2 * M-profile MVE Operations
4 * Copyright (c) 2021 Linaro, Ltd.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
28 #include "fpu/softfloat.h"
29 #include "crypto/clmul.h"
31 static uint16_t mve_eci_mask(CPUARMState
*env
)
34 * Return the mask of which elements in the MVE vector correspond
35 * to beats being executed. The mask has 1 bits for executed lanes
36 * and 0 bits where ECI says this beat was already executed.
40 if ((env
->condexec_bits
& 0xf) != 0) {
44 eci
= env
->condexec_bits
>> 4;
56 g_assert_not_reached();
60 static uint16_t mve_element_mask(CPUARMState
*env
)
63 * Return the mask of which elements in the MVE vector should be
64 * updated. This is a combination of multiple things:
65 * (1) by default, we update every lane in the vector
66 * (2) VPT predication stores its state in the VPR register;
67 * (3) low-overhead-branch tail predication will mask out part
68 * the vector on the final iteration of the loop
69 * (4) if EPSR.ECI is set then we must execute only some beats
71 * We combine all these into a 16-bit result with the same semantics
72 * as VPR.P0: 0 to mask the lane, 1 if it is active.
73 * 8-bit vector ops will look at all bits of the result;
74 * 16-bit ops will look at bits 0, 2, 4, ...;
75 * 32-bit ops will look at bits 0, 4, 8 and 12.
76 * Compare pseudocode GetCurInstrBeat(), though that only returns
77 * the 4-bit slice of the mask corresponding to a single beat.
79 uint16_t mask
= FIELD_EX32(env
->v7m
.vpr
, V7M_VPR
, P0
);
81 if (!(env
->v7m
.vpr
& R_V7M_VPR_MASK01_MASK
)) {
84 if (!(env
->v7m
.vpr
& R_V7M_VPR_MASK23_MASK
)) {
88 if (env
->v7m
.ltpsize
< 4 &&
89 env
->regs
[14] <= (1 << (4 - env
->v7m
.ltpsize
))) {
91 * Tail predication active, and this is the last loop iteration.
92 * The element size is (1 << ltpsize), and we only want to process
93 * loopcount elements, so we want to retain the least significant
94 * (loopcount * esize) predicate bits and zero out bits above that.
96 int masklen
= env
->regs
[14] << env
->v7m
.ltpsize
;
97 assert(masklen
<= 16);
98 uint16_t ltpmask
= masklen
? MAKE_64BIT_MASK(0, masklen
) : 0;
103 * ECI bits indicate which beats are already executed;
104 * we handle this by effectively predicating them out.
106 mask
&= mve_eci_mask(env
);
110 static void mve_advance_vpt(CPUARMState
*env
)
112 /* Advance the VPT and ECI state if necessary */
113 uint32_t vpr
= env
->v7m
.vpr
;
114 unsigned mask01
, mask23
;
116 uint16_t eci_mask
= mve_eci_mask(env
);
118 if ((env
->condexec_bits
& 0xf) == 0) {
119 env
->condexec_bits
= (env
->condexec_bits
== (ECI_A0A1A2B0
<< 4)) ?
120 (ECI_A0
<< 4) : (ECI_NONE
<< 4);
123 if (!(vpr
& (R_V7M_VPR_MASK01_MASK
| R_V7M_VPR_MASK23_MASK
))) {
124 /* VPT not enabled, nothing to do */
128 /* Invert P0 bits if needed, but only for beats we actually executed */
129 mask01
= FIELD_EX32(vpr
, V7M_VPR
, MASK01
);
130 mask23
= FIELD_EX32(vpr
, V7M_VPR
, MASK23
);
131 /* Start by assuming we invert all bits corresponding to executed beats */
134 /* MASK01 says don't invert low half of P0 */
138 /* MASK23 says don't invert high half of P0 */
142 /* Only update MASK01 if beat 1 executed */
143 if (eci_mask
& 0xf0) {
144 vpr
= FIELD_DP32(vpr
, V7M_VPR
, MASK01
, mask01
<< 1);
146 /* Beat 3 always executes, so update MASK23 */
147 vpr
= FIELD_DP32(vpr
, V7M_VPR
, MASK23
, mask23
<< 1);
151 /* For loads, predicated lanes are zeroed instead of keeping their old values */
152 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE) \
153 void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \
156 uint16_t mask = mve_element_mask(env); \
157 uint16_t eci_mask = mve_eci_mask(env); \
160 * R_SXTM allows the dest reg to become UNKNOWN for abandoned \
161 * beats so we don't care if we update part of the dest and \
162 * then take an exception. \
164 for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \
165 if (eci_mask & (1 << b)) { \
166 d[H##ESIZE(e)] = (mask & (1 << b)) ? \
167 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0; \
171 mve_advance_vpt(env); \
174 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE) \
175 void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \
178 uint16_t mask = mve_element_mask(env); \
180 for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \
181 if (mask & (1 << b)) { \
182 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
186 mve_advance_vpt(env); \
189 DO_VLDR(vldrb
, 1, ldub
, 1, uint8_t)
190 DO_VLDR(vldrh
, 2, lduw
, 2, uint16_t)
191 DO_VLDR(vldrw
, 4, ldl
, 4, uint32_t)
193 DO_VSTR(vstrb
, 1, stb
, 1, uint8_t)
194 DO_VSTR(vstrh
, 2, stw
, 2, uint16_t)
195 DO_VSTR(vstrw
, 4, stl
, 4, uint32_t)
197 DO_VLDR(vldrb_sh
, 1, ldsb
, 2, int16_t)
198 DO_VLDR(vldrb_sw
, 1, ldsb
, 4, int32_t)
199 DO_VLDR(vldrb_uh
, 1, ldub
, 2, uint16_t)
200 DO_VLDR(vldrb_uw
, 1, ldub
, 4, uint32_t)
201 DO_VLDR(vldrh_sw
, 2, ldsw
, 4, int32_t)
202 DO_VLDR(vldrh_uw
, 2, lduw
, 4, uint32_t)
204 DO_VSTR(vstrb_h
, 1, stb
, 2, int16_t)
205 DO_VSTR(vstrb_w
, 1, stb
, 4, int32_t)
206 DO_VSTR(vstrh_w
, 2, stw
, 4, int32_t)
212 * Gather loads/scatter stores. Here each element of Qm specifies
213 * an offset to use from the base register Rm. In the _os_ versions
214 * that offset is scaled by the element size.
215 * For loads, predicated lanes are zeroed instead of retaining
216 * their previous values.
218 #define DO_VLDR_SG(OP, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB) \
219 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \
224 uint16_t mask = mve_element_mask(env); \
225 uint16_t eci_mask = mve_eci_mask(env); \
228 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
229 if (!(eci_mask & 1)) { \
232 addr = ADDRFN(base, m[H##ESIZE(e)]); \
233 d[H##ESIZE(e)] = (mask & 1) ? \
234 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0; \
236 m[H##ESIZE(e)] = addr; \
239 mve_advance_vpt(env); \
242 /* We know here TYPE is unsigned so always the same as the offset type */
243 #define DO_VSTR_SG(OP, STTYPE, ESIZE, TYPE, ADDRFN, WB) \
244 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \
249 uint16_t mask = mve_element_mask(env); \
250 uint16_t eci_mask = mve_eci_mask(env); \
253 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
254 if (!(eci_mask & 1)) { \
257 addr = ADDRFN(base, m[H##ESIZE(e)]); \
259 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
262 m[H##ESIZE(e)] = addr; \
265 mve_advance_vpt(env); \
269 * 64-bit accesses are slightly different: they are done as two 32-bit
270 * accesses, controlled by the predicate mask for the relevant beat,
271 * and with a single 32-bit offset in the first of the two Qm elements.
272 * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
273 * Address writeback happens on the odd beats and updates the address
274 * stored in the even-beat element.
276 #define DO_VLDR64_SG(OP, ADDRFN, WB) \
277 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \
282 uint16_t mask = mve_element_mask(env); \
283 uint16_t eci_mask = mve_eci_mask(env); \
286 for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) { \
287 if (!(eci_mask & 1)) { \
290 addr = ADDRFN(base, m[H4(e & ~1)]); \
291 addr += 4 * (e & 1); \
292 d[H4(e)] = (mask & 1) ? cpu_ldl_data_ra(env, addr, GETPC()) : 0; \
293 if (WB && (e & 1)) { \
294 m[H4(e & ~1)] = addr - 4; \
297 mve_advance_vpt(env); \
300 #define DO_VSTR64_SG(OP, ADDRFN, WB) \
301 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \
306 uint16_t mask = mve_element_mask(env); \
307 uint16_t eci_mask = mve_eci_mask(env); \
310 for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) { \
311 if (!(eci_mask & 1)) { \
314 addr = ADDRFN(base, m[H4(e & ~1)]); \
315 addr += 4 * (e & 1); \
317 cpu_stl_data_ra(env, addr, d[H4(e)], GETPC()); \
319 if (WB && (e & 1)) { \
320 m[H4(e & ~1)] = addr - 4; \
323 mve_advance_vpt(env); \
326 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
327 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
328 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
329 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
331 DO_VLDR_SG(vldrb_sg_sh
, ldsb
, 2, int16_t, uint16_t, ADDR_ADD
, false)
332 DO_VLDR_SG(vldrb_sg_sw
, ldsb
, 4, int32_t, uint32_t, ADDR_ADD
, false)
333 DO_VLDR_SG(vldrh_sg_sw
, ldsw
, 4, int32_t, uint32_t, ADDR_ADD
, false)
335 DO_VLDR_SG(vldrb_sg_ub
, ldub
, 1, uint8_t, uint8_t, ADDR_ADD
, false)
336 DO_VLDR_SG(vldrb_sg_uh
, ldub
, 2, uint16_t, uint16_t, ADDR_ADD
, false)
337 DO_VLDR_SG(vldrb_sg_uw
, ldub
, 4, uint32_t, uint32_t, ADDR_ADD
, false)
338 DO_VLDR_SG(vldrh_sg_uh
, lduw
, 2, uint16_t, uint16_t, ADDR_ADD
, false)
339 DO_VLDR_SG(vldrh_sg_uw
, lduw
, 4, uint32_t, uint32_t, ADDR_ADD
, false)
340 DO_VLDR_SG(vldrw_sg_uw
, ldl
, 4, uint32_t, uint32_t, ADDR_ADD
, false)
341 DO_VLDR64_SG(vldrd_sg_ud
, ADDR_ADD
, false)
343 DO_VLDR_SG(vldrh_sg_os_sw
, ldsw
, 4, int32_t, uint32_t, ADDR_ADD_OSH
, false)
344 DO_VLDR_SG(vldrh_sg_os_uh
, lduw
, 2, uint16_t, uint16_t, ADDR_ADD_OSH
, false)
345 DO_VLDR_SG(vldrh_sg_os_uw
, lduw
, 4, uint32_t, uint32_t, ADDR_ADD_OSH
, false)
346 DO_VLDR_SG(vldrw_sg_os_uw
, ldl
, 4, uint32_t, uint32_t, ADDR_ADD_OSW
, false)
347 DO_VLDR64_SG(vldrd_sg_os_ud
, ADDR_ADD_OSD
, false)
349 DO_VSTR_SG(vstrb_sg_ub
, stb
, 1, uint8_t, ADDR_ADD
, false)
350 DO_VSTR_SG(vstrb_sg_uh
, stb
, 2, uint16_t, ADDR_ADD
, false)
351 DO_VSTR_SG(vstrb_sg_uw
, stb
, 4, uint32_t, ADDR_ADD
, false)
352 DO_VSTR_SG(vstrh_sg_uh
, stw
, 2, uint16_t, ADDR_ADD
, false)
353 DO_VSTR_SG(vstrh_sg_uw
, stw
, 4, uint32_t, ADDR_ADD
, false)
354 DO_VSTR_SG(vstrw_sg_uw
, stl
, 4, uint32_t, ADDR_ADD
, false)
355 DO_VSTR64_SG(vstrd_sg_ud
, ADDR_ADD
, false)
357 DO_VSTR_SG(vstrh_sg_os_uh
, stw
, 2, uint16_t, ADDR_ADD_OSH
, false)
358 DO_VSTR_SG(vstrh_sg_os_uw
, stw
, 4, uint32_t, ADDR_ADD_OSH
, false)
359 DO_VSTR_SG(vstrw_sg_os_uw
, stl
, 4, uint32_t, ADDR_ADD_OSW
, false)
360 DO_VSTR64_SG(vstrd_sg_os_ud
, ADDR_ADD_OSD
, false)
362 DO_VLDR_SG(vldrw_sg_wb_uw
, ldl
, 4, uint32_t, uint32_t, ADDR_ADD
, true)
363 DO_VLDR64_SG(vldrd_sg_wb_ud
, ADDR_ADD
, true)
364 DO_VSTR_SG(vstrw_sg_wb_uw
, stl
, 4, uint32_t, ADDR_ADD
, true)
365 DO_VSTR64_SG(vstrd_sg_wb_ud
, ADDR_ADD
, true)
368 * Deinterleaving loads/interleaving stores.
370 * For these helpers we are passed the index of the first Qreg
371 * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3)
372 * and the value of the base address register Rn.
373 * The helpers are specialized for pattern and element size, so
374 * for instance vld42h is VLD4 with pattern 2, element size MO_16.
376 * These insns are beatwise but not predicated, so we must honour ECI,
377 * but need not look at mve_element_mask().
379 * The pseudocode implements these insns with multiple memory accesses
380 * of the element size, but rules R_VVVG and R_FXDM permit us to make
381 * one 32-bit memory access per beat.
383 #define DO_VLD4B(OP, O1, O2, O3, O4) \
384 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
388 uint16_t mask = mve_eci_mask(env); \
389 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
390 uint32_t addr, data; \
391 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
392 if ((mask & 1) == 0) { \
393 /* ECI says skip this beat */ \
396 addr = base + off[beat] * 4; \
397 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
398 for (e = 0; e < 4; e++, data >>= 8) { \
399 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
400 qd[H1(off[beat])] = data; \
405 #define DO_VLD4H(OP, O1, O2) \
406 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
410 uint16_t mask = mve_eci_mask(env); \
411 static const uint8_t off[4] = { O1, O1, O2, O2 }; \
412 uint32_t addr, data; \
413 int y; /* y counts 0 2 0 2 */ \
415 for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) { \
416 if ((mask & 1) == 0) { \
417 /* ECI says skip this beat */ \
420 addr = base + off[beat] * 8 + (beat & 1) * 4; \
421 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
422 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y); \
423 qd[H2(off[beat])] = data; \
425 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1); \
426 qd[H2(off[beat])] = data; \
430 #define DO_VLD4W(OP, O1, O2, O3, O4) \
431 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
435 uint16_t mask = mve_eci_mask(env); \
436 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
437 uint32_t addr, data; \
440 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
441 if ((mask & 1) == 0) { \
442 /* ECI says skip this beat */ \
445 addr = base + off[beat] * 4; \
446 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
447 y = (beat + (O1 & 2)) & 3; \
448 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y); \
449 qd[H4(off[beat] >> 2)] = data; \
453 DO_VLD4B(vld40b
, 0, 1, 10, 11)
454 DO_VLD4B(vld41b
, 2, 3, 12, 13)
455 DO_VLD4B(vld42b
, 4, 5, 14, 15)
456 DO_VLD4B(vld43b
, 6, 7, 8, 9)
458 DO_VLD4H(vld40h
, 0, 5)
459 DO_VLD4H(vld41h
, 1, 6)
460 DO_VLD4H(vld42h
, 2, 7)
461 DO_VLD4H(vld43h
, 3, 4)
463 DO_VLD4W(vld40w
, 0, 1, 10, 11)
464 DO_VLD4W(vld41w
, 2, 3, 12, 13)
465 DO_VLD4W(vld42w
, 4, 5, 14, 15)
466 DO_VLD4W(vld43w
, 6, 7, 8, 9)
468 #define DO_VLD2B(OP, O1, O2, O3, O4) \
469 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
473 uint16_t mask = mve_eci_mask(env); \
474 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
475 uint32_t addr, data; \
477 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
478 if ((mask & 1) == 0) { \
479 /* ECI says skip this beat */ \
482 addr = base + off[beat] * 2; \
483 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
484 for (e = 0; e < 4; e++, data >>= 8) { \
485 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1)); \
486 qd[H1(off[beat] + (e >> 1))] = data; \
491 #define DO_VLD2H(OP, O1, O2, O3, O4) \
492 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
496 uint16_t mask = mve_eci_mask(env); \
497 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
498 uint32_t addr, data; \
501 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
502 if ((mask & 1) == 0) { \
503 /* ECI says skip this beat */ \
506 addr = base + off[beat] * 4; \
507 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
508 for (e = 0; e < 2; e++, data >>= 16) { \
509 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e); \
510 qd[H2(off[beat])] = data; \
515 #define DO_VLD2W(OP, O1, O2, O3, O4) \
516 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
520 uint16_t mask = mve_eci_mask(env); \
521 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
522 uint32_t addr, data; \
524 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
525 if ((mask & 1) == 0) { \
526 /* ECI says skip this beat */ \
529 addr = base + off[beat]; \
530 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
531 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1)); \
532 qd[H4(off[beat] >> 3)] = data; \
536 DO_VLD2B(vld20b
, 0, 2, 12, 14)
537 DO_VLD2B(vld21b
, 4, 6, 8, 10)
539 DO_VLD2H(vld20h
, 0, 1, 6, 7)
540 DO_VLD2H(vld21h
, 2, 3, 4, 5)
542 DO_VLD2W(vld20w
, 0, 4, 24, 28)
543 DO_VLD2W(vld21w
, 8, 12, 16, 20)
545 #define DO_VST4B(OP, O1, O2, O3, O4) \
546 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
550 uint16_t mask = mve_eci_mask(env); \
551 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
552 uint32_t addr, data; \
553 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
554 if ((mask & 1) == 0) { \
555 /* ECI says skip this beat */ \
558 addr = base + off[beat] * 4; \
560 for (e = 3; e >= 0; e--) { \
561 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
562 data = (data << 8) | qd[H1(off[beat])]; \
564 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
568 #define DO_VST4H(OP, O1, O2) \
569 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
573 uint16_t mask = mve_eci_mask(env); \
574 static const uint8_t off[4] = { O1, O1, O2, O2 }; \
575 uint32_t addr, data; \
576 int y; /* y counts 0 2 0 2 */ \
578 for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) { \
579 if ((mask & 1) == 0) { \
580 /* ECI says skip this beat */ \
583 addr = base + off[beat] * 8 + (beat & 1) * 4; \
584 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y); \
585 data = qd[H2(off[beat])]; \
586 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1); \
587 data |= qd[H2(off[beat])] << 16; \
588 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
592 #define DO_VST4W(OP, O1, O2, O3, O4) \
593 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
597 uint16_t mask = mve_eci_mask(env); \
598 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
599 uint32_t addr, data; \
602 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
603 if ((mask & 1) == 0) { \
604 /* ECI says skip this beat */ \
607 addr = base + off[beat] * 4; \
608 y = (beat + (O1 & 2)) & 3; \
609 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y); \
610 data = qd[H4(off[beat] >> 2)]; \
611 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
615 DO_VST4B(vst40b
, 0, 1, 10, 11)
616 DO_VST4B(vst41b
, 2, 3, 12, 13)
617 DO_VST4B(vst42b
, 4, 5, 14, 15)
618 DO_VST4B(vst43b
, 6, 7, 8, 9)
620 DO_VST4H(vst40h
, 0, 5)
621 DO_VST4H(vst41h
, 1, 6)
622 DO_VST4H(vst42h
, 2, 7)
623 DO_VST4H(vst43h
, 3, 4)
625 DO_VST4W(vst40w
, 0, 1, 10, 11)
626 DO_VST4W(vst41w
, 2, 3, 12, 13)
627 DO_VST4W(vst42w
, 4, 5, 14, 15)
628 DO_VST4W(vst43w
, 6, 7, 8, 9)
630 #define DO_VST2B(OP, O1, O2, O3, O4) \
631 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
635 uint16_t mask = mve_eci_mask(env); \
636 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
637 uint32_t addr, data; \
639 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
640 if ((mask & 1) == 0) { \
641 /* ECI says skip this beat */ \
644 addr = base + off[beat] * 2; \
646 for (e = 3; e >= 0; e--) { \
647 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1)); \
648 data = (data << 8) | qd[H1(off[beat] + (e >> 1))]; \
650 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
654 #define DO_VST2H(OP, O1, O2, O3, O4) \
655 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
659 uint16_t mask = mve_eci_mask(env); \
660 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
661 uint32_t addr, data; \
664 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
665 if ((mask & 1) == 0) { \
666 /* ECI says skip this beat */ \
669 addr = base + off[beat] * 4; \
671 for (e = 1; e >= 0; e--) { \
672 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e); \
673 data = (data << 16) | qd[H2(off[beat])]; \
675 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
679 #define DO_VST2W(OP, O1, O2, O3, O4) \
680 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
684 uint16_t mask = mve_eci_mask(env); \
685 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
686 uint32_t addr, data; \
688 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
689 if ((mask & 1) == 0) { \
690 /* ECI says skip this beat */ \
693 addr = base + off[beat]; \
694 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1)); \
695 data = qd[H4(off[beat] >> 3)]; \
696 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
700 DO_VST2B(vst20b
, 0, 2, 12, 14)
701 DO_VST2B(vst21b
, 4, 6, 8, 10)
703 DO_VST2H(vst20h
, 0, 1, 6, 7)
704 DO_VST2H(vst21h
, 2, 3, 4, 5)
706 DO_VST2W(vst20w
, 0, 4, 24, 28)
707 DO_VST2W(vst21w
, 8, 12, 16, 20)
710 * The mergemask(D, R, M) macro performs the operation "*D = R" but
711 * storing only the bytes which correspond to 1 bits in M,
712 * leaving other bytes in *D unchanged. We use _Generic
713 * to select the correct implementation based on the type of D.
716 static void mergemask_ub(uint8_t *d
, uint8_t r
, uint16_t mask
)
723 static void mergemask_sb(int8_t *d
, int8_t r
, uint16_t mask
)
725 mergemask_ub((uint8_t *)d
, r
, mask
);
728 static void mergemask_uh(uint16_t *d
, uint16_t r
, uint16_t mask
)
730 uint16_t bmask
= expand_pred_b(mask
);
731 *d
= (*d
& ~bmask
) | (r
& bmask
);
734 static void mergemask_sh(int16_t *d
, int16_t r
, uint16_t mask
)
736 mergemask_uh((uint16_t *)d
, r
, mask
);
739 static void mergemask_uw(uint32_t *d
, uint32_t r
, uint16_t mask
)
741 uint32_t bmask
= expand_pred_b(mask
);
742 *d
= (*d
& ~bmask
) | (r
& bmask
);
745 static void mergemask_sw(int32_t *d
, int32_t r
, uint16_t mask
)
747 mergemask_uw((uint32_t *)d
, r
, mask
);
750 static void mergemask_uq(uint64_t *d
, uint64_t r
, uint16_t mask
)
752 uint64_t bmask
= expand_pred_b(mask
);
753 *d
= (*d
& ~bmask
) | (r
& bmask
);
756 static void mergemask_sq(int64_t *d
, int64_t r
, uint16_t mask
)
758 mergemask_uq((uint64_t *)d
, r
, mask
);
761 #define mergemask(D, R, M) \
763 uint8_t *: mergemask_ub, \
764 int8_t *: mergemask_sb, \
765 uint16_t *: mergemask_uh, \
766 int16_t *: mergemask_sh, \
767 uint32_t *: mergemask_uw, \
768 int32_t *: mergemask_sw, \
769 uint64_t *: mergemask_uq, \
770 int64_t *: mergemask_sq)(D, R, M)
772 void HELPER(mve_vdup
)(CPUARMState
*env
, void *vd
, uint32_t val
)
775 * The generated code already replicated an 8 or 16 bit constant
776 * into the 32-bit value, so we only need to write the 32-bit
777 * value to all elements of the Qreg, allowing for predication.
780 uint16_t mask
= mve_element_mask(env
);
782 for (e
= 0; e
< 16 / 4; e
++, mask
>>= 4) {
783 mergemask(&d
[H4(e
)], val
, mask
);
785 mve_advance_vpt(env
);
788 #define DO_1OP(OP, ESIZE, TYPE, FN) \
789 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
791 TYPE *d = vd, *m = vm; \
792 uint16_t mask = mve_element_mask(env); \
794 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
795 mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask); \
797 mve_advance_vpt(env); \
800 #define DO_CLS_B(N) (clrsb32(N) - 24)
801 #define DO_CLS_H(N) (clrsb32(N) - 16)
803 DO_1OP(vclsb
, 1, int8_t, DO_CLS_B
)
804 DO_1OP(vclsh
, 2, int16_t, DO_CLS_H
)
805 DO_1OP(vclsw
, 4, int32_t, clrsb32
)
807 #define DO_CLZ_B(N) (clz32(N) - 24)
808 #define DO_CLZ_H(N) (clz32(N) - 16)
810 DO_1OP(vclzb
, 1, uint8_t, DO_CLZ_B
)
811 DO_1OP(vclzh
, 2, uint16_t, DO_CLZ_H
)
812 DO_1OP(vclzw
, 4, uint32_t, clz32
)
814 DO_1OP(vrev16b
, 2, uint16_t, bswap16
)
815 DO_1OP(vrev32b
, 4, uint32_t, bswap32
)
816 DO_1OP(vrev32h
, 4, uint32_t, hswap32
)
817 DO_1OP(vrev64b
, 8, uint64_t, bswap64
)
818 DO_1OP(vrev64h
, 8, uint64_t, hswap64
)
819 DO_1OP(vrev64w
, 8, uint64_t, wswap64
)
821 #define DO_NOT(N) (~(N))
823 DO_1OP(vmvn
, 8, uint64_t, DO_NOT
)
825 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
826 #define DO_FABSH(N) ((N) & dup_const(MO_16, 0x7fff))
827 #define DO_FABSS(N) ((N) & dup_const(MO_32, 0x7fffffff))
829 DO_1OP(vabsb
, 1, int8_t, DO_ABS
)
830 DO_1OP(vabsh
, 2, int16_t, DO_ABS
)
831 DO_1OP(vabsw
, 4, int32_t, DO_ABS
)
833 /* We can do these 64 bits at a time */
834 DO_1OP(vfabsh
, 8, uint64_t, DO_FABSH
)
835 DO_1OP(vfabss
, 8, uint64_t, DO_FABSS
)
837 #define DO_NEG(N) (-(N))
838 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
839 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
841 DO_1OP(vnegb
, 1, int8_t, DO_NEG
)
842 DO_1OP(vnegh
, 2, int16_t, DO_NEG
)
843 DO_1OP(vnegw
, 4, int32_t, DO_NEG
)
845 /* We can do these 64 bits at a time */
846 DO_1OP(vfnegh
, 8, uint64_t, DO_FNEGH
)
847 DO_1OP(vfnegs
, 8, uint64_t, DO_FNEGS
)
850 * 1 operand immediates: Vda is destination and possibly also one source.
851 * All these insns work at 64-bit widths.
853 #define DO_1OP_IMM(OP, FN) \
854 void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm) \
856 uint64_t *da = vda; \
857 uint16_t mask = mve_element_mask(env); \
859 for (e = 0; e < 16 / 8; e++, mask >>= 8) { \
860 mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask); \
862 mve_advance_vpt(env); \
865 #define DO_MOVI(N, I) (I)
866 #define DO_ANDI(N, I) ((N) & (I))
867 #define DO_ORRI(N, I) ((N) | (I))
869 DO_1OP_IMM(vmovi
, DO_MOVI
)
870 DO_1OP_IMM(vandi
, DO_ANDI
)
871 DO_1OP_IMM(vorri
, DO_ORRI
)
873 #define DO_2OP(OP, ESIZE, TYPE, FN) \
874 void HELPER(glue(mve_, OP))(CPUARMState *env, \
875 void *vd, void *vn, void *vm) \
877 TYPE *d = vd, *n = vn, *m = vm; \
878 uint16_t mask = mve_element_mask(env); \
880 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
881 mergemask(&d[H##ESIZE(e)], \
882 FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask); \
884 mve_advance_vpt(env); \
887 /* provide unsigned 2-op helpers for all sizes */
888 #define DO_2OP_U(OP, FN) \
889 DO_2OP(OP##b, 1, uint8_t, FN) \
890 DO_2OP(OP##h, 2, uint16_t, FN) \
891 DO_2OP(OP##w, 4, uint32_t, FN)
893 /* provide signed 2-op helpers for all sizes */
894 #define DO_2OP_S(OP, FN) \
895 DO_2OP(OP##b, 1, int8_t, FN) \
896 DO_2OP(OP##h, 2, int16_t, FN) \
897 DO_2OP(OP##w, 4, int32_t, FN)
900 * "Long" operations where two half-sized inputs (taken from either the
901 * top or the bottom of the input vector) produce a double-width result.
902 * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
904 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \
905 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
908 TYPE *n = vn, *m = vm; \
909 uint16_t mask = mve_element_mask(env); \
911 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
912 LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], \
913 m[H##ESIZE(le * 2 + TOP)]); \
914 mergemask(&d[H##LESIZE(le)], r, mask); \
916 mve_advance_vpt(env); \
919 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN) \
920 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
922 TYPE *d = vd, *n = vn, *m = vm; \
923 uint16_t mask = mve_element_mask(env); \
926 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
928 TYPE r_ = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat); \
929 mergemask(&d[H##ESIZE(e)], r_, mask); \
930 qc |= sat & mask & 1; \
933 env->vfp.qc[0] = qc; \
935 mve_advance_vpt(env); \
938 /* provide unsigned 2-op helpers for all sizes */
939 #define DO_2OP_SAT_U(OP, FN) \
940 DO_2OP_SAT(OP##b, 1, uint8_t, FN) \
941 DO_2OP_SAT(OP##h, 2, uint16_t, FN) \
942 DO_2OP_SAT(OP##w, 4, uint32_t, FN)
944 /* provide signed 2-op helpers for all sizes */
945 #define DO_2OP_SAT_S(OP, FN) \
946 DO_2OP_SAT(OP##b, 1, int8_t, FN) \
947 DO_2OP_SAT(OP##h, 2, int16_t, FN) \
948 DO_2OP_SAT(OP##w, 4, int32_t, FN)
950 #define DO_AND(N, M) ((N) & (M))
951 #define DO_BIC(N, M) ((N) & ~(M))
952 #define DO_ORR(N, M) ((N) | (M))
953 #define DO_ORN(N, M) ((N) | ~(M))
954 #define DO_EOR(N, M) ((N) ^ (M))
956 DO_2OP(vand
, 8, uint64_t, DO_AND
)
957 DO_2OP(vbic
, 8, uint64_t, DO_BIC
)
958 DO_2OP(vorr
, 8, uint64_t, DO_ORR
)
959 DO_2OP(vorn
, 8, uint64_t, DO_ORN
)
960 DO_2OP(veor
, 8, uint64_t, DO_EOR
)
962 #define DO_ADD(N, M) ((N) + (M))
963 #define DO_SUB(N, M) ((N) - (M))
964 #define DO_MUL(N, M) ((N) * (M))
966 DO_2OP_U(vadd
, DO_ADD
)
967 DO_2OP_U(vsub
, DO_SUB
)
968 DO_2OP_U(vmul
, DO_MUL
)
970 DO_2OP_L(vmullbsb
, 0, 1, int8_t, 2, int16_t, DO_MUL
)
971 DO_2OP_L(vmullbsh
, 0, 2, int16_t, 4, int32_t, DO_MUL
)
972 DO_2OP_L(vmullbsw
, 0, 4, int32_t, 8, int64_t, DO_MUL
)
973 DO_2OP_L(vmullbub
, 0, 1, uint8_t, 2, uint16_t, DO_MUL
)
974 DO_2OP_L(vmullbuh
, 0, 2, uint16_t, 4, uint32_t, DO_MUL
)
975 DO_2OP_L(vmullbuw
, 0, 4, uint32_t, 8, uint64_t, DO_MUL
)
977 DO_2OP_L(vmulltsb
, 1, 1, int8_t, 2, int16_t, DO_MUL
)
978 DO_2OP_L(vmulltsh
, 1, 2, int16_t, 4, int32_t, DO_MUL
)
979 DO_2OP_L(vmulltsw
, 1, 4, int32_t, 8, int64_t, DO_MUL
)
980 DO_2OP_L(vmulltub
, 1, 1, uint8_t, 2, uint16_t, DO_MUL
)
981 DO_2OP_L(vmulltuh
, 1, 2, uint16_t, 4, uint32_t, DO_MUL
)
982 DO_2OP_L(vmulltuw
, 1, 4, uint32_t, 8, uint64_t, DO_MUL
)
985 * Polynomial multiply. We can always do this generating 64 bits
986 * of the result at a time, so we don't need to use DO_2OP_L.
988 DO_2OP(vmullpbh
, 8, uint64_t, clmul_8x4_even
)
989 DO_2OP(vmullpth
, 8, uint64_t, clmul_8x4_odd
)
990 DO_2OP(vmullpbw
, 8, uint64_t, clmul_16x2_even
)
991 DO_2OP(vmullptw
, 8, uint64_t, clmul_16x2_odd
)
994 * Because the computation type is at least twice as large as required,
995 * these work for both signed and unsigned source types.
997 static inline uint8_t do_mulh_b(int32_t n
, int32_t m
)
1002 static inline uint16_t do_mulh_h(int32_t n
, int32_t m
)
1004 return (n
* m
) >> 16;
1007 static inline uint32_t do_mulh_w(int64_t n
, int64_t m
)
1009 return (n
* m
) >> 32;
1012 static inline uint8_t do_rmulh_b(int32_t n
, int32_t m
)
1014 return (n
* m
+ (1U << 7)) >> 8;
1017 static inline uint16_t do_rmulh_h(int32_t n
, int32_t m
)
1019 return (n
* m
+ (1U << 15)) >> 16;
1022 static inline uint32_t do_rmulh_w(int64_t n
, int64_t m
)
1024 return (n
* m
+ (1U << 31)) >> 32;
1027 DO_2OP(vmulhsb
, 1, int8_t, do_mulh_b
)
1028 DO_2OP(vmulhsh
, 2, int16_t, do_mulh_h
)
1029 DO_2OP(vmulhsw
, 4, int32_t, do_mulh_w
)
1030 DO_2OP(vmulhub
, 1, uint8_t, do_mulh_b
)
1031 DO_2OP(vmulhuh
, 2, uint16_t, do_mulh_h
)
1032 DO_2OP(vmulhuw
, 4, uint32_t, do_mulh_w
)
1034 DO_2OP(vrmulhsb
, 1, int8_t, do_rmulh_b
)
1035 DO_2OP(vrmulhsh
, 2, int16_t, do_rmulh_h
)
1036 DO_2OP(vrmulhsw
, 4, int32_t, do_rmulh_w
)
1037 DO_2OP(vrmulhub
, 1, uint8_t, do_rmulh_b
)
1038 DO_2OP(vrmulhuh
, 2, uint16_t, do_rmulh_h
)
1039 DO_2OP(vrmulhuw
, 4, uint32_t, do_rmulh_w
)
1041 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
1042 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
1044 DO_2OP_S(vmaxs
, DO_MAX
)
1045 DO_2OP_U(vmaxu
, DO_MAX
)
1046 DO_2OP_S(vmins
, DO_MIN
)
1047 DO_2OP_U(vminu
, DO_MIN
)
1049 #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N))
1051 DO_2OP_S(vabds
, DO_ABD
)
1052 DO_2OP_U(vabdu
, DO_ABD
)
1054 static inline uint32_t do_vhadd_u(uint32_t n
, uint32_t m
)
1056 return ((uint64_t)n
+ m
) >> 1;
1059 static inline int32_t do_vhadd_s(int32_t n
, int32_t m
)
1061 return ((int64_t)n
+ m
) >> 1;
1064 static inline uint32_t do_vhsub_u(uint32_t n
, uint32_t m
)
1066 return ((uint64_t)n
- m
) >> 1;
1069 static inline int32_t do_vhsub_s(int32_t n
, int32_t m
)
1071 return ((int64_t)n
- m
) >> 1;
1074 DO_2OP_S(vhadds
, do_vhadd_s
)
1075 DO_2OP_U(vhaddu
, do_vhadd_u
)
1076 DO_2OP_S(vhsubs
, do_vhsub_s
)
1077 DO_2OP_U(vhsubu
, do_vhsub_u
)
1079 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1080 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1081 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1082 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1084 DO_2OP_S(vshls
, DO_VSHLS
)
1085 DO_2OP_U(vshlu
, DO_VSHLU
)
1086 DO_2OP_S(vrshls
, DO_VRSHLS
)
1087 DO_2OP_U(vrshlu
, DO_VRSHLU
)
1089 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
1090 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
1092 DO_2OP_S(vrhadds
, DO_RHADD_S
)
1093 DO_2OP_U(vrhaddu
, DO_RHADD_U
)
1095 static void do_vadc(CPUARMState
*env
, uint32_t *d
, uint32_t *n
, uint32_t *m
,
1096 uint32_t inv
, uint32_t carry_in
, bool update_flags
)
1098 uint16_t mask
= mve_element_mask(env
);
1101 /* If any additions trigger, we will update flags. */
1102 if (mask
& 0x1111) {
1103 update_flags
= true;
1106 for (e
= 0; e
< 16 / 4; e
++, mask
>>= 4) {
1107 uint64_t r
= carry_in
;
1109 r
+= m
[H4(e
)] ^ inv
;
1113 mergemask(&d
[H4(e
)], r
, mask
);
1117 /* Store C, clear NZV. */
1118 env
->vfp
.xregs
[ARM_VFP_FPSCR
] &= ~FPCR_NZCV_MASK
;
1119 env
->vfp
.xregs
[ARM_VFP_FPSCR
] |= carry_in
* FPCR_C
;
1121 mve_advance_vpt(env
);
1124 void HELPER(mve_vadc
)(CPUARMState
*env
, void *vd
, void *vn
, void *vm
)
1126 bool carry_in
= env
->vfp
.xregs
[ARM_VFP_FPSCR
] & FPCR_C
;
1127 do_vadc(env
, vd
, vn
, vm
, 0, carry_in
, false);
1130 void HELPER(mve_vsbc
)(CPUARMState
*env
, void *vd
, void *vn
, void *vm
)
1132 bool carry_in
= env
->vfp
.xregs
[ARM_VFP_FPSCR
] & FPCR_C
;
1133 do_vadc(env
, vd
, vn
, vm
, -1, carry_in
, false);
1137 void HELPER(mve_vadci
)(CPUARMState
*env
, void *vd
, void *vn
, void *vm
)
1139 do_vadc(env
, vd
, vn
, vm
, 0, 0, true);
1142 void HELPER(mve_vsbci
)(CPUARMState
*env
, void *vd
, void *vn
, void *vm
)
1144 do_vadc(env
, vd
, vn
, vm
, -1, 1, true);
1147 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1) \
1148 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
1150 TYPE *d = vd, *n = vn, *m = vm; \
1151 uint16_t mask = mve_element_mask(env); \
1153 TYPE r[16 / ESIZE]; \
1154 /* Calculate all results first to avoid overwriting inputs */ \
1155 for (e = 0; e < 16 / ESIZE; e++) { \
1157 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]); \
1159 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]); \
1162 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1163 mergemask(&d[H##ESIZE(e)], r[e], mask); \
1165 mve_advance_vpt(env); \
1168 #define DO_VCADD_ALL(OP, FN0, FN1) \
1169 DO_VCADD(OP##b, 1, int8_t, FN0, FN1) \
1170 DO_VCADD(OP##h, 2, int16_t, FN0, FN1) \
1171 DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
1173 DO_VCADD_ALL(vcadd90
, DO_SUB
, DO_ADD
)
1174 DO_VCADD_ALL(vcadd270
, DO_ADD
, DO_SUB
)
1175 DO_VCADD_ALL(vhcadd90
, do_vhsub_s
, do_vhadd_s
)
1176 DO_VCADD_ALL(vhcadd270
, do_vhadd_s
, do_vhsub_s
)
1178 static inline int32_t do_sat_bhw(int64_t val
, int64_t min
, int64_t max
, bool *s
)
1183 } else if (val
< min
) {
1190 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
1191 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
1192 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
1194 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
1195 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
1196 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
1198 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
1199 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
1200 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
1202 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
1203 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
1204 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
1207 * For QDMULH and QRDMULH we simplify "double and shift by esize" into
1208 * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
1210 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
1211 INT8_MIN, INT8_MAX, s)
1212 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
1213 INT16_MIN, INT16_MAX, s)
1214 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
1215 INT32_MIN, INT32_MAX, s)
1217 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
1218 INT8_MIN, INT8_MAX, s)
1219 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
1220 INT16_MIN, INT16_MAX, s)
1221 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
1222 INT32_MIN, INT32_MAX, s)
1224 DO_2OP_SAT(vqdmulhb
, 1, int8_t, DO_QDMULH_B
)
1225 DO_2OP_SAT(vqdmulhh
, 2, int16_t, DO_QDMULH_H
)
1226 DO_2OP_SAT(vqdmulhw
, 4, int32_t, DO_QDMULH_W
)
1228 DO_2OP_SAT(vqrdmulhb
, 1, int8_t, DO_QRDMULH_B
)
1229 DO_2OP_SAT(vqrdmulhh
, 2, int16_t, DO_QRDMULH_H
)
1230 DO_2OP_SAT(vqrdmulhw
, 4, int32_t, DO_QRDMULH_W
)
1232 DO_2OP_SAT(vqaddub
, 1, uint8_t, DO_UQADD_B
)
1233 DO_2OP_SAT(vqadduh
, 2, uint16_t, DO_UQADD_H
)
1234 DO_2OP_SAT(vqadduw
, 4, uint32_t, DO_UQADD_W
)
1235 DO_2OP_SAT(vqaddsb
, 1, int8_t, DO_SQADD_B
)
1236 DO_2OP_SAT(vqaddsh
, 2, int16_t, DO_SQADD_H
)
1237 DO_2OP_SAT(vqaddsw
, 4, int32_t, DO_SQADD_W
)
1239 DO_2OP_SAT(vqsubub
, 1, uint8_t, DO_UQSUB_B
)
1240 DO_2OP_SAT(vqsubuh
, 2, uint16_t, DO_UQSUB_H
)
1241 DO_2OP_SAT(vqsubuw
, 4, uint32_t, DO_UQSUB_W
)
1242 DO_2OP_SAT(vqsubsb
, 1, int8_t, DO_SQSUB_B
)
1243 DO_2OP_SAT(vqsubsh
, 2, int16_t, DO_SQSUB_H
)
1244 DO_2OP_SAT(vqsubsw
, 4, int32_t, DO_SQSUB_W
)
1247 * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
1248 * and friends wanting a uint32_t* sat and our needing a bool*.
1250 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp) \
1252 uint32_t su32 = 0; \
1253 typeof(N) qrshl_ret = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32); \
1260 #define DO_SQSHL_OP(N, M, satp) \
1261 WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
1262 #define DO_UQSHL_OP(N, M, satp) \
1263 WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
1264 #define DO_SQRSHL_OP(N, M, satp) \
1265 WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
1266 #define DO_UQRSHL_OP(N, M, satp) \
1267 WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
1268 #define DO_SUQSHL_OP(N, M, satp) \
1269 WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
1271 DO_2OP_SAT_S(vqshls
, DO_SQSHL_OP
)
1272 DO_2OP_SAT_U(vqshlu
, DO_UQSHL_OP
)
1273 DO_2OP_SAT_S(vqrshls
, DO_SQRSHL_OP
)
1274 DO_2OP_SAT_U(vqrshlu
, DO_UQRSHL_OP
)
1277 * Multiply add dual returning high half
1278 * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
1279 * whether to add the rounding constant, and the pointer to the
1280 * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
1281 * saturate to twice the input size and return the high half; or
1282 * (A * B - C * D) etc for VQDMLSDH.
1284 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN) \
1285 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1288 TYPE *d = vd, *n = vn, *m = vm; \
1289 uint16_t mask = mve_element_mask(env); \
1292 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1294 if ((e & 1) == XCHG) { \
1295 TYPE vqdmladh_ret = FN(n[H##ESIZE(e)], \
1296 m[H##ESIZE(e - XCHG)], \
1297 n[H##ESIZE(e + (1 - 2 * XCHG))], \
1298 m[H##ESIZE(e + (1 - XCHG))], \
1300 mergemask(&d[H##ESIZE(e)], vqdmladh_ret, mask); \
1301 qc |= sat & mask & 1; \
1305 env->vfp.qc[0] = qc; \
1307 mve_advance_vpt(env); \
1310 static int8_t do_vqdmladh_b(int8_t a
, int8_t b
, int8_t c
, int8_t d
,
1311 int round
, bool *sat
)
1313 int64_t r
= ((int64_t)a
* b
+ (int64_t)c
* d
) * 2 + (round
<< 7);
1314 return do_sat_bhw(r
, INT16_MIN
, INT16_MAX
, sat
) >> 8;
1317 static int16_t do_vqdmladh_h(int16_t a
, int16_t b
, int16_t c
, int16_t d
,
1318 int round
, bool *sat
)
1320 int64_t r
= ((int64_t)a
* b
+ (int64_t)c
* d
) * 2 + (round
<< 15);
1321 return do_sat_bhw(r
, INT32_MIN
, INT32_MAX
, sat
) >> 16;
1324 static int32_t do_vqdmladh_w(int32_t a
, int32_t b
, int32_t c
, int32_t d
,
1325 int round
, bool *sat
)
1327 int64_t m1
= (int64_t)a
* b
;
1328 int64_t m2
= (int64_t)c
* d
;
1331 * Architecturally we should do the entire add, double, round
1332 * and then check for saturation. We do three saturating adds,
1333 * but we need to be careful about the order. If the first
1334 * m1 + m2 saturates then it's impossible for the *2+rc to
1335 * bring it back into the non-saturated range. However, if
1336 * m1 + m2 is negative then it's possible that doing the doubling
1337 * would take the intermediate result below INT64_MAX and the
1338 * addition of the rounding constant then brings it back in range.
1339 * So we add half the rounding constant before doubling rather
1340 * than adding the rounding constant after the doubling.
1342 if (sadd64_overflow(m1
, m2
, &r
) ||
1343 sadd64_overflow(r
, (round
<< 30), &r
) ||
1344 sadd64_overflow(r
, r
, &r
)) {
1346 return r
< 0 ? INT32_MAX
: INT32_MIN
;
1351 static int8_t do_vqdmlsdh_b(int8_t a
, int8_t b
, int8_t c
, int8_t d
,
1352 int round
, bool *sat
)
1354 int64_t r
= ((int64_t)a
* b
- (int64_t)c
* d
) * 2 + (round
<< 7);
1355 return do_sat_bhw(r
, INT16_MIN
, INT16_MAX
, sat
) >> 8;
1358 static int16_t do_vqdmlsdh_h(int16_t a
, int16_t b
, int16_t c
, int16_t d
,
1359 int round
, bool *sat
)
1361 int64_t r
= ((int64_t)a
* b
- (int64_t)c
* d
) * 2 + (round
<< 15);
1362 return do_sat_bhw(r
, INT32_MIN
, INT32_MAX
, sat
) >> 16;
1365 static int32_t do_vqdmlsdh_w(int32_t a
, int32_t b
, int32_t c
, int32_t d
,
1366 int round
, bool *sat
)
1368 int64_t m1
= (int64_t)a
* b
;
1369 int64_t m2
= (int64_t)c
* d
;
1371 /* The same ordering issue as in do_vqdmladh_w applies here too */
1372 if (ssub64_overflow(m1
, m2
, &r
) ||
1373 sadd64_overflow(r
, (round
<< 30), &r
) ||
1374 sadd64_overflow(r
, r
, &r
)) {
1376 return r
< 0 ? INT32_MAX
: INT32_MIN
;
1381 DO_VQDMLADH_OP(vqdmladhb
, 1, int8_t, 0, 0, do_vqdmladh_b
)
1382 DO_VQDMLADH_OP(vqdmladhh
, 2, int16_t, 0, 0, do_vqdmladh_h
)
1383 DO_VQDMLADH_OP(vqdmladhw
, 4, int32_t, 0, 0, do_vqdmladh_w
)
1384 DO_VQDMLADH_OP(vqdmladhxb
, 1, int8_t, 1, 0, do_vqdmladh_b
)
1385 DO_VQDMLADH_OP(vqdmladhxh
, 2, int16_t, 1, 0, do_vqdmladh_h
)
1386 DO_VQDMLADH_OP(vqdmladhxw
, 4, int32_t, 1, 0, do_vqdmladh_w
)
1388 DO_VQDMLADH_OP(vqrdmladhb
, 1, int8_t, 0, 1, do_vqdmladh_b
)
1389 DO_VQDMLADH_OP(vqrdmladhh
, 2, int16_t, 0, 1, do_vqdmladh_h
)
1390 DO_VQDMLADH_OP(vqrdmladhw
, 4, int32_t, 0, 1, do_vqdmladh_w
)
1391 DO_VQDMLADH_OP(vqrdmladhxb
, 1, int8_t, 1, 1, do_vqdmladh_b
)
1392 DO_VQDMLADH_OP(vqrdmladhxh
, 2, int16_t, 1, 1, do_vqdmladh_h
)
1393 DO_VQDMLADH_OP(vqrdmladhxw
, 4, int32_t, 1, 1, do_vqdmladh_w
)
1395 DO_VQDMLADH_OP(vqdmlsdhb
, 1, int8_t, 0, 0, do_vqdmlsdh_b
)
1396 DO_VQDMLADH_OP(vqdmlsdhh
, 2, int16_t, 0, 0, do_vqdmlsdh_h
)
1397 DO_VQDMLADH_OP(vqdmlsdhw
, 4, int32_t, 0, 0, do_vqdmlsdh_w
)
1398 DO_VQDMLADH_OP(vqdmlsdhxb
, 1, int8_t, 1, 0, do_vqdmlsdh_b
)
1399 DO_VQDMLADH_OP(vqdmlsdhxh
, 2, int16_t, 1, 0, do_vqdmlsdh_h
)
1400 DO_VQDMLADH_OP(vqdmlsdhxw
, 4, int32_t, 1, 0, do_vqdmlsdh_w
)
1402 DO_VQDMLADH_OP(vqrdmlsdhb
, 1, int8_t, 0, 1, do_vqdmlsdh_b
)
1403 DO_VQDMLADH_OP(vqrdmlsdhh
, 2, int16_t, 0, 1, do_vqdmlsdh_h
)
1404 DO_VQDMLADH_OP(vqrdmlsdhw
, 4, int32_t, 0, 1, do_vqdmlsdh_w
)
1405 DO_VQDMLADH_OP(vqrdmlsdhxb
, 1, int8_t, 1, 1, do_vqdmlsdh_b
)
1406 DO_VQDMLADH_OP(vqrdmlsdhxh
, 2, int16_t, 1, 1, do_vqdmlsdh_h
)
1407 DO_VQDMLADH_OP(vqrdmlsdhxw
, 4, int32_t, 1, 1, do_vqdmlsdh_w
)
1409 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN) \
1410 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1413 TYPE *d = vd, *n = vn; \
1415 uint16_t mask = mve_element_mask(env); \
1417 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1418 mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask); \
1420 mve_advance_vpt(env); \
1423 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN) \
1424 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1427 TYPE *d = vd, *n = vn; \
1429 uint16_t mask = mve_element_mask(env); \
1432 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1434 mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat), \
1436 qc |= sat & mask & 1; \
1439 env->vfp.qc[0] = qc; \
1441 mve_advance_vpt(env); \
1444 /* "accumulating" version where FN takes d as well as n and m */
1445 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN) \
1446 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1449 TYPE *d = vd, *n = vn; \
1451 uint16_t mask = mve_element_mask(env); \
1453 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1454 mergemask(&d[H##ESIZE(e)], \
1455 FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask); \
1457 mve_advance_vpt(env); \
1460 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN) \
1461 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1464 TYPE *d = vd, *n = vn; \
1466 uint16_t mask = mve_element_mask(env); \
1469 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1471 mergemask(&d[H##ESIZE(e)], \
1472 FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat), \
1474 qc |= sat & mask & 1; \
1477 env->vfp.qc[0] = qc; \
1479 mve_advance_vpt(env); \
1482 /* provide unsigned 2-op scalar helpers for all sizes */
1483 #define DO_2OP_SCALAR_U(OP, FN) \
1484 DO_2OP_SCALAR(OP##b, 1, uint8_t, FN) \
1485 DO_2OP_SCALAR(OP##h, 2, uint16_t, FN) \
1486 DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
1487 #define DO_2OP_SCALAR_S(OP, FN) \
1488 DO_2OP_SCALAR(OP##b, 1, int8_t, FN) \
1489 DO_2OP_SCALAR(OP##h, 2, int16_t, FN) \
1490 DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
1492 #define DO_2OP_ACC_SCALAR_U(OP, FN) \
1493 DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN) \
1494 DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN) \
1495 DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
1497 DO_2OP_SCALAR_U(vadd_scalar
, DO_ADD
)
1498 DO_2OP_SCALAR_U(vsub_scalar
, DO_SUB
)
1499 DO_2OP_SCALAR_U(vmul_scalar
, DO_MUL
)
1500 DO_2OP_SCALAR_S(vhadds_scalar
, do_vhadd_s
)
1501 DO_2OP_SCALAR_U(vhaddu_scalar
, do_vhadd_u
)
1502 DO_2OP_SCALAR_S(vhsubs_scalar
, do_vhsub_s
)
1503 DO_2OP_SCALAR_U(vhsubu_scalar
, do_vhsub_u
)
1505 DO_2OP_SAT_SCALAR(vqaddu_scalarb
, 1, uint8_t, DO_UQADD_B
)
1506 DO_2OP_SAT_SCALAR(vqaddu_scalarh
, 2, uint16_t, DO_UQADD_H
)
1507 DO_2OP_SAT_SCALAR(vqaddu_scalarw
, 4, uint32_t, DO_UQADD_W
)
1508 DO_2OP_SAT_SCALAR(vqadds_scalarb
, 1, int8_t, DO_SQADD_B
)
1509 DO_2OP_SAT_SCALAR(vqadds_scalarh
, 2, int16_t, DO_SQADD_H
)
1510 DO_2OP_SAT_SCALAR(vqadds_scalarw
, 4, int32_t, DO_SQADD_W
)
1512 DO_2OP_SAT_SCALAR(vqsubu_scalarb
, 1, uint8_t, DO_UQSUB_B
)
1513 DO_2OP_SAT_SCALAR(vqsubu_scalarh
, 2, uint16_t, DO_UQSUB_H
)
1514 DO_2OP_SAT_SCALAR(vqsubu_scalarw
, 4, uint32_t, DO_UQSUB_W
)
1515 DO_2OP_SAT_SCALAR(vqsubs_scalarb
, 1, int8_t, DO_SQSUB_B
)
1516 DO_2OP_SAT_SCALAR(vqsubs_scalarh
, 2, int16_t, DO_SQSUB_H
)
1517 DO_2OP_SAT_SCALAR(vqsubs_scalarw
, 4, int32_t, DO_SQSUB_W
)
1519 DO_2OP_SAT_SCALAR(vqdmulh_scalarb
, 1, int8_t, DO_QDMULH_B
)
1520 DO_2OP_SAT_SCALAR(vqdmulh_scalarh
, 2, int16_t, DO_QDMULH_H
)
1521 DO_2OP_SAT_SCALAR(vqdmulh_scalarw
, 4, int32_t, DO_QDMULH_W
)
1522 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb
, 1, int8_t, DO_QRDMULH_B
)
1523 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh
, 2, int16_t, DO_QRDMULH_H
)
1524 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw
, 4, int32_t, DO_QRDMULH_W
)
1526 static int8_t do_vqdmlah_b(int8_t a
, int8_t b
, int8_t c
, int round
, bool *sat
)
1528 int64_t r
= (int64_t)a
* b
* 2 + ((int64_t)c
<< 8) + (round
<< 7);
1529 return do_sat_bhw(r
, INT16_MIN
, INT16_MAX
, sat
) >> 8;
1532 static int16_t do_vqdmlah_h(int16_t a
, int16_t b
, int16_t c
,
1533 int round
, bool *sat
)
1535 int64_t r
= (int64_t)a
* b
* 2 + ((int64_t)c
<< 16) + (round
<< 15);
1536 return do_sat_bhw(r
, INT32_MIN
, INT32_MAX
, sat
) >> 16;
1539 static int32_t do_vqdmlah_w(int32_t a
, int32_t b
, int32_t c
,
1540 int round
, bool *sat
)
1543 * Architecturally we should do the entire add, double, round
1544 * and then check for saturation. We do three saturating adds,
1545 * but we need to be careful about the order. If the first
1546 * m1 + m2 saturates then it's impossible for the *2+rc to
1547 * bring it back into the non-saturated range. However, if
1548 * m1 + m2 is negative then it's possible that doing the doubling
1549 * would take the intermediate result below INT64_MAX and the
1550 * addition of the rounding constant then brings it back in range.
1551 * So we add half the rounding constant and half the "c << esize"
1552 * before doubling rather than adding the rounding constant after
1555 int64_t m1
= (int64_t)a
* b
;
1556 int64_t m2
= (int64_t)c
<< 31;
1558 if (sadd64_overflow(m1
, m2
, &r
) ||
1559 sadd64_overflow(r
, (round
<< 30), &r
) ||
1560 sadd64_overflow(r
, r
, &r
)) {
1562 return r
< 0 ? INT32_MAX
: INT32_MIN
;
1568 * The *MLAH insns are vector * scalar + vector;
1569 * the *MLASH insns are vector * vector + scalar
1571 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
1572 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
1573 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
1574 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
1575 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
1576 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
1578 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
1579 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
1580 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
1581 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
1582 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
1583 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
1585 DO_2OP_SAT_ACC_SCALAR(vqdmlahb
, 1, int8_t, DO_VQDMLAH_B
)
1586 DO_2OP_SAT_ACC_SCALAR(vqdmlahh
, 2, int16_t, DO_VQDMLAH_H
)
1587 DO_2OP_SAT_ACC_SCALAR(vqdmlahw
, 4, int32_t, DO_VQDMLAH_W
)
1588 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb
, 1, int8_t, DO_VQRDMLAH_B
)
1589 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh
, 2, int16_t, DO_VQRDMLAH_H
)
1590 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw
, 4, int32_t, DO_VQRDMLAH_W
)
1592 DO_2OP_SAT_ACC_SCALAR(vqdmlashb
, 1, int8_t, DO_VQDMLASH_B
)
1593 DO_2OP_SAT_ACC_SCALAR(vqdmlashh
, 2, int16_t, DO_VQDMLASH_H
)
1594 DO_2OP_SAT_ACC_SCALAR(vqdmlashw
, 4, int32_t, DO_VQDMLASH_W
)
1595 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb
, 1, int8_t, DO_VQRDMLASH_B
)
1596 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh
, 2, int16_t, DO_VQRDMLASH_H
)
1597 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw
, 4, int32_t, DO_VQRDMLASH_W
)
1599 /* Vector by scalar plus vector */
1600 #define DO_VMLA(D, N, M) ((N) * (M) + (D))
1602 DO_2OP_ACC_SCALAR_U(vmla
, DO_VMLA
)
1604 /* Vector by vector plus scalar */
1605 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1607 DO_2OP_ACC_SCALAR_U(vmlas
, DO_VMLAS
)
1610 * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1611 * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1612 * SATMASK specifies which bits of the predicate mask matter for determining
1613 * whether to propagate a saturation indication into FPSCR.QC -- for
1614 * the 16x16->32 case we must check only the bit corresponding to the T or B
1615 * half that we used, but for the 32x32->64 case we propagate if the mask
1616 * bit is set for either half.
1618 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1619 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1625 uint16_t mask = mve_element_mask(env); \
1628 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1630 LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat); \
1631 mergemask(&d[H##LESIZE(le)], r, mask); \
1632 qc |= sat && (mask & SATMASK); \
1635 env->vfp.qc[0] = qc; \
1637 mve_advance_vpt(env); \
1640 static inline int32_t do_qdmullh(int16_t n
, int16_t m
, bool *sat
)
1642 int64_t r
= ((int64_t)n
* m
) * 2;
1643 return do_sat_bhw(r
, INT32_MIN
, INT32_MAX
, sat
);
1646 static inline int64_t do_qdmullw(int32_t n
, int32_t m
, bool *sat
)
1648 /* The multiply can't overflow, but the doubling might */
1649 int64_t r
= (int64_t)n
* m
;
1650 if (r
> INT64_MAX
/ 2) {
1653 } else if (r
< INT64_MIN
/ 2) {
1661 #define SATMASK16B 1
1662 #define SATMASK16T (1 << 2)
1663 #define SATMASK32 ((1 << 4) | 1)
1665 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh
, 0, 2, int16_t, 4, int32_t, \
1666 do_qdmullh
, SATMASK16B
)
1667 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw
, 0, 4, int32_t, 8, int64_t, \
1668 do_qdmullw
, SATMASK32
)
1669 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh
, 1, 2, int16_t, 4, int32_t, \
1670 do_qdmullh
, SATMASK16T
)
1671 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw
, 1, 4, int32_t, 8, int64_t, \
1672 do_qdmullw
, SATMASK32
)
1675 * Long saturating ops
1677 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1678 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1682 TYPE *n = vn, *m = vm; \
1683 uint16_t mask = mve_element_mask(env); \
1686 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1688 LTYPE op1 = n[H##ESIZE(le * 2 + TOP)]; \
1689 LTYPE op2 = m[H##ESIZE(le * 2 + TOP)]; \
1690 mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask); \
1691 qc |= sat && (mask & SATMASK); \
1694 env->vfp.qc[0] = qc; \
1696 mve_advance_vpt(env); \
1699 DO_2OP_SAT_L(vqdmullbh
, 0, 2, int16_t, 4, int32_t, do_qdmullh
, SATMASK16B
)
1700 DO_2OP_SAT_L(vqdmullbw
, 0, 4, int32_t, 8, int64_t, do_qdmullw
, SATMASK32
)
1701 DO_2OP_SAT_L(vqdmullth
, 1, 2, int16_t, 4, int32_t, do_qdmullh
, SATMASK16T
)
1702 DO_2OP_SAT_L(vqdmulltw
, 1, 4, int32_t, 8, int64_t, do_qdmullw
, SATMASK32
)
1704 static inline uint32_t do_vbrsrb(uint32_t n
, uint32_t m
)
1717 static inline uint32_t do_vbrsrh(uint32_t n
, uint32_t m
)
1730 static inline uint32_t do_vbrsrw(uint32_t n
, uint32_t m
)
1743 DO_2OP_SCALAR(vbrsrb
, 1, uint8_t, do_vbrsrb
)
1744 DO_2OP_SCALAR(vbrsrh
, 2, uint16_t, do_vbrsrh
)
1745 DO_2OP_SCALAR(vbrsrw
, 4, uint32_t, do_vbrsrw
)
1748 * Multiply add long dual accumulate ops.
1750 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1751 uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1752 void *vm, uint64_t a) \
1754 uint16_t mask = mve_element_mask(env); \
1756 TYPE *n = vn, *m = vm; \
1757 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1761 (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1764 (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1768 mve_advance_vpt(env); \
1772 DO_LDAV(vmlaldavsh
, 2, int16_t, false, +=, +=)
1773 DO_LDAV(vmlaldavxsh
, 2, int16_t, true, +=, +=)
1774 DO_LDAV(vmlaldavsw
, 4, int32_t, false, +=, +=)
1775 DO_LDAV(vmlaldavxsw
, 4, int32_t, true, +=, +=)
1777 DO_LDAV(vmlaldavuh
, 2, uint16_t, false, +=, +=)
1778 DO_LDAV(vmlaldavuw
, 4, uint32_t, false, +=, +=)
1780 DO_LDAV(vmlsldavsh
, 2, int16_t, false, +=, -=)
1781 DO_LDAV(vmlsldavxsh
, 2, int16_t, true, +=, -=)
1782 DO_LDAV(vmlsldavsw
, 4, int32_t, false, +=, -=)
1783 DO_LDAV(vmlsldavxsw
, 4, int32_t, true, +=, -=)
1786 * Multiply add dual accumulate ops
1788 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1789 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1790 void *vm, uint32_t a) \
1792 uint16_t mask = mve_element_mask(env); \
1794 TYPE *n = vn, *m = vm; \
1795 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1799 n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1802 n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1806 mve_advance_vpt(env); \
1810 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC) \
1811 DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC) \
1812 DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC) \
1813 DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1815 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC) \
1816 DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC) \
1817 DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1818 DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1820 DO_DAV_S(vmladavs
, false, +=, +=)
1821 DO_DAV_U(vmladavu
, false, +=, +=)
1822 DO_DAV_S(vmlsdav
, false, +=, -=)
1823 DO_DAV_S(vmladavsx
, true, +=, +=)
1824 DO_DAV_S(vmlsdavx
, true, +=, -=)
1827 * Rounding multiply add long dual accumulate high. In the pseudocode
1828 * this is implemented with a 72-bit internal accumulator value of which
1829 * the top 64 bits are returned. We optimize this to avoid having to
1830 * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1831 * is squashed back into 64-bits after each beat.
1833 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB) \
1834 uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1835 void *vm, uint64_t a) \
1837 uint16_t mask = mve_element_mask(env); \
1839 TYPE *n = vn, *m = vm; \
1840 for (e = 0; e < 16 / 4; e++, mask >>= 4) { \
1844 mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)]; \
1849 mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)]; \
1851 mul = (mul >> 8) + ((mul >> 7) & 1); \
1855 mve_advance_vpt(env); \
1859 DO_LDAVH(vrmlaldavhsw
, int32_t, int64_t, false, false)
1860 DO_LDAVH(vrmlaldavhxsw
, int32_t, int64_t, true, false)
1862 DO_LDAVH(vrmlaldavhuw
, uint32_t, uint64_t, false, false)
1864 DO_LDAVH(vrmlsldavhsw
, int32_t, int64_t, false, true)
1865 DO_LDAVH(vrmlsldavhxsw
, int32_t, int64_t, true, true)
1867 /* Vector add across vector */
1868 #define DO_VADDV(OP, ESIZE, TYPE) \
1869 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1872 uint16_t mask = mve_element_mask(env); \
1875 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1877 ra += m[H##ESIZE(e)]; \
1880 mve_advance_vpt(env); \
1884 DO_VADDV(vaddvsb, 1, int8_t)
1885 DO_VADDV(vaddvsh
, 2, int16_t)
1886 DO_VADDV(vaddvsw
, 4, int32_t)
1887 DO_VADDV(vaddvub
, 1, uint8_t)
1888 DO_VADDV(vaddvuh
, 2, uint16_t)
1889 DO_VADDV(vaddvuw
, 4, uint32_t)
1892 * Vector max/min across vector. Unlike VADDV, we must
1893 * read ra as the element size, not its full width.
1894 * We work with int64_t internally for simplicity.
1896 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN) \
1897 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1900 uint16_t mask = mve_element_mask(env); \
1903 int64_t ra = (RATYPE)ra_in; \
1904 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1906 ra = FN(ra, m[H##ESIZE(e)]); \
1909 mve_advance_vpt(env); \
1913 #define DO_VMAXMINV_U(INSN, FN) \
1914 DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN) \
1915 DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN) \
1916 DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1917 #define DO_VMAXMINV_S(INSN, FN) \
1918 DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN) \
1919 DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN) \
1920 DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1923 * Helpers for max and min of absolute values across vector:
1924 * note that we only take the absolute value of 'm', not 'n'
1926 static int64_t do_maxa(int64_t n
, int64_t m
)
1934 static int64_t do_mina(int64_t n
, int64_t m
)
1942 DO_VMAXMINV_S(vmaxvs
, DO_MAX
)
1943 DO_VMAXMINV_U(vmaxvu
, DO_MAX
)
1944 DO_VMAXMINV_S(vminvs
, DO_MIN
)
1945 DO_VMAXMINV_U(vminvu
, DO_MIN
)
1947 * VMAXAV, VMINAV treat the general purpose input as unsigned
1948 * and the vector elements as signed.
1950 DO_VMAXMINV(vmaxavb
, 1, int8_t, uint8_t, do_maxa
)
1951 DO_VMAXMINV(vmaxavh
, 2, int16_t, uint16_t, do_maxa
)
1952 DO_VMAXMINV(vmaxavw
, 4, int32_t, uint32_t, do_maxa
)
1953 DO_VMAXMINV(vminavb
, 1, int8_t, uint8_t, do_mina
)
1954 DO_VMAXMINV(vminavh
, 2, int16_t, uint16_t, do_mina
)
1955 DO_VMAXMINV(vminavw
, 4, int32_t, uint32_t, do_mina
)
1957 #define DO_VABAV(OP, ESIZE, TYPE) \
1958 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1959 void *vm, uint32_t ra) \
1961 uint16_t mask = mve_element_mask(env); \
1963 TYPE *m = vm, *n = vn; \
1964 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1966 int64_t n0 = n[H##ESIZE(e)]; \
1967 int64_t m0 = m[H##ESIZE(e)]; \
1968 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0); \
1972 mve_advance_vpt(env); \
1976 DO_VABAV(vabavsb
, 1, int8_t)
1977 DO_VABAV(vabavsh
, 2, int16_t)
1978 DO_VABAV(vabavsw
, 4, int32_t)
1979 DO_VABAV(vabavub
, 1, uint8_t)
1980 DO_VABAV(vabavuh
, 2, uint16_t)
1981 DO_VABAV(vabavuw
, 4, uint32_t)
1983 #define DO_VADDLV(OP, TYPE, LTYPE) \
1984 uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1987 uint16_t mask = mve_element_mask(env); \
1990 for (e = 0; e < 16 / 4; e++, mask >>= 4) { \
1992 ra += (LTYPE)m[H4(e)]; \
1995 mve_advance_vpt(env); \
1999 DO_VADDLV(vaddlv_s, int32_t, int64_t)
2000 DO_VADDLV(vaddlv_u
, uint32_t, uint64_t)
2002 /* Shifts by immediate */
2003 #define DO_2SHIFT(OP, ESIZE, TYPE, FN) \
2004 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2005 void *vm, uint32_t shift) \
2007 TYPE *d = vd, *m = vm; \
2008 uint16_t mask = mve_element_mask(env); \
2010 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2011 mergemask(&d[H##ESIZE(e)], \
2012 FN(m[H##ESIZE(e)], shift), mask); \
2014 mve_advance_vpt(env); \
2017 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN) \
2018 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2019 void *vm, uint32_t shift) \
2021 TYPE *d = vd, *m = vm; \
2022 uint16_t mask = mve_element_mask(env); \
2025 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2027 mergemask(&d[H##ESIZE(e)], \
2028 FN(m[H##ESIZE(e)], shift, &sat), mask); \
2029 qc |= sat & mask & 1; \
2032 env->vfp.qc[0] = qc; \
2034 mve_advance_vpt(env); \
2037 /* provide unsigned 2-op shift helpers for all sizes */
2038 #define DO_2SHIFT_U(OP, FN) \
2039 DO_2SHIFT(OP##b, 1, uint8_t, FN) \
2040 DO_2SHIFT(OP##h, 2, uint16_t, FN) \
2041 DO_2SHIFT(OP##w, 4, uint32_t, FN)
2042 #define DO_2SHIFT_S(OP, FN) \
2043 DO_2SHIFT(OP##b, 1, int8_t, FN) \
2044 DO_2SHIFT(OP##h, 2, int16_t, FN) \
2045 DO_2SHIFT(OP##w, 4, int32_t, FN)
2047 #define DO_2SHIFT_SAT_U(OP, FN) \
2048 DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN) \
2049 DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN) \
2050 DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
2051 #define DO_2SHIFT_SAT_S(OP, FN) \
2052 DO_2SHIFT_SAT(OP##b, 1, int8_t, FN) \
2053 DO_2SHIFT_SAT(OP##h, 2, int16_t, FN) \
2054 DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
2056 DO_2SHIFT_U(vshli_u
, DO_VSHLU
)
2057 DO_2SHIFT_S(vshli_s
, DO_VSHLS
)
2058 DO_2SHIFT_SAT_U(vqshli_u
, DO_UQSHL_OP
)
2059 DO_2SHIFT_SAT_S(vqshli_s
, DO_SQSHL_OP
)
2060 DO_2SHIFT_SAT_S(vqshlui_s
, DO_SUQSHL_OP
)
2061 DO_2SHIFT_U(vrshli_u
, DO_VRSHLU
)
2062 DO_2SHIFT_S(vrshli_s
, DO_VRSHLS
)
2063 DO_2SHIFT_SAT_U(vqrshli_u
, DO_UQRSHL_OP
)
2064 DO_2SHIFT_SAT_S(vqrshli_s
, DO_SQRSHL_OP
)
2066 /* Shift-and-insert; we always work with 64 bits at a time */
2067 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN) \
2068 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2069 void *vm, uint32_t shift) \
2071 uint64_t *d = vd, *m = vm; \
2073 uint64_t shiftmask; \
2075 if (shift == ESIZE * 8) { \
2077 * Only VSRI can shift by <dt>; it should mean "don't \
2078 * update the destination". The generic logic can't handle \
2079 * this because it would try to shift by an out-of-range \
2080 * amount, so special case it here. \
2084 assert(shift < ESIZE * 8); \
2085 mask = mve_element_mask(env); \
2086 /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */ \
2087 shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift)); \
2088 for (e = 0; e < 16 / 8; e++, mask >>= 8) { \
2089 uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) | \
2090 (d[H8(e)] & ~shiftmask); \
2091 mergemask(&d[H8(e)], r, mask); \
2094 mve_advance_vpt(env); \
2097 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
2098 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
2099 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
2100 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
2102 DO_2SHIFT_INSERT(vsrib
, 1, DO_SHR
, SHR_MASK
)
2103 DO_2SHIFT_INSERT(vsrih
, 2, DO_SHR
, SHR_MASK
)
2104 DO_2SHIFT_INSERT(vsriw
, 4, DO_SHR
, SHR_MASK
)
2105 DO_2SHIFT_INSERT(vslib
, 1, DO_SHL
, SHL_MASK
)
2106 DO_2SHIFT_INSERT(vslih
, 2, DO_SHL
, SHL_MASK
)
2107 DO_2SHIFT_INSERT(vsliw
, 4, DO_SHL
, SHL_MASK
)
2110 * Long shifts taking half-sized inputs from top or bottom of the input
2111 * vector and producing a double-width result. ESIZE, TYPE are for
2112 * the input, and LESIZE, LTYPE for the output.
2113 * Unlike the normal shift helpers, we do not handle negative shift counts,
2114 * because the long shift is strictly left-only.
2116 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE) \
2117 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2118 void *vm, uint32_t shift) \
2122 uint16_t mask = mve_element_mask(env); \
2124 assert(shift <= 16); \
2125 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2126 LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift; \
2127 mergemask(&d[H##LESIZE(le)], r, mask); \
2129 mve_advance_vpt(env); \
2132 #define DO_VSHLL_ALL(OP, TOP) \
2133 DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t) \
2134 DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t) \
2135 DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t) \
2136 DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t) \
2138 DO_VSHLL_ALL(vshllb, false)
2139 DO_VSHLL_ALL(vshllt
, true)
2142 * Narrowing right shifts, taking a double sized input, shifting it
2143 * and putting the result in either the top or bottom half of the output.
2144 * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
2146 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \
2147 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2148 void *vm, uint32_t shift) \
2152 uint16_t mask = mve_element_mask(env); \
2154 mask >>= ESIZE * TOP; \
2155 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2156 TYPE r = FN(m[H##LESIZE(le)], shift); \
2157 mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \
2159 mve_advance_vpt(env); \
2162 #define DO_VSHRN_ALL(OP, FN) \
2163 DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN) \
2164 DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN) \
2165 DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN) \
2166 DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
2168 static inline uint64_t do_urshr(uint64_t x
, unsigned sh
)
2170 if (likely(sh
< 64)) {
2171 return (x
>> sh
) + ((x
>> (sh
- 1)) & 1);
2172 } else if (sh
== 64) {
2179 static inline int64_t do_srshr(int64_t x
, unsigned sh
)
2181 if (likely(sh
< 64)) {
2182 return (x
>> sh
) + ((x
>> (sh
- 1)) & 1);
2184 /* Rounding the sign bit always produces 0. */
2189 DO_VSHRN_ALL(vshrn
, DO_SHR
)
2190 DO_VSHRN_ALL(vrshrn
, do_urshr
)
2192 static inline int32_t do_sat_bhs(int64_t val
, int64_t min
, int64_t max
,
2198 } else if (val
< min
) {
2206 /* Saturating narrowing right shifts */
2207 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \
2208 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2209 void *vm, uint32_t shift) \
2213 uint16_t mask = mve_element_mask(env); \
2216 mask >>= ESIZE * TOP; \
2217 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2219 TYPE r = FN(m[H##LESIZE(le)], shift, &sat); \
2220 mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \
2221 qc |= sat & mask & 1; \
2224 env->vfp.qc[0] = qc; \
2226 mve_advance_vpt(env); \
2229 #define DO_VSHRN_SAT_UB(BOP, TOP, FN) \
2230 DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN) \
2231 DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2233 #define DO_VSHRN_SAT_UH(BOP, TOP, FN) \
2234 DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN) \
2235 DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2237 #define DO_VSHRN_SAT_SB(BOP, TOP, FN) \
2238 DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN) \
2239 DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2241 #define DO_VSHRN_SAT_SH(BOP, TOP, FN) \
2242 DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN) \
2243 DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2245 #define DO_SHRN_SB(N, M, SATP) \
2246 do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
2247 #define DO_SHRN_UB(N, M, SATP) \
2248 do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2249 #define DO_SHRUN_B(N, M, SATP) \
2250 do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2252 #define DO_SHRN_SH(N, M, SATP) \
2253 do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
2254 #define DO_SHRN_UH(N, M, SATP) \
2255 do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2256 #define DO_SHRUN_H(N, M, SATP) \
2257 do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2259 #define DO_RSHRN_SB(N, M, SATP) \
2260 do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
2261 #define DO_RSHRN_UB(N, M, SATP) \
2262 do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
2263 #define DO_RSHRUN_B(N, M, SATP) \
2264 do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
2266 #define DO_RSHRN_SH(N, M, SATP) \
2267 do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
2268 #define DO_RSHRN_UH(N, M, SATP) \
2269 do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
2270 #define DO_RSHRUN_H(N, M, SATP) \
2271 do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
2273 DO_VSHRN_SAT_SB(vqshrnb_sb
, vqshrnt_sb
, DO_SHRN_SB
)
2274 DO_VSHRN_SAT_SH(vqshrnb_sh
, vqshrnt_sh
, DO_SHRN_SH
)
2275 DO_VSHRN_SAT_UB(vqshrnb_ub
, vqshrnt_ub
, DO_SHRN_UB
)
2276 DO_VSHRN_SAT_UH(vqshrnb_uh
, vqshrnt_uh
, DO_SHRN_UH
)
2277 DO_VSHRN_SAT_SB(vqshrunbb
, vqshruntb
, DO_SHRUN_B
)
2278 DO_VSHRN_SAT_SH(vqshrunbh
, vqshrunth
, DO_SHRUN_H
)
2280 DO_VSHRN_SAT_SB(vqrshrnb_sb
, vqrshrnt_sb
, DO_RSHRN_SB
)
2281 DO_VSHRN_SAT_SH(vqrshrnb_sh
, vqrshrnt_sh
, DO_RSHRN_SH
)
2282 DO_VSHRN_SAT_UB(vqrshrnb_ub
, vqrshrnt_ub
, DO_RSHRN_UB
)
2283 DO_VSHRN_SAT_UH(vqrshrnb_uh
, vqrshrnt_uh
, DO_RSHRN_UH
)
2284 DO_VSHRN_SAT_SB(vqrshrunbb
, vqrshruntb
, DO_RSHRUN_B
)
2285 DO_VSHRN_SAT_SH(vqrshrunbh
, vqrshrunth
, DO_RSHRUN_H
)
2287 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE) \
2288 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
2292 uint16_t mask = mve_element_mask(env); \
2294 mask >>= ESIZE * TOP; \
2295 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2296 mergemask(&d[H##ESIZE(le * 2 + TOP)], \
2297 m[H##LESIZE(le)], mask); \
2299 mve_advance_vpt(env); \
2302 DO_VMOVN(vmovnbb
, false, 1, uint8_t, 2, uint16_t)
2303 DO_VMOVN(vmovnbh
, false, 2, uint16_t, 4, uint32_t)
2304 DO_VMOVN(vmovntb
, true, 1, uint8_t, 2, uint16_t)
2305 DO_VMOVN(vmovnth
, true, 2, uint16_t, 4, uint32_t)
2307 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \
2308 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
2312 uint16_t mask = mve_element_mask(env); \
2315 mask >>= ESIZE * TOP; \
2316 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2318 TYPE r = FN(m[H##LESIZE(le)], &sat); \
2319 mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \
2320 qc |= sat & mask & 1; \
2323 env->vfp.qc[0] = qc; \
2325 mve_advance_vpt(env); \
2328 #define DO_VMOVN_SAT_UB(BOP, TOP, FN) \
2329 DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN) \
2330 DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2332 #define DO_VMOVN_SAT_UH(BOP, TOP, FN) \
2333 DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN) \
2334 DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2336 #define DO_VMOVN_SAT_SB(BOP, TOP, FN) \
2337 DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN) \
2338 DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2340 #define DO_VMOVN_SAT_SH(BOP, TOP, FN) \
2341 DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN) \
2342 DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2344 #define DO_VQMOVN_SB(N, SATP) \
2345 do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
2346 #define DO_VQMOVN_UB(N, SATP) \
2347 do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
2348 #define DO_VQMOVUN_B(N, SATP) \
2349 do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
2351 #define DO_VQMOVN_SH(N, SATP) \
2352 do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
2353 #define DO_VQMOVN_UH(N, SATP) \
2354 do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
2355 #define DO_VQMOVUN_H(N, SATP) \
2356 do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
2358 DO_VMOVN_SAT_SB(vqmovnbsb
, vqmovntsb
, DO_VQMOVN_SB
)
2359 DO_VMOVN_SAT_SH(vqmovnbsh
, vqmovntsh
, DO_VQMOVN_SH
)
2360 DO_VMOVN_SAT_UB(vqmovnbub
, vqmovntub
, DO_VQMOVN_UB
)
2361 DO_VMOVN_SAT_UH(vqmovnbuh
, vqmovntuh
, DO_VQMOVN_UH
)
2362 DO_VMOVN_SAT_SB(vqmovunbb
, vqmovuntb
, DO_VQMOVUN_B
)
2363 DO_VMOVN_SAT_SH(vqmovunbh
, vqmovunth
, DO_VQMOVUN_H
)
2365 uint32_t HELPER(mve_vshlc
)(CPUARMState
*env
, void *vd
, uint32_t rdm
,
2369 uint16_t mask
= mve_element_mask(env
);
2374 * For each 32-bit element, we shift it left, bringing in the
2375 * low 'shift' bits of rdm at the bottom. Bits shifted out at
2376 * the top become the new rdm, if the predicate mask permits.
2377 * The final rdm value is returned to update the register.
2378 * shift == 0 here means "shift by 32 bits".
2381 for (e
= 0; e
< 16 / 4; e
++, mask
>>= 4) {
2386 mergemask(&d
[H4(e
)], r
, mask
);
2389 uint32_t shiftmask
= MAKE_64BIT_MASK(0, shift
);
2391 for (e
= 0; e
< 16 / 4; e
++, mask
>>= 4) {
2392 r
= (d
[H4(e
)] << shift
) | (rdm
& shiftmask
);
2394 rdm
= d
[H4(e
)] >> (32 - shift
);
2396 mergemask(&d
[H4(e
)], r
, mask
);
2399 mve_advance_vpt(env
);
2403 uint64_t HELPER(mve_sshrl
)(CPUARMState
*env
, uint64_t n
, uint32_t shift
)
2405 return do_sqrshl_d(n
, -(int8_t)shift
, false, NULL
);
2408 uint64_t HELPER(mve_ushll
)(CPUARMState
*env
, uint64_t n
, uint32_t shift
)
2410 return do_uqrshl_d(n
, (int8_t)shift
, false, NULL
);
2413 uint64_t HELPER(mve_sqshll
)(CPUARMState
*env
, uint64_t n
, uint32_t shift
)
2415 return do_sqrshl_d(n
, (int8_t)shift
, false, &env
->QF
);
2418 uint64_t HELPER(mve_uqshll
)(CPUARMState
*env
, uint64_t n
, uint32_t shift
)
2420 return do_uqrshl_d(n
, (int8_t)shift
, false, &env
->QF
);
2423 uint64_t HELPER(mve_sqrshrl
)(CPUARMState
*env
, uint64_t n
, uint32_t shift
)
2425 return do_sqrshl_d(n
, -(int8_t)shift
, true, &env
->QF
);
2428 uint64_t HELPER(mve_uqrshll
)(CPUARMState
*env
, uint64_t n
, uint32_t shift
)
2430 return do_uqrshl_d(n
, (int8_t)shift
, true, &env
->QF
);
2433 /* Operate on 64-bit values, but saturate at 48 bits */
2434 static inline int64_t do_sqrshl48_d(int64_t src
, int64_t shift
,
2435 bool round
, uint32_t *sat
)
2437 int64_t val
, extval
;
2440 /* Rounding the sign bit always produces 0. */
2445 } else if (shift
< 0) {
2448 val
= (src
>> 1) + (src
& 1);
2450 val
= src
>> -shift
;
2452 extval
= sextract64(val
, 0, 48);
2453 if (!sat
|| val
== extval
) {
2456 } else if (shift
< 48) {
2457 extval
= sextract64(src
<< shift
, 0, 48);
2458 if (!sat
|| src
== (extval
>> shift
)) {
2461 } else if (!sat
|| src
== 0) {
2466 return src
>= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
2469 /* Operate on 64-bit values, but saturate at 48 bits */
2470 static inline uint64_t do_uqrshl48_d(uint64_t src
, int64_t shift
,
2471 bool round
, uint32_t *sat
)
2473 uint64_t val
, extval
;
2475 if (shift
<= -(48 + round
)) {
2477 } else if (shift
< 0) {
2479 val
= src
>> (-shift
- 1);
2480 val
= (val
>> 1) + (val
& 1);
2482 val
= src
>> -shift
;
2484 extval
= extract64(val
, 0, 48);
2485 if (!sat
|| val
== extval
) {
2488 } else if (shift
< 48) {
2489 extval
= extract64(src
<< shift
, 0, 48);
2490 if (!sat
|| src
== (extval
>> shift
)) {
2493 } else if (!sat
|| src
== 0) {
2498 return MAKE_64BIT_MASK(0, 48);
2501 uint64_t HELPER(mve_sqrshrl48
)(CPUARMState
*env
, uint64_t n
, uint32_t shift
)
2503 return do_sqrshl48_d(n
, -(int8_t)shift
, true, &env
->QF
);
2506 uint64_t HELPER(mve_uqrshll48
)(CPUARMState
*env
, uint64_t n
, uint32_t shift
)
2508 return do_uqrshl48_d(n
, (int8_t)shift
, true, &env
->QF
);
2511 uint32_t HELPER(mve_uqshl
)(CPUARMState
*env
, uint32_t n
, uint32_t shift
)
2513 return do_uqrshl_bhs(n
, (int8_t)shift
, 32, false, &env
->QF
);
2516 uint32_t HELPER(mve_sqshl
)(CPUARMState
*env
, uint32_t n
, uint32_t shift
)
2518 return do_sqrshl_bhs(n
, (int8_t)shift
, 32, false, &env
->QF
);
2521 uint32_t HELPER(mve_uqrshl
)(CPUARMState
*env
, uint32_t n
, uint32_t shift
)
2523 return do_uqrshl_bhs(n
, (int8_t)shift
, 32, true, &env
->QF
);
2526 uint32_t HELPER(mve_sqrshr
)(CPUARMState
*env
, uint32_t n
, uint32_t shift
)
2528 return do_sqrshl_bhs(n
, -(int8_t)shift
, 32, true, &env
->QF
);
2531 #define DO_VIDUP(OP, ESIZE, TYPE, FN) \
2532 uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd, \
2533 uint32_t offset, uint32_t imm) \
2536 uint16_t mask = mve_element_mask(env); \
2538 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2539 mergemask(&d[H##ESIZE(e)], offset, mask); \
2540 offset = FN(offset, imm); \
2542 mve_advance_vpt(env); \
2546 #define DO_VIWDUP(OP, ESIZE, TYPE, FN) \
2547 uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd, \
2548 uint32_t offset, uint32_t wrap, \
2552 uint16_t mask = mve_element_mask(env); \
2554 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2555 mergemask(&d[H##ESIZE(e)], offset, mask); \
2556 offset = FN(offset, wrap, imm); \
2558 mve_advance_vpt(env); \
2562 #define DO_VIDUP_ALL(OP, FN) \
2563 DO_VIDUP(OP##b, 1, int8_t, FN) \
2564 DO_VIDUP(OP##h, 2, int16_t, FN) \
2565 DO_VIDUP(OP##w, 4, int32_t, FN)
2567 #define DO_VIWDUP_ALL(OP, FN) \
2568 DO_VIWDUP(OP##b, 1, int8_t, FN) \
2569 DO_VIWDUP(OP##h, 2, int16_t, FN) \
2570 DO_VIWDUP(OP##w, 4, int32_t, FN)
2572 static uint32_t do_add_wrap(uint32_t offset
, uint32_t wrap
, uint32_t imm
)
2575 if (offset
== wrap
) {
2581 static uint32_t do_sub_wrap(uint32_t offset
, uint32_t wrap
, uint32_t imm
)
2590 DO_VIDUP_ALL(vidup
, DO_ADD
)
2591 DO_VIWDUP_ALL(viwdup
, do_add_wrap
)
2592 DO_VIWDUP_ALL(vdwdup
, do_sub_wrap
)
2595 * Vector comparison.
2596 * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2597 * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2598 * P0 bits otherwise are updated with the results of the comparisons.
2599 * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2601 #define DO_VCMP(OP, ESIZE, TYPE, FN) \
2602 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm) \
2604 TYPE *n = vn, *m = vm; \
2605 uint16_t mask = mve_element_mask(env); \
2606 uint16_t eci_mask = mve_eci_mask(env); \
2607 uint16_t beatpred = 0; \
2608 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \
2610 for (e = 0; e < 16 / ESIZE; e++) { \
2611 bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]); \
2612 /* Comparison sets 0/1 bits for each byte in the element */ \
2613 beatpred |= r * emask; \
2617 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \
2618 (beatpred & eci_mask); \
2619 mve_advance_vpt(env); \
2622 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN) \
2623 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
2627 uint16_t mask = mve_element_mask(env); \
2628 uint16_t eci_mask = mve_eci_mask(env); \
2629 uint16_t beatpred = 0; \
2630 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \
2632 for (e = 0; e < 16 / ESIZE; e++) { \
2633 bool r = FN(n[H##ESIZE(e)], (TYPE)rm); \
2634 /* Comparison sets 0/1 bits for each byte in the element */ \
2635 beatpred |= r * emask; \
2639 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \
2640 (beatpred & eci_mask); \
2641 mve_advance_vpt(env); \
2644 #define DO_VCMP_S(OP, FN) \
2645 DO_VCMP(OP##b, 1, int8_t, FN) \
2646 DO_VCMP(OP##h, 2, int16_t, FN) \
2647 DO_VCMP(OP##w, 4, int32_t, FN) \
2648 DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN) \
2649 DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN) \
2650 DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2652 #define DO_VCMP_U(OP, FN) \
2653 DO_VCMP(OP##b, 1, uint8_t, FN) \
2654 DO_VCMP(OP##h, 2, uint16_t, FN) \
2655 DO_VCMP(OP##w, 4, uint32_t, FN) \
2656 DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN) \
2657 DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN) \
2658 DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2660 #define DO_EQ(N, M) ((N) == (M))
2661 #define DO_NE(N, M) ((N) != (M))
2662 #define DO_EQ(N, M) ((N) == (M))
2663 #define DO_EQ(N, M) ((N) == (M))
2664 #define DO_GE(N, M) ((N) >= (M))
2665 #define DO_LT(N, M) ((N) < (M))
2666 #define DO_GT(N, M) ((N) > (M))
2667 #define DO_LE(N, M) ((N) <= (M))
2669 DO_VCMP_U(vcmpeq
, DO_EQ
)
2670 DO_VCMP_U(vcmpne
, DO_NE
)
2671 DO_VCMP_U(vcmpcs
, DO_GE
)
2672 DO_VCMP_U(vcmphi
, DO_GT
)
2673 DO_VCMP_S(vcmpge
, DO_GE
)
2674 DO_VCMP_S(vcmplt
, DO_LT
)
2675 DO_VCMP_S(vcmpgt
, DO_GT
)
2676 DO_VCMP_S(vcmple
, DO_LE
)
2678 void HELPER(mve_vpsel
)(CPUARMState
*env
, void *vd
, void *vn
, void *vm
)
2681 * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2682 * but note that whether bytes are written to Qd is still subject
2683 * to (all forms of) predication in the usual way.
2685 uint64_t *d
= vd
, *n
= vn
, *m
= vm
;
2686 uint16_t mask
= mve_element_mask(env
);
2687 uint16_t p0
= FIELD_EX32(env
->v7m
.vpr
, V7M_VPR
, P0
);
2689 for (e
= 0; e
< 16 / 8; e
++, mask
>>= 8, p0
>>= 8) {
2690 uint64_t r
= m
[H8(e
)];
2691 mergemask(&r
, n
[H8(e
)], p0
);
2692 mergemask(&d
[H8(e
)], r
, mask
);
2694 mve_advance_vpt(env
);
2697 void HELPER(mve_vpnot
)(CPUARMState
*env
)
2700 * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
2701 * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
2702 * P0 bits otherwise are inverted.
2703 * (This is the same logic as VCMP.)
2704 * This insn is itself subject to predication and to beat-wise execution,
2705 * and after it executes VPT state advances in the usual way.
2707 uint16_t mask
= mve_element_mask(env
);
2708 uint16_t eci_mask
= mve_eci_mask(env
);
2709 uint16_t beatpred
= ~env
->v7m
.vpr
& mask
;
2710 env
->v7m
.vpr
= (env
->v7m
.vpr
& ~(uint32_t)eci_mask
) | (beatpred
& eci_mask
);
2711 mve_advance_vpt(env
);
2715 * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
2716 * otherwise set according to value of Rn. The calculation of
2717 * newmask here works in the same way as the calculation of the
2718 * ltpmask in mve_element_mask(), but we have pre-calculated
2719 * the masklen in the generated code.
2721 void HELPER(mve_vctp
)(CPUARMState
*env
, uint32_t masklen
)
2723 uint16_t mask
= mve_element_mask(env
);
2724 uint16_t eci_mask
= mve_eci_mask(env
);
2727 assert(masklen
<= 16);
2728 newmask
= masklen
? MAKE_64BIT_MASK(0, masklen
) : 0;
2730 env
->v7m
.vpr
= (env
->v7m
.vpr
& ~(uint32_t)eci_mask
) | (newmask
& eci_mask
);
2731 mve_advance_vpt(env
);
2734 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN) \
2735 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
2737 TYPE *d = vd, *m = vm; \
2738 uint16_t mask = mve_element_mask(env); \
2741 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2743 mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
2744 qc |= sat & mask & 1; \
2747 env->vfp.qc[0] = qc; \
2749 mve_advance_vpt(env); \
2752 #define DO_VQABS_B(N, SATP) \
2753 do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
2754 #define DO_VQABS_H(N, SATP) \
2755 do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
2756 #define DO_VQABS_W(N, SATP) \
2757 do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
2759 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
2760 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
2761 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
2763 DO_1OP_SAT(vqabsb
, 1, int8_t, DO_VQABS_B
)
2764 DO_1OP_SAT(vqabsh
, 2, int16_t, DO_VQABS_H
)
2765 DO_1OP_SAT(vqabsw
, 4, int32_t, DO_VQABS_W
)
2767 DO_1OP_SAT(vqnegb
, 1, int8_t, DO_VQNEG_B
)
2768 DO_1OP_SAT(vqnegh
, 2, int16_t, DO_VQNEG_H
)
2769 DO_1OP_SAT(vqnegw
, 4, int32_t, DO_VQNEG_W
)
2772 * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
2773 * absolute value; we then do an unsigned comparison.
2775 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN) \
2776 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
2780 uint16_t mask = mve_element_mask(env); \
2782 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2783 UTYPE r = DO_ABS(m[H##ESIZE(e)]); \
2784 r = FN(d[H##ESIZE(e)], r); \
2785 mergemask(&d[H##ESIZE(e)], r, mask); \
2787 mve_advance_vpt(env); \
2790 DO_VMAXMINA(vmaxab
, 1, int8_t, uint8_t, DO_MAX
)
2791 DO_VMAXMINA(vmaxah
, 2, int16_t, uint16_t, DO_MAX
)
2792 DO_VMAXMINA(vmaxaw
, 4, int32_t, uint32_t, DO_MAX
)
2793 DO_VMAXMINA(vminab
, 1, int8_t, uint8_t, DO_MIN
)
2794 DO_VMAXMINA(vminah
, 2, int16_t, uint16_t, DO_MIN
)
2795 DO_VMAXMINA(vminaw
, 4, int32_t, uint32_t, DO_MIN
)
2798 * 2-operand floating point. Note that if an element is partially
2799 * predicated we must do the FP operation to update the non-predicated
2800 * bytes, but we must be careful to avoid updating the FP exception
2801 * state unless byte 0 of the element was unpredicated.
2803 #define DO_2OP_FP(OP, ESIZE, TYPE, FN) \
2804 void HELPER(glue(mve_, OP))(CPUARMState *env, \
2805 void *vd, void *vn, void *vm) \
2807 TYPE *d = vd, *n = vn, *m = vm; \
2809 uint16_t mask = mve_element_mask(env); \
2811 float_status *fpst; \
2812 float_status scratch_fpst; \
2813 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2814 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
2817 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
2818 &env->vfp.standard_fp_status; \
2819 if (!(mask & 1)) { \
2820 /* We need the result but without updating flags */ \
2821 scratch_fpst = *fpst; \
2822 fpst = &scratch_fpst; \
2824 r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst); \
2825 mergemask(&d[H##ESIZE(e)], r, mask); \
2827 mve_advance_vpt(env); \
2830 #define DO_2OP_FP_ALL(OP, FN) \
2831 DO_2OP_FP(OP##h, 2, float16, float16_##FN) \
2832 DO_2OP_FP(OP##s, 4, float32, float32_##FN)
2834 DO_2OP_FP_ALL(vfadd
, add
)
2835 DO_2OP_FP_ALL(vfsub
, sub
)
2836 DO_2OP_FP_ALL(vfmul
, mul
)
2838 static inline float16
float16_abd(float16 a
, float16 b
, float_status
*s
)
2840 return float16_abs(float16_sub(a
, b
, s
));
2843 static inline float32
float32_abd(float32 a
, float32 b
, float_status
*s
)
2845 return float32_abs(float32_sub(a
, b
, s
));
2848 DO_2OP_FP_ALL(vfabd
, abd
)
2849 DO_2OP_FP_ALL(vmaxnm
, maxnum
)
2850 DO_2OP_FP_ALL(vminnm
, minnum
)
2852 static inline float16
float16_maxnuma(float16 a
, float16 b
, float_status
*s
)
2854 return float16_maxnum(float16_abs(a
), float16_abs(b
), s
);
2857 static inline float32
float32_maxnuma(float32 a
, float32 b
, float_status
*s
)
2859 return float32_maxnum(float32_abs(a
), float32_abs(b
), s
);
2862 static inline float16
float16_minnuma(float16 a
, float16 b
, float_status
*s
)
2864 return float16_minnum(float16_abs(a
), float16_abs(b
), s
);
2867 static inline float32
float32_minnuma(float32 a
, float32 b
, float_status
*s
)
2869 return float32_minnum(float32_abs(a
), float32_abs(b
), s
);
2872 DO_2OP_FP_ALL(vmaxnma
, maxnuma
)
2873 DO_2OP_FP_ALL(vminnma
, minnuma
)
2875 #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1) \
2876 void HELPER(glue(mve_, OP))(CPUARMState *env, \
2877 void *vd, void *vn, void *vm) \
2879 TYPE *d = vd, *n = vn, *m = vm; \
2880 TYPE r[16 / ESIZE]; \
2881 uint16_t tm, mask = mve_element_mask(env); \
2883 float_status *fpst; \
2884 float_status scratch_fpst; \
2885 /* Calculate all results first to avoid overwriting inputs */ \
2886 for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) { \
2887 if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
2891 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
2892 &env->vfp.standard_fp_status; \
2894 /* We need the result but without updating flags */ \
2895 scratch_fpst = *fpst; \
2896 fpst = &scratch_fpst; \
2899 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst); \
2901 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst); \
2904 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2905 mergemask(&d[H##ESIZE(e)], r[e], mask); \
2907 mve_advance_vpt(env); \
2910 DO_VCADD_FP(vfcadd90h
, 2, float16
, float16_sub
, float16_add
)
2911 DO_VCADD_FP(vfcadd90s
, 4, float32
, float32_sub
, float32_add
)
2912 DO_VCADD_FP(vfcadd270h
, 2, float16
, float16_add
, float16_sub
)
2913 DO_VCADD_FP(vfcadd270s
, 4, float32
, float32_add
, float32_sub
)
2915 #define DO_VFMA(OP, ESIZE, TYPE, CHS) \
2916 void HELPER(glue(mve_, OP))(CPUARMState *env, \
2917 void *vd, void *vn, void *vm) \
2919 TYPE *d = vd, *n = vn, *m = vm; \
2921 uint16_t mask = mve_element_mask(env); \
2923 float_status *fpst; \
2924 float_status scratch_fpst; \
2925 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2926 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
2929 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
2930 &env->vfp.standard_fp_status; \
2931 if (!(mask & 1)) { \
2932 /* We need the result but without updating flags */ \
2933 scratch_fpst = *fpst; \
2934 fpst = &scratch_fpst; \
2936 r = n[H##ESIZE(e)]; \
2938 r = TYPE##_chs(r); \
2940 r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)], \
2942 mergemask(&d[H##ESIZE(e)], r, mask); \
2944 mve_advance_vpt(env); \
2947 DO_VFMA(vfmah
, 2, float16
, false)
2948 DO_VFMA(vfmas
, 4, float32
, false)
2949 DO_VFMA(vfmsh
, 2, float16
, true)
2950 DO_VFMA(vfmss
, 4, float32
, true)
2952 #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN) \
2953 void HELPER(glue(mve_, OP))(CPUARMState *env, \
2954 void *vd, void *vn, void *vm) \
2956 TYPE *d = vd, *n = vn, *m = vm; \
2957 TYPE r0, r1, e1, e2, e3, e4; \
2958 uint16_t mask = mve_element_mask(env); \
2960 float_status *fpst0, *fpst1; \
2961 float_status scratch_fpst; \
2962 /* We loop through pairs of elements at a time */ \
2963 for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) { \
2964 if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) { \
2967 fpst0 = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
2968 &env->vfp.standard_fp_status; \
2970 if (!(mask & 1)) { \
2971 scratch_fpst = *fpst0; \
2972 fpst0 = &scratch_fpst; \
2974 if (!(mask & (1 << ESIZE))) { \
2975 scratch_fpst = *fpst1; \
2976 fpst1 = &scratch_fpst; \
2980 e1 = m[H##ESIZE(e)]; \
2981 e2 = n[H##ESIZE(e)]; \
2982 e3 = m[H##ESIZE(e + 1)]; \
2983 e4 = n[H##ESIZE(e)]; \
2986 e1 = TYPE##_chs(m[H##ESIZE(e + 1)]); \
2987 e2 = n[H##ESIZE(e + 1)]; \
2988 e3 = m[H##ESIZE(e)]; \
2989 e4 = n[H##ESIZE(e + 1)]; \
2992 e1 = TYPE##_chs(m[H##ESIZE(e)]); \
2993 e2 = n[H##ESIZE(e)]; \
2994 e3 = TYPE##_chs(m[H##ESIZE(e + 1)]); \
2995 e4 = n[H##ESIZE(e)]; \
2998 e1 = m[H##ESIZE(e + 1)]; \
2999 e2 = n[H##ESIZE(e + 1)]; \
3000 e3 = TYPE##_chs(m[H##ESIZE(e)]); \
3001 e4 = n[H##ESIZE(e + 1)]; \
3004 g_assert_not_reached(); \
3006 r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0); \
3007 r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1); \
3008 mergemask(&d[H##ESIZE(e)], r0, mask); \
3009 mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE); \
3011 mve_advance_vpt(env); \
3014 #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S)
3015 #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S)
3017 #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S)
3018 #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S)
3020 DO_VCMLA(vcmul0h
, 2, float16
, 0, DO_VCMULH
)
3021 DO_VCMLA(vcmul0s
, 4, float32
, 0, DO_VCMULS
)
3022 DO_VCMLA(vcmul90h
, 2, float16
, 1, DO_VCMULH
)
3023 DO_VCMLA(vcmul90s
, 4, float32
, 1, DO_VCMULS
)
3024 DO_VCMLA(vcmul180h
, 2, float16
, 2, DO_VCMULH
)
3025 DO_VCMLA(vcmul180s
, 4, float32
, 2, DO_VCMULS
)
3026 DO_VCMLA(vcmul270h
, 2, float16
, 3, DO_VCMULH
)
3027 DO_VCMLA(vcmul270s
, 4, float32
, 3, DO_VCMULS
)
3029 DO_VCMLA(vcmla0h
, 2, float16
, 0, DO_VCMLAH
)
3030 DO_VCMLA(vcmla0s
, 4, float32
, 0, DO_VCMLAS
)
3031 DO_VCMLA(vcmla90h
, 2, float16
, 1, DO_VCMLAH
)
3032 DO_VCMLA(vcmla90s
, 4, float32
, 1, DO_VCMLAS
)
3033 DO_VCMLA(vcmla180h
, 2, float16
, 2, DO_VCMLAH
)
3034 DO_VCMLA(vcmla180s
, 4, float32
, 2, DO_VCMLAS
)
3035 DO_VCMLA(vcmla270h
, 2, float16
, 3, DO_VCMLAH
)
3036 DO_VCMLA(vcmla270s
, 4, float32
, 3, DO_VCMLAS
)
3038 #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN) \
3039 void HELPER(glue(mve_, OP))(CPUARMState *env, \
3040 void *vd, void *vn, uint32_t rm) \
3042 TYPE *d = vd, *n = vn; \
3044 uint16_t mask = mve_element_mask(env); \
3046 float_status *fpst; \
3047 float_status scratch_fpst; \
3048 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3049 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
3052 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3053 &env->vfp.standard_fp_status; \
3054 if (!(mask & 1)) { \
3055 /* We need the result but without updating flags */ \
3056 scratch_fpst = *fpst; \
3057 fpst = &scratch_fpst; \
3059 r = FN(n[H##ESIZE(e)], m, fpst); \
3060 mergemask(&d[H##ESIZE(e)], r, mask); \
3062 mve_advance_vpt(env); \
3065 #define DO_2OP_FP_SCALAR_ALL(OP, FN) \
3066 DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN) \
3067 DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN)
3069 DO_2OP_FP_SCALAR_ALL(vfadd_scalar
, add
)
3070 DO_2OP_FP_SCALAR_ALL(vfsub_scalar
, sub
)
3071 DO_2OP_FP_SCALAR_ALL(vfmul_scalar
, mul
)
3073 #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN) \
3074 void HELPER(glue(mve_, OP))(CPUARMState *env, \
3075 void *vd, void *vn, uint32_t rm) \
3077 TYPE *d = vd, *n = vn; \
3079 uint16_t mask = mve_element_mask(env); \
3081 float_status *fpst; \
3082 float_status scratch_fpst; \
3083 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3084 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
3087 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3088 &env->vfp.standard_fp_status; \
3089 if (!(mask & 1)) { \
3090 /* We need the result but without updating flags */ \
3091 scratch_fpst = *fpst; \
3092 fpst = &scratch_fpst; \
3094 r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst); \
3095 mergemask(&d[H##ESIZE(e)], r, mask); \
3097 mve_advance_vpt(env); \
3100 /* VFMAS is vector * vector + scalar, so swap op2 and op3 */
3101 #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S)
3102 #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S)
3104 /* VFMA is vector * scalar + vector */
3105 DO_2OP_FP_ACC_SCALAR(vfma_scalarh
, 2, float16
, float16_muladd
)
3106 DO_2OP_FP_ACC_SCALAR(vfma_scalars
, 4, float32
, float32_muladd
)
3107 DO_2OP_FP_ACC_SCALAR(vfmas_scalarh
, 2, float16
, DO_VFMAS_SCALARH
)
3108 DO_2OP_FP_ACC_SCALAR(vfmas_scalars
, 4, float32
, DO_VFMAS_SCALARS
)
3110 /* Floating point max/min across vector. */
3111 #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN) \
3112 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
3115 uint16_t mask = mve_element_mask(env); \
3118 TYPE ra = (TYPE)ra_in; \
3119 float_status *fpst = (ESIZE == 2) ? \
3120 &env->vfp.standard_fp_status_f16 : \
3121 &env->vfp.standard_fp_status; \
3122 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3124 TYPE v = m[H##ESIZE(e)]; \
3125 if (TYPE##_is_signaling_nan(ra, fpst)) { \
3126 ra = TYPE##_silence_nan(ra, fpst); \
3127 float_raise(float_flag_invalid, fpst); \
3129 if (TYPE##_is_signaling_nan(v, fpst)) { \
3130 v = TYPE##_silence_nan(v, fpst); \
3131 float_raise(float_flag_invalid, fpst); \
3134 v = TYPE##_abs(v); \
3136 ra = FN(ra, v, fpst); \
3139 mve_advance_vpt(env); \
3145 DO_FP_VMAXMINV(vmaxnmvh
, 2, float16
, false, float16_maxnum
)
3146 DO_FP_VMAXMINV(vmaxnmvs
, 4, float32
, false, float32_maxnum
)
3147 DO_FP_VMAXMINV(vminnmvh
, 2, float16
, false, float16_minnum
)
3148 DO_FP_VMAXMINV(vminnmvs
, 4, float32
, false, float32_minnum
)
3149 DO_FP_VMAXMINV(vmaxnmavh
, 2, float16
, true, float16_maxnum
)
3150 DO_FP_VMAXMINV(vmaxnmavs
, 4, float32
, true, float32_maxnum
)
3151 DO_FP_VMAXMINV(vminnmavh
, 2, float16
, true, float16_minnum
)
3152 DO_FP_VMAXMINV(vminnmavs
, 4, float32
, true, float32_minnum
)
3154 /* FP compares; note that all comparisons signal InvalidOp for QNaNs */
3155 #define DO_VCMP_FP(OP, ESIZE, TYPE, FN) \
3156 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm) \
3158 TYPE *n = vn, *m = vm; \
3159 uint16_t mask = mve_element_mask(env); \
3160 uint16_t eci_mask = mve_eci_mask(env); \
3161 uint16_t beatpred = 0; \
3162 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \
3164 float_status *fpst; \
3165 float_status scratch_fpst; \
3167 for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) { \
3168 if ((mask & emask) == 0) { \
3171 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3172 &env->vfp.standard_fp_status; \
3173 if (!(mask & (1 << (e * ESIZE)))) { \
3174 /* We need the result but without updating flags */ \
3175 scratch_fpst = *fpst; \
3176 fpst = &scratch_fpst; \
3178 r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst); \
3179 /* Comparison sets 0/1 bits for each byte in the element */ \
3180 beatpred |= r * emask; \
3183 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \
3184 (beatpred & eci_mask); \
3185 mve_advance_vpt(env); \
3188 #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN) \
3189 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
3193 uint16_t mask = mve_element_mask(env); \
3194 uint16_t eci_mask = mve_eci_mask(env); \
3195 uint16_t beatpred = 0; \
3196 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \
3198 float_status *fpst; \
3199 float_status scratch_fpst; \
3201 for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) { \
3202 if ((mask & emask) == 0) { \
3205 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3206 &env->vfp.standard_fp_status; \
3207 if (!(mask & (1 << (e * ESIZE)))) { \
3208 /* We need the result but without updating flags */ \
3209 scratch_fpst = *fpst; \
3210 fpst = &scratch_fpst; \
3212 r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst); \
3213 /* Comparison sets 0/1 bits for each byte in the element */ \
3214 beatpred |= r * emask; \
3217 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \
3218 (beatpred & eci_mask); \
3219 mve_advance_vpt(env); \
3222 #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN) \
3223 DO_VCMP_FP(VOP, ESIZE, TYPE, FN) \
3224 DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN)
3227 * Some care is needed here to get the correct result for the unordered case.
3228 * Architecturally EQ, GE and GT are defined to be false for unordered, but
3229 * the NE, LT and LE comparisons are defined as simple logical inverses of
3230 * EQ, GE and GT and so they must return true for unordered. The softfloat
3231 * comparison functions float*_{eq,le,lt} all return false for unordered.
3233 #define DO_GE16(X, Y, S) float16_le(Y, X, S)
3234 #define DO_GE32(X, Y, S) float32_le(Y, X, S)
3235 #define DO_GT16(X, Y, S) float16_lt(Y, X, S)
3236 #define DO_GT32(X, Y, S) float32_lt(Y, X, S)
3238 DO_VCMP_FP_BOTH(vfcmpeqh
, vfcmpeq_scalarh
, 2, float16
, float16_eq
)
3239 DO_VCMP_FP_BOTH(vfcmpeqs
, vfcmpeq_scalars
, 4, float32
, float32_eq
)
3241 DO_VCMP_FP_BOTH(vfcmpneh
, vfcmpne_scalarh
, 2, float16
, !float16_eq
)
3242 DO_VCMP_FP_BOTH(vfcmpnes
, vfcmpne_scalars
, 4, float32
, !float32_eq
)
3244 DO_VCMP_FP_BOTH(vfcmpgeh
, vfcmpge_scalarh
, 2, float16
, DO_GE16
)
3245 DO_VCMP_FP_BOTH(vfcmpges
, vfcmpge_scalars
, 4, float32
, DO_GE32
)
3247 DO_VCMP_FP_BOTH(vfcmplth
, vfcmplt_scalarh
, 2, float16
, !DO_GE16
)
3248 DO_VCMP_FP_BOTH(vfcmplts
, vfcmplt_scalars
, 4, float32
, !DO_GE32
)
3250 DO_VCMP_FP_BOTH(vfcmpgth
, vfcmpgt_scalarh
, 2, float16
, DO_GT16
)
3251 DO_VCMP_FP_BOTH(vfcmpgts
, vfcmpgt_scalars
, 4, float32
, DO_GT32
)
3253 DO_VCMP_FP_BOTH(vfcmpleh
, vfcmple_scalarh
, 2, float16
, !DO_GT16
)
3254 DO_VCMP_FP_BOTH(vfcmples
, vfcmple_scalars
, 4, float32
, !DO_GT32
)
3256 #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN) \
3257 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm, \
3260 TYPE *d = vd, *m = vm; \
3262 uint16_t mask = mve_element_mask(env); \
3264 float_status *fpst; \
3265 float_status scratch_fpst; \
3266 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3267 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
3270 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3271 &env->vfp.standard_fp_status; \
3272 if (!(mask & 1)) { \
3273 /* We need the result but without updating flags */ \
3274 scratch_fpst = *fpst; \
3275 fpst = &scratch_fpst; \
3277 r = FN(m[H##ESIZE(e)], shift, fpst); \
3278 mergemask(&d[H##ESIZE(e)], r, mask); \
3280 mve_advance_vpt(env); \
3283 DO_VCVT_FIXED(vcvt_sh
, 2, int16_t, helper_vfp_shtoh
)
3284 DO_VCVT_FIXED(vcvt_uh
, 2, uint16_t, helper_vfp_uhtoh
)
3285 DO_VCVT_FIXED(vcvt_hs
, 2, int16_t, helper_vfp_toshh_round_to_zero
)
3286 DO_VCVT_FIXED(vcvt_hu
, 2, uint16_t, helper_vfp_touhh_round_to_zero
)
3287 DO_VCVT_FIXED(vcvt_sf
, 4, int32_t, helper_vfp_sltos
)
3288 DO_VCVT_FIXED(vcvt_uf
, 4, uint32_t, helper_vfp_ultos
)
3289 DO_VCVT_FIXED(vcvt_fs
, 4, int32_t, helper_vfp_tosls_round_to_zero
)
3290 DO_VCVT_FIXED(vcvt_fu
, 4, uint32_t, helper_vfp_touls_round_to_zero
)
3292 /* VCVT with specified rmode */
3293 #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN) \
3294 void HELPER(glue(mve_, OP))(CPUARMState *env, \
3295 void *vd, void *vm, uint32_t rmode) \
3297 TYPE *d = vd, *m = vm; \
3299 uint16_t mask = mve_element_mask(env); \
3301 float_status *fpst; \
3302 float_status scratch_fpst; \
3303 float_status *base_fpst = (ESIZE == 2) ? \
3304 &env->vfp.standard_fp_status_f16 : \
3305 &env->vfp.standard_fp_status; \
3306 uint32_t prev_rmode = get_float_rounding_mode(base_fpst); \
3307 set_float_rounding_mode(rmode, base_fpst); \
3308 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3309 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
3313 if (!(mask & 1)) { \
3314 /* We need the result but without updating flags */ \
3315 scratch_fpst = *fpst; \
3316 fpst = &scratch_fpst; \
3318 r = FN(m[H##ESIZE(e)], 0, fpst); \
3319 mergemask(&d[H##ESIZE(e)], r, mask); \
3321 set_float_rounding_mode(prev_rmode, base_fpst); \
3322 mve_advance_vpt(env); \
3325 DO_VCVT_RMODE(vcvt_rm_sh
, 2, uint16_t, helper_vfp_toshh
)
3326 DO_VCVT_RMODE(vcvt_rm_uh
, 2, uint16_t, helper_vfp_touhh
)
3327 DO_VCVT_RMODE(vcvt_rm_ss
, 4, uint32_t, helper_vfp_tosls
)
3328 DO_VCVT_RMODE(vcvt_rm_us
, 4, uint32_t, helper_vfp_touls
)
3330 #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S)
3331 #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S)
3333 DO_VCVT_RMODE(vrint_rm_h
, 2, uint16_t, DO_VRINT_RM_H
)
3334 DO_VCVT_RMODE(vrint_rm_s
, 4, uint32_t, DO_VRINT_RM_S
)
3337 * VCVT between halfprec and singleprec. As usual for halfprec
3338 * conversions, FZ16 is ignored and AHP is observed.
3340 static void do_vcvt_sh(CPUARMState
*env
, void *vd
, void *vm
, int top
)
3345 uint16_t mask
= mve_element_mask(env
);
3346 bool ieee
= !(env
->vfp
.xregs
[ARM_VFP_FPSCR
] & FPCR_AHP
);
3349 float_status scratch_fpst
;
3350 float_status
*base_fpst
= &env
->vfp
.standard_fp_status
;
3351 bool old_fz
= get_flush_to_zero(base_fpst
);
3352 set_flush_to_zero(false, base_fpst
);
3353 for (e
= 0; e
< 16 / 4; e
++, mask
>>= 4) {
3354 if ((mask
& MAKE_64BIT_MASK(0, 4)) == 0) {
3359 /* We need the result but without updating flags */
3360 scratch_fpst
= *fpst
;
3361 fpst
= &scratch_fpst
;
3363 r
= float32_to_float16(m
[H4(e
)], ieee
, fpst
);
3364 mergemask(&d
[H2(e
* 2 + top
)], r
, mask
>> (top
* 2));
3366 set_flush_to_zero(old_fz
, base_fpst
);
3367 mve_advance_vpt(env
);
3370 static void do_vcvt_hs(CPUARMState
*env
, void *vd
, void *vm
, int top
)
3375 uint16_t mask
= mve_element_mask(env
);
3376 bool ieee
= !(env
->vfp
.xregs
[ARM_VFP_FPSCR
] & FPCR_AHP
);
3379 float_status scratch_fpst
;
3380 float_status
*base_fpst
= &env
->vfp
.standard_fp_status
;
3381 bool old_fiz
= get_flush_inputs_to_zero(base_fpst
);
3382 set_flush_inputs_to_zero(false, base_fpst
);
3383 for (e
= 0; e
< 16 / 4; e
++, mask
>>= 4) {
3384 if ((mask
& MAKE_64BIT_MASK(0, 4)) == 0) {
3388 if (!(mask
& (1 << (top
* 2)))) {
3389 /* We need the result but without updating flags */
3390 scratch_fpst
= *fpst
;
3391 fpst
= &scratch_fpst
;
3393 r
= float16_to_float32(m
[H2(e
* 2 + top
)], ieee
, fpst
);
3394 mergemask(&d
[H4(e
)], r
, mask
);
3396 set_flush_inputs_to_zero(old_fiz
, base_fpst
);
3397 mve_advance_vpt(env
);
3400 void HELPER(mve_vcvtb_sh
)(CPUARMState
*env
, void *vd
, void *vm
)
3402 do_vcvt_sh(env
, vd
, vm
, 0);
3404 void HELPER(mve_vcvtt_sh
)(CPUARMState
*env
, void *vd
, void *vm
)
3406 do_vcvt_sh(env
, vd
, vm
, 1);
3408 void HELPER(mve_vcvtb_hs
)(CPUARMState
*env
, void *vd
, void *vm
)
3410 do_vcvt_hs(env
, vd
, vm
, 0);
3412 void HELPER(mve_vcvtt_hs
)(CPUARMState
*env
, void *vd
, void *vm
)
3414 do_vcvt_hs(env
, vd
, vm
, 1);
3417 #define DO_1OP_FP(OP, ESIZE, TYPE, FN) \
3418 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm) \
3420 TYPE *d = vd, *m = vm; \
3422 uint16_t mask = mve_element_mask(env); \
3424 float_status *fpst; \
3425 float_status scratch_fpst; \
3426 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3427 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
3430 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3431 &env->vfp.standard_fp_status; \
3432 if (!(mask & 1)) { \
3433 /* We need the result but without updating flags */ \
3434 scratch_fpst = *fpst; \
3435 fpst = &scratch_fpst; \
3437 r = FN(m[H##ESIZE(e)], fpst); \
3438 mergemask(&d[H##ESIZE(e)], r, mask); \
3440 mve_advance_vpt(env); \
3443 DO_1OP_FP(vrintx_h
, 2, float16
, float16_round_to_int
)
3444 DO_1OP_FP(vrintx_s
, 4, float32
, float32_round_to_int
)