p;
319 int i;
321 if (lp->ptr == PHYS_MAP_NODE_NIL) {
322 return;
325 p = nodes[lp->ptr];
326 for (i = 0; i < P_L2_SIZE; i++) {
327 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
328 continue;
331 valid_ptr = i;
332 valid++;
333 if (p[i].skip) {
334 phys_page_compact(&p[i], nodes);
338 /* We can only compress if there's only one child. */
339 if (valid != 1) {
340 return;
343 assert(valid_ptr < P_L2_SIZE);
345 /* Don't compress if it won't fit in the # of bits we have. */
346 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
347 return;
350 lp->ptr = p[valid_ptr].ptr;
351 if (!p[valid_ptr].skip) {
352 /* If our only child is a leaf, make this a leaf. */
353 /* By design, we should have made this node a leaf to begin with so we
354 * should never reach here.
355 * But since it's so simple to handle this, let's do it just in case we
356 * change this rule.
358 lp->skip = 0;
359 } else {
360 lp->skip += p[valid_ptr].skip;
364 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
366 if (d->phys_map.skip) {
367 phys_page_compact(&d->phys_map, d->map.nodes);
371 static inline bool section_covers_addr(const MemoryRegionSection *section,
372 hwaddr addr)
374 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
375 * the section must cover the entire address space.
377 return int128_gethi(section->size) ||
378 range_covers_byte(section->offset_within_address_space,
379 int128_getlo(section->size), addr);
382 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
384 PhysPageEntry lp = d->phys_map, *p;
385 Node *nodes = d->map.nodes;
386 MemoryRegionSection *sections = d->map.sections;
387 hwaddr index = addr >> TARGET_PAGE_BITS;
388 int i;
390 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
391 if (lp.ptr == PHYS_MAP_NODE_NIL) {
392 return &sections[PHYS_SECTION_UNASSIGNED];
394 p = nodes[lp.ptr];
395 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
398 if (section_covers_addr(&sections[lp.ptr], addr)) {
399 return &sections[lp.ptr];
400 } else {
401 return &sections[PHYS_SECTION_UNASSIGNED];
405 bool memory_region_is_unassigned(MemoryRegion *mr)
407 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
408 && mr != &io_mem_watch;
411 /* Called from RCU critical section */
412 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
413 hwaddr addr,
414 bool resolve_subpage)
416 MemoryRegionSection *section = atomic_read(&d->mru_section);
417 subpage_t *subpage;
418 bool update;
420 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
421 section_covers_addr(section, addr)) {
422 update = false;
423 } else {
424 section = phys_page_find(d, addr);
425 update = true;
427 if (resolve_subpage && section->mr->subpage) {
428 subpage = container_of(section->mr, subpage_t, iomem);
429 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
431 if (update) {
432 atomic_set(&d->mru_section, section);
434 return section;
437 /* Called from RCU critical section */
438 static MemoryRegionSection *
439 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
440 hwaddr *plen, bool resolve_subpage)
442 MemoryRegionSection *section;
443 MemoryRegion *mr;
444 Int128 diff;
446 section = address_space_lookup_region(d, addr, resolve_subpage);
447 /* Compute offset within MemoryRegionSection */
448 addr -= section->offset_within_address_space;
450 /* Compute offset within MemoryRegion */
451 *xlat = addr + section->offset_within_region;
453 mr = section->mr;
455 /* MMIO registers can be expected to perform full-width accesses based only
456 * on their address, without considering adjacent registers that could
457 * decode to completely different MemoryRegions. When such registers
458 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
459 * regions overlap wildly. For this reason we cannot clamp the accesses
460 * here.
462 * If the length is small (as is the case for address_space_ldl/stl),
463 * everything works fine. If the incoming length is large, however,
464 * the caller really has to do the clamping through memory_access_size.
466 if (memory_region_is_ram(mr)) {
467 diff = int128_sub(section->size, int128_make64(addr));
468 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
470 return section;
473 /* Called from RCU critical section */
474 static MemoryRegionSection address_space_do_translate(AddressSpace *as,
475 hwaddr addr,
476 hwaddr *xlat,
477 hwaddr *plen,
478 bool is_write,
479 bool is_mmio)
481 IOMMUTLBEntry iotlb;
482 MemoryRegionSection *section;
483 MemoryRegion *mr;
485 for (;;) {
486 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
487 section = address_space_translate_internal(d, addr, &addr, plen, is_mmio);
488 mr = section->mr;
490 if (!mr->iommu_ops) {
491 break;
494 iotlb = mr->iommu_ops->translate(mr, addr, is_write ?
495 IOMMU_WO : IOMMU_RO);
496 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
497 | (addr & iotlb.addr_mask));
498 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
499 if (!(iotlb.perm & (1 << is_write))) {
500 goto translate_fail;
503 as = iotlb.target_as;
506 *xlat = addr;
508 return *section;
510 translate_fail:
511 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
514 /* Called from RCU critical section */
515 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
516 bool is_write)
518 MemoryRegionSection section;
519 hwaddr xlat, plen;
521 /* Try to get maximum page mask during translation. */
522 plen = (hwaddr)-1;
524 /* This can never be MMIO. */
525 section = address_space_do_translate(as, addr, &xlat, &plen,
526 is_write, false);
528 /* Illegal translation */
529 if (section.mr == &io_mem_unassigned) {
530 goto iotlb_fail;
533 /* Convert memory region offset into address space offset */
534 xlat += section.offset_within_address_space -
535 section.offset_within_region;
537 if (plen == (hwaddr)-1) {
539 * We use default page size here. Logically it only happens
540 * for identity mappings.
542 plen = TARGET_PAGE_SIZE;
545 /* Convert to address mask */
546 plen -= 1;
548 return (IOMMUTLBEntry) {
549 .target_as = section.address_space,
550 .iova = addr & ~plen,
551 .translated_addr = xlat & ~plen,
552 .addr_mask = plen,
553 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
554 .perm = IOMMU_RW,
557 iotlb_fail:
558 return (IOMMUTLBEntry) {0};
561 /* Called from RCU critical section */
562 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
563 hwaddr *xlat, hwaddr *plen,
564 bool is_write)
566 MemoryRegion *mr;
567 MemoryRegionSection section;
569 /* This can be MMIO, so setup MMIO bit. */
570 section = address_space_do_translate(as, addr, xlat, plen, is_write, true);
571 mr = section.mr;
573 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
574 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
575 *plen = MIN(page, *plen);
578 return mr;
581 /* Called from RCU critical section */
582 MemoryRegionSection *
583 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
584 hwaddr *xlat, hwaddr *plen)
586 MemoryRegionSection *section;
587 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
589 section = address_space_translate_internal(d, addr, xlat, plen, false);
591 assert(!section->mr->iommu_ops);
592 return section;
594 #endif
596 #if !defined(CONFIG_USER_ONLY)
598 static int cpu_common_post_load(void *opaque, int version_id)
600 CPUState *cpu = opaque;
602 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
603 version_id is increased. */
604 cpu->interrupt_request &= ~0x01;
605 tlb_flush(cpu);
607 return 0;
610 static int cpu_common_pre_load(void *opaque)
612 CPUState *cpu = opaque;
614 cpu->exception_index = -1;
616 return 0;
619 static bool cpu_common_exception_index_needed(void *opaque)
621 CPUState *cpu = opaque;
623 return tcg_enabled() && cpu->exception_index != -1;
626 static const VMStateDescription vmstate_cpu_common_exception_index = {
627 .name = "cpu_common/exception_index",
628 .version_id = 1,
629 .minimum_version_id = 1,
630 .needed = cpu_common_exception_index_needed,
631 .fields = (VMStateField[]) {
632 VMSTATE_INT32(exception_index, CPUState),
633 VMSTATE_END_OF_LIST()
637 static bool cpu_common_crash_occurred_needed(void *opaque)
639 CPUState *cpu = opaque;
641 return cpu->crash_occurred;
644 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
645 .name = "cpu_common/crash_occurred",
646 .version_id = 1,
647 .minimum_version_id = 1,
648 .needed = cpu_common_crash_occurred_needed,
649 .fields = (VMStateField[]) {
650 VMSTATE_BOOL(crash_occurred, CPUState),
651 VMSTATE_END_OF_LIST()
655 const VMStateDescription vmstate_cpu_common = {
656 .name = "cpu_common",
657 .version_id = 1,
658 .minimum_version_id = 1,
659 .pre_load = cpu_common_pre_load,
660 .post_load = cpu_common_post_load,
661 .fields = (VMStateField[]) {
662 VMSTATE_UINT32(halted, CPUState),
663 VMSTATE_UINT32(interrupt_request, CPUState),
664 VMSTATE_END_OF_LIST()
666 .subsections = (const VMStateDescription*[]) {
667 &vmstate_cpu_common_exception_index,
668 &vmstate_cpu_common_crash_occurred,
669 NULL
673 #endif
675 CPUState *qemu_get_cpu(int index)
677 CPUState *cpu;
679 CPU_FOREACH(cpu) {
680 if (cpu->cpu_index == index) {
681 return cpu;
685 return NULL;
688 #if !defined(CONFIG_USER_ONLY)
689 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
691 CPUAddressSpace *newas;
693 /* Target code should have set num_ases before calling us */
694 assert(asidx < cpu->num_ases);
696 if (asidx == 0) {
697 /* address space 0 gets the convenience alias */
698 cpu->as = as;
701 /* KVM cannot currently support multiple address spaces. */
702 assert(asidx == 0 || !kvm_enabled());
704 if (!cpu->cpu_ases) {
705 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
708 newas = &cpu->cpu_ases[asidx];
709 newas->cpu = cpu;
710 newas->as = as;
711 if (tcg_enabled()) {
712 newas->tcg_as_listener.commit = tcg_commit;
713 memory_listener_register(&newas->tcg_as_listener, as);
717 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
719 /* Return the AddressSpace corresponding to the specified index */
720 return cpu->cpu_ases[asidx].as;
722 #endif
724 void cpu_exec_unrealizefn(CPUState *cpu)
726 CPUClass *cc = CPU_GET_CLASS(cpu);
728 cpu_list_remove(cpu);
730 if (cc->vmsd != NULL) {
731 vmstate_unregister(NULL, cc->vmsd, cpu);
733 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
734 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
738 void cpu_exec_initfn(CPUState *cpu)
740 cpu->as = NULL;
741 cpu->num_ases = 0;
743 #ifndef CONFIG_USER_ONLY
744 cpu->thread_id = qemu_get_thread_id();
746 /* This is a softmmu CPU object, so create a property for it
747 * so users can wire up its memory. (This can't go in qom/cpu.c
748 * because that file is compiled only once for both user-mode
749 * and system builds.) The default if no link is set up is to use
750 * the system address space.
752 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
753 (Object **)&cpu->memory,
754 qdev_prop_allow_set_link_before_realize,
755 OBJ_PROP_LINK_UNREF_ON_RELEASE,
756 &error_abort);
757 cpu->memory = system_memory;
758 object_ref(OBJECT(cpu->memory));
759 #endif
762 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
764 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
766 cpu_list_add(cpu);
768 #ifndef CONFIG_USER_ONLY
769 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
770 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
772 if (cc->vmsd != NULL) {
773 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
775 #endif
778 #if defined(CONFIG_USER_ONLY)
779 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
781 mmap_lock();
782 tb_lock();
783 tb_invalidate_phys_page_range(pc, pc + 1, 0);
784 tb_unlock();
785 mmap_unlock();
787 #else
788 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
790 MemTxAttrs attrs;
791 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
792 int asidx = cpu_asidx_from_attrs(cpu, attrs);
793 if (phys != -1) {
794 /* Locks grabbed by tb_invalidate_phys_addr */
795 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
796 phys | (pc & ~TARGET_PAGE_MASK));
799 #endif
801 #if defined(CONFIG_USER_ONLY)
802 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
807 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
808 int flags)
810 return -ENOSYS;
813 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
817 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
818 int flags, CPUWatchpoint **watchpoint)
820 return -ENOSYS;
822 #else
823 /* Add a watchpoint. */
824 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
825 int flags, CPUWatchpoint **watchpoint)
827 CPUWatchpoint *wp;
829 /* forbid ranges which are empty or run off the end of the address space */
830 if (len == 0 || (addr + len - 1) < addr) {
831 error_report("tried to set invalid watchpoint at %"
832 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
833 return -EINVAL;
835 wp = g_malloc(sizeof(*wp));
837 wp->vaddr = addr;
838 wp->len = len;
839 wp->flags = flags;
841 /* keep all GDB-injected watchpoints in front */
842 if (flags & BP_GDB) {
843 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
844 } else {
845 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
848 tlb_flush_page(cpu, addr);
850 if (watchpoint)
851 *watchpoint = wp;
852 return 0;
855 /* Remove a specific watchpoint. */
856 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
857 int flags)
859 CPUWatchpoint *wp;
861 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
862 if (addr == wp->vaddr && len == wp->len
863 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
864 cpu_watchpoint_remove_by_ref(cpu, wp);
865 return 0;
868 return -ENOENT;
871 /* Remove a specific watchpoint by reference. */
872 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
874 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
876 tlb_flush_page(cpu, watchpoint->vaddr);
878 g_free(watchpoint);
881 /* Remove all matching watchpoints. */
882 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
884 CPUWatchpoint *wp, *next;
886 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
887 if (wp->flags & mask) {
888 cpu_watchpoint_remove_by_ref(cpu, wp);
893 /* Return true if this watchpoint address matches the specified
894 * access (ie the address range covered by the watchpoint overlaps
895 * partially or completely with the address range covered by the
896 * access).
898 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
899 vaddr addr,
900 vaddr len)
902 /* We know the lengths are non-zero, but a little caution is
903 * required to avoid errors in the case where the range ends
904 * exactly at the top of the address space and so addr + len
905 * wraps round to zero.
907 vaddr wpend = wp->vaddr + wp->len - 1;
908 vaddr addrend = addr + len - 1;
910 return !(addr > wpend || wp->vaddr > addrend);
913 #endif
915 /* Add a breakpoint. */
916 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
917 CPUBreakpoint **breakpoint)
919 CPUBreakpoint *bp;
921 bp = g_malloc(sizeof(*bp));
923 bp->pc = pc;
924 bp->flags = flags;
926 /* keep all GDB-injected breakpoints in front */
927 if (flags & BP_GDB) {
928 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
929 } else {
930 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
933 breakpoint_invalidate(cpu, pc);
935 if (breakpoint) {
936 *breakpoint = bp;
938 return 0;
941 /* Remove a specific breakpoint. */
942 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
944 CPUBreakpoint *bp;
946 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
947 if (bp->pc == pc && bp->flags == flags) {
948 cpu_breakpoint_remove_by_ref(cpu, bp);
949 return 0;
952 return -ENOENT;
955 /* Remove a specific breakpoint by reference. */
956 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
958 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
960 breakpoint_invalidate(cpu, breakpoint->pc);
962 g_free(breakpoint);
965 /* Remove all matching breakpoints. */
966 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
968 CPUBreakpoint *bp, *next;
970 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
971 if (bp->flags & mask) {
972 cpu_breakpoint_remove_by_ref(cpu, bp);
977 /* enable or disable single step mode. EXCP_DEBUG is returned by the
978 CPU loop after each instruction */
979 void cpu_single_step(CPUState *cpu, int enabled)
981 if (cpu->singlestep_enabled != enabled) {
982 cpu->singlestep_enabled = enabled;
983 if (kvm_enabled()) {
984 kvm_update_guest_debug(cpu, 0);
985 } else {
986 /* must flush all the translated code to avoid inconsistencies */
987 /* XXX: only flush what is necessary */
988 tb_flush(cpu);
993 void cpu_abort(CPUState *cpu, const char *fmt, ...)
995 va_list ap;
996 va_list ap2;
998 va_start(ap, fmt);
999 va_copy(ap2, ap);
1000 fprintf(stderr, "qemu: fatal: ");
1001 vfprintf(stderr, fmt, ap);
1002 fprintf(stderr, "\n");
1003 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1004 if (qemu_log_separate()) {
1005 qemu_log_lock();
1006 qemu_log("qemu: fatal: ");
1007 qemu_log_vprintf(fmt, ap2);
1008 qemu_log("\n");
1009 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1010 qemu_log_flush();
1011 qemu_log_unlock();
1012 qemu_log_close();
1014 va_end(ap2);
1015 va_end(ap);
1016 replay_finish();
1017 #if defined(CONFIG_USER_ONLY)
1019 struct sigaction act;
1020 sigfillset(&act.sa_mask);
1021 act.sa_handler = SIG_DFL;
1022 sigaction(SIGABRT, &act, NULL);
1024 #endif
1025 abort();
1028 #if !defined(CONFIG_USER_ONLY)
1029 /* Called from RCU critical section */
1030 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1032 RAMBlock *block;
1034 block = atomic_rcu_read(&ram_list.mru_block);
1035 if (block && addr - block->offset < block->max_length) {
1036 return block;
1038 RAMBLOCK_FOREACH(block) {
1039 if (addr - block->offset < block->max_length) {
1040 goto found;
1044 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1045 abort();
1047 found:
1048 /* It is safe to write mru_block outside the iothread lock. This
1049 * is what happens:
1051 * mru_block = xxx
1052 * rcu_read_unlock()
1053 * xxx removed from list
1054 * rcu_read_lock()
1055 * read mru_block
1056 * mru_block = NULL;
1057 * call_rcu(reclaim_ramblock, xxx);
1058 * rcu_read_unlock()
1060 * atomic_rcu_set is not needed here. The block was already published
1061 * when it was placed into the list. Here we're just making an extra
1062 * copy of the pointer.
1064 ram_list.mru_block = block;
1065 return block;
1068 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1070 CPUState *cpu;
1071 ram_addr_t start1;
1072 RAMBlock *block;
1073 ram_addr_t end;
1075 end = TARGET_PAGE_ALIGN(start + length);
1076 start &= TARGET_PAGE_MASK;
1078 rcu_read_lock();
1079 block = qemu_get_ram_block(start);
1080 assert(block == qemu_get_ram_block(end - 1));
1081 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1082 CPU_FOREACH(cpu) {
1083 tlb_reset_dirty(cpu, start1, length);
1085 rcu_read_unlock();
1088 /* Note: start and end must be within the same ram block. */
1089 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1090 ram_addr_t length,
1091 unsigned client)
1093 DirtyMemoryBlocks *blocks;
1094 unsigned long end, page;
1095 bool dirty = false;
1097 if (length == 0) {
1098 return false;
1101 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1102 page = start >> TARGET_PAGE_BITS;
1104 rcu_read_lock();
1106 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1108 while (page < end) {
1109 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1110 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1111 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1113 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1114 offset, num);
1115 page += num;
1118 rcu_read_unlock();
1120 if (dirty && tcg_enabled()) {
1121 tlb_reset_dirty_range_all(start, length);
1124 return dirty;
1127 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1128 (ram_addr_t start, ram_addr_t length, unsigned client)
1130 DirtyMemoryBlocks *blocks;
1131 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1132 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1133 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1134 DirtyBitmapSnapshot *snap;
1135 unsigned long page, end, dest;
1137 snap = g_malloc0(sizeof(*snap) +
1138 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1139 snap->start = first;
1140 snap->end = last;
1142 page = first >> TARGET_PAGE_BITS;
1143 end = last >> TARGET_PAGE_BITS;
1144 dest = 0;
1146 rcu_read_lock();
1148 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1150 while (page < end) {
1151 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1152 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1153 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1155 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1156 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1157 offset >>= BITS_PER_LEVEL;
1159 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1160 blocks->blocks[idx] + offset,
1161 num);
1162 page += num;
1163 dest += num >> BITS_PER_LEVEL;
1166 rcu_read_unlock();
1168 if (tcg_enabled()) {
1169 tlb_reset_dirty_range_all(start, length);
1172 return snap;
1175 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1176 ram_addr_t start,
1177 ram_addr_t length)
1179 unsigned long page, end;
1181 assert(start >= snap->start);
1182 assert(start + length <= snap->end);
1184 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1185 page = (start - snap->start) >> TARGET_PAGE_BITS;
1187 while (page < end) {
1188 if (test_bit(page, snap->dirty)) {
1189 return true;
1191 page++;
1193 return false;
1196 /* Called from RCU critical section */
1197 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1198 MemoryRegionSection *section,
1199 target_ulong vaddr,
1200 hwaddr paddr, hwaddr xlat,
1201 int prot,
1202 target_ulong *address)
1204 hwaddr iotlb;
1205 CPUWatchpoint *wp;
1207 if (memory_region_is_ram(section->mr)) {
1208 /* Normal RAM. */
1209 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1210 if (!section->readonly) {
1211 iotlb |= PHYS_SECTION_NOTDIRTY;
1212 } else {
1213 iotlb |= PHYS_SECTION_ROM;
1215 } else {
1216 AddressSpaceDispatch *d;
1218 d = atomic_rcu_read(&section->address_space->dispatch);
1219 iotlb = section - d->map.sections;
1220 iotlb += xlat;
1223 /* Make accesses to pages with watchpoints go via the
1224 watchpoint trap routines. */
1225 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1226 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1227 /* Avoid trapping reads of pages with a write breakpoint. */
1228 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1229 iotlb = PHYS_SECTION_WATCH + paddr;
1230 *address |= TLB_MMIO;
1231 break;
1236 return iotlb;
1238 #endif /* defined(CONFIG_USER_ONLY) */
1240 #if !defined(CONFIG_USER_ONLY)
1242 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1243 uint16_t section);
1244 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1246 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1247 qemu_anon_ram_alloc;
1250 * Set a custom physical guest memory alloator.
1251 * Accelerators with unusual needs may need this. Hopefully, we can
1252 * get rid of it eventually.
1254 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1256 phys_mem_alloc = alloc;
1259 static uint16_t phys_section_add(PhysPageMap *map,
1260 MemoryRegionSection *section)
1262 /* The physical section number is ORed with a page-aligned
1263 * pointer to produce the iotlb entries. Thus it should
1264 * never overflow into the page-aligned value.
1266 assert(map->sections_nb < TARGET_PAGE_SIZE);
1268 if (map->sections_nb == map->sections_nb_alloc) {
1269 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1270 map->sections = g_renew(MemoryRegionSection, map->sections,
1271 map->sections_nb_alloc);
1273 map->sections[map->sections_nb] = *section;
1274 memory_region_ref(section->mr);
1275 return map->sections_nb++;
1278 static void phys_section_destroy(MemoryRegion *mr)
1280 bool have_sub_page = mr->subpage;
1282 memory_region_unref(mr);
1284 if (have_sub_page) {
1285 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1286 object_unref(OBJECT(&subpage->iomem));
1287 g_free(subpage);
1291 static void phys_sections_free(PhysPageMap *map)
1293 while (map->sections_nb > 0) {
1294 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1295 phys_section_destroy(section->mr);
1297 g_free(map->sections);
1298 g_free(map->nodes);
1301 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1303 subpage_t *subpage;
1304 hwaddr base = section->offset_within_address_space
1305 & TARGET_PAGE_MASK;
1306 MemoryRegionSection *existing = phys_page_find(d, base);
1307 MemoryRegionSection subsection = {
1308 .offset_within_address_space = base,
1309 .size = int128_make64(TARGET_PAGE_SIZE),
1311 hwaddr start, end;
1313 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1315 if (!(existing->mr->subpage)) {
1316 subpage = subpage_init(d->as, base);
1317 subsection.address_space = d->as;
1318 subsection.mr = &subpage->iomem;
1319 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1320 phys_section_add(&d->map, &subsection));
1321 } else {
1322 subpage = container_of(existing->mr, subpage_t, iomem);
1324 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1325 end = start + int128_get64(section->size) - 1;
1326 subpage_register(subpage, start, end,
1327 phys_section_add(&d->map, section));
1331 static void register_multipage(AddressSpaceDispatch *d,
1332 MemoryRegionSection *section)
1334 hwaddr start_addr = section->offset_within_address_space;
1335 uint16_t section_index = phys_section_add(&d->map, section);
1336 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1337 TARGET_PAGE_BITS));
1339 assert(num_pages);
1340 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1343 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1345 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1346 AddressSpaceDispatch *d = as->next_dispatch;
1347 MemoryRegionSection now = *section, remain = *section;
1348 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1350 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1351 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1352 - now.offset_within_address_space;
1354 now.size = int128_min(int128_make64(left), now.size);
1355 register_subpage(d, &now);
1356 } else {
1357 now.size = int128_zero();
1359 while (int128_ne(remain.size, now.size)) {
1360 remain.size = int128_sub(remain.size, now.size);
1361 remain.offset_within_address_space += int128_get64(now.size);
1362 remain.offset_within_region += int128_get64(now.size);
1363 now = remain;
1364 if (int128_lt(remain.size, page_size)) {
1365 register_subpage(d, &now);
1366 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1367 now.size = page_size;
1368 register_subpage(d, &now);
1369 } else {
1370 now.size = int128_and(now.size, int128_neg(page_size));
1371 register_multipage(d, &now);
1376 void qemu_flush_coalesced_mmio_buffer(void)
1378 if (kvm_enabled())
1379 kvm_flush_coalesced_mmio_buffer();
1382 void qemu_mutex_lock_ramlist(void)
1384 qemu_mutex_lock(&ram_list.mutex);
1387 void qemu_mutex_unlock_ramlist(void)
1389 qemu_mutex_unlock(&ram_list.mutex);
1392 void ram_block_dump(Monitor *mon)
1394 RAMBlock *block;
1395 char *psize;
1397 rcu_read_lock();
1398 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1399 "Block Name", "PSize", "Offset", "Used", "Total");
1400 RAMBLOCK_FOREACH(block) {
1401 psize = size_to_str(block->page_size);
1402 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1403 " 0x%016" PRIx64 "\n", block->idstr, psize,
1404 (uint64_t)block->offset,
1405 (uint64_t)block->used_length,
1406 (uint64_t)block->max_length);
1407 g_free(psize);
1409 rcu_read_unlock();
1412 #ifdef __linux__
1414 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1415 * may or may not name the same files / on the same filesystem now as
1416 * when we actually open and map them. Iterate over the file
1417 * descriptors instead, and use qemu_fd_getpagesize().
1419 static int find_max_supported_pagesize(Object *obj, void *opaque)
1421 char *mem_path;
1422 long *hpsize_min = opaque;
1424 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1425 mem_path = object_property_get_str(obj, "mem-path", NULL);
1426 if (mem_path) {
1427 long hpsize = qemu_mempath_getpagesize(mem_path);
1428 if (hpsize < *hpsize_min) {
1429 *hpsize_min = hpsize;
1431 } else {
1432 *hpsize_min = getpagesize();
1436 return 0;
1439 long qemu_getrampagesize(void)
1441 long hpsize = LONG_MAX;
1442 long mainrampagesize;
1443 Object *memdev_root;
1445 if (mem_path) {
1446 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1447 } else {
1448 mainrampagesize = getpagesize();
1451 /* it's possible we have memory-backend objects with
1452 * hugepage-backed RAM. these may get mapped into system
1453 * address space via -numa parameters or memory hotplug
1454 * hooks. we want to take these into account, but we
1455 * also want to make sure these supported hugepage
1456 * sizes are applicable across the entire range of memory
1457 * we may boot from, so we take the min across all
1458 * backends, and assume normal pages in cases where a
1459 * backend isn't backed by hugepages.
1461 memdev_root = object_resolve_path("/objects", NULL);
1462 if (memdev_root) {
1463 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1465 if (hpsize == LONG_MAX) {
1466 /* No additional memory regions found ==> Report main RAM page size */
1467 return mainrampagesize;
1470 /* If NUMA is disabled or the NUMA nodes are not backed with a
1471 * memory-backend, then there is at least one node using "normal" RAM,
1472 * so if its page size is smaller we have got to report that size instead.
1474 if (hpsize > mainrampagesize &&
1475 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1476 static bool warned;
1477 if (!warned) {
1478 error_report("Huge page support disabled (n/a for main memory).");
1479 warned = true;
1481 return mainrampagesize;
1484 return hpsize;
1486 #else
1487 long qemu_getrampagesize(void)
1489 return getpagesize();
1491 #endif
1493 #ifdef __linux__
1494 static int64_t get_file_size(int fd)
1496 int64_t size = lseek(fd, 0, SEEK_END);
1497 if (size < 0) {
1498 return -errno;
1500 return size;
1503 static int file_ram_open(const char *path,
1504 const char *region_name,
1505 bool *created,
1506 Error **errp)
1508 char *filename;
1509 char *sanitized_name;
1510 char *c;
1511 int fd = -1;
1513 *created = false;
1514 for (;;) {
1515 fd = open(path, O_RDWR);
1516 if (fd >= 0) {
1517 /* @path names an existing file, use it */
1518 break;
1520 if (errno == ENOENT) {
1521 /* @path names a file that doesn't exist, create it */
1522 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1523 if (fd >= 0) {
1524 *created = true;
1525 break;
1527 } else if (errno == EISDIR) {
1528 /* @path names a directory, create a file there */
1529 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1530 sanitized_name = g_strdup(region_name);
1531 for (c = sanitized_name; *c != '\0'; c++) {
1532 if (*c == '/') {
1533 *c = '_';
1537 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1538 sanitized_name);
1539 g_free(sanitized_name);
1541 fd = mkstemp(filename);
1542 if (fd >= 0) {
1543 unlink(filename);
1544 g_free(filename);
1545 break;
1547 g_free(filename);
1549 if (errno != EEXIST && errno != EINTR) {
1550 error_setg_errno(errp, errno,
1551 "can't open backing store %s for guest RAM",
1552 path);
1553 return -1;
1556 * Try again on EINTR and EEXIST. The latter happens when
1557 * something else creates the file between our two open().
1561 return fd;
1564 static void *file_ram_alloc(RAMBlock *block,
1565 ram_addr_t memory,
1566 int fd,
1567 bool truncate,
1568 Error **errp)
1570 void *area;
1572 block->page_size = qemu_fd_getpagesize(fd);
1573 block->mr->align = block->page_size;
1574 #if defined(__s390x__)
1575 if (kvm_enabled()) {
1576 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1578 #endif
1580 if (memory < block->page_size) {
1581 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1582 "or larger than page size 0x%zx",
1583 memory, block->page_size);
1584 return NULL;
1587 memory = ROUND_UP(memory, block->page_size);
1590 * ftruncate is not supported by hugetlbfs in older
1591 * hosts, so don't bother bailing out on errors.
1592 * If anything goes wrong with it under other filesystems,
1593 * mmap will fail.
1595 * Do not truncate the non-empty backend file to avoid corrupting
1596 * the existing data in the file. Disabling shrinking is not
1597 * enough. For example, the current vNVDIMM implementation stores
1598 * the guest NVDIMM labels at the end of the backend file. If the
1599 * backend file is later extended, QEMU will not be able to find
1600 * those labels. Therefore, extending the non-empty backend file
1601 * is disabled as well.
1603 if (truncate && ftruncate(fd, memory)) {
1604 perror("ftruncate");
1607 area = qemu_ram_mmap(fd, memory, block->mr->align,
1608 block->flags & RAM_SHARED);
1609 if (area == MAP_FAILED) {
1610 error_setg_errno(errp, errno,
1611 "unable to map backing store for guest RAM");
1612 return NULL;
1615 if (mem_prealloc) {
1616 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1617 if (errp && *errp) {
1618 qemu_ram_munmap(area, memory);
1619 return NULL;
1623 block->fd = fd;
1624 return area;
1626 #endif
1628 /* Called with the ramlist lock held. */
1629 static ram_addr_t find_ram_offset(ram_addr_t size)
1631 RAMBlock *block, *next_block;
1632 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1634 assert(size != 0); /* it would hand out same offset multiple times */
1636 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1637 return 0;
1640 RAMBLOCK_FOREACH(block) {
1641 ram_addr_t end, next = RAM_ADDR_MAX;
1643 end = block->offset + block->max_length;
1645 RAMBLOCK_FOREACH(next_block) {
1646 if (next_block->offset >= end) {
1647 next = MIN(next, next_block->offset);
1650 if (next - end >= size && next - end < mingap) {
1651 offset = end;
1652 mingap = next - end;
1656 if (offset == RAM_ADDR_MAX) {
1657 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1658 (uint64_t)size);
1659 abort();
1662 return offset;
1665 unsigned long last_ram_page(void)
1667 RAMBlock *block;
1668 ram_addr_t last = 0;
1670 rcu_read_lock();
1671 RAMBLOCK_FOREACH(block) {
1672 last = MAX(last, block->offset + block->max_length);
1674 rcu_read_unlock();
1675 return last >> TARGET_PAGE_BITS;
1678 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1680 int ret;
1682 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1683 if (!machine_dump_guest_core(current_machine)) {
1684 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1685 if (ret) {
1686 perror("qemu_madvise");
1687 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1688 "but dump_guest_core=off specified\n");
1693 const char *qemu_ram_get_idstr(RAMBlock *rb)
1695 return rb->idstr;
1698 bool qemu_ram_is_shared(RAMBlock *rb)
1700 return rb->flags & RAM_SHARED;
1703 /* Called with iothread lock held. */
1704 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1706 RAMBlock *block;
1708 assert(new_block);
1709 assert(!new_block->idstr[0]);
1711 if (dev) {
1712 char *id = qdev_get_dev_path(dev);
1713 if (id) {
1714 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1715 g_free(id);
1718 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1720 rcu_read_lock();
1721 RAMBLOCK_FOREACH(block) {
1722 if (block != new_block &&
1723 !strcmp(block->idstr, new_block->idstr)) {
1724 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1725 new_block->idstr);
1726 abort();
1729 rcu_read_unlock();
1732 /* Called with iothread lock held. */
1733 void qemu_ram_unset_idstr(RAMBlock *block)
1735 /* FIXME: arch_init.c assumes that this is not called throughout
1736 * migration. Ignore the problem since hot-unplug during migration
1737 * does not work anyway.
1739 if (block) {
1740 memset(block->idstr, 0, sizeof(block->idstr));
1744 size_t qemu_ram_pagesize(RAMBlock *rb)
1746 return rb->page_size;
1749 /* Returns the largest size of page in use */
1750 size_t qemu_ram_pagesize_largest(void)
1752 RAMBlock *block;
1753 size_t largest = 0;
1755 RAMBLOCK_FOREACH(block) {
1756 largest = MAX(largest, qemu_ram_pagesize(block));
1759 return largest;
1762 static int memory_try_enable_merging(void *addr, size_t len)
1764 if (!machine_mem_merge(current_machine)) {
1765 /* disabled by the user */
1766 return 0;
1769 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1772 /* Only legal before guest might have detected the memory size: e.g. on
1773 * incoming migration, or right after reset.
1775 * As memory core doesn't know how is memory accessed, it is up to
1776 * resize callback to update device state and/or add assertions to detect
1777 * misuse, if necessary.
1779 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1781 assert(block);
1783 newsize = HOST_PAGE_ALIGN(newsize);
1785 if (block->used_length == newsize) {
1786 return 0;
1789 if (!(block->flags & RAM_RESIZEABLE)) {
1790 error_setg_errno(errp, EINVAL,
1791 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1792 " in != 0x" RAM_ADDR_FMT, block->idstr,
1793 newsize, block->used_length);
1794 return -EINVAL;
1797 if (block->max_length < newsize) {
1798 error_setg_errno(errp, EINVAL,
1799 "Length too large: %s: 0x" RAM_ADDR_FMT
1800 " > 0x" RAM_ADDR_FMT, block->idstr,
1801 newsize, block->max_length);
1802 return -EINVAL;
1805 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1806 block->used_length = newsize;
1807 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1808 DIRTY_CLIENTS_ALL);
1809 memory_region_set_size(block->mr, newsize);
1810 if (block->resized) {
1811 block->resized(block->idstr, newsize, block->host);
1813 return 0;
1816 /* Called with ram_list.mutex held */
1817 static void dirty_memory_extend(ram_addr_t old_ram_size,
1818 ram_addr_t new_ram_size)
1820 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1821 DIRTY_MEMORY_BLOCK_SIZE);
1822 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1823 DIRTY_MEMORY_BLOCK_SIZE);
1824 int i;
1826 /* Only need to extend if block count increased */
1827 if (new_num_blocks <= old_num_blocks) {
1828 return;
1831 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1832 DirtyMemoryBlocks *old_blocks;
1833 DirtyMemoryBlocks *new_blocks;
1834 int j;
1836 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1837 new_blocks = g_malloc(sizeof(*new_blocks) +
1838 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1840 if (old_num_blocks) {
1841 memcpy(new_blocks->blocks, old_blocks->blocks,
1842 old_num_blocks * sizeof(old_blocks->blocks[0]));
1845 for (j = old_num_blocks; j < new_num_blocks; j++) {
1846 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1849 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1851 if (old_blocks) {
1852 g_free_rcu(old_blocks, rcu);
1857 static void ram_block_add(RAMBlock *new_block, Error **errp)
1859 RAMBlock *block;
1860 RAMBlock *last_block = NULL;
1861 ram_addr_t old_ram_size, new_ram_size;
1862 Error *err = NULL;
1864 old_ram_size = last_ram_page();
1866 qemu_mutex_lock_ramlist();
1867 new_block->offset = find_ram_offset(new_block->max_length);
1869 if (!new_block->host) {
1870 if (xen_enabled()) {
1871 xen_ram_alloc(new_block->offset, new_block->max_length,
1872 new_block->mr, &err);
1873 if (err) {
1874 error_propagate(errp, err);
1875 qemu_mutex_unlock_ramlist();
1876 return;
1878 } else {
1879 new_block->host = phys_mem_alloc(new_block->max_length,
1880 &new_block->mr->align);
1881 if (!new_block->host) {
1882 error_setg_errno(errp, errno,
1883 "cannot set up guest memory '%s'",
1884 memory_region_name(new_block->mr));
1885 qemu_mutex_unlock_ramlist();
1886 return;
1888 memory_try_enable_merging(new_block->host, new_block->max_length);
1892 new_ram_size = MAX(old_ram_size,
1893 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1894 if (new_ram_size > old_ram_size) {
1895 dirty_memory_extend(old_ram_size, new_ram_size);
1897 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1898 * QLIST (which has an RCU-friendly variant) does not have insertion at
1899 * tail, so save the last element in last_block.
1901 RAMBLOCK_FOREACH(block) {
1902 last_block = block;
1903 if (block->max_length < new_block->max_length) {
1904 break;
1907 if (block) {
1908 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1909 } else if (last_block) {
1910 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1911 } else { /* list is empty */
1912 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1914 ram_list.mru_block = NULL;
1916 /* Write list before version */
1917 smp_wmb();
1918 ram_list.version++;
1919 qemu_mutex_unlock_ramlist();
1921 cpu_physical_memory_set_dirty_range(new_block->offset,
1922 new_block->used_length,
1923 DIRTY_CLIENTS_ALL);
1925 if (new_block->host) {
1926 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1927 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1928 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1929 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1930 ram_block_notify_add(new_block->host, new_block->max_length);
1934 #ifdef __linux__
1935 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1936 bool share, int fd,
1937 Error **errp)
1939 RAMBlock *new_block;
1940 Error *local_err = NULL;
1941 int64_t file_size;
1943 if (xen_enabled()) {
1944 error_setg(errp, "-mem-path not supported with Xen");
1945 return NULL;
1948 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1949 error_setg(errp,
1950 "host lacks kvm mmu notifiers, -mem-path unsupported");
1951 return NULL;
1954 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1956 * file_ram_alloc() needs to allocate just like
1957 * phys_mem_alloc, but we haven't bothered to provide
1958 * a hook there.
1960 error_setg(errp,
1961 "-mem-path not supported with this accelerator");
1962 return NULL;
1965 size = HOST_PAGE_ALIGN(size);
1966 file_size = get_file_size(fd);
1967 if (file_size > 0 && file_size < size) {
1968 error_setg(errp, "backing store %s size 0x%" PRIx64
1969 " does not match 'size' option 0x" RAM_ADDR_FMT,
1970 mem_path, file_size, size);
1971 return NULL;
1974 new_block = g_malloc0(sizeof(*new_block));
1975 new_block->mr = mr;
1976 new_block->used_length = size;
1977 new_block->max_length = size;
1978 new_block->flags = share ? RAM_SHARED : 0;
1979 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
1980 if (!new_block->host) {
1981 g_free(new_block);
1982 return NULL;
1985 ram_block_add(new_block, &local_err);
1986 if (local_err) {
1987 g_free(new_block);
1988 error_propagate(errp, local_err);
1989 return NULL;
1991 return new_block;
1996 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1997 bool share, const char *mem_path,
1998 Error **errp)
2000 int fd;
2001 bool created;
2002 RAMBlock *block;
2004 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2005 if (fd < 0) {
2006 return NULL;
2009 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2010 if (!block) {
2011 if (created) {
2012 unlink(mem_path);
2014 close(fd);
2015 return NULL;
2018 return block;
2020 #endif
2022 static
2023 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2024 void (*resized)(const char*,
2025 uint64_t length,
2026 void *host),
2027 void *host, bool resizeable,
2028 MemoryRegion *mr, Error **errp)
2030 RAMBlock *new_block;
2031 Error *local_err = NULL;
2033 size = HOST_PAGE_ALIGN(size);
2034 max_size = HOST_PAGE_ALIGN(max_size);
2035 new_block = g_malloc0(sizeof(*new_block));
2036 new_block->mr = mr;
2037 new_block->resized = resized;
2038 new_block->used_length = size;
2039 new_block->max_length = max_size;
2040 assert(max_size >= size);
2041 new_block->fd = -1;
2042 new_block->page_size = getpagesize();
2043 new_block->host = host;
2044 if (host) {
2045 new_block->flags |= RAM_PREALLOC;
2047 if (resizeable) {
2048 new_block->flags |= RAM_RESIZEABLE;
2050 ram_block_add(new_block, &local_err);
2051 if (local_err) {
2052 g_free(new_block);
2053 error_propagate(errp, local_err);
2054 return NULL;
2056 return new_block;
2059 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2060 MemoryRegion *mr, Error **errp)
2062 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2065 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2067 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2070 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2071 void (*resized)(const char*,
2072 uint64_t length,
2073 void *host),
2074 MemoryRegion *mr, Error **errp)
2076 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2079 static void reclaim_ramblock(RAMBlock *block)
2081 if (block->flags & RAM_PREALLOC) {
2083 } else if (xen_enabled()) {
2084 xen_invalidate_map_cache_entry(block->host);
2085 #ifndef _WIN32
2086 } else if (block->fd >= 0) {
2087 qemu_ram_munmap(block->host, block->max_length);
2088 close(block->fd);
2089 #endif
2090 } else {
2091 qemu_anon_ram_free(block->host, block->max_length);
2093 g_free(block);
2096 void qemu_ram_free(RAMBlock *block)
2098 if (!block) {
2099 return;
2102 if (block->host) {
2103 ram_block_notify_remove(block->host, block->max_length);
2106 qemu_mutex_lock_ramlist();
2107 QLIST_REMOVE_RCU(block, next);
2108 ram_list.mru_block = NULL;
2109 /* Write list before version */
2110 smp_wmb();
2111 ram_list.version++;
2112 call_rcu(block, reclaim_ramblock, rcu);
2113 qemu_mutex_unlock_ramlist();
2116 #ifndef _WIN32
2117 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2119 RAMBlock *block;
2120 ram_addr_t offset;
2121 int flags;
2122 void *area, *vaddr;
2124 RAMBLOCK_FOREACH(block) {
2125 offset = addr - block->offset;
2126 if (offset < block->max_length) {
2127 vaddr = ramblock_ptr(block, offset);
2128 if (block->flags & RAM_PREALLOC) {
2130 } else if (xen_enabled()) {
2131 abort();
2132 } else {
2133 flags = MAP_FIXED;
2134 if (block->fd >= 0) {
2135 flags |= (block->flags & RAM_SHARED ?
2136 MAP_SHARED : MAP_PRIVATE);
2137 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2138 flags, block->fd, offset);
2139 } else {
2141 * Remap needs to match alloc. Accelerators that
2142 * set phys_mem_alloc never remap. If they did,
2143 * we'd need a remap hook here.
2145 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2147 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2148 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2149 flags, -1, 0);
2151 if (area != vaddr) {
2152 fprintf(stderr, "Could not remap addr: "
2153 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2154 length, addr);
2155 exit(1);
2157 memory_try_enable_merging(vaddr, length);
2158 qemu_ram_setup_dump(vaddr, length);
2163 #endif /* !_WIN32 */
2165 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2166 * This should not be used for general purpose DMA. Use address_space_map
2167 * or address_space_rw instead. For local memory (e.g. video ram) that the
2168 * device owns, use memory_region_get_ram_ptr.
2170 * Called within RCU critical section.
2172 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2174 RAMBlock *block = ram_block;
2176 if (block == NULL) {
2177 block = qemu_get_ram_block(addr);
2178 addr -= block->offset;
2181 if (xen_enabled() && block->host == NULL) {
2182 /* We need to check if the requested address is in the RAM
2183 * because we don't want to map the entire memory in QEMU.
2184 * In that case just map until the end of the page.
2186 if (block->offset == 0) {
2187 return xen_map_cache(addr, 0, 0, false);
2190 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2192 return ramblock_ptr(block, addr);
2195 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2196 * but takes a size argument.
2198 * Called within RCU critical section.
2200 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2201 hwaddr *size)
2203 RAMBlock *block = ram_block;
2204 if (*size == 0) {
2205 return NULL;
2208 if (block == NULL) {
2209 block = qemu_get_ram_block(addr);
2210 addr -= block->offset;
2212 *size = MIN(*size, block->max_length - addr);
2214 if (xen_enabled() && block->host == NULL) {
2215 /* We need to check if the requested address is in the RAM
2216 * because we don't want to map the entire memory in QEMU.
2217 * In that case just map the requested area.
2219 if (block->offset == 0) {
2220 return xen_map_cache(addr, *size, 1, true);
2223 block->host = xen_map_cache(block->offset, block->max_length, 1, true);
2226 return ramblock_ptr(block, addr);
2230 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2231 * in that RAMBlock.
2233 * ptr: Host pointer to look up
2234 * round_offset: If true round the result offset down to a page boundary
2235 * *ram_addr: set to result ram_addr
2236 * *offset: set to result offset within the RAMBlock
2238 * Returns: RAMBlock (or NULL if not found)
2240 * By the time this function returns, the returned pointer is not protected
2241 * by RCU anymore. If the caller is not within an RCU critical section and
2242 * does not hold the iothread lock, it must have other means of protecting the
2243 * pointer, such as a reference to the region that includes the incoming
2244 * ram_addr_t.
2246 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2247 ram_addr_t *offset)
2249 RAMBlock *block;
2250 uint8_t *host = ptr;
2252 if (xen_enabled()) {
2253 ram_addr_t ram_addr;
2254 rcu_read_lock();
2255 ram_addr = xen_ram_addr_from_mapcache(ptr);
2256 block = qemu_get_ram_block(ram_addr);
2257 if (block) {
2258 *offset = ram_addr - block->offset;
2260 rcu_read_unlock();
2261 return block;
2264 rcu_read_lock();
2265 block = atomic_rcu_read(&ram_list.mru_block);
2266 if (block && block->host && host - block->host < block->max_length) {
2267 goto found;
2270 RAMBLOCK_FOREACH(block) {
2271 /* This case append when the block is not mapped. */
2272 if (block->host == NULL) {
2273 continue;
2275 if (host - block->host < block->max_length) {
2276 goto found;
2280 rcu_read_unlock();
2281 return NULL;
2283 found:
2284 *offset = (host - block->host);
2285 if (round_offset) {
2286 *offset &= TARGET_PAGE_MASK;
2288 rcu_read_unlock();
2289 return block;
2293 * Finds the named RAMBlock
2295 * name: The name of RAMBlock to find
2297 * Returns: RAMBlock (or NULL if not found)
2299 RAMBlock *qemu_ram_block_by_name(const char *name)
2301 RAMBlock *block;
2303 RAMBLOCK_FOREACH(block) {
2304 if (!strcmp(name, block->idstr)) {
2305 return block;
2309 return NULL;
2312 /* Some of the softmmu routines need to translate from a host pointer
2313 (typically a TLB entry) back to a ram offset. */
2314 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2316 RAMBlock *block;
2317 ram_addr_t offset;
2319 block = qemu_ram_block_from_host(ptr, false, &offset);
2320 if (!block) {
2321 return RAM_ADDR_INVALID;
2324 return block->offset + offset;
2327 /* Called within RCU critical section. */
2328 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2329 uint64_t val, unsigned size)
2331 bool locked = false;
2333 assert(tcg_enabled());
2334 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2335 locked = true;
2336 tb_lock();
2337 tb_invalidate_phys_page_fast(ram_addr, size);
2339 switch (size) {
2340 case 1:
2341 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2342 break;
2343 case 2:
2344 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2345 break;
2346 case 4:
2347 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2348 break;
2349 default:
2350 abort();
2353 if (locked) {
2354 tb_unlock();
2357 /* Set both VGA and migration bits for simplicity and to remove
2358 * the notdirty callback faster.
2360 cpu_physical_memory_set_dirty_range(ram_addr, size,
2361 DIRTY_CLIENTS_NOCODE);
2362 /* we remove the notdirty callback only if the code has been
2363 flushed */
2364 if (!cpu_physical_memory_is_clean(ram_addr)) {
2365 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2369 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2370 unsigned size, bool is_write)
2372 return is_write;
2375 static const MemoryRegionOps notdirty_mem_ops = {
2376 .write = notdirty_mem_write,
2377 .valid.accepts = notdirty_mem_accepts,
2378 .endianness = DEVICE_NATIVE_ENDIAN,
2381 /* Generate a debug exception if a watchpoint has been hit. */
2382 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2384 CPUState *cpu = current_cpu;
2385 CPUClass *cc = CPU_GET_CLASS(cpu);
2386 CPUArchState *env = cpu->env_ptr;
2387 target_ulong pc, cs_base;
2388 target_ulong vaddr;
2389 CPUWatchpoint *wp;
2390 uint32_t cpu_flags;
2392 assert(tcg_enabled());
2393 if (cpu->watchpoint_hit) {
2394 /* We re-entered the check after replacing the TB. Now raise
2395 * the debug interrupt so that is will trigger after the
2396 * current instruction. */
2397 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2398 return;
2400 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2401 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2402 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2403 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2404 && (wp->flags & flags)) {
2405 if (flags == BP_MEM_READ) {
2406 wp->flags |= BP_WATCHPOINT_HIT_READ;
2407 } else {
2408 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2410 wp->hitaddr = vaddr;
2411 wp->hitattrs = attrs;
2412 if (!cpu->watchpoint_hit) {
2413 if (wp->flags & BP_CPU &&
2414 !cc->debug_check_watchpoint(cpu, wp)) {
2415 wp->flags &= ~BP_WATCHPOINT_HIT;
2416 continue;
2418 cpu->watchpoint_hit = wp;
2420 /* Both tb_lock and iothread_mutex will be reset when
2421 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2422 * back into the cpu_exec main loop.
2424 tb_lock();
2425 tb_check_watchpoint(cpu);
2426 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2427 cpu->exception_index = EXCP_DEBUG;
2428 cpu_loop_exit(cpu);
2429 } else {
2430 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2431 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2432 cpu_loop_exit_noexc(cpu);
2435 } else {
2436 wp->flags &= ~BP_WATCHPOINT_HIT;
2441 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2442 so these check for a hit then pass through to the normal out-of-line
2443 phys routines. */
2444 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2445 unsigned size, MemTxAttrs attrs)
2447 MemTxResult res;
2448 uint64_t data;
2449 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2450 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2452 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2453 switch (size) {
2454 case 1:
2455 data = address_space_ldub(as, addr, attrs, &res);
2456 break;
2457 case 2:
2458 data = address_space_lduw(as, addr, attrs, &res);
2459 break;
2460 case 4:
2461 data = address_space_ldl(as, addr, attrs, &res);
2462 break;
2463 default: abort();
2465 *pdata = data;
2466 return res;
2469 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2470 uint64_t val, unsigned size,
2471 MemTxAttrs attrs)
2473 MemTxResult res;
2474 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2475 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2477 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2478 switch (size) {
2479 case 1:
2480 address_space_stb(as, addr, val, attrs, &res);
2481 break;
2482 case 2:
2483 address_space_stw(as, addr, val, attrs, &res);
2484 break;
2485 case 4:
2486 address_space_stl(as, addr, val, attrs, &res);
2487 break;
2488 default: abort();
2490 return res;
2493 static const MemoryRegionOps watch_mem_ops = {
2494 .read_with_attrs = watch_mem_read,
2495 .write_with_attrs = watch_mem_write,
2496 .endianness = DEVICE_NATIVE_ENDIAN,
2499 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2500 unsigned len, MemTxAttrs attrs)
2502 subpage_t *subpage = opaque;
2503 uint8_t buf[8];
2504 MemTxResult res;
2506 #if defined(DEBUG_SUBPAGE)
2507 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2508 subpage, len, addr);
2509 #endif
2510 res = address_space_read(subpage->as, addr + subpage->base,
2511 attrs, buf, len);
2512 if (res) {
2513 return res;
2515 switch (len) {
2516 case 1:
2517 *data = ldub_p(buf);
2518 return MEMTX_OK;
2519 case 2:
2520 *data = lduw_p(buf);
2521 return MEMTX_OK;
2522 case 4:
2523 *data = ldl_p(buf);
2524 return MEMTX_OK;
2525 case 8:
2526 *data = ldq_p(buf);
2527 return MEMTX_OK;
2528 default:
2529 abort();
2533 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2534 uint64_t value, unsigned len, MemTxAttrs attrs)
2536 subpage_t *subpage = opaque;
2537 uint8_t buf[8];
2539 #if defined(DEBUG_SUBPAGE)
2540 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2541 " value %"PRIx64"\n",
2542 __func__, subpage, len, addr, value);
2543 #endif
2544 switch (len) {
2545 case 1:
2546 stb_p(buf, value);
2547 break;
2548 case 2:
2549 stw_p(buf, value);
2550 break;
2551 case 4:
2552 stl_p(buf, value);
2553 break;
2554 case 8:
2555 stq_p(buf, value);
2556 break;
2557 default:
2558 abort();
2560 return address_space_write(subpage->as, addr + subpage->base,
2561 attrs, buf, len);
2564 static bool subpage_accepts(void *opaque, hwaddr addr,
2565 unsigned len, bool is_write)
2567 subpage_t *subpage = opaque;
2568 #if defined(DEBUG_SUBPAGE)
2569 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2570 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2571 #endif
2573 return address_space_access_valid(subpage->as, addr + subpage->base,
2574 len, is_write);
2577 static const MemoryRegionOps subpage_ops = {
2578 .read_with_attrs = subpage_read,
2579 .write_with_attrs = subpage_write,
2580 .impl.min_access_size = 1,
2581 .impl.max_access_size = 8,
2582 .valid.min_access_size = 1,
2583 .valid.max_access_size = 8,
2584 .valid.accepts = subpage_accepts,
2585 .endianness = DEVICE_NATIVE_ENDIAN,
2588 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2589 uint16_t section)
2591 int idx, eidx;
2593 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2594 return -1;
2595 idx = SUBPAGE_IDX(start);
2596 eidx = SUBPAGE_IDX(end);
2597 #if defined(DEBUG_SUBPAGE)
2598 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2599 __func__, mmio, start, end, idx, eidx, section);
2600 #endif
2601 for (; idx <= eidx; idx++) {
2602 mmio->sub_section[idx] = section;
2605 return 0;
2608 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2610 subpage_t *mmio;
2612 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2613 mmio->as = as;
2614 mmio->base = base;
2615 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2616 NULL, TARGET_PAGE_SIZE);
2617 mmio->iomem.subpage = true;
2618 #if defined(DEBUG_SUBPAGE)
2619 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2620 mmio, base, TARGET_PAGE_SIZE);
2621 #endif
2622 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2624 return mmio;
2627 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2628 MemoryRegion *mr)
2630 assert(as);
2631 MemoryRegionSection section = {
2632 .address_space = as,
2633 .mr = mr,
2634 .offset_within_address_space = 0,
2635 .offset_within_region = 0,
2636 .size = int128_2_64(),
2639 return phys_section_add(map, &section);
2642 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2644 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2645 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2646 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2647 MemoryRegionSection *sections = d->map.sections;
2649 return sections[index & ~TARGET_PAGE_MASK].mr;
2652 static void io_mem_init(void)
2654 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2655 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2656 NULL, UINT64_MAX);
2658 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2659 * which can be called without the iothread mutex.
2661 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2662 NULL, UINT64_MAX);
2663 memory_region_clear_global_locking(&io_mem_notdirty);
2665 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2666 NULL, UINT64_MAX);
2669 static void mem_begin(MemoryListener *listener)
2671 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2672 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2673 uint16_t n;
2675 n = dummy_section(&d->map, as, &io_mem_unassigned);
2676 assert(n == PHYS_SECTION_UNASSIGNED);
2677 n = dummy_section(&d->map, as, &io_mem_notdirty);
2678 assert(n == PHYS_SECTION_NOTDIRTY);
2679 n = dummy_section(&d->map, as, &io_mem_rom);
2680 assert(n == PHYS_SECTION_ROM);
2681 n = dummy_section(&d->map, as, &io_mem_watch);
2682 assert(n == PHYS_SECTION_WATCH);
2684 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2685 d->as = as;
2686 as->next_dispatch = d;
2689 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2691 phys_sections_free(&d->map);
2692 g_free(d);
2695 static void mem_commit(MemoryListener *listener)
2697 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2698 AddressSpaceDispatch *cur = as->dispatch;
2699 AddressSpaceDispatch *next = as->next_dispatch;
2701 phys_page_compact_all(next, next->map.nodes_nb);
2703 atomic_rcu_set(&as->dispatch, next);
2704 if (cur) {
2705 call_rcu(cur, address_space_dispatch_free, rcu);
2709 static void tcg_commit(MemoryListener *listener)
2711 CPUAddressSpace *cpuas;
2712 AddressSpaceDispatch *d;
2714 /* since each CPU stores ram addresses in its TLB cache, we must
2715 reset the modified entries */
2716 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2717 cpu_reloading_memory_map();
2718 /* The CPU and TLB are protected by the iothread lock.
2719 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2720 * may have split the RCU critical section.
2722 d = atomic_rcu_read(&cpuas->as->dispatch);
2723 atomic_rcu_set(&cpuas->memory_dispatch, d);
2724 tlb_flush(cpuas->cpu);
2727 void address_space_init_dispatch(AddressSpace *as)
2729 as->dispatch = NULL;
2730 as->dispatch_listener = (MemoryListener) {
2731 .begin = mem_begin,
2732 .commit = mem_commit,
2733 .region_add = mem_add,
2734 .region_nop = mem_add,
2735 .priority = 0,
2737 memory_listener_register(&as->dispatch_listener, as);
2740 void address_space_unregister(AddressSpace *as)
2742 memory_listener_unregister(&as->dispatch_listener);
2745 void address_space_destroy_dispatch(AddressSpace *as)
2747 AddressSpaceDispatch *d = as->dispatch;
2749 atomic_rcu_set(&as->dispatch, NULL);
2750 if (d) {
2751 call_rcu(d, address_space_dispatch_free, rcu);
2755 static void memory_map_init(void)
2757 system_memory = g_malloc(sizeof(*system_memory));
2759 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2760 address_space_init(&address_space_memory, system_memory, "memory");
2762 system_io = g_malloc(sizeof(*system_io));
2763 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2764 65536);
2765 address_space_init(&address_space_io, system_io, "I/O");
2768 MemoryRegion *get_system_memory(void)
2770 return system_memory;
2773 MemoryRegion *get_system_io(void)
2775 return system_io;
2778 #endif /* !defined(CONFIG_USER_ONLY) */
2780 /* physical memory access (slow version, mainly for debug) */
2781 #if defined(CONFIG_USER_ONLY)
2782 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2783 uint8_t *buf, int len, int is_write)
2785 int l, flags;
2786 target_ulong page;
2787 void * p;
2789 while (len > 0) {
2790 page = addr & TARGET_PAGE_MASK;
2791 l = (page + TARGET_PAGE_SIZE) - addr;
2792 if (l > len)
2793 l = len;
2794 flags = page_get_flags(page);
2795 if (!(flags & PAGE_VALID))
2796 return -1;
2797 if (is_write) {
2798 if (!(flags & PAGE_WRITE))
2799 return -1;
2800 /* XXX: this code should not depend on lock_user */
2801 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2802 return -1;
2803 memcpy(p, buf, l);
2804 unlock_user(p, addr, l);
2805 } else {
2806 if (!(flags & PAGE_READ))
2807 return -1;
2808 /* XXX: this code should not depend on lock_user */
2809 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2810 return -1;
2811 memcpy(buf, p, l);
2812 unlock_user(p, addr, 0);
2814 len -= l;
2815 buf += l;
2816 addr += l;
2818 return 0;
2821 #else
2823 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2824 hwaddr length)
2826 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2827 addr += memory_region_get_ram_addr(mr);
2829 /* No early return if dirty_log_mask is or becomes 0, because
2830 * cpu_physical_memory_set_dirty_range will still call
2831 * xen_modified_memory.
2833 if (dirty_log_mask) {
2834 dirty_log_mask =
2835 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2837 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2838 assert(tcg_enabled());
2839 tb_lock();
2840 tb_invalidate_phys_range(addr, addr + length);
2841 tb_unlock();
2842 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2844 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2847 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2849 unsigned access_size_max = mr->ops->valid.max_access_size;
2851 /* Regions are assumed to support 1-4 byte accesses unless
2852 otherwise specified. */
2853 if (access_size_max == 0) {
2854 access_size_max = 4;
2857 /* Bound the maximum access by the alignment of the address. */
2858 if (!mr->ops->impl.unaligned) {
2859 unsigned align_size_max = addr & -addr;
2860 if (align_size_max != 0 && align_size_max < access_size_max) {
2861 access_size_max = align_size_max;
2865 /* Don't attempt accesses larger than the maximum. */
2866 if (l > access_size_max) {
2867 l = access_size_max;
2869 l = pow2floor(l);
2871 return l;
2874 static bool prepare_mmio_access(MemoryRegion *mr)
2876 bool unlocked = !qemu_mutex_iothread_locked();
2877 bool release_lock = false;
2879 if (unlocked && mr->global_locking) {
2880 qemu_mutex_lock_iothread();
2881 unlocked = false;
2882 release_lock = true;
2884 if (mr->flush_coalesced_mmio) {
2885 if (unlocked) {
2886 qemu_mutex_lock_iothread();
2888 qemu_flush_coalesced_mmio_buffer();
2889 if (unlocked) {
2890 qemu_mutex_unlock_iothread();
2894 return release_lock;
2897 /* Called within RCU critical section. */
2898 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2899 MemTxAttrs attrs,
2900 const uint8_t *buf,
2901 int len, hwaddr addr1,
2902 hwaddr l, MemoryRegion *mr)
2904 uint8_t *ptr;
2905 uint64_t val;
2906 MemTxResult result = MEMTX_OK;
2907 bool release_lock = false;
2909 for (;;) {
2910 if (!memory_access_is_direct(mr, true)) {
2911 release_lock |= prepare_mmio_access(mr);
2912 l = memory_access_size(mr, l, addr1);
2913 /* XXX: could force current_cpu to NULL to avoid
2914 potential bugs */
2915 switch (l) {
2916 case 8:
2917 /* 64 bit write access */
2918 val = ldq_p(buf);
2919 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2920 attrs);
2921 break;
2922 case 4:
2923 /* 32 bit write access */
2924 val = (uint32_t)ldl_p(buf);
2925 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2926 attrs);
2927 break;
2928 case 2:
2929 /* 16 bit write access */
2930 val = lduw_p(buf);
2931 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2932 attrs);
2933 break;
2934 case 1:
2935 /* 8 bit write access */
2936 val = ldub_p(buf);
2937 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2938 attrs);
2939 break;
2940 default:
2941 abort();
2943 } else {
2944 /* RAM case */
2945 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l);
2946 memcpy(ptr, buf, l);
2947 invalidate_and_set_dirty(mr, addr1, l);
2950 if (release_lock) {
2951 qemu_mutex_unlock_iothread();
2952 release_lock = false;
2955 len -= l;
2956 buf += l;
2957 addr += l;
2959 if (!len) {
2960 break;
2963 l = len;
2964 mr = address_space_translate(as, addr, &addr1, &l, true);
2967 return result;
2970 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2971 const uint8_t *buf, int len)
2973 hwaddr l;
2974 hwaddr addr1;
2975 MemoryRegion *mr;
2976 MemTxResult result = MEMTX_OK;
2978 if (len > 0) {
2979 rcu_read_lock();
2980 l = len;
2981 mr = address_space_translate(as, addr, &addr1, &l, true);
2982 result = address_space_write_continue(as, addr, attrs, buf, len,
2983 addr1, l, mr);
2984 rcu_read_unlock();
2987 return result;
2990 /* Called within RCU critical section. */
2991 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2992 MemTxAttrs attrs, uint8_t *buf,
2993 int len, hwaddr addr1, hwaddr l,
2994 MemoryRegion *mr)
2996 uint8_t *ptr;
2997 uint64_t val;
2998 MemTxResult result = MEMTX_OK;
2999 bool release_lock = false;
3001 for (;;) {
3002 if (!memory_access_is_direct(mr, false)) {
3003 /* I/O case */
3004 release_lock |= prepare_mmio_access(mr);
3005 l = memory_access_size(mr, l, addr1);
3006 switch (l) {
3007 case 8:
3008 /* 64 bit read access */
3009 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3010 attrs);
3011 stq_p(buf, val);
3012 break;
3013 case 4:
3014 /* 32 bit read access */
3015 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3016 attrs);
3017 stl_p(buf, val);
3018 break;
3019 case 2:
3020 /* 16 bit read access */
3021 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3022 attrs);
3023 stw_p(buf, val);
3024 break;
3025 case 1:
3026 /* 8 bit read access */
3027 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3028 attrs);
3029 stb_p(buf, val);
3030 break;
3031 default:
3032 abort();
3034 } else {
3035 /* RAM case */
3036 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l);
3037 memcpy(buf, ptr, l);
3040 if (release_lock) {
3041 qemu_mutex_unlock_iothread();
3042 release_lock = false;
3045 len -= l;
3046 buf += l;
3047 addr += l;
3049 if (!len) {
3050 break;
3053 l = len;
3054 mr = address_space_translate(as, addr, &addr1, &l, false);
3057 return result;
3060 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3061 MemTxAttrs attrs, uint8_t *buf, int len)
3063 hwaddr l;
3064 hwaddr addr1;
3065 MemoryRegion *mr;
3066 MemTxResult result = MEMTX_OK;
3068 if (len > 0) {
3069 rcu_read_lock();
3070 l = len;
3071 mr = address_space_translate(as, addr, &addr1, &l, false);
3072 result = address_space_read_continue(as, addr, attrs, buf, len,
3073 addr1, l, mr);
3074 rcu_read_unlock();
3077 return result;
3080 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3081 uint8_t *buf, int len, bool is_write)
3083 if (is_write) {
3084 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
3085 } else {
3086 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
3090 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3091 int len, int is_write)
3093 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3094 buf, len, is_write);
3097 enum write_rom_type {
3098 WRITE_DATA,
3099 FLUSH_CACHE,
3102 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3103 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3105 hwaddr l;
3106 uint8_t *ptr;
3107 hwaddr addr1;
3108 MemoryRegion *mr;
3110 rcu_read_lock();
3111 while (len > 0) {
3112 l = len;
3113 mr = address_space_translate(as, addr, &addr1, &l, true);
3115 if (!(memory_region_is_ram(mr) ||
3116 memory_region_is_romd(mr))) {
3117 l = memory_access_size(mr, l, addr1);
3118 } else {
3119 /* ROM/RAM case */
3120 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3121 switch (type) {
3122 case WRITE_DATA:
3123 memcpy(ptr, buf, l);
3124 invalidate_and_set_dirty(mr, addr1, l);
3125 break;
3126 case FLUSH_CACHE:
3127 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3128 break;
3131 len -= l;
3132 buf += l;
3133 addr += l;
3135 rcu_read_unlock();
3138 /* used for ROM loading : can write in RAM and ROM */
3139 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3140 const uint8_t *buf, int len)
3142 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3145 void cpu_flush_icache_range(hwaddr start, int len)
3148 * This function should do the same thing as an icache flush that was
3149 * triggered from within the guest. For TCG we are always cache coherent,
3150 * so there is no need to flush anything. For KVM / Xen we need to flush
3151 * the host's instruction cache at least.
3153 if (tcg_enabled()) {
3154 return;
3157 cpu_physical_memory_write_rom_internal(&address_space_memory,
3158 start, NULL, len, FLUSH_CACHE);
3161 typedef struct {
3162 MemoryRegion *mr;
3163 void *buffer;
3164 hwaddr addr;
3165 hwaddr len;
3166 bool in_use;
3167 } BounceBuffer;
3169 static BounceBuffer bounce;
3171 typedef struct MapClient {
3172 QEMUBH *bh;
3173 QLIST_ENTRY(MapClient) link;
3174 } MapClient;
3176 QemuMutex map_client_list_lock;
3177 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3178 = QLIST_HEAD_INITIALIZER(map_client_list);
3180 static void cpu_unregister_map_client_do(MapClient *client)
3182 QLIST_REMOVE(client, link);
3183 g_free(client);
3186 static void cpu_notify_map_clients_locked(void)
3188 MapClient *client;
3190 while (!QLIST_EMPTY(&map_client_list)) {
3191 client = QLIST_FIRST(&map_client_list);
3192 qemu_bh_schedule(client->bh);
3193 cpu_unregister_map_client_do(client);
3197 void cpu_register_map_client(QEMUBH *bh)
3199 MapClient *client = g_malloc(sizeof(*client));
3201 qemu_mutex_lock(&map_client_list_lock);
3202 client->bh = bh;
3203 QLIST_INSERT_HEAD(&map_client_list, client, link);
3204 if (!atomic_read(&bounce.in_use)) {
3205 cpu_notify_map_clients_locked();
3207 qemu_mutex_unlock(&map_client_list_lock);
3210 void cpu_exec_init_all(void)
3212 qemu_mutex_init(&ram_list.mutex);
3213 /* The data structures we set up here depend on knowing the page size,
3214 * so no more changes can be made after this point.
3215 * In an ideal world, nothing we did before we had finished the
3216 * machine setup would care about the target page size, and we could
3217 * do this much later, rather than requiring board models to state
3218 * up front what their requirements are.
3220 finalize_target_page_bits();
3221 io_mem_init();
3222 memory_map_init();
3223 qemu_mutex_init(&map_client_list_lock);
3226 void cpu_unregister_map_client(QEMUBH *bh)
3228 MapClient *client;
3230 qemu_mutex_lock(&map_client_list_lock);
3231 QLIST_FOREACH(client, &map_client_list, link) {
3232 if (client->bh == bh) {
3233 cpu_unregister_map_client_do(client);
3234 break;
3237 qemu_mutex_unlock(&map_client_list_lock);
3240 static void cpu_notify_map_clients(void)
3242 qemu_mutex_lock(&map_client_list_lock);
3243 cpu_notify_map_clients_locked();
3244 qemu_mutex_unlock(&map_client_list_lock);
3247 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3249 MemoryRegion *mr;
3250 hwaddr l, xlat;
3252 rcu_read_lock();
3253 while (len > 0) {
3254 l = len;
3255 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3256 if (!memory_access_is_direct(mr, is_write)) {
3257 l = memory_access_size(mr, l, addr);
3258 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3259 rcu_read_unlock();
3260 return false;
3264 len -= l;
3265 addr += l;
3267 rcu_read_unlock();
3268 return true;
3271 static hwaddr
3272 address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3273 MemoryRegion *mr, hwaddr base, hwaddr len,
3274 bool is_write)
3276 hwaddr done = 0;
3277 hwaddr xlat;
3278 MemoryRegion *this_mr;
3280 for (;;) {
3281 target_len -= len;
3282 addr += len;
3283 done += len;
3284 if (target_len == 0) {
3285 return done;
3288 len = target_len;
3289 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3290 if (this_mr != mr || xlat != base + done) {
3291 return done;
3296 /* Map a physical memory region into a host virtual address.
3297 * May map a subset of the requested range, given by and returned in *plen.
3298 * May return NULL if resources needed to perform the mapping are exhausted.
3299 * Use only for reads OR writes - not for read-modify-write operations.
3300 * Use cpu_register_map_client() to know when retrying the map operation is
3301 * likely to succeed.
3303 void *address_space_map(AddressSpace *as,
3304 hwaddr addr,
3305 hwaddr *plen,
3306 bool is_write)
3308 hwaddr len = *plen;
3309 hwaddr l, xlat;
3310 MemoryRegion *mr;
3311 void *ptr;
3313 if (len == 0) {
3314 return NULL;
3317 l = len;
3318 rcu_read_lock();
3319 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3321 if (!memory_access_is_direct(mr, is_write)) {
3322 if (atomic_xchg(&bounce.in_use, true)) {
3323 rcu_read_unlock();
3324 return NULL;
3326 /* Avoid unbounded allocations */
3327 l = MIN(l, TARGET_PAGE_SIZE);
3328 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3329 bounce.addr = addr;
3330 bounce.len = l;
3332 memory_region_ref(mr);
3333 bounce.mr = mr;
3334 if (!is_write) {
3335 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3336 bounce.buffer, l);
3339 rcu_read_unlock();
3340 *plen = l;
3341 return bounce.buffer;
3345 memory_region_ref(mr);
3346 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3347 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
3348 rcu_read_unlock();
3350 return ptr;
3353 /* Unmaps a memory region previously mapped by address_space_map().
3354 * Will also mark the memory as dirty if is_write == 1. access_len gives
3355 * the amount of memory that was actually read or written by the caller.
3357 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3358 int is_write, hwaddr access_len)
3360 if (buffer != bounce.buffer) {
3361 MemoryRegion *mr;
3362 ram_addr_t addr1;
3364 mr = memory_region_from_host(buffer, &addr1);
3365 assert(mr != NULL);
3366 if (is_write) {
3367 invalidate_and_set_dirty(mr, addr1, access_len);
3369 if (xen_enabled()) {
3370 xen_invalidate_map_cache_entry(buffer);
3372 memory_region_unref(mr);
3373 return;
3375 if (is_write) {
3376 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3377 bounce.buffer, access_len);
3379 qemu_vfree(bounce.buffer);
3380 bounce.buffer = NULL;
3381 memory_region_unref(bounce.mr);
3382 atomic_mb_set(&bounce.in_use, false);
3383 cpu_notify_map_clients();
3386 void *cpu_physical_memory_map(hwaddr addr,
3387 hwaddr *plen,
3388 int is_write)
3390 return address_space_map(&address_space_memory, addr, plen, is_write);
3393 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3394 int is_write, hwaddr access_len)
3396 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3399 #define ARG1_DECL AddressSpace *as
3400 #define ARG1 as
3401 #define SUFFIX
3402 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3403 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3404 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3405 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3406 #define RCU_READ_LOCK(...) rcu_read_lock()
3407 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3408 #include "memory_ldst.inc.c"
3410 int64_t address_space_cache_init(MemoryRegionCache *cache,
3411 AddressSpace *as,
3412 hwaddr addr,
3413 hwaddr len,
3414 bool is_write)
3416 cache->len = len;
3417 cache->as = as;
3418 cache->xlat = addr;
3419 return len;
3422 void address_space_cache_invalidate(MemoryRegionCache *cache,
3423 hwaddr addr,
3424 hwaddr access_len)
3428 void address_space_cache_destroy(MemoryRegionCache *cache)
3430 cache->as = NULL;
3433 #define ARG1_DECL MemoryRegionCache *cache
3434 #define ARG1 cache
3435 #define SUFFIX _cached
3436 #define TRANSLATE(addr, ...) \
3437 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3438 #define IS_DIRECT(mr, is_write) true
3439 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3440 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3441 #define RCU_READ_LOCK() rcu_read_lock()
3442 #define RCU_READ_UNLOCK() rcu_read_unlock()
3443 #include "memory_ldst.inc.c"
3445 /* virtual memory access for debug (includes writing to ROM) */
3446 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3447 uint8_t *buf, int len, int is_write)
3449 int l;
3450 hwaddr phys_addr;
3451 target_ulong page;
3453 cpu_synchronize_state(cpu);
3454 while (len > 0) {
3455 int asidx;
3456 MemTxAttrs attrs;
3458 page = addr & TARGET_PAGE_MASK;
3459 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3460 asidx = cpu_asidx_from_attrs(cpu, attrs);
3461 /* if no physical page mapped, return an error */
3462 if (phys_addr == -1)
3463 return -1;
3464 l = (page + TARGET_PAGE_SIZE) - addr;
3465 if (l > len)
3466 l = len;
3467 phys_addr += (addr & ~TARGET_PAGE_MASK);
3468 if (is_write) {
3469 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3470 phys_addr, buf, l);
3471 } else {
3472 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3473 MEMTXATTRS_UNSPECIFIED,
3474 buf, l, 0);
3476 len -= l;
3477 buf += l;
3478 addr += l;
3480 return 0;
3484 * Allows code that needs to deal with migration bitmaps etc to still be built
3485 * target independent.
3487 size_t qemu_target_page_size(void)
3489 return TARGET_PAGE_SIZE;
3492 int qemu_target_page_bits(void)
3494 return TARGET_PAGE_BITS;
3497 int qemu_target_page_bits_min(void)
3499 return TARGET_PAGE_BITS_MIN;
3501 #endif
3504 * A helper function for the _utterly broken_ virtio device model to find out if
3505 * it's running on a big endian machine. Don't do this at home kids!
3507 bool target_words_bigendian(void);
3508 bool target_words_bigendian(void)
3510 #if defined(TARGET_WORDS_BIGENDIAN)
3511 return true;
3512 #else
3513 return false;
3514 #endif
3517 #ifndef CONFIG_USER_ONLY
3518 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3520 MemoryRegion*mr;
3521 hwaddr l = 1;
3522 bool res;
3524 rcu_read_lock();
3525 mr = address_space_translate(&address_space_memory,
3526 phys_addr, &phys_addr, &l, false);
3528 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3529 rcu_read_unlock();
3530 return res;
3533 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3535 RAMBlock *block;
3536 int ret = 0;
3538 rcu_read_lock();
3539 RAMBLOCK_FOREACH(block) {
3540 ret = func(block->idstr, block->host, block->offset,
3541 block->used_length, opaque);
3542 if (ret) {
3543 break;
3546 rcu_read_unlock();
3547 return ret;
3551 * Unmap pages of memory from start to start+length such that
3552 * they a) read as 0, b) Trigger whatever fault mechanism
3553 * the OS provides for postcopy.
3554 * The pages must be unmapped by the end of the function.
3555 * Returns: 0 on success, none-0 on failure
3558 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3560 int ret = -1;
3562 uint8_t *host_startaddr = rb->host + start;
3564 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3565 error_report("ram_block_discard_range: Unaligned start address: %p",
3566 host_startaddr);
3567 goto err;
3570 if ((start + length) <= rb->used_length) {
3571 uint8_t *host_endaddr = host_startaddr + length;
3572 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3573 error_report("ram_block_discard_range: Unaligned end address: %p",
3574 host_endaddr);
3575 goto err;
3578 errno = ENOTSUP; /* If we are missing MADVISE etc */
3580 if (rb->page_size == qemu_host_page_size) {
3581 #if defined(CONFIG_MADVISE)
3582 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3583 * freeing the page.
3585 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3586 #endif
3587 } else {
3588 /* Huge page case - unfortunately it can't do DONTNEED, but
3589 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3590 * huge page file.
3592 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3593 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3594 start, length);
3595 #endif
3597 if (ret) {
3598 ret = -errno;
3599 error_report("ram_block_discard_range: Failed to discard range "
3600 "%s:%" PRIx64 " +%zx (%d)",
3601 rb->idstr, start, length, ret);
3603 } else {
3604 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3605 "/%zx/" RAM_ADDR_FMT")",
3606 rb->idstr, start, length, rb->used_length);
3609 err:
3610 return ret;
3613 #endif
3615 void page_size_init(void)
3617 /* NOTE: we can always suppose that qemu_host_page_size >=
3618 TARGET_PAGE_SIZE */
3619 qemu_real_host_page_size = getpagesize();
3620 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
3621 if (qemu_host_page_size == 0) {
3622 qemu_host_page_size = qemu_real_host_page_size;
3624 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3625 qemu_host_page_size = TARGET_PAGE_SIZE;
3627 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;