2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
39 #include "qom/object.h"
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
52 * This is only for non-live state being migrated.
53 * Instead of RDMA_WRITE messages, we use RDMA_SEND
54 * messages for that state, which requires a different
55 * delivery design than main memory.
57 #define RDMA_SEND_INCREMENT 32768
60 * Maximum size infiniband SEND message
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
65 #define RDMA_CONTROL_VERSION_CURRENT 1
67 * Capabilities for negotiation.
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
72 * Add the other flags above to this list of known capabilities
73 * as they are introduced.
75 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
78 * A work request ID is 64-bits and we split up these bits
81 * bits 0-15 : type of control message, 2^16
82 * bits 16-29: ram block index, 2^14
83 * bits 30-63: ram block chunk number, 2^34
85 * The last two bit ranges are only used for RDMA writes,
86 * in order to track their completion and potentially
87 * also track unregistration status of the message.
89 #define RDMA_WRID_TYPE_SHIFT 0UL
90 #define RDMA_WRID_BLOCK_SHIFT 16UL
91 #define RDMA_WRID_CHUNK_SHIFT 30UL
93 #define RDMA_WRID_TYPE_MASK \
94 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
96 #define RDMA_WRID_BLOCK_MASK \
97 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
99 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
102 * RDMA migration protocol:
103 * 1. RDMA Writes (data messages, i.e. RAM)
104 * 2. IB Send/Recv (control channel messages)
108 RDMA_WRID_RDMA_WRITE
= 1,
109 RDMA_WRID_SEND_CONTROL
= 2000,
110 RDMA_WRID_RECV_CONTROL
= 4000,
114 * Work request IDs for IB SEND messages only (not RDMA writes).
115 * This is used by the migration protocol to transmit
116 * control messages (such as device state and registration commands)
118 * We could use more WRs, but we have enough for now.
128 * SEND/RECV IB Control Messages.
131 RDMA_CONTROL_NONE
= 0,
133 RDMA_CONTROL_READY
, /* ready to receive */
134 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
135 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
136 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
137 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
138 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
139 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
140 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
141 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
142 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
147 * Memory and MR structures used to represent an IB Send/Recv work request.
148 * This is *not* used for RDMA writes, only IB Send/Recv.
151 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
152 struct ibv_mr
*control_mr
; /* registration metadata */
153 size_t control_len
; /* length of the message */
154 uint8_t *control_curr
; /* start of unconsumed bytes */
155 } RDMAWorkRequestData
;
158 * Negotiate RDMA capabilities during connection-setup time.
165 static void caps_to_network(RDMACapabilities
*cap
)
167 cap
->version
= htonl(cap
->version
);
168 cap
->flags
= htonl(cap
->flags
);
171 static void network_to_caps(RDMACapabilities
*cap
)
173 cap
->version
= ntohl(cap
->version
);
174 cap
->flags
= ntohl(cap
->flags
);
178 * Representation of a RAMBlock from an RDMA perspective.
179 * This is not transmitted, only local.
180 * This and subsequent structures cannot be linked lists
181 * because we're using a single IB message to transmit
182 * the information. It's small anyway, so a list is overkill.
184 typedef struct RDMALocalBlock
{
186 uint8_t *local_host_addr
; /* local virtual address */
187 uint64_t remote_host_addr
; /* remote virtual address */
190 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
191 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
192 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
193 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
194 int index
; /* which block are we */
195 unsigned int src_index
; /* (Only used on dest) */
198 unsigned long *transit_bitmap
;
199 unsigned long *unregister_bitmap
;
203 * Also represents a RAMblock, but only on the dest.
204 * This gets transmitted by the dest during connection-time
205 * to the source VM and then is used to populate the
206 * corresponding RDMALocalBlock with
207 * the information needed to perform the actual RDMA.
209 typedef struct QEMU_PACKED RDMADestBlock
{
210 uint64_t remote_host_addr
;
213 uint32_t remote_rkey
;
217 static const char *control_desc(unsigned int rdma_control
)
219 static const char *strs
[] = {
220 [RDMA_CONTROL_NONE
] = "NONE",
221 [RDMA_CONTROL_ERROR
] = "ERROR",
222 [RDMA_CONTROL_READY
] = "READY",
223 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
224 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
225 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
226 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
227 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
228 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
229 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
230 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
231 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
234 if (rdma_control
> RDMA_CONTROL_UNREGISTER_FINISHED
) {
235 return "??BAD CONTROL VALUE??";
238 return strs
[rdma_control
];
241 static uint64_t htonll(uint64_t v
)
243 union { uint32_t lv
[2]; uint64_t llv
; } u
;
244 u
.lv
[0] = htonl(v
>> 32);
245 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
249 static uint64_t ntohll(uint64_t v
)
251 union { uint32_t lv
[2]; uint64_t llv
; } u
;
253 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
256 static void dest_block_to_network(RDMADestBlock
*db
)
258 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
259 db
->offset
= htonll(db
->offset
);
260 db
->length
= htonll(db
->length
);
261 db
->remote_rkey
= htonl(db
->remote_rkey
);
264 static void network_to_dest_block(RDMADestBlock
*db
)
266 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
267 db
->offset
= ntohll(db
->offset
);
268 db
->length
= ntohll(db
->length
);
269 db
->remote_rkey
= ntohl(db
->remote_rkey
);
273 * Virtual address of the above structures used for transmitting
274 * the RAMBlock descriptions at connection-time.
275 * This structure is *not* transmitted.
277 typedef struct RDMALocalBlocks
{
279 bool init
; /* main memory init complete */
280 RDMALocalBlock
*block
;
284 * Main data structure for RDMA state.
285 * While there is only one copy of this structure being allocated right now,
286 * this is the place where one would start if you wanted to consider
287 * having more than one RDMA connection open at the same time.
289 typedef struct RDMAContext
{
293 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
296 * This is used by *_exchange_send() to figure out whether or not
297 * the initial "READY" message has already been received or not.
298 * This is because other functions may potentially poll() and detect
299 * the READY message before send() does, in which case we need to
300 * know if it completed.
302 int control_ready_expected
;
304 /* number of outstanding writes */
307 /* store info about current buffer so that we can
308 merge it with future sends */
309 uint64_t current_addr
;
310 uint64_t current_length
;
311 /* index of ram block the current buffer belongs to */
313 /* index of the chunk in the current ram block */
319 * infiniband-specific variables for opening the device
320 * and maintaining connection state and so forth.
322 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
323 * cm_id->verbs, cm_id->channel, and cm_id->qp.
325 struct rdma_cm_id
*cm_id
; /* connection manager ID */
326 struct rdma_cm_id
*listen_id
;
329 struct ibv_context
*verbs
;
330 struct rdma_event_channel
*channel
;
331 struct ibv_qp
*qp
; /* queue pair */
332 struct ibv_comp_channel
*recv_comp_channel
; /* recv completion channel */
333 struct ibv_comp_channel
*send_comp_channel
; /* send completion channel */
334 struct ibv_pd
*pd
; /* protection domain */
335 struct ibv_cq
*recv_cq
; /* recvieve completion queue */
336 struct ibv_cq
*send_cq
; /* send completion queue */
339 * If a previous write failed (perhaps because of a failed
340 * memory registration, then do not attempt any future work
341 * and remember the error state.
348 * Description of ram blocks used throughout the code.
350 RDMALocalBlocks local_ram_blocks
;
351 RDMADestBlock
*dest_blocks
;
353 /* Index of the next RAMBlock received during block registration */
354 unsigned int next_src_index
;
357 * Migration on *destination* started.
358 * Then use coroutine yield function.
359 * Source runs in a thread, so we don't care.
361 int migration_started_on_destination
;
363 int total_registrations
;
366 int unregister_current
, unregister_next
;
367 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
369 GHashTable
*blockmap
;
371 /* the RDMAContext for return path */
372 struct RDMAContext
*return_path
;
376 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
377 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA
, QIO_CHANNEL_RDMA
)
381 struct QIOChannelRDMA
{
384 RDMAContext
*rdmaout
;
386 bool blocking
; /* XXX we don't actually honour this yet */
390 * Main structure for IB Send/Recv control messages.
391 * This gets prepended at the beginning of every Send/Recv.
393 typedef struct QEMU_PACKED
{
394 uint32_t len
; /* Total length of data portion */
395 uint32_t type
; /* which control command to perform */
396 uint32_t repeat
; /* number of commands in data portion of same type */
400 static void control_to_network(RDMAControlHeader
*control
)
402 control
->type
= htonl(control
->type
);
403 control
->len
= htonl(control
->len
);
404 control
->repeat
= htonl(control
->repeat
);
407 static void network_to_control(RDMAControlHeader
*control
)
409 control
->type
= ntohl(control
->type
);
410 control
->len
= ntohl(control
->len
);
411 control
->repeat
= ntohl(control
->repeat
);
415 * Register a single Chunk.
416 * Information sent by the source VM to inform the dest
417 * to register an single chunk of memory before we can perform
418 * the actual RDMA operation.
420 typedef struct QEMU_PACKED
{
422 uint64_t current_addr
; /* offset into the ram_addr_t space */
423 uint64_t chunk
; /* chunk to lookup if unregistering */
425 uint32_t current_index
; /* which ramblock the chunk belongs to */
427 uint64_t chunks
; /* how many sequential chunks to register */
430 static bool rdma_errored(RDMAContext
*rdma
)
432 if (rdma
->errored
&& !rdma
->error_reported
) {
433 error_report("RDMA is in an error state waiting migration"
435 rdma
->error_reported
= true;
437 return rdma
->errored
;
440 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
442 RDMALocalBlock
*local_block
;
443 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
445 if (local_block
->is_ram_block
) {
447 * current_addr as passed in is an address in the local ram_addr_t
448 * space, we need to translate this for the destination
450 reg
->key
.current_addr
-= local_block
->offset
;
451 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
453 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
454 reg
->current_index
= htonl(reg
->current_index
);
455 reg
->chunks
= htonll(reg
->chunks
);
458 static void network_to_register(RDMARegister
*reg
)
460 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
461 reg
->current_index
= ntohl(reg
->current_index
);
462 reg
->chunks
= ntohll(reg
->chunks
);
465 typedef struct QEMU_PACKED
{
466 uint32_t value
; /* if zero, we will madvise() */
467 uint32_t block_idx
; /* which ram block index */
468 uint64_t offset
; /* Address in remote ram_addr_t space */
469 uint64_t length
; /* length of the chunk */
472 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
474 comp
->value
= htonl(comp
->value
);
476 * comp->offset as passed in is an address in the local ram_addr_t
477 * space, we need to translate this for the destination
479 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
480 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
481 comp
->block_idx
= htonl(comp
->block_idx
);
482 comp
->offset
= htonll(comp
->offset
);
483 comp
->length
= htonll(comp
->length
);
486 static void network_to_compress(RDMACompress
*comp
)
488 comp
->value
= ntohl(comp
->value
);
489 comp
->block_idx
= ntohl(comp
->block_idx
);
490 comp
->offset
= ntohll(comp
->offset
);
491 comp
->length
= ntohll(comp
->length
);
495 * The result of the dest's memory registration produces an "rkey"
496 * which the source VM must reference in order to perform
497 * the RDMA operation.
499 typedef struct QEMU_PACKED
{
503 } RDMARegisterResult
;
505 static void result_to_network(RDMARegisterResult
*result
)
507 result
->rkey
= htonl(result
->rkey
);
508 result
->host_addr
= htonll(result
->host_addr
);
511 static void network_to_result(RDMARegisterResult
*result
)
513 result
->rkey
= ntohl(result
->rkey
);
514 result
->host_addr
= ntohll(result
->host_addr
);
517 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
518 uint8_t *data
, RDMAControlHeader
*resp
,
520 int (*callback
)(RDMAContext
*rdma
,
524 static inline uint64_t ram_chunk_index(const uint8_t *start
,
527 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
530 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
533 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
534 (i
<< RDMA_REG_CHUNK_SHIFT
));
537 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
540 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
541 (1UL << RDMA_REG_CHUNK_SHIFT
);
543 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
544 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
550 static void rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
552 ram_addr_t block_offset
, uint64_t length
)
554 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
555 RDMALocalBlock
*block
;
556 RDMALocalBlock
*old
= local
->block
;
558 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
560 if (local
->nb_blocks
) {
561 if (rdma
->blockmap
) {
562 for (int x
= 0; x
< local
->nb_blocks
; x
++) {
563 g_hash_table_remove(rdma
->blockmap
,
564 (void *)(uintptr_t)old
[x
].offset
);
565 g_hash_table_insert(rdma
->blockmap
,
566 (void *)(uintptr_t)old
[x
].offset
,
570 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
574 block
= &local
->block
[local
->nb_blocks
];
576 block
->block_name
= g_strdup(block_name
);
577 block
->local_host_addr
= host_addr
;
578 block
->offset
= block_offset
;
579 block
->length
= length
;
580 block
->index
= local
->nb_blocks
;
581 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
582 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
583 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
584 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
585 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
586 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
587 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
589 block
->is_ram_block
= local
->init
? false : true;
591 if (rdma
->blockmap
) {
592 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
595 trace_rdma_add_block(block_name
, local
->nb_blocks
,
596 (uintptr_t) block
->local_host_addr
,
597 block
->offset
, block
->length
,
598 (uintptr_t) (block
->local_host_addr
+ block
->length
),
599 BITS_TO_LONGS(block
->nb_chunks
) *
600 sizeof(unsigned long) * 8,
607 * Memory regions need to be registered with the device and queue pairs setup
608 * in advanced before the migration starts. This tells us where the RAM blocks
609 * are so that we can register them individually.
611 static int qemu_rdma_init_one_block(RAMBlock
*rb
, void *opaque
)
613 const char *block_name
= qemu_ram_get_idstr(rb
);
614 void *host_addr
= qemu_ram_get_host_addr(rb
);
615 ram_addr_t block_offset
= qemu_ram_get_offset(rb
);
616 ram_addr_t length
= qemu_ram_get_used_length(rb
);
617 rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
622 * Identify the RAMBlocks and their quantity. They will be references to
623 * identify chunk boundaries inside each RAMBlock and also be referenced
624 * during dynamic page registration.
626 static void qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
628 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
631 assert(rdma
->blockmap
== NULL
);
632 memset(local
, 0, sizeof *local
);
633 ret
= foreach_not_ignored_block(qemu_rdma_init_one_block
, rdma
);
635 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
636 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
637 rdma
->local_ram_blocks
.nb_blocks
);
642 * Note: If used outside of cleanup, the caller must ensure that the destination
643 * block structures are also updated
645 static void rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
647 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
648 RDMALocalBlock
*old
= local
->block
;
650 if (rdma
->blockmap
) {
651 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
654 for (int j
= 0; j
< block
->nb_chunks
; j
++) {
655 if (!block
->pmr
[j
]) {
658 ibv_dereg_mr(block
->pmr
[j
]);
659 rdma
->total_registrations
--;
666 ibv_dereg_mr(block
->mr
);
667 rdma
->total_registrations
--;
671 g_free(block
->transit_bitmap
);
672 block
->transit_bitmap
= NULL
;
674 g_free(block
->unregister_bitmap
);
675 block
->unregister_bitmap
= NULL
;
677 g_free(block
->remote_keys
);
678 block
->remote_keys
= NULL
;
680 g_free(block
->block_name
);
681 block
->block_name
= NULL
;
683 if (rdma
->blockmap
) {
684 for (int x
= 0; x
< local
->nb_blocks
; x
++) {
685 g_hash_table_remove(rdma
->blockmap
,
686 (void *)(uintptr_t)old
[x
].offset
);
690 if (local
->nb_blocks
> 1) {
692 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
695 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
698 if (block
->index
< (local
->nb_blocks
- 1)) {
699 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
700 sizeof(RDMALocalBlock
) *
701 (local
->nb_blocks
- (block
->index
+ 1)));
702 for (int x
= block
->index
; x
< local
->nb_blocks
- 1; x
++) {
703 local
->block
[x
].index
--;
707 assert(block
== local
->block
);
711 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
712 block
->offset
, block
->length
,
713 (uintptr_t)(block
->local_host_addr
+ block
->length
),
714 BITS_TO_LONGS(block
->nb_chunks
) *
715 sizeof(unsigned long) * 8, block
->nb_chunks
);
721 if (local
->nb_blocks
&& rdma
->blockmap
) {
722 for (int x
= 0; x
< local
->nb_blocks
; x
++) {
723 g_hash_table_insert(rdma
->blockmap
,
724 (void *)(uintptr_t)local
->block
[x
].offset
,
731 * Trace RDMA device open, with device details.
733 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
735 struct ibv_port_attr port
;
737 if (ibv_query_port(verbs
, 1, &port
)) {
738 trace_qemu_rdma_dump_id_failed(who
);
742 trace_qemu_rdma_dump_id(who
,
744 verbs
->device
->dev_name
,
745 verbs
->device
->dev_path
,
746 verbs
->device
->ibdev_path
,
748 port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
? "Infiniband"
749 : port
.link_layer
== IBV_LINK_LAYER_ETHERNET
? "Ethernet"
754 * Trace RDMA gid addressing information.
755 * Useful for understanding the RDMA device hierarchy in the kernel.
757 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
761 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
762 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
763 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
767 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
768 * We will try the next addrinfo struct, and fail if there are
769 * no other valid addresses to bind against.
771 * If user is listening on '[::]', then we will not have a opened a device
772 * yet and have no way of verifying if the device is RoCE or not.
774 * In this case, the source VM will throw an error for ALL types of
775 * connections (both IPv4 and IPv6) if the destination machine does not have
776 * a regular infiniband network available for use.
778 * The only way to guarantee that an error is thrown for broken kernels is
779 * for the management software to choose a *specific* interface at bind time
780 * and validate what time of hardware it is.
782 * Unfortunately, this puts the user in a fix:
784 * If the source VM connects with an IPv4 address without knowing that the
785 * destination has bound to '[::]' the migration will unconditionally fail
786 * unless the management software is explicitly listening on the IPv4
787 * address while using a RoCE-based device.
789 * If the source VM connects with an IPv6 address, then we're OK because we can
790 * throw an error on the source (and similarly on the destination).
792 * But in mixed environments, this will be broken for a while until it is fixed
795 * We do provide a *tiny* bit of help in this function: We can list all of the
796 * devices in the system and check to see if all the devices are RoCE or
799 * If we detect that we have a *pure* RoCE environment, then we can safely
800 * thrown an error even if the management software has specified '[::]' as the
803 * However, if there is are multiple hetergeneous devices, then we cannot make
804 * this assumption and the user just has to be sure they know what they are
807 * Patches are being reviewed on linux-rdma.
809 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
811 /* This bug only exists in linux, to our knowledge. */
813 struct ibv_port_attr port_attr
;
816 * Verbs are only NULL if management has bound to '[::]'.
818 * Let's iterate through all the devices and see if there any pure IB
819 * devices (non-ethernet).
821 * If not, then we can safely proceed with the migration.
822 * Otherwise, there are no guarantees until the bug is fixed in linux.
826 struct ibv_device
**dev_list
= ibv_get_device_list(&num_devices
);
827 bool roce_found
= false;
828 bool ib_found
= false;
830 for (int x
= 0; x
< num_devices
; x
++) {
831 verbs
= ibv_open_device(dev_list
[x
]);
833 * ibv_open_device() is not documented to set errno. If
834 * it does, it's somebody else's doc bug. If it doesn't,
835 * the use of errno below is wrong.
836 * TODO Find out whether ibv_open_device() sets errno.
839 if (errno
== EPERM
) {
842 error_setg_errno(errp
, errno
,
843 "could not open RDMA device context");
848 if (ibv_query_port(verbs
, 1, &port_attr
)) {
849 ibv_close_device(verbs
);
851 "RDMA ERROR: Could not query initial IB port");
855 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
857 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
861 ibv_close_device(verbs
);
867 warn_report("migrations may fail:"
868 " IPv6 over RoCE / iWARP in linux"
869 " is broken. But since you appear to have a"
870 " mixed RoCE / IB environment, be sure to only"
871 " migrate over the IB fabric until the kernel "
874 error_setg(errp
, "RDMA ERROR: "
875 "You only have RoCE / iWARP devices in your systems"
876 " and your management software has specified '[::]'"
877 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
886 * If we have a verbs context, that means that some other than '[::]' was
887 * used by the management software for binding. In which case we can
888 * actually warn the user about a potentially broken kernel.
891 /* IB ports start with 1, not 0 */
892 if (ibv_query_port(verbs
, 1, &port_attr
)) {
893 error_setg(errp
, "RDMA ERROR: Could not query initial IB port");
897 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
898 error_setg(errp
, "RDMA ERROR: "
899 "Linux kernel's RoCE / iWARP does not support IPv6 "
900 "(but patches on linux-rdma in progress)");
910 * Figure out which RDMA device corresponds to the requested IP hostname
911 * Also create the initial connection manager identifiers for opening
914 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
918 struct rdma_addrinfo
*res
;
920 struct rdma_cm_event
*cm_event
;
921 char ip
[40] = "unknown";
923 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
924 error_setg(errp
, "RDMA ERROR: RDMA hostname has not been set");
928 /* create CM channel */
929 rdma
->channel
= rdma_create_event_channel();
930 if (!rdma
->channel
) {
931 error_setg(errp
, "RDMA ERROR: could not create CM channel");
936 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
938 error_setg(errp
, "RDMA ERROR: could not create channel id");
939 goto err_resolve_create_id
;
942 snprintf(port_str
, 16, "%d", rdma
->port
);
945 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
947 error_setg(errp
, "RDMA ERROR: could not rdma_getaddrinfo address %s",
949 goto err_resolve_get_addr
;
952 /* Try all addresses, saving the first error in @err */
953 for (struct rdma_addrinfo
*e
= res
; e
!= NULL
; e
= e
->ai_next
) {
954 Error
**local_errp
= err
? NULL
: &err
;
956 inet_ntop(e
->ai_family
,
957 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
958 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
960 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
961 RDMA_RESOLVE_TIMEOUT_MS
);
963 if (e
->ai_family
== AF_INET6
) {
964 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
,
975 rdma_freeaddrinfo(res
);
977 error_propagate(errp
, err
);
979 error_setg(errp
, "RDMA ERROR: could not resolve address %s",
982 goto err_resolve_get_addr
;
985 rdma_freeaddrinfo(res
);
986 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
988 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
990 error_setg(errp
, "RDMA ERROR: could not perform event_addr_resolved");
991 goto err_resolve_get_addr
;
994 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
996 "RDMA ERROR: result not equal to event_addr_resolved %s",
997 rdma_event_str(cm_event
->event
));
998 rdma_ack_cm_event(cm_event
);
999 goto err_resolve_get_addr
;
1001 rdma_ack_cm_event(cm_event
);
1004 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
1006 error_setg(errp
, "RDMA ERROR: could not resolve rdma route");
1007 goto err_resolve_get_addr
;
1010 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
1012 error_setg(errp
, "RDMA ERROR: could not perform event_route_resolved");
1013 goto err_resolve_get_addr
;
1015 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
1016 error_setg(errp
, "RDMA ERROR: "
1017 "result not equal to event_route_resolved: %s",
1018 rdma_event_str(cm_event
->event
));
1019 rdma_ack_cm_event(cm_event
);
1020 goto err_resolve_get_addr
;
1022 rdma_ack_cm_event(cm_event
);
1023 rdma
->verbs
= rdma
->cm_id
->verbs
;
1024 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1025 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1028 err_resolve_get_addr
:
1029 rdma_destroy_id(rdma
->cm_id
);
1031 err_resolve_create_id
:
1032 rdma_destroy_event_channel(rdma
->channel
);
1033 rdma
->channel
= NULL
;
1038 * Create protection domain and completion queues
1040 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
, Error
**errp
)
1043 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1045 error_setg(errp
, "failed to allocate protection domain");
1049 /* create receive completion channel */
1050 rdma
->recv_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1051 if (!rdma
->recv_comp_channel
) {
1052 error_setg(errp
, "failed to allocate receive completion channel");
1053 goto err_alloc_pd_cq
;
1057 * Completion queue can be filled by read work requests.
1059 rdma
->recv_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1060 NULL
, rdma
->recv_comp_channel
, 0);
1061 if (!rdma
->recv_cq
) {
1062 error_setg(errp
, "failed to allocate receive completion queue");
1063 goto err_alloc_pd_cq
;
1066 /* create send completion channel */
1067 rdma
->send_comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1068 if (!rdma
->send_comp_channel
) {
1069 error_setg(errp
, "failed to allocate send completion channel");
1070 goto err_alloc_pd_cq
;
1073 rdma
->send_cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1074 NULL
, rdma
->send_comp_channel
, 0);
1075 if (!rdma
->send_cq
) {
1076 error_setg(errp
, "failed to allocate send completion queue");
1077 goto err_alloc_pd_cq
;
1084 ibv_dealloc_pd(rdma
->pd
);
1086 if (rdma
->recv_comp_channel
) {
1087 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
1089 if (rdma
->send_comp_channel
) {
1090 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
1092 if (rdma
->recv_cq
) {
1093 ibv_destroy_cq(rdma
->recv_cq
);
1094 rdma
->recv_cq
= NULL
;
1097 rdma
->recv_comp_channel
= NULL
;
1098 rdma
->send_comp_channel
= NULL
;
1104 * Create queue pairs.
1106 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1108 struct ibv_qp_init_attr attr
= { 0 };
1110 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1111 attr
.cap
.max_recv_wr
= 3;
1112 attr
.cap
.max_send_sge
= 1;
1113 attr
.cap
.max_recv_sge
= 1;
1114 attr
.send_cq
= rdma
->send_cq
;
1115 attr
.recv_cq
= rdma
->recv_cq
;
1116 attr
.qp_type
= IBV_QPT_RC
;
1118 if (rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
) < 0) {
1122 rdma
->qp
= rdma
->cm_id
->qp
;
1126 /* Check whether On-Demand Paging is supported by RDAM device */
1127 static bool rdma_support_odp(struct ibv_context
*dev
)
1129 struct ibv_device_attr_ex attr
= {0};
1131 if (ibv_query_device_ex(dev
, NULL
, &attr
)) {
1135 if (attr
.odp_caps
.general_caps
& IBV_ODP_SUPPORT
) {
1143 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1144 * The responder mr registering with ODP will sent RNR NAK back to
1145 * the requester in the face of the page fault.
1147 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd
*pd
, uint64_t addr
,
1148 uint32_t len
, uint32_t lkey
,
1149 const char *name
, bool wr
)
1151 #ifdef HAVE_IBV_ADVISE_MR
1153 int advice
= wr
? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE
:
1154 IBV_ADVISE_MR_ADVICE_PREFETCH
;
1155 struct ibv_sge sg_list
= {.lkey
= lkey
, .addr
= addr
, .length
= len
};
1157 ret
= ibv_advise_mr(pd
, advice
,
1158 IBV_ADVISE_MR_FLAG_FLUSH
, &sg_list
, 1);
1159 /* ignore the error */
1160 trace_qemu_rdma_advise_mr(name
, len
, addr
, strerror(ret
));
1164 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
, Error
**errp
)
1167 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1169 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1170 int access
= IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
;
1172 local
->block
[i
].mr
=
1173 ibv_reg_mr(rdma
->pd
,
1174 local
->block
[i
].local_host_addr
,
1175 local
->block
[i
].length
, access
1178 * ibv_reg_mr() is not documented to set errno. If it does,
1179 * it's somebody else's doc bug. If it doesn't, the use of
1180 * errno below is wrong.
1181 * TODO Find out whether ibv_reg_mr() sets errno.
1183 if (!local
->block
[i
].mr
&&
1184 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1185 access
|= IBV_ACCESS_ON_DEMAND
;
1186 /* register ODP mr */
1187 local
->block
[i
].mr
=
1188 ibv_reg_mr(rdma
->pd
,
1189 local
->block
[i
].local_host_addr
,
1190 local
->block
[i
].length
, access
);
1191 trace_qemu_rdma_register_odp_mr(local
->block
[i
].block_name
);
1193 if (local
->block
[i
].mr
) {
1194 qemu_rdma_advise_prefetch_mr(rdma
->pd
,
1195 (uintptr_t)local
->block
[i
].local_host_addr
,
1196 local
->block
[i
].length
,
1197 local
->block
[i
].mr
->lkey
,
1198 local
->block
[i
].block_name
,
1203 if (!local
->block
[i
].mr
) {
1204 error_setg_errno(errp
, errno
,
1205 "Failed to register local dest ram block!");
1208 rdma
->total_registrations
++;
1214 for (i
--; i
>= 0; i
--) {
1215 ibv_dereg_mr(local
->block
[i
].mr
);
1216 local
->block
[i
].mr
= NULL
;
1217 rdma
->total_registrations
--;
1225 * Find the ram block that corresponds to the page requested to be
1226 * transmitted by QEMU.
1228 * Once the block is found, also identify which 'chunk' within that
1229 * block that the page belongs to.
1231 static void qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1232 uintptr_t block_offset
,
1235 uint64_t *block_index
,
1236 uint64_t *chunk_index
)
1238 uint64_t current_addr
= block_offset
+ offset
;
1239 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1240 (void *) block_offset
);
1242 assert(current_addr
>= block
->offset
);
1243 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1245 *block_index
= block
->index
;
1246 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1247 block
->local_host_addr
+ (current_addr
- block
->offset
));
1251 * Register a chunk with IB. If the chunk was already registered
1252 * previously, then skip.
1254 * Also return the keys associated with the registration needed
1255 * to perform the actual RDMA operation.
1257 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1258 RDMALocalBlock
*block
, uintptr_t host_addr
,
1259 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1260 uint8_t *chunk_start
, uint8_t *chunk_end
)
1264 *lkey
= block
->mr
->lkey
;
1267 *rkey
= block
->mr
->rkey
;
1272 /* allocate memory to store chunk MRs */
1274 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1278 * If 'rkey', then we're the destination, so grant access to the source.
1280 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1282 if (!block
->pmr
[chunk
]) {
1283 uint64_t len
= chunk_end
- chunk_start
;
1284 int access
= rkey
? IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
:
1287 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1289 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1291 * ibv_reg_mr() is not documented to set errno. If it does,
1292 * it's somebody else's doc bug. If it doesn't, the use of
1293 * errno below is wrong.
1294 * TODO Find out whether ibv_reg_mr() sets errno.
1296 if (!block
->pmr
[chunk
] &&
1297 errno
== ENOTSUP
&& rdma_support_odp(rdma
->verbs
)) {
1298 access
|= IBV_ACCESS_ON_DEMAND
;
1299 /* register ODP mr */
1300 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
, chunk_start
, len
, access
);
1301 trace_qemu_rdma_register_odp_mr(block
->block_name
);
1303 if (block
->pmr
[chunk
]) {
1304 qemu_rdma_advise_prefetch_mr(rdma
->pd
, (uintptr_t)chunk_start
,
1305 len
, block
->pmr
[chunk
]->lkey
,
1306 block
->block_name
, rkey
);
1311 if (!block
->pmr
[chunk
]) {
1314 rdma
->total_registrations
++;
1317 *lkey
= block
->pmr
[chunk
]->lkey
;
1320 *rkey
= block
->pmr
[chunk
]->rkey
;
1326 * Register (at connection time) the memory used for control
1329 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1331 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1332 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1333 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1334 if (rdma
->wr_data
[idx
].control_mr
) {
1335 rdma
->total_registrations
++;
1342 * Perform a non-optimized memory unregistration after every transfer
1343 * for demonstration purposes, only if pin-all is not requested.
1345 * Potential optimizations:
1346 * 1. Start a new thread to run this function continuously
1348 - and for receipt of unregister messages
1350 * 3. Use workload hints.
1352 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1356 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1358 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1360 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1362 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1363 RDMALocalBlock
*block
=
1364 &(rdma
->local_ram_blocks
.block
[index
]);
1365 RDMARegister reg
= { .current_index
= index
};
1366 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1368 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1369 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1373 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1374 rdma
->unregister_current
);
1376 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1377 rdma
->unregister_current
++;
1379 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1380 rdma
->unregister_current
= 0;
1385 * Unregistration is speculative (because migration is single-threaded
1386 * and we cannot break the protocol's inifinband message ordering).
1387 * Thus, if the memory is currently being used for transmission,
1388 * then abort the attempt to unregister and try again
1389 * later the next time a completion is received for this memory.
1391 clear_bit(chunk
, block
->unregister_bitmap
);
1393 if (test_bit(chunk
, block
->transit_bitmap
)) {
1394 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1398 trace_qemu_rdma_unregister_waiting_send(chunk
);
1400 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1401 block
->pmr
[chunk
] = NULL
;
1402 block
->remote_keys
[chunk
] = 0;
1405 error_report("unregistration chunk failed: %s",
1409 rdma
->total_registrations
--;
1411 reg
.key
.chunk
= chunk
;
1412 register_to_network(rdma
, ®
);
1413 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1414 &resp
, NULL
, NULL
, &err
);
1416 error_report_err(err
);
1420 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1426 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1429 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1431 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1432 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1438 * Consult the connection manager to see a work request
1439 * (of any kind) has completed.
1440 * Return the work request ID that completed.
1442 static int qemu_rdma_poll(RDMAContext
*rdma
, struct ibv_cq
*cq
,
1443 uint64_t *wr_id_out
, uint32_t *byte_len
)
1449 ret
= ibv_poll_cq(cq
, 1, &wc
);
1452 *wr_id_out
= RDMA_WRID_NONE
;
1460 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1462 if (wc
.status
!= IBV_WC_SUCCESS
) {
1466 if (rdma
->control_ready_expected
&&
1467 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1468 trace_qemu_rdma_poll_recv(wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
,
1470 rdma
->control_ready_expected
= 0;
1473 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1475 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1477 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1478 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1480 trace_qemu_rdma_poll_write(wr_id
, rdma
->nb_sent
,
1481 index
, chunk
, block
->local_host_addr
,
1482 (void *)(uintptr_t)block
->remote_host_addr
);
1484 clear_bit(chunk
, block
->transit_bitmap
);
1486 if (rdma
->nb_sent
> 0) {
1490 trace_qemu_rdma_poll_other(wr_id
, rdma
->nb_sent
);
1493 *wr_id_out
= wc
.wr_id
;
1495 *byte_len
= wc
.byte_len
;
1501 /* Wait for activity on the completion channel.
1502 * Returns 0 on success, none-0 on error.
1504 static int qemu_rdma_wait_comp_channel(RDMAContext
*rdma
,
1505 struct ibv_comp_channel
*comp_channel
)
1507 struct rdma_cm_event
*cm_event
;
1510 * Coroutine doesn't start until migration_fd_process_incoming()
1511 * so don't yield unless we know we're running inside of a coroutine.
1513 if (rdma
->migration_started_on_destination
&&
1514 migration_incoming_get_current()->state
== MIGRATION_STATUS_ACTIVE
) {
1515 yield_until_fd_readable(comp_channel
->fd
);
1517 /* This is the source side, we're in a separate thread
1518 * or destination prior to migration_fd_process_incoming()
1519 * after postcopy, the destination also in a separate thread.
1520 * we can't yield; so we have to poll the fd.
1521 * But we need to be able to handle 'cancel' or an error
1522 * without hanging forever.
1524 while (!rdma
->errored
&& !rdma
->received_error
) {
1526 pfds
[0].fd
= comp_channel
->fd
;
1527 pfds
[0].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1528 pfds
[0].revents
= 0;
1530 pfds
[1].fd
= rdma
->channel
->fd
;
1531 pfds
[1].events
= G_IO_IN
| G_IO_HUP
| G_IO_ERR
;
1532 pfds
[1].revents
= 0;
1534 /* 0.1s timeout, should be fine for a 'cancel' */
1535 switch (qemu_poll_ns(pfds
, 2, 100 * 1000 * 1000)) {
1537 case 1: /* fd active */
1538 if (pfds
[0].revents
) {
1542 if (pfds
[1].revents
) {
1543 if (rdma_get_cm_event(rdma
->channel
, &cm_event
) < 0) {
1547 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
1548 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
1549 rdma_ack_cm_event(cm_event
);
1552 rdma_ack_cm_event(cm_event
);
1556 case 0: /* Timeout, go around again */
1559 default: /* Error of some type -
1560 * I don't trust errno from qemu_poll_ns
1565 if (migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) {
1566 /* Bail out and let the cancellation happen */
1572 if (rdma
->received_error
) {
1575 return -rdma
->errored
;
1578 static struct ibv_comp_channel
*to_channel(RDMAContext
*rdma
, uint64_t wrid
)
1580 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_comp_channel
:
1581 rdma
->recv_comp_channel
;
1584 static struct ibv_cq
*to_cq(RDMAContext
*rdma
, uint64_t wrid
)
1586 return wrid
< RDMA_WRID_RECV_CONTROL
? rdma
->send_cq
: rdma
->recv_cq
;
1590 * Block until the next work request has completed.
1592 * First poll to see if a work request has already completed,
1595 * If we encounter completed work requests for IDs other than
1596 * the one we're interested in, then that's generally an error.
1598 * The only exception is actual RDMA Write completions. These
1599 * completions only need to be recorded, but do not actually
1600 * need further processing.
1602 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
,
1603 uint64_t wrid_requested
,
1606 int num_cq_events
= 0, ret
;
1609 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1610 struct ibv_comp_channel
*ch
= to_channel(rdma
, wrid_requested
);
1611 struct ibv_cq
*poll_cq
= to_cq(rdma
, wrid_requested
);
1613 if (ibv_req_notify_cq(poll_cq
, 0)) {
1617 while (wr_id
!= wrid_requested
) {
1618 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1623 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1625 if (wr_id
== RDMA_WRID_NONE
) {
1628 if (wr_id
!= wrid_requested
) {
1629 trace_qemu_rdma_block_for_wrid_miss(wrid_requested
, wr_id
);
1633 if (wr_id
== wrid_requested
) {
1638 ret
= qemu_rdma_wait_comp_channel(rdma
, ch
);
1640 goto err_block_for_wrid
;
1643 ret
= ibv_get_cq_event(ch
, &cq
, &cq_ctx
);
1645 goto err_block_for_wrid
;
1650 if (ibv_req_notify_cq(cq
, 0)) {
1651 goto err_block_for_wrid
;
1654 while (wr_id
!= wrid_requested
) {
1655 ret
= qemu_rdma_poll(rdma
, poll_cq
, &wr_id_in
, byte_len
);
1657 goto err_block_for_wrid
;
1660 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1662 if (wr_id
== RDMA_WRID_NONE
) {
1665 if (wr_id
!= wrid_requested
) {
1666 trace_qemu_rdma_block_for_wrid_miss(wrid_requested
, wr_id
);
1670 if (wr_id
== wrid_requested
) {
1671 goto success_block_for_wrid
;
1675 success_block_for_wrid
:
1676 if (num_cq_events
) {
1677 ibv_ack_cq_events(cq
, num_cq_events
);
1682 if (num_cq_events
) {
1683 ibv_ack_cq_events(cq
, num_cq_events
);
1686 rdma
->errored
= true;
1691 * Post a SEND message work request for the control channel
1692 * containing some data and block until the post completes.
1694 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1695 RDMAControlHeader
*head
,
1699 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1700 struct ibv_send_wr
*bad_wr
;
1701 struct ibv_sge sge
= {
1702 .addr
= (uintptr_t)(wr
->control
),
1703 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1704 .lkey
= wr
->control_mr
->lkey
,
1706 struct ibv_send_wr send_wr
= {
1707 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1708 .opcode
= IBV_WR_SEND
,
1709 .send_flags
= IBV_SEND_SIGNALED
,
1714 trace_qemu_rdma_post_send_control(control_desc(head
->type
));
1717 * We don't actually need to do a memcpy() in here if we used
1718 * the "sge" properly, but since we're only sending control messages
1719 * (not RAM in a performance-critical path), then its OK for now.
1721 * The copy makes the RDMAControlHeader simpler to manipulate
1722 * for the time being.
1724 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1725 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1726 control_to_network((void *) wr
->control
);
1729 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1733 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1736 error_setg(errp
, "Failed to use post IB SEND for control");
1740 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1742 error_setg(errp
, "rdma migration: send polling control error");
1750 * Post a RECV work request in anticipation of some future receipt
1751 * of data on the control channel.
1753 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
,
1756 struct ibv_recv_wr
*bad_wr
;
1757 struct ibv_sge sge
= {
1758 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1759 .length
= RDMA_CONTROL_MAX_BUFFER
,
1760 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1763 struct ibv_recv_wr recv_wr
= {
1764 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1770 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1771 error_setg(errp
, "error posting control recv");
1779 * Block and wait for a RECV control channel message to arrive.
1781 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1782 RDMAControlHeader
*head
, uint32_t expecting
, int idx
,
1786 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1790 error_setg(errp
, "rdma migration: recv polling control error!");
1794 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1795 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1797 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting
));
1799 if (expecting
== RDMA_CONTROL_NONE
) {
1800 trace_qemu_rdma_exchange_get_response_none(control_desc(head
->type
),
1802 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1803 error_setg(errp
, "Was expecting a %s (%d) control message"
1804 ", but got: %s (%d), length: %d",
1805 control_desc(expecting
), expecting
,
1806 control_desc(head
->type
), head
->type
, head
->len
);
1807 if (head
->type
== RDMA_CONTROL_ERROR
) {
1808 rdma
->received_error
= true;
1812 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1813 error_setg(errp
, "too long length: %d", head
->len
);
1816 if (sizeof(*head
) + head
->len
!= byte_len
) {
1817 error_setg(errp
, "Malformed length: %d byte_len %d",
1818 head
->len
, byte_len
);
1826 * When a RECV work request has completed, the work request's
1827 * buffer is pointed at the header.
1829 * This will advance the pointer to the data portion
1830 * of the control message of the work request's buffer that
1831 * was populated after the work request finished.
1833 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1834 RDMAControlHeader
*head
)
1836 rdma
->wr_data
[idx
].control_len
= head
->len
;
1837 rdma
->wr_data
[idx
].control_curr
=
1838 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1842 * This is an 'atomic' high-level operation to deliver a single, unified
1843 * control-channel message.
1845 * Additionally, if the user is expecting some kind of reply to this message,
1846 * they can request a 'resp' response message be filled in by posting an
1847 * additional work request on behalf of the user and waiting for an additional
1850 * The extra (optional) response is used during registration to us from having
1851 * to perform an *additional* exchange of message just to provide a response by
1852 * instead piggy-backing on the acknowledgement.
1854 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1855 uint8_t *data
, RDMAControlHeader
*resp
,
1857 int (*callback
)(RDMAContext
*rdma
,
1864 * Wait until the dest is ready before attempting to deliver the message
1865 * by waiting for a READY message.
1867 if (rdma
->control_ready_expected
) {
1868 RDMAControlHeader resp_ignored
;
1870 ret
= qemu_rdma_exchange_get_response(rdma
, &resp_ignored
,
1872 RDMA_WRID_READY
, errp
);
1879 * If the user is expecting a response, post a WR in anticipation of it.
1882 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
, errp
);
1889 * Post a WR to replace the one we just consumed for the READY message.
1891 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
1897 * Deliver the control message that was requested.
1899 ret
= qemu_rdma_post_send_control(rdma
, data
, head
, errp
);
1906 * If we're expecting a response, block and wait for it.
1910 trace_qemu_rdma_exchange_send_issue_callback();
1911 ret
= callback(rdma
, errp
);
1917 trace_qemu_rdma_exchange_send_waiting(control_desc(resp
->type
));
1918 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1919 resp
->type
, RDMA_WRID_DATA
,
1926 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1928 *resp_idx
= RDMA_WRID_DATA
;
1930 trace_qemu_rdma_exchange_send_received(control_desc(resp
->type
));
1933 rdma
->control_ready_expected
= 1;
1939 * This is an 'atomic' high-level operation to receive a single, unified
1940 * control-channel message.
1942 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1943 uint32_t expecting
, Error
**errp
)
1945 RDMAControlHeader ready
= {
1947 .type
= RDMA_CONTROL_READY
,
1953 * Inform the source that we're ready to receive a message.
1955 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
, errp
);
1962 * Block and wait for the message.
1964 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1965 expecting
, RDMA_WRID_READY
, errp
);
1971 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1974 * Post a new RECV work request to replace the one we just consumed.
1976 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
1985 * Write an actual chunk of memory using RDMA.
1987 * If we're using dynamic registration on the dest-side, we have to
1988 * send a registration command first.
1990 static int qemu_rdma_write_one(RDMAContext
*rdma
,
1991 int current_index
, uint64_t current_addr
,
1992 uint64_t length
, Error
**errp
)
1995 struct ibv_send_wr send_wr
= { 0 };
1996 struct ibv_send_wr
*bad_wr
;
1997 int reg_result_idx
, ret
, count
= 0;
1998 uint64_t chunk
, chunks
;
1999 uint8_t *chunk_start
, *chunk_end
;
2000 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
2002 RDMARegisterResult
*reg_result
;
2003 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
2004 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
2005 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
2010 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
2011 (current_addr
- block
->offset
));
2012 sge
.length
= length
;
2014 chunk
= ram_chunk_index(block
->local_host_addr
,
2015 (uint8_t *)(uintptr_t)sge
.addr
);
2016 chunk_start
= ram_chunk_start(block
, chunk
);
2018 if (block
->is_ram_block
) {
2019 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2021 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2025 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
2027 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
2032 trace_qemu_rdma_write_one_top(chunks
+ 1,
2034 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
2036 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
2039 while (test_bit(chunk
, block
->transit_bitmap
)) {
2041 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
2042 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
2044 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2047 error_setg(errp
, "Failed to Wait for previous write to complete "
2048 "block %d chunk %" PRIu64
2049 " current %" PRIu64
" len %" PRIu64
" %d",
2050 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
2055 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
2056 if (!block
->remote_keys
[chunk
]) {
2058 * This chunk has not yet been registered, so first check to see
2059 * if the entire chunk is zero. If so, tell the other size to
2060 * memset() + madvise() the entire chunk without RDMA.
2063 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
2064 RDMACompress comp
= {
2065 .offset
= current_addr
,
2067 .block_idx
= current_index
,
2071 head
.len
= sizeof(comp
);
2072 head
.type
= RDMA_CONTROL_COMPRESS
;
2074 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
2075 current_index
, current_addr
);
2077 compress_to_network(rdma
, &comp
);
2078 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2079 (uint8_t *) &comp
, NULL
, NULL
, NULL
, errp
);
2086 * TODO: Here we are sending something, but we are not
2087 * accounting for anything transferred. The following is wrong:
2089 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2091 * because we are using some kind of compression. I
2092 * would think that head.len would be the more similar
2093 * thing to a correct value.
2095 stat64_add(&mig_stats
.zero_pages
,
2096 sge
.length
/ qemu_target_page_size());
2101 * Otherwise, tell other side to register.
2103 reg
.current_index
= current_index
;
2104 if (block
->is_ram_block
) {
2105 reg
.key
.current_addr
= current_addr
;
2107 reg
.key
.chunk
= chunk
;
2109 reg
.chunks
= chunks
;
2111 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
2114 register_to_network(rdma
, ®
);
2115 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
2116 &resp
, ®_result_idx
, NULL
, errp
);
2121 /* try to overlap this single registration with the one we sent. */
2122 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2123 &sge
.lkey
, NULL
, chunk
,
2124 chunk_start
, chunk_end
)) {
2125 error_setg(errp
, "cannot get lkey");
2129 reg_result
= (RDMARegisterResult
*)
2130 rdma
->wr_data
[reg_result_idx
].control_curr
;
2132 network_to_result(reg_result
);
2134 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2135 reg_result
->rkey
, chunk
);
2137 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2138 block
->remote_host_addr
= reg_result
->host_addr
;
2140 /* already registered before */
2141 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2142 &sge
.lkey
, NULL
, chunk
,
2143 chunk_start
, chunk_end
)) {
2144 error_setg(errp
, "cannot get lkey!");
2149 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2151 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2153 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2154 &sge
.lkey
, NULL
, chunk
,
2155 chunk_start
, chunk_end
)) {
2156 error_setg(errp
, "cannot get lkey!");
2162 * Encode the ram block index and chunk within this wrid.
2163 * We will use this information at the time of completion
2164 * to figure out which bitmap to check against and then which
2165 * chunk in the bitmap to look for.
2167 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2168 current_index
, chunk
);
2170 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2171 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2172 send_wr
.sg_list
= &sge
;
2173 send_wr
.num_sge
= 1;
2174 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2175 (current_addr
- block
->offset
);
2177 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2181 * ibv_post_send() does not return negative error numbers,
2182 * per the specification they are positive - no idea why.
2184 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2186 if (ret
== ENOMEM
) {
2187 trace_qemu_rdma_write_one_queue_full();
2188 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2190 error_setg(errp
, "rdma migration: failed to make "
2191 "room in full send queue!");
2197 } else if (ret
> 0) {
2198 error_setg_errno(errp
, ret
,
2199 "rdma migration: post rdma write failed");
2203 set_bit(chunk
, block
->transit_bitmap
);
2204 stat64_add(&mig_stats
.normal_pages
, sge
.length
/ qemu_target_page_size());
2206 * We are adding to transferred the amount of data written, but no
2207 * overhead at all. I will assume that RDMA is magicaly and don't
2208 * need to transfer (at least) the addresses where it wants to
2209 * write the pages. Here it looks like it should be something
2211 * sizeof(send_wr) + sge.length
2212 * but this being RDMA, who knows.
2214 stat64_add(&mig_stats
.rdma_bytes
, sge
.length
);
2215 ram_transferred_add(sge
.length
);
2216 rdma
->total_writes
++;
2222 * Push out any unwritten RDMA operations.
2224 * We support sending out multiple chunks at the same time.
2225 * Not all of them need to get signaled in the completion queue.
2227 static int qemu_rdma_write_flush(RDMAContext
*rdma
, Error
**errp
)
2231 if (!rdma
->current_length
) {
2235 ret
= qemu_rdma_write_one(rdma
, rdma
->current_index
, rdma
->current_addr
,
2236 rdma
->current_length
, errp
);
2244 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2247 rdma
->current_length
= 0;
2248 rdma
->current_addr
= 0;
2253 static inline bool qemu_rdma_buffer_mergeable(RDMAContext
*rdma
,
2254 uint64_t offset
, uint64_t len
)
2256 RDMALocalBlock
*block
;
2260 if (rdma
->current_index
< 0) {
2264 if (rdma
->current_chunk
< 0) {
2268 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2269 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2270 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2272 if (rdma
->current_length
== 0) {
2277 * Only merge into chunk sequentially.
2279 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2283 if (offset
< block
->offset
) {
2287 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2291 if ((host_addr
+ len
) > chunk_end
) {
2299 * We're not actually writing here, but doing three things:
2301 * 1. Identify the chunk the buffer belongs to.
2302 * 2. If the chunk is full or the buffer doesn't belong to the current
2303 * chunk, then start a new chunk and flush() the old chunk.
2304 * 3. To keep the hardware busy, we also group chunks into batches
2305 * and only require that a batch gets acknowledged in the completion
2306 * queue instead of each individual chunk.
2308 static int qemu_rdma_write(RDMAContext
*rdma
,
2309 uint64_t block_offset
, uint64_t offset
,
2310 uint64_t len
, Error
**errp
)
2312 uint64_t current_addr
= block_offset
+ offset
;
2313 uint64_t index
= rdma
->current_index
;
2314 uint64_t chunk
= rdma
->current_chunk
;
2316 /* If we cannot merge it, we flush the current buffer first. */
2317 if (!qemu_rdma_buffer_mergeable(rdma
, current_addr
, len
)) {
2318 if (qemu_rdma_write_flush(rdma
, errp
) < 0) {
2321 rdma
->current_length
= 0;
2322 rdma
->current_addr
= current_addr
;
2324 qemu_rdma_search_ram_block(rdma
, block_offset
,
2325 offset
, len
, &index
, &chunk
);
2326 rdma
->current_index
= index
;
2327 rdma
->current_chunk
= chunk
;
2331 rdma
->current_length
+= len
;
2333 /* flush it if buffer is too large */
2334 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2335 return qemu_rdma_write_flush(rdma
, errp
);
2341 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2345 if (rdma
->cm_id
&& rdma
->connected
) {
2346 if ((rdma
->errored
||
2347 migrate_get_current()->state
== MIGRATION_STATUS_CANCELLING
) &&
2348 !rdma
->received_error
) {
2349 RDMAControlHeader head
= { .len
= 0,
2350 .type
= RDMA_CONTROL_ERROR
,
2353 warn_report("Early error. Sending error.");
2354 if (qemu_rdma_post_send_control(rdma
, NULL
, &head
, &err
) < 0) {
2355 warn_report_err(err
);
2359 rdma_disconnect(rdma
->cm_id
);
2360 trace_qemu_rdma_cleanup_disconnect();
2361 rdma
->connected
= false;
2364 if (rdma
->channel
) {
2365 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
2367 g_free(rdma
->dest_blocks
);
2368 rdma
->dest_blocks
= NULL
;
2370 for (int i
= 0; i
< RDMA_WRID_MAX
; i
++) {
2371 if (rdma
->wr_data
[i
].control_mr
) {
2372 rdma
->total_registrations
--;
2373 ibv_dereg_mr(rdma
->wr_data
[i
].control_mr
);
2375 rdma
->wr_data
[i
].control_mr
= NULL
;
2378 if (rdma
->local_ram_blocks
.block
) {
2379 while (rdma
->local_ram_blocks
.nb_blocks
) {
2380 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2385 rdma_destroy_qp(rdma
->cm_id
);
2388 if (rdma
->recv_cq
) {
2389 ibv_destroy_cq(rdma
->recv_cq
);
2390 rdma
->recv_cq
= NULL
;
2392 if (rdma
->send_cq
) {
2393 ibv_destroy_cq(rdma
->send_cq
);
2394 rdma
->send_cq
= NULL
;
2396 if (rdma
->recv_comp_channel
) {
2397 ibv_destroy_comp_channel(rdma
->recv_comp_channel
);
2398 rdma
->recv_comp_channel
= NULL
;
2400 if (rdma
->send_comp_channel
) {
2401 ibv_destroy_comp_channel(rdma
->send_comp_channel
);
2402 rdma
->send_comp_channel
= NULL
;
2405 ibv_dealloc_pd(rdma
->pd
);
2409 rdma_destroy_id(rdma
->cm_id
);
2413 /* the destination side, listen_id and channel is shared */
2414 if (rdma
->listen_id
) {
2415 if (!rdma
->is_return_path
) {
2416 rdma_destroy_id(rdma
->listen_id
);
2418 rdma
->listen_id
= NULL
;
2420 if (rdma
->channel
) {
2421 if (!rdma
->is_return_path
) {
2422 rdma_destroy_event_channel(rdma
->channel
);
2424 rdma
->channel
= NULL
;
2428 if (rdma
->channel
) {
2429 rdma_destroy_event_channel(rdma
->channel
);
2430 rdma
->channel
= NULL
;
2437 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2442 * Will be validated against destination's actual capabilities
2443 * after the connect() completes.
2445 rdma
->pin_all
= pin_all
;
2447 ret
= qemu_rdma_resolve_host(rdma
, errp
);
2449 goto err_rdma_source_init
;
2452 ret
= qemu_rdma_alloc_pd_cq(rdma
, errp
);
2454 goto err_rdma_source_init
;
2457 ret
= qemu_rdma_alloc_qp(rdma
);
2459 error_setg(errp
, "RDMA ERROR: rdma migration: error allocating qp!");
2460 goto err_rdma_source_init
;
2463 qemu_rdma_init_ram_blocks(rdma
);
2465 /* Build the hash that maps from offset to RAMBlock */
2466 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2467 for (int i
= 0; i
< rdma
->local_ram_blocks
.nb_blocks
; i
++) {
2468 g_hash_table_insert(rdma
->blockmap
,
2469 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[i
].offset
,
2470 &rdma
->local_ram_blocks
.block
[i
]);
2473 for (int i
= 0; i
< RDMA_WRID_MAX
; i
++) {
2474 ret
= qemu_rdma_reg_control(rdma
, i
);
2476 error_setg(errp
, "RDMA ERROR: rdma migration: error "
2477 "registering %d control!", i
);
2478 goto err_rdma_source_init
;
2484 err_rdma_source_init
:
2485 qemu_rdma_cleanup(rdma
);
2489 static int qemu_get_cm_event_timeout(RDMAContext
*rdma
,
2490 struct rdma_cm_event
**cm_event
,
2491 long msec
, Error
**errp
)
2494 struct pollfd poll_fd
= {
2495 .fd
= rdma
->channel
->fd
,
2501 ret
= poll(&poll_fd
, 1, msec
);
2502 } while (ret
< 0 && errno
== EINTR
);
2505 error_setg(errp
, "RDMA ERROR: poll cm event timeout");
2507 } else if (ret
< 0) {
2508 error_setg(errp
, "RDMA ERROR: failed to poll cm event, errno=%i",
2511 } else if (poll_fd
.revents
& POLLIN
) {
2512 if (rdma_get_cm_event(rdma
->channel
, cm_event
) < 0) {
2513 error_setg(errp
, "RDMA ERROR: failed to get cm event");
2518 error_setg(errp
, "RDMA ERROR: no POLLIN event, revent=%x",
2524 static int qemu_rdma_connect(RDMAContext
*rdma
, bool return_path
,
2527 RDMACapabilities cap
= {
2528 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2531 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2533 .private_data
= &cap
,
2534 .private_data_len
= sizeof(cap
),
2536 struct rdma_cm_event
*cm_event
;
2540 * Only negotiate the capability with destination if the user
2541 * on the source first requested the capability.
2543 if (rdma
->pin_all
) {
2544 trace_qemu_rdma_connect_pin_all_requested();
2545 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2548 caps_to_network(&cap
);
2550 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, errp
);
2552 goto err_rdma_source_connect
;
2555 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2557 error_setg_errno(errp
, errno
,
2558 "RDMA ERROR: connecting to destination!");
2559 goto err_rdma_source_connect
;
2563 ret
= qemu_get_cm_event_timeout(rdma
, &cm_event
, 5000, errp
);
2565 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2567 error_setg_errno(errp
, errno
,
2568 "RDMA ERROR: failed to get cm event");
2572 goto err_rdma_source_connect
;
2575 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2576 error_setg(errp
, "RDMA ERROR: connecting to destination!");
2577 rdma_ack_cm_event(cm_event
);
2578 goto err_rdma_source_connect
;
2580 rdma
->connected
= true;
2582 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2583 network_to_caps(&cap
);
2586 * Verify that the *requested* capabilities are supported by the destination
2587 * and disable them otherwise.
2589 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2590 warn_report("RDMA: Server cannot support pinning all memory. "
2591 "Will register memory dynamically.");
2592 rdma
->pin_all
= false;
2595 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2597 rdma_ack_cm_event(cm_event
);
2599 rdma
->control_ready_expected
= 1;
2603 err_rdma_source_connect
:
2604 qemu_rdma_cleanup(rdma
);
2608 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2612 struct rdma_cm_id
*listen_id
;
2613 char ip
[40] = "unknown";
2614 struct rdma_addrinfo
*res
, *e
;
2618 for (int i
= 0; i
< RDMA_WRID_MAX
; i
++) {
2619 rdma
->wr_data
[i
].control_len
= 0;
2620 rdma
->wr_data
[i
].control_curr
= NULL
;
2623 if (!rdma
->host
|| !rdma
->host
[0]) {
2624 error_setg(errp
, "RDMA ERROR: RDMA host is not set!");
2625 rdma
->errored
= true;
2628 /* create CM channel */
2629 rdma
->channel
= rdma_create_event_channel();
2630 if (!rdma
->channel
) {
2631 error_setg(errp
, "RDMA ERROR: could not create rdma event channel");
2632 rdma
->errored
= true;
2637 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2639 error_setg(errp
, "RDMA ERROR: could not create cm_id!");
2640 goto err_dest_init_create_listen_id
;
2643 snprintf(port_str
, 16, "%d", rdma
->port
);
2644 port_str
[15] = '\0';
2646 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2648 error_setg(errp
, "RDMA ERROR: could not rdma_getaddrinfo address %s",
2650 goto err_dest_init_bind_addr
;
2653 ret
= rdma_set_option(listen_id
, RDMA_OPTION_ID
, RDMA_OPTION_ID_REUSEADDR
,
2654 &reuse
, sizeof reuse
);
2656 error_setg(errp
, "RDMA ERROR: Error: could not set REUSEADDR option");
2657 goto err_dest_init_bind_addr
;
2660 /* Try all addresses, saving the first error in @err */
2661 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2662 Error
**local_errp
= err
? NULL
: &err
;
2664 inet_ntop(e
->ai_family
,
2665 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2666 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2667 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2671 if (e
->ai_family
== AF_INET6
) {
2672 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
,
2682 rdma_freeaddrinfo(res
);
2685 error_propagate(errp
, err
);
2687 error_setg(errp
, "RDMA ERROR: Error: could not rdma_bind_addr!");
2689 goto err_dest_init_bind_addr
;
2692 rdma
->listen_id
= listen_id
;
2693 qemu_rdma_dump_gid("dest_init", listen_id
);
2696 err_dest_init_bind_addr
:
2697 rdma_destroy_id(listen_id
);
2698 err_dest_init_create_listen_id
:
2699 rdma_destroy_event_channel(rdma
->channel
);
2700 rdma
->channel
= NULL
;
2701 rdma
->errored
= true;
2706 static void qemu_rdma_return_path_dest_init(RDMAContext
*rdma_return_path
,
2709 for (int i
= 0; i
< RDMA_WRID_MAX
; i
++) {
2710 rdma_return_path
->wr_data
[i
].control_len
= 0;
2711 rdma_return_path
->wr_data
[i
].control_curr
= NULL
;
2714 /*the CM channel and CM id is shared*/
2715 rdma_return_path
->channel
= rdma
->channel
;
2716 rdma_return_path
->listen_id
= rdma
->listen_id
;
2718 rdma
->return_path
= rdma_return_path
;
2719 rdma_return_path
->return_path
= rdma
;
2720 rdma_return_path
->is_return_path
= true;
2723 static RDMAContext
*qemu_rdma_data_init(InetSocketAddress
*saddr
, Error
**errp
)
2725 RDMAContext
*rdma
= NULL
;
2727 rdma
= g_new0(RDMAContext
, 1);
2728 rdma
->current_index
= -1;
2729 rdma
->current_chunk
= -1;
2731 rdma
->host
= g_strdup(saddr
->host
);
2732 rdma
->port
= atoi(saddr
->port
);
2737 * QEMUFile interface to the control channel.
2738 * SEND messages for control only.
2739 * VM's ram is handled with regular RDMA messages.
2741 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2742 const struct iovec
*iov
,
2749 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2755 RCU_READ_LOCK_GUARD();
2756 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
2759 error_setg(errp
, "RDMA control channel output is not set");
2763 if (rdma
->errored
) {
2765 "RDMA is in an error state waiting migration to abort!");
2770 * Push out any writes that
2771 * we're queued up for VM's ram.
2773 ret
= qemu_rdma_write_flush(rdma
, errp
);
2775 rdma
->errored
= true;
2779 for (int i
= 0; i
< niov
; i
++) {
2780 size_t remaining
= iov
[i
].iov_len
;
2781 uint8_t * data
= (void *)iov
[i
].iov_base
;
2783 RDMAControlHeader head
= {};
2785 len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2789 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2791 ret
= qemu_rdma_exchange_send(rdma
, &head
,
2792 data
, NULL
, NULL
, NULL
, errp
);
2795 rdma
->errored
= true;
2807 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2808 size_t size
, int idx
)
2812 if (rdma
->wr_data
[idx
].control_len
) {
2813 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2815 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2816 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2817 rdma
->wr_data
[idx
].control_curr
+= len
;
2818 rdma
->wr_data
[idx
].control_len
-= len
;
2825 * QEMUFile interface to the control channel.
2826 * RDMA links don't use bytestreams, so we have to
2827 * return bytes to QEMUFile opportunistically.
2829 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2830 const struct iovec
*iov
,
2837 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2839 RDMAControlHeader head
;
2844 RCU_READ_LOCK_GUARD();
2845 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
2848 error_setg(errp
, "RDMA control channel input is not set");
2852 if (rdma
->errored
) {
2854 "RDMA is in an error state waiting migration to abort!");
2858 for (int i
= 0; i
< niov
; i
++) {
2859 size_t want
= iov
[i
].iov_len
;
2860 uint8_t *data
= (void *)iov
[i
].iov_base
;
2863 * First, we hold on to the last SEND message we
2864 * were given and dish out the bytes until we run
2867 len
= qemu_rdma_fill(rdma
, data
, want
, 0);
2870 /* Got what we needed, so go to next iovec */
2875 /* If we got any data so far, then don't wait
2876 * for more, just return what we have */
2882 /* We've got nothing at all, so lets wait for
2885 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
,
2889 rdma
->errored
= true;
2894 * SEND was received with new bytes, now try again.
2896 len
= qemu_rdma_fill(rdma
, data
, want
, 0);
2900 /* Still didn't get enough, so lets just return */
2903 return QIO_CHANNEL_ERR_BLOCK
;
2913 * Block until all the outstanding chunks have been delivered by the hardware.
2915 static int qemu_rdma_drain_cq(RDMAContext
*rdma
)
2919 if (qemu_rdma_write_flush(rdma
, &err
) < 0) {
2920 error_report_err(err
);
2924 while (rdma
->nb_sent
) {
2925 if (qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
) < 0) {
2926 error_report("rdma migration: complete polling error!");
2931 qemu_rdma_unregister_waiting(rdma
);
2937 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
2941 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2942 /* XXX we should make readv/writev actually honour this :-) */
2943 rioc
->blocking
= blocking
;
2948 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
2949 struct QIOChannelRDMASource
{
2951 QIOChannelRDMA
*rioc
;
2952 GIOCondition condition
;
2956 qio_channel_rdma_source_prepare(GSource
*source
,
2959 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2961 GIOCondition cond
= 0;
2964 RCU_READ_LOCK_GUARD();
2965 if (rsource
->condition
== G_IO_IN
) {
2966 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
2968 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
2972 error_report("RDMAContext is NULL when prepare Gsource");
2976 if (rdma
->wr_data
[0].control_len
) {
2981 return cond
& rsource
->condition
;
2985 qio_channel_rdma_source_check(GSource
*source
)
2987 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2989 GIOCondition cond
= 0;
2991 RCU_READ_LOCK_GUARD();
2992 if (rsource
->condition
== G_IO_IN
) {
2993 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
2995 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
2999 error_report("RDMAContext is NULL when check Gsource");
3003 if (rdma
->wr_data
[0].control_len
) {
3008 return cond
& rsource
->condition
;
3012 qio_channel_rdma_source_dispatch(GSource
*source
,
3013 GSourceFunc callback
,
3016 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
3017 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
3019 GIOCondition cond
= 0;
3021 RCU_READ_LOCK_GUARD();
3022 if (rsource
->condition
== G_IO_IN
) {
3023 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmain
);
3025 rdma
= qatomic_rcu_read(&rsource
->rioc
->rdmaout
);
3029 error_report("RDMAContext is NULL when dispatch Gsource");
3033 if (rdma
->wr_data
[0].control_len
) {
3038 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
3039 (cond
& rsource
->condition
),
3044 qio_channel_rdma_source_finalize(GSource
*source
)
3046 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
3048 object_unref(OBJECT(ssource
->rioc
));
3051 static GSourceFuncs qio_channel_rdma_source_funcs
= {
3052 qio_channel_rdma_source_prepare
,
3053 qio_channel_rdma_source_check
,
3054 qio_channel_rdma_source_dispatch
,
3055 qio_channel_rdma_source_finalize
3058 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
3059 GIOCondition condition
)
3061 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3062 QIOChannelRDMASource
*ssource
;
3065 source
= g_source_new(&qio_channel_rdma_source_funcs
,
3066 sizeof(QIOChannelRDMASource
));
3067 ssource
= (QIOChannelRDMASource
*)source
;
3069 ssource
->rioc
= rioc
;
3070 object_ref(OBJECT(rioc
));
3072 ssource
->condition
= condition
;
3077 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel
*ioc
,
3078 AioContext
*read_ctx
,
3080 AioContext
*write_ctx
,
3081 IOHandler
*io_write
,
3084 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3086 aio_set_fd_handler(read_ctx
, rioc
->rdmain
->recv_comp_channel
->fd
,
3087 io_read
, io_write
, NULL
, NULL
, opaque
);
3088 aio_set_fd_handler(read_ctx
, rioc
->rdmain
->send_comp_channel
->fd
,
3089 io_read
, io_write
, NULL
, NULL
, opaque
);
3091 aio_set_fd_handler(write_ctx
, rioc
->rdmaout
->recv_comp_channel
->fd
,
3092 io_read
, io_write
, NULL
, NULL
, opaque
);
3093 aio_set_fd_handler(write_ctx
, rioc
->rdmaout
->send_comp_channel
->fd
,
3094 io_read
, io_write
, NULL
, NULL
, opaque
);
3098 struct rdma_close_rcu
{
3099 struct rcu_head rcu
;
3100 RDMAContext
*rdmain
;
3101 RDMAContext
*rdmaout
;
3104 /* callback from qio_channel_rdma_close via call_rcu */
3105 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu
*rcu
)
3108 qemu_rdma_cleanup(rcu
->rdmain
);
3112 qemu_rdma_cleanup(rcu
->rdmaout
);
3115 g_free(rcu
->rdmain
);
3116 g_free(rcu
->rdmaout
);
3120 static int qio_channel_rdma_close(QIOChannel
*ioc
,
3123 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3124 RDMAContext
*rdmain
, *rdmaout
;
3125 struct rdma_close_rcu
*rcu
= g_new(struct rdma_close_rcu
, 1);
3127 trace_qemu_rdma_close();
3129 rdmain
= rioc
->rdmain
;
3131 qatomic_rcu_set(&rioc
->rdmain
, NULL
);
3134 rdmaout
= rioc
->rdmaout
;
3136 qatomic_rcu_set(&rioc
->rdmaout
, NULL
);
3139 rcu
->rdmain
= rdmain
;
3140 rcu
->rdmaout
= rdmaout
;
3141 call_rcu(rcu
, qio_channel_rdma_close_rcu
, rcu
);
3147 qio_channel_rdma_shutdown(QIOChannel
*ioc
,
3148 QIOChannelShutdown how
,
3151 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
3152 RDMAContext
*rdmain
, *rdmaout
;
3154 RCU_READ_LOCK_GUARD();
3156 rdmain
= qatomic_rcu_read(&rioc
->rdmain
);
3157 rdmaout
= qatomic_rcu_read(&rioc
->rdmain
);
3160 case QIO_CHANNEL_SHUTDOWN_READ
:
3162 rdmain
->errored
= true;
3165 case QIO_CHANNEL_SHUTDOWN_WRITE
:
3167 rdmaout
->errored
= true;
3170 case QIO_CHANNEL_SHUTDOWN_BOTH
:
3173 rdmain
->errored
= true;
3176 rdmaout
->errored
= true;
3187 * This means that 'block_offset' is a full virtual address that does not
3188 * belong to a RAMBlock of the virtual machine and instead
3189 * represents a private malloc'd memory area that the caller wishes to
3193 * Offset is an offset to be added to block_offset and used
3194 * to also lookup the corresponding RAMBlock.
3196 * @size : Number of bytes to transfer
3198 * @pages_sent : User-specificed pointer to indicate how many pages were
3199 * sent. Usually, this will not be more than a few bytes of
3200 * the protocol because most transfers are sent asynchronously.
3202 static int qemu_rdma_save_page(QEMUFile
*f
, ram_addr_t block_offset
,
3203 ram_addr_t offset
, size_t size
)
3205 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3210 RCU_READ_LOCK_GUARD();
3211 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3217 if (rdma_errored(rdma
)) {
3224 * Add this page to the current 'chunk'. If the chunk
3225 * is full, or the page doesn't belong to the current chunk,
3226 * an actual RDMA write will occur and a new chunk will be formed.
3228 ret
= qemu_rdma_write(rdma
, block_offset
, offset
, size
, &err
);
3230 error_report_err(err
);
3235 * Drain the Completion Queue if possible, but do not block,
3238 * If nothing to poll, the end of the iteration will do this
3239 * again to make sure we don't overflow the request queue.
3242 uint64_t wr_id
, wr_id_in
;
3243 ret
= qemu_rdma_poll(rdma
, rdma
->recv_cq
, &wr_id_in
, NULL
);
3246 error_report("rdma migration: polling error");
3250 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3252 if (wr_id
== RDMA_WRID_NONE
) {
3258 uint64_t wr_id
, wr_id_in
;
3259 ret
= qemu_rdma_poll(rdma
, rdma
->send_cq
, &wr_id_in
, NULL
);
3262 error_report("rdma migration: polling error");
3266 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
3268 if (wr_id
== RDMA_WRID_NONE
) {
3273 return RAM_SAVE_CONTROL_DELAYED
;
3276 rdma
->errored
= true;
3280 int rdma_control_save_page(QEMUFile
*f
, ram_addr_t block_offset
,
3281 ram_addr_t offset
, size_t size
)
3283 if (!migrate_rdma() || migration_in_postcopy()) {
3284 return RAM_SAVE_CONTROL_NOT_SUPP
;
3287 int ret
= qemu_rdma_save_page(f
, block_offset
, offset
, size
);
3289 if (ret
!= RAM_SAVE_CONTROL_DELAYED
&&
3290 ret
!= RAM_SAVE_CONTROL_NOT_SUPP
) {
3292 qemu_file_set_error(f
, ret
);
3298 static void rdma_accept_incoming_migration(void *opaque
);
3300 static void rdma_cm_poll_handler(void *opaque
)
3302 RDMAContext
*rdma
= opaque
;
3303 struct rdma_cm_event
*cm_event
;
3304 MigrationIncomingState
*mis
= migration_incoming_get_current();
3306 if (rdma_get_cm_event(rdma
->channel
, &cm_event
) < 0) {
3307 error_report("get_cm_event failed %d", errno
);
3311 if (cm_event
->event
== RDMA_CM_EVENT_DISCONNECTED
||
3312 cm_event
->event
== RDMA_CM_EVENT_DEVICE_REMOVAL
) {
3313 if (!rdma
->errored
&&
3314 migration_incoming_get_current()->state
!=
3315 MIGRATION_STATUS_COMPLETED
) {
3316 error_report("receive cm event, cm event is %d", cm_event
->event
);
3317 rdma
->errored
= true;
3318 if (rdma
->return_path
) {
3319 rdma
->return_path
->errored
= true;
3322 rdma_ack_cm_event(cm_event
);
3323 if (mis
->loadvm_co
) {
3324 qemu_coroutine_enter(mis
->loadvm_co
);
3328 rdma_ack_cm_event(cm_event
);
3331 static int qemu_rdma_accept(RDMAContext
*rdma
)
3334 RDMACapabilities cap
;
3335 struct rdma_conn_param conn_param
= {
3336 .responder_resources
= 2,
3337 .private_data
= &cap
,
3338 .private_data_len
= sizeof(cap
),
3340 RDMAContext
*rdma_return_path
= NULL
;
3341 g_autoptr(InetSocketAddress
) isock
= g_new0(InetSocketAddress
, 1);
3342 struct rdma_cm_event
*cm_event
;
3343 struct ibv_context
*verbs
;
3346 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3348 goto err_rdma_dest_wait
;
3351 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
3352 rdma_ack_cm_event(cm_event
);
3353 goto err_rdma_dest_wait
;
3356 isock
->host
= rdma
->host
;
3357 isock
->port
= g_strdup_printf("%d", rdma
->port
);
3360 * initialize the RDMAContext for return path for postcopy after first
3361 * connection request reached.
3363 if ((migrate_postcopy() || migrate_return_path())
3364 && !rdma
->is_return_path
) {
3365 rdma_return_path
= qemu_rdma_data_init(isock
, NULL
);
3366 if (rdma_return_path
== NULL
) {
3367 rdma_ack_cm_event(cm_event
);
3368 goto err_rdma_dest_wait
;
3371 qemu_rdma_return_path_dest_init(rdma_return_path
, rdma
);
3374 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
3376 network_to_caps(&cap
);
3378 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
3379 error_report("Unknown source RDMA version: %d, bailing...",
3381 rdma_ack_cm_event(cm_event
);
3382 goto err_rdma_dest_wait
;
3386 * Respond with only the capabilities this version of QEMU knows about.
3388 cap
.flags
&= known_capabilities
;
3391 * Enable the ones that we do know about.
3392 * Add other checks here as new ones are introduced.
3394 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
3395 rdma
->pin_all
= true;
3398 rdma
->cm_id
= cm_event
->id
;
3399 verbs
= cm_event
->id
->verbs
;
3401 rdma_ack_cm_event(cm_event
);
3403 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3405 caps_to_network(&cap
);
3407 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3410 rdma
->verbs
= verbs
;
3411 } else if (rdma
->verbs
!= verbs
) {
3412 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3414 goto err_rdma_dest_wait
;
3417 qemu_rdma_dump_id("dest_init", verbs
);
3419 ret
= qemu_rdma_alloc_pd_cq(rdma
, &err
);
3421 error_report_err(err
);
3422 goto err_rdma_dest_wait
;
3425 ret
= qemu_rdma_alloc_qp(rdma
);
3427 error_report("rdma migration: error allocating qp!");
3428 goto err_rdma_dest_wait
;
3431 qemu_rdma_init_ram_blocks(rdma
);
3433 for (int i
= 0; i
< RDMA_WRID_MAX
; i
++) {
3434 ret
= qemu_rdma_reg_control(rdma
, i
);
3436 error_report("rdma: error registering %d control", i
);
3437 goto err_rdma_dest_wait
;
3441 /* Accept the second connection request for return path */
3442 if ((migrate_postcopy() || migrate_return_path())
3443 && !rdma
->is_return_path
) {
3444 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3446 (void *)(intptr_t)rdma
->return_path
);
3448 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_cm_poll_handler
,
3452 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3454 error_report("rdma_accept failed");
3455 goto err_rdma_dest_wait
;
3458 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3460 error_report("rdma_accept get_cm_event failed");
3461 goto err_rdma_dest_wait
;
3464 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3465 error_report("rdma_accept not event established");
3466 rdma_ack_cm_event(cm_event
);
3467 goto err_rdma_dest_wait
;
3470 rdma_ack_cm_event(cm_event
);
3471 rdma
->connected
= true;
3473 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
, &err
);
3475 error_report_err(err
);
3476 goto err_rdma_dest_wait
;
3479 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3484 rdma
->errored
= true;
3485 qemu_rdma_cleanup(rdma
);
3486 g_free(rdma_return_path
);
3490 static int dest_ram_sort_func(const void *a
, const void *b
)
3492 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3493 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3495 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3499 * During each iteration of the migration, we listen for instructions
3500 * by the source VM to perform dynamic page registrations before they
3501 * can perform RDMA operations.
3503 * We respond with the 'rkey'.
3505 * Keep doing this until the source tells us to stop.
3507 int rdma_registration_handle(QEMUFile
*f
)
3509 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3510 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3513 RDMAControlHeader unreg_resp
= { .len
= 0,
3514 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3517 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3519 QIOChannelRDMA
*rioc
;
3522 RDMALocalBlocks
*local
;
3523 RDMAControlHeader head
;
3524 RDMARegister
*reg
, *registers
;
3526 RDMARegisterResult
*reg_result
;
3527 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3528 RDMALocalBlock
*block
;
3533 if (!migrate_rdma()) {
3537 RCU_READ_LOCK_GUARD();
3538 rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3539 rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3545 if (rdma_errored(rdma
)) {
3549 local
= &rdma
->local_ram_blocks
;
3551 trace_rdma_registration_handle_wait();
3553 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
, &err
);
3556 error_report_err(err
);
3560 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3561 error_report("rdma: Too many requests in this message (%d)."
3562 "Bailing.", head
.repeat
);
3566 switch (head
.type
) {
3567 case RDMA_CONTROL_COMPRESS
:
3568 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3569 network_to_compress(comp
);
3571 trace_rdma_registration_handle_compress(comp
->length
,
3574 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3575 error_report("rdma: 'compress' bad block index %u (vs %d)",
3576 (unsigned int)comp
->block_idx
,
3577 rdma
->local_ram_blocks
.nb_blocks
);
3580 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3582 host_addr
= block
->local_host_addr
+
3583 (comp
->offset
- block
->offset
);
3585 error_report("rdma: Zero page with non-zero (%d) value",
3589 ram_handle_zero(host_addr
, comp
->length
);
3592 case RDMA_CONTROL_REGISTER_FINISHED
:
3593 trace_rdma_registration_handle_finished();
3596 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3597 trace_rdma_registration_handle_ram_blocks();
3599 /* Sort our local RAM Block list so it's the same as the source,
3600 * we can do this since we've filled in a src_index in the list
3601 * as we received the RAMBlock list earlier.
3603 qsort(rdma
->local_ram_blocks
.block
,
3604 rdma
->local_ram_blocks
.nb_blocks
,
3605 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3606 for (int i
= 0; i
< local
->nb_blocks
; i
++) {
3607 local
->block
[i
].index
= i
;
3610 if (rdma
->pin_all
) {
3611 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
, &err
);
3613 error_report_err(err
);
3619 * Dest uses this to prepare to transmit the RAMBlock descriptions
3620 * to the source VM after connection setup.
3621 * Both sides use the "remote" structure to communicate and update
3622 * their "local" descriptions with what was sent.
3624 for (int i
= 0; i
< local
->nb_blocks
; i
++) {
3625 rdma
->dest_blocks
[i
].remote_host_addr
=
3626 (uintptr_t)(local
->block
[i
].local_host_addr
);
3628 if (rdma
->pin_all
) {
3629 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3632 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3633 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3635 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3636 trace_rdma_registration_handle_ram_blocks_loop(
3637 local
->block
[i
].block_name
,
3638 local
->block
[i
].offset
,
3639 local
->block
[i
].length
,
3640 local
->block
[i
].local_host_addr
,
3641 local
->block
[i
].src_index
);
3644 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3645 * sizeof(RDMADestBlock
);
3648 ret
= qemu_rdma_post_send_control(rdma
,
3649 (uint8_t *) rdma
->dest_blocks
, &blocks
,
3653 error_report_err(err
);
3658 case RDMA_CONTROL_REGISTER_REQUEST
:
3659 trace_rdma_registration_handle_register(head
.repeat
);
3661 reg_resp
.repeat
= head
.repeat
;
3662 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3664 for (int count
= 0; count
< head
.repeat
; count
++) {
3666 uint8_t *chunk_start
, *chunk_end
;
3668 reg
= ®isters
[count
];
3669 network_to_register(reg
);
3671 reg_result
= &results
[count
];
3673 trace_rdma_registration_handle_register_loop(count
,
3674 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3676 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3677 error_report("rdma: 'register' bad block index %u (vs %d)",
3678 (unsigned int)reg
->current_index
,
3679 rdma
->local_ram_blocks
.nb_blocks
);
3682 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3683 if (block
->is_ram_block
) {
3684 if (block
->offset
> reg
->key
.current_addr
) {
3685 error_report("rdma: bad register address for block %s"
3686 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3687 block
->block_name
, block
->offset
,
3688 reg
->key
.current_addr
);
3691 host_addr
= (block
->local_host_addr
+
3692 (reg
->key
.current_addr
- block
->offset
));
3693 chunk
= ram_chunk_index(block
->local_host_addr
,
3694 (uint8_t *) host_addr
);
3696 chunk
= reg
->key
.chunk
;
3697 host_addr
= block
->local_host_addr
+
3698 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3699 /* Check for particularly bad chunk value */
3700 if (host_addr
< (void *)block
->local_host_addr
) {
3701 error_report("rdma: bad chunk for block %s"
3703 block
->block_name
, reg
->key
.chunk
);
3707 chunk_start
= ram_chunk_start(block
, chunk
);
3708 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3709 /* avoid "-Waddress-of-packed-member" warning */
3710 uint32_t tmp_rkey
= 0;
3711 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3712 (uintptr_t)host_addr
, NULL
, &tmp_rkey
,
3713 chunk
, chunk_start
, chunk_end
)) {
3714 error_report("cannot get rkey");
3717 reg_result
->rkey
= tmp_rkey
;
3719 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3721 trace_rdma_registration_handle_register_rkey(reg_result
->rkey
);
3723 result_to_network(reg_result
);
3726 ret
= qemu_rdma_post_send_control(rdma
,
3727 (uint8_t *) results
, ®_resp
, &err
);
3730 error_report_err(err
);
3734 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3735 trace_rdma_registration_handle_unregister(head
.repeat
);
3736 unreg_resp
.repeat
= head
.repeat
;
3737 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3739 for (int count
= 0; count
< head
.repeat
; count
++) {
3740 reg
= ®isters
[count
];
3741 network_to_register(reg
);
3743 trace_rdma_registration_handle_unregister_loop(count
,
3744 reg
->current_index
, reg
->key
.chunk
);
3746 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3748 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3749 block
->pmr
[reg
->key
.chunk
] = NULL
;
3752 error_report("rdma unregistration chunk failed: %s",
3757 rdma
->total_registrations
--;
3759 trace_rdma_registration_handle_unregister_success(reg
->key
.chunk
);
3762 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
, &err
);
3765 error_report_err(err
);
3769 case RDMA_CONTROL_REGISTER_RESULT
:
3770 error_report("Invalid RESULT message at dest.");
3773 error_report("Unknown control message %s", control_desc(head
.type
));
3779 rdma
->errored
= true;
3784 * Called during the initial RAM load section which lists the
3785 * RAMBlocks by name. This lets us know the order of the RAMBlocks on
3786 * the source. We've already built our local RAMBlock list, but not
3787 * yet sent the list to the source.
3789 int rdma_block_notification_handle(QEMUFile
*f
, const char *name
)
3794 if (!migrate_rdma()) {
3798 RCU_READ_LOCK_GUARD();
3799 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3800 RDMAContext
*rdma
= qatomic_rcu_read(&rioc
->rdmain
);
3806 /* Find the matching RAMBlock in our local list */
3807 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3808 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3815 error_report("RAMBlock '%s' not found on destination", name
);
3819 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3820 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3821 rdma
->next_src_index
++;
3826 int rdma_registration_start(QEMUFile
*f
, uint64_t flags
)
3828 if (!migrate_rdma() || migration_in_postcopy()) {
3832 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3833 RCU_READ_LOCK_GUARD();
3834 RDMAContext
*rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3839 if (rdma_errored(rdma
)) {
3843 trace_rdma_registration_start(flags
);
3844 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3845 return qemu_fflush(f
);
3849 * Inform dest that dynamic registrations are done for now.
3850 * First, flush writes, if any.
3852 int rdma_registration_stop(QEMUFile
*f
, uint64_t flags
)
3854 QIOChannelRDMA
*rioc
;
3857 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3860 if (!migrate_rdma() || migration_in_postcopy()) {
3864 RCU_READ_LOCK_GUARD();
3865 rioc
= QIO_CHANNEL_RDMA(qemu_file_get_ioc(f
));
3866 rdma
= qatomic_rcu_read(&rioc
->rdmaout
);
3871 if (rdma_errored(rdma
)) {
3876 ret
= qemu_rdma_drain_cq(rdma
);
3882 if (flags
== RAM_CONTROL_SETUP
) {
3883 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3884 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3885 int reg_result_idx
, nb_dest_blocks
;
3887 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3888 trace_rdma_registration_stop_ram();
3891 * Make sure that we parallelize the pinning on both sides.
3892 * For very large guests, doing this serially takes a really
3893 * long time, so we have to 'interleave' the pinning locally
3894 * with the control messages by performing the pinning on this
3895 * side before we receive the control response from the other
3896 * side that the pinning has completed.
3898 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3899 ®_result_idx
, rdma
->pin_all
?
3900 qemu_rdma_reg_whole_ram_blocks
: NULL
,
3903 error_report_err(err
);
3907 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3910 * The protocol uses two different sets of rkeys (mutually exclusive):
3911 * 1. One key to represent the virtual address of the entire ram block.
3912 * (dynamic chunk registration disabled - pin everything with one rkey.)
3913 * 2. One to represent individual chunks within a ram block.
3914 * (dynamic chunk registration enabled - pin individual chunks.)
3916 * Once the capability is successfully negotiated, the destination transmits
3917 * the keys to use (or sends them later) including the virtual addresses
3918 * and then propagates the remote ram block descriptions to his local copy.
3921 if (local
->nb_blocks
!= nb_dest_blocks
) {
3922 error_report("ram blocks mismatch (Number of blocks %d vs %d)",
3923 local
->nb_blocks
, nb_dest_blocks
);
3924 error_printf("Your QEMU command line parameters are probably "
3925 "not identical on both the source and destination.");
3926 rdma
->errored
= true;
3930 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3931 memcpy(rdma
->dest_blocks
,
3932 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3933 for (int i
= 0; i
< nb_dest_blocks
; i
++) {
3934 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3936 /* We require that the blocks are in the same order */
3937 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3938 error_report("Block %s/%d has a different length %" PRIu64
3940 local
->block
[i
].block_name
, i
,
3941 local
->block
[i
].length
,
3942 rdma
->dest_blocks
[i
].length
);
3943 rdma
->errored
= true;
3946 local
->block
[i
].remote_host_addr
=
3947 rdma
->dest_blocks
[i
].remote_host_addr
;
3948 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
3952 trace_rdma_registration_stop(flags
);
3954 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3955 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
, &err
);
3958 error_report_err(err
);
3964 rdma
->errored
= true;
3968 static void qio_channel_rdma_finalize(Object
*obj
)
3970 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
3972 qemu_rdma_cleanup(rioc
->rdmain
);
3973 g_free(rioc
->rdmain
);
3974 rioc
->rdmain
= NULL
;
3976 if (rioc
->rdmaout
) {
3977 qemu_rdma_cleanup(rioc
->rdmaout
);
3978 g_free(rioc
->rdmaout
);
3979 rioc
->rdmaout
= NULL
;
3983 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
3984 void *class_data G_GNUC_UNUSED
)
3986 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
3988 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
3989 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
3990 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
3991 ioc_klass
->io_close
= qio_channel_rdma_close
;
3992 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
3993 ioc_klass
->io_set_aio_fd_handler
= qio_channel_rdma_set_aio_fd_handler
;
3994 ioc_klass
->io_shutdown
= qio_channel_rdma_shutdown
;
3997 static const TypeInfo qio_channel_rdma_info
= {
3998 .parent
= TYPE_QIO_CHANNEL
,
3999 .name
= TYPE_QIO_CHANNEL_RDMA
,
4000 .instance_size
= sizeof(QIOChannelRDMA
),
4001 .instance_finalize
= qio_channel_rdma_finalize
,
4002 .class_init
= qio_channel_rdma_class_init
,
4005 static void qio_channel_rdma_register_types(void)
4007 type_register_static(&qio_channel_rdma_info
);
4010 type_init(qio_channel_rdma_register_types
);
4012 static QEMUFile
*rdma_new_input(RDMAContext
*rdma
)
4014 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4016 rioc
->file
= qemu_file_new_input(QIO_CHANNEL(rioc
));
4017 rioc
->rdmain
= rdma
;
4018 rioc
->rdmaout
= rdma
->return_path
;
4023 static QEMUFile
*rdma_new_output(RDMAContext
*rdma
)
4025 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
4027 rioc
->file
= qemu_file_new_output(QIO_CHANNEL(rioc
));
4028 rioc
->rdmaout
= rdma
;
4029 rioc
->rdmain
= rdma
->return_path
;
4034 static void rdma_accept_incoming_migration(void *opaque
)
4036 RDMAContext
*rdma
= opaque
;
4038 Error
*local_err
= NULL
;
4040 trace_qemu_rdma_accept_incoming_migration();
4041 if (qemu_rdma_accept(rdma
) < 0) {
4042 error_report("RDMA ERROR: Migration initialization failed");
4046 trace_qemu_rdma_accept_incoming_migration_accepted();
4048 if (rdma
->is_return_path
) {
4052 f
= rdma_new_input(rdma
);
4054 error_report("RDMA ERROR: could not open RDMA for input");
4055 qemu_rdma_cleanup(rdma
);
4059 rdma
->migration_started_on_destination
= 1;
4060 migration_fd_process_incoming(f
, &local_err
);
4062 error_reportf_err(local_err
, "RDMA ERROR:");
4066 void rdma_start_incoming_migration(InetSocketAddress
*host_port
,
4069 MigrationState
*s
= migrate_get_current();
4073 trace_rdma_start_incoming_migration();
4075 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4076 if (ram_block_discard_is_required()) {
4077 error_setg(errp
, "RDMA: cannot disable RAM discard");
4081 rdma
= qemu_rdma_data_init(host_port
, errp
);
4086 ret
= qemu_rdma_dest_init(rdma
, errp
);
4091 trace_rdma_start_incoming_migration_after_dest_init();
4093 ret
= rdma_listen(rdma
->listen_id
, 5);
4096 error_setg(errp
, "RDMA ERROR: listening on socket!");
4100 trace_rdma_start_incoming_migration_after_rdma_listen();
4101 s
->rdma_migration
= true;
4102 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
4103 NULL
, (void *)(intptr_t)rdma
);
4107 qemu_rdma_cleanup(rdma
);
4115 void rdma_start_outgoing_migration(void *opaque
,
4116 InetSocketAddress
*host_port
, Error
**errp
)
4118 MigrationState
*s
= opaque
;
4119 RDMAContext
*rdma_return_path
= NULL
;
4123 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4124 if (ram_block_discard_is_required()) {
4125 error_setg(errp
, "RDMA: cannot disable RAM discard");
4129 rdma
= qemu_rdma_data_init(host_port
, errp
);
4134 ret
= qemu_rdma_source_init(rdma
, migrate_rdma_pin_all(), errp
);
4140 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4141 ret
= qemu_rdma_connect(rdma
, false, errp
);
4147 /* RDMA postcopy need a separate queue pair for return path */
4148 if (migrate_postcopy() || migrate_return_path()) {
4149 rdma_return_path
= qemu_rdma_data_init(host_port
, errp
);
4151 if (rdma_return_path
== NULL
) {
4152 goto return_path_err
;
4155 ret
= qemu_rdma_source_init(rdma_return_path
,
4156 migrate_rdma_pin_all(), errp
);
4159 goto return_path_err
;
4162 ret
= qemu_rdma_connect(rdma_return_path
, true, errp
);
4165 goto return_path_err
;
4168 rdma
->return_path
= rdma_return_path
;
4169 rdma_return_path
->return_path
= rdma
;
4170 rdma_return_path
->is_return_path
= true;
4173 trace_rdma_start_outgoing_migration_after_rdma_connect();
4175 s
->to_dst_file
= rdma_new_output(rdma
);
4176 s
->rdma_migration
= true;
4177 migrate_fd_connect(s
, NULL
);
4180 qemu_rdma_cleanup(rdma
);
4183 g_free(rdma_return_path
);