hw/mem/memory-device.c: spelling fix: ontaining
[qemu/kevin.git] / migration / rdma.c
blob04debab5d94ce9300754a69e939b12cb2ba5bfd7
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
52 * This is only for non-live state being migrated.
53 * Instead of RDMA_WRITE messages, we use RDMA_SEND
54 * messages for that state, which requires a different
55 * delivery design than main memory.
57 #define RDMA_SEND_INCREMENT 32768
60 * Maximum size infiniband SEND message
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
65 #define RDMA_CONTROL_VERSION_CURRENT 1
67 * Capabilities for negotiation.
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
72 * Add the other flags above to this list of known capabilities
73 * as they are introduced.
75 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
78 * A work request ID is 64-bits and we split up these bits
79 * into 3 parts:
81 * bits 0-15 : type of control message, 2^16
82 * bits 16-29: ram block index, 2^14
83 * bits 30-63: ram block chunk number, 2^34
85 * The last two bit ranges are only used for RDMA writes,
86 * in order to track their completion and potentially
87 * also track unregistration status of the message.
89 #define RDMA_WRID_TYPE_SHIFT 0UL
90 #define RDMA_WRID_BLOCK_SHIFT 16UL
91 #define RDMA_WRID_CHUNK_SHIFT 30UL
93 #define RDMA_WRID_TYPE_MASK \
94 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
96 #define RDMA_WRID_BLOCK_MASK \
97 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
99 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
102 * RDMA migration protocol:
103 * 1. RDMA Writes (data messages, i.e. RAM)
104 * 2. IB Send/Recv (control channel messages)
106 enum {
107 RDMA_WRID_NONE = 0,
108 RDMA_WRID_RDMA_WRITE = 1,
109 RDMA_WRID_SEND_CONTROL = 2000,
110 RDMA_WRID_RECV_CONTROL = 4000,
114 * Work request IDs for IB SEND messages only (not RDMA writes).
115 * This is used by the migration protocol to transmit
116 * control messages (such as device state and registration commands)
118 * We could use more WRs, but we have enough for now.
120 enum {
121 RDMA_WRID_READY = 0,
122 RDMA_WRID_DATA,
123 RDMA_WRID_CONTROL,
124 RDMA_WRID_MAX,
128 * SEND/RECV IB Control Messages.
130 enum {
131 RDMA_CONTROL_NONE = 0,
132 RDMA_CONTROL_ERROR,
133 RDMA_CONTROL_READY, /* ready to receive */
134 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
135 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
136 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
137 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
138 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
139 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
140 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
141 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
142 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
147 * Memory and MR structures used to represent an IB Send/Recv work request.
148 * This is *not* used for RDMA writes, only IB Send/Recv.
150 typedef struct {
151 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
152 struct ibv_mr *control_mr; /* registration metadata */
153 size_t control_len; /* length of the message */
154 uint8_t *control_curr; /* start of unconsumed bytes */
155 } RDMAWorkRequestData;
158 * Negotiate RDMA capabilities during connection-setup time.
160 typedef struct {
161 uint32_t version;
162 uint32_t flags;
163 } RDMACapabilities;
165 static void caps_to_network(RDMACapabilities *cap)
167 cap->version = htonl(cap->version);
168 cap->flags = htonl(cap->flags);
171 static void network_to_caps(RDMACapabilities *cap)
173 cap->version = ntohl(cap->version);
174 cap->flags = ntohl(cap->flags);
178 * Representation of a RAMBlock from an RDMA perspective.
179 * This is not transmitted, only local.
180 * This and subsequent structures cannot be linked lists
181 * because we're using a single IB message to transmit
182 * the information. It's small anyway, so a list is overkill.
184 typedef struct RDMALocalBlock {
185 char *block_name;
186 uint8_t *local_host_addr; /* local virtual address */
187 uint64_t remote_host_addr; /* remote virtual address */
188 uint64_t offset;
189 uint64_t length;
190 struct ibv_mr **pmr; /* MRs for chunk-level registration */
191 struct ibv_mr *mr; /* MR for non-chunk-level registration */
192 uint32_t *remote_keys; /* rkeys for chunk-level registration */
193 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
194 int index; /* which block are we */
195 unsigned int src_index; /* (Only used on dest) */
196 bool is_ram_block;
197 int nb_chunks;
198 unsigned long *transit_bitmap;
199 unsigned long *unregister_bitmap;
200 } RDMALocalBlock;
203 * Also represents a RAMblock, but only on the dest.
204 * This gets transmitted by the dest during connection-time
205 * to the source VM and then is used to populate the
206 * corresponding RDMALocalBlock with
207 * the information needed to perform the actual RDMA.
209 typedef struct QEMU_PACKED RDMADestBlock {
210 uint64_t remote_host_addr;
211 uint64_t offset;
212 uint64_t length;
213 uint32_t remote_rkey;
214 uint32_t padding;
215 } RDMADestBlock;
217 static const char *control_desc(unsigned int rdma_control)
219 static const char *strs[] = {
220 [RDMA_CONTROL_NONE] = "NONE",
221 [RDMA_CONTROL_ERROR] = "ERROR",
222 [RDMA_CONTROL_READY] = "READY",
223 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
224 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
225 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
226 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
227 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
228 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
229 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
230 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
231 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
234 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
235 return "??BAD CONTROL VALUE??";
238 return strs[rdma_control];
241 static uint64_t htonll(uint64_t v)
243 union { uint32_t lv[2]; uint64_t llv; } u;
244 u.lv[0] = htonl(v >> 32);
245 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
246 return u.llv;
249 static uint64_t ntohll(uint64_t v)
251 union { uint32_t lv[2]; uint64_t llv; } u;
252 u.llv = v;
253 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
256 static void dest_block_to_network(RDMADestBlock *db)
258 db->remote_host_addr = htonll(db->remote_host_addr);
259 db->offset = htonll(db->offset);
260 db->length = htonll(db->length);
261 db->remote_rkey = htonl(db->remote_rkey);
264 static void network_to_dest_block(RDMADestBlock *db)
266 db->remote_host_addr = ntohll(db->remote_host_addr);
267 db->offset = ntohll(db->offset);
268 db->length = ntohll(db->length);
269 db->remote_rkey = ntohl(db->remote_rkey);
273 * Virtual address of the above structures used for transmitting
274 * the RAMBlock descriptions at connection-time.
275 * This structure is *not* transmitted.
277 typedef struct RDMALocalBlocks {
278 int nb_blocks;
279 bool init; /* main memory init complete */
280 RDMALocalBlock *block;
281 } RDMALocalBlocks;
284 * Main data structure for RDMA state.
285 * While there is only one copy of this structure being allocated right now,
286 * this is the place where one would start if you wanted to consider
287 * having more than one RDMA connection open at the same time.
289 typedef struct RDMAContext {
290 char *host;
291 int port;
293 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
296 * This is used by *_exchange_send() to figure out whether or not
297 * the initial "READY" message has already been received or not.
298 * This is because other functions may potentially poll() and detect
299 * the READY message before send() does, in which case we need to
300 * know if it completed.
302 int control_ready_expected;
304 /* number of outstanding writes */
305 int nb_sent;
307 /* store info about current buffer so that we can
308 merge it with future sends */
309 uint64_t current_addr;
310 uint64_t current_length;
311 /* index of ram block the current buffer belongs to */
312 int current_index;
313 /* index of the chunk in the current ram block */
314 int current_chunk;
316 bool pin_all;
319 * infiniband-specific variables for opening the device
320 * and maintaining connection state and so forth.
322 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
323 * cm_id->verbs, cm_id->channel, and cm_id->qp.
325 struct rdma_cm_id *cm_id; /* connection manager ID */
326 struct rdma_cm_id *listen_id;
327 bool connected;
329 struct ibv_context *verbs;
330 struct rdma_event_channel *channel;
331 struct ibv_qp *qp; /* queue pair */
332 struct ibv_comp_channel *recv_comp_channel; /* recv completion channel */
333 struct ibv_comp_channel *send_comp_channel; /* send completion channel */
334 struct ibv_pd *pd; /* protection domain */
335 struct ibv_cq *recv_cq; /* recvieve completion queue */
336 struct ibv_cq *send_cq; /* send completion queue */
339 * If a previous write failed (perhaps because of a failed
340 * memory registration, then do not attempt any future work
341 * and remember the error state.
343 bool errored;
344 bool error_reported;
345 bool received_error;
348 * Description of ram blocks used throughout the code.
350 RDMALocalBlocks local_ram_blocks;
351 RDMADestBlock *dest_blocks;
353 /* Index of the next RAMBlock received during block registration */
354 unsigned int next_src_index;
357 * Migration on *destination* started.
358 * Then use coroutine yield function.
359 * Source runs in a thread, so we don't care.
361 int migration_started_on_destination;
363 int total_registrations;
364 int total_writes;
366 int unregister_current, unregister_next;
367 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
369 GHashTable *blockmap;
371 /* the RDMAContext for return path */
372 struct RDMAContext *return_path;
373 bool is_return_path;
374 } RDMAContext;
376 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
377 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
381 struct QIOChannelRDMA {
382 QIOChannel parent;
383 RDMAContext *rdmain;
384 RDMAContext *rdmaout;
385 QEMUFile *file;
386 bool blocking; /* XXX we don't actually honour this yet */
390 * Main structure for IB Send/Recv control messages.
391 * This gets prepended at the beginning of every Send/Recv.
393 typedef struct QEMU_PACKED {
394 uint32_t len; /* Total length of data portion */
395 uint32_t type; /* which control command to perform */
396 uint32_t repeat; /* number of commands in data portion of same type */
397 uint32_t padding;
398 } RDMAControlHeader;
400 static void control_to_network(RDMAControlHeader *control)
402 control->type = htonl(control->type);
403 control->len = htonl(control->len);
404 control->repeat = htonl(control->repeat);
407 static void network_to_control(RDMAControlHeader *control)
409 control->type = ntohl(control->type);
410 control->len = ntohl(control->len);
411 control->repeat = ntohl(control->repeat);
415 * Register a single Chunk.
416 * Information sent by the source VM to inform the dest
417 * to register an single chunk of memory before we can perform
418 * the actual RDMA operation.
420 typedef struct QEMU_PACKED {
421 union QEMU_PACKED {
422 uint64_t current_addr; /* offset into the ram_addr_t space */
423 uint64_t chunk; /* chunk to lookup if unregistering */
424 } key;
425 uint32_t current_index; /* which ramblock the chunk belongs to */
426 uint32_t padding;
427 uint64_t chunks; /* how many sequential chunks to register */
428 } RDMARegister;
430 static bool rdma_errored(RDMAContext *rdma)
432 if (rdma->errored && !rdma->error_reported) {
433 error_report("RDMA is in an error state waiting migration"
434 " to abort!");
435 rdma->error_reported = true;
437 return rdma->errored;
440 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
442 RDMALocalBlock *local_block;
443 local_block = &rdma->local_ram_blocks.block[reg->current_index];
445 if (local_block->is_ram_block) {
447 * current_addr as passed in is an address in the local ram_addr_t
448 * space, we need to translate this for the destination
450 reg->key.current_addr -= local_block->offset;
451 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
453 reg->key.current_addr = htonll(reg->key.current_addr);
454 reg->current_index = htonl(reg->current_index);
455 reg->chunks = htonll(reg->chunks);
458 static void network_to_register(RDMARegister *reg)
460 reg->key.current_addr = ntohll(reg->key.current_addr);
461 reg->current_index = ntohl(reg->current_index);
462 reg->chunks = ntohll(reg->chunks);
465 typedef struct QEMU_PACKED {
466 uint32_t value; /* if zero, we will madvise() */
467 uint32_t block_idx; /* which ram block index */
468 uint64_t offset; /* Address in remote ram_addr_t space */
469 uint64_t length; /* length of the chunk */
470 } RDMACompress;
472 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
474 comp->value = htonl(comp->value);
476 * comp->offset as passed in is an address in the local ram_addr_t
477 * space, we need to translate this for the destination
479 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
480 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
481 comp->block_idx = htonl(comp->block_idx);
482 comp->offset = htonll(comp->offset);
483 comp->length = htonll(comp->length);
486 static void network_to_compress(RDMACompress *comp)
488 comp->value = ntohl(comp->value);
489 comp->block_idx = ntohl(comp->block_idx);
490 comp->offset = ntohll(comp->offset);
491 comp->length = ntohll(comp->length);
495 * The result of the dest's memory registration produces an "rkey"
496 * which the source VM must reference in order to perform
497 * the RDMA operation.
499 typedef struct QEMU_PACKED {
500 uint32_t rkey;
501 uint32_t padding;
502 uint64_t host_addr;
503 } RDMARegisterResult;
505 static void result_to_network(RDMARegisterResult *result)
507 result->rkey = htonl(result->rkey);
508 result->host_addr = htonll(result->host_addr);
511 static void network_to_result(RDMARegisterResult *result)
513 result->rkey = ntohl(result->rkey);
514 result->host_addr = ntohll(result->host_addr);
517 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
518 uint8_t *data, RDMAControlHeader *resp,
519 int *resp_idx,
520 int (*callback)(RDMAContext *rdma,
521 Error **errp),
522 Error **errp);
524 static inline uint64_t ram_chunk_index(const uint8_t *start,
525 const uint8_t *host)
527 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
530 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
531 uint64_t i)
533 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
534 (i << RDMA_REG_CHUNK_SHIFT));
537 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
538 uint64_t i)
540 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
541 (1UL << RDMA_REG_CHUNK_SHIFT);
543 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
544 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
547 return result;
550 static void rdma_add_block(RDMAContext *rdma, const char *block_name,
551 void *host_addr,
552 ram_addr_t block_offset, uint64_t length)
554 RDMALocalBlocks *local = &rdma->local_ram_blocks;
555 RDMALocalBlock *block;
556 RDMALocalBlock *old = local->block;
558 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
560 if (local->nb_blocks) {
561 if (rdma->blockmap) {
562 for (int x = 0; x < local->nb_blocks; x++) {
563 g_hash_table_remove(rdma->blockmap,
564 (void *)(uintptr_t)old[x].offset);
565 g_hash_table_insert(rdma->blockmap,
566 (void *)(uintptr_t)old[x].offset,
567 &local->block[x]);
570 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
571 g_free(old);
574 block = &local->block[local->nb_blocks];
576 block->block_name = g_strdup(block_name);
577 block->local_host_addr = host_addr;
578 block->offset = block_offset;
579 block->length = length;
580 block->index = local->nb_blocks;
581 block->src_index = ~0U; /* Filled in by the receipt of the block list */
582 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
583 block->transit_bitmap = bitmap_new(block->nb_chunks);
584 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
585 block->unregister_bitmap = bitmap_new(block->nb_chunks);
586 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
587 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
589 block->is_ram_block = local->init ? false : true;
591 if (rdma->blockmap) {
592 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
595 trace_rdma_add_block(block_name, local->nb_blocks,
596 (uintptr_t) block->local_host_addr,
597 block->offset, block->length,
598 (uintptr_t) (block->local_host_addr + block->length),
599 BITS_TO_LONGS(block->nb_chunks) *
600 sizeof(unsigned long) * 8,
601 block->nb_chunks);
603 local->nb_blocks++;
607 * Memory regions need to be registered with the device and queue pairs setup
608 * in advanced before the migration starts. This tells us where the RAM blocks
609 * are so that we can register them individually.
611 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
613 const char *block_name = qemu_ram_get_idstr(rb);
614 void *host_addr = qemu_ram_get_host_addr(rb);
615 ram_addr_t block_offset = qemu_ram_get_offset(rb);
616 ram_addr_t length = qemu_ram_get_used_length(rb);
617 rdma_add_block(opaque, block_name, host_addr, block_offset, length);
618 return 0;
622 * Identify the RAMBlocks and their quantity. They will be references to
623 * identify chunk boundaries inside each RAMBlock and also be referenced
624 * during dynamic page registration.
626 static void qemu_rdma_init_ram_blocks(RDMAContext *rdma)
628 RDMALocalBlocks *local = &rdma->local_ram_blocks;
629 int ret;
631 assert(rdma->blockmap == NULL);
632 memset(local, 0, sizeof *local);
633 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
634 assert(!ret);
635 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
636 rdma->dest_blocks = g_new0(RDMADestBlock,
637 rdma->local_ram_blocks.nb_blocks);
638 local->init = true;
642 * Note: If used outside of cleanup, the caller must ensure that the destination
643 * block structures are also updated
645 static void rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
647 RDMALocalBlocks *local = &rdma->local_ram_blocks;
648 RDMALocalBlock *old = local->block;
650 if (rdma->blockmap) {
651 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
653 if (block->pmr) {
654 for (int j = 0; j < block->nb_chunks; j++) {
655 if (!block->pmr[j]) {
656 continue;
658 ibv_dereg_mr(block->pmr[j]);
659 rdma->total_registrations--;
661 g_free(block->pmr);
662 block->pmr = NULL;
665 if (block->mr) {
666 ibv_dereg_mr(block->mr);
667 rdma->total_registrations--;
668 block->mr = NULL;
671 g_free(block->transit_bitmap);
672 block->transit_bitmap = NULL;
674 g_free(block->unregister_bitmap);
675 block->unregister_bitmap = NULL;
677 g_free(block->remote_keys);
678 block->remote_keys = NULL;
680 g_free(block->block_name);
681 block->block_name = NULL;
683 if (rdma->blockmap) {
684 for (int x = 0; x < local->nb_blocks; x++) {
685 g_hash_table_remove(rdma->blockmap,
686 (void *)(uintptr_t)old[x].offset);
690 if (local->nb_blocks > 1) {
692 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
694 if (block->index) {
695 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
698 if (block->index < (local->nb_blocks - 1)) {
699 memcpy(local->block + block->index, old + (block->index + 1),
700 sizeof(RDMALocalBlock) *
701 (local->nb_blocks - (block->index + 1)));
702 for (int x = block->index; x < local->nb_blocks - 1; x++) {
703 local->block[x].index--;
706 } else {
707 assert(block == local->block);
708 local->block = NULL;
711 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
712 block->offset, block->length,
713 (uintptr_t)(block->local_host_addr + block->length),
714 BITS_TO_LONGS(block->nb_chunks) *
715 sizeof(unsigned long) * 8, block->nb_chunks);
717 g_free(old);
719 local->nb_blocks--;
721 if (local->nb_blocks && rdma->blockmap) {
722 for (int x = 0; x < local->nb_blocks; x++) {
723 g_hash_table_insert(rdma->blockmap,
724 (void *)(uintptr_t)local->block[x].offset,
725 &local->block[x]);
731 * Trace RDMA device open, with device details.
733 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
735 struct ibv_port_attr port;
737 if (ibv_query_port(verbs, 1, &port)) {
738 trace_qemu_rdma_dump_id_failed(who);
739 return;
742 trace_qemu_rdma_dump_id(who,
743 verbs->device->name,
744 verbs->device->dev_name,
745 verbs->device->dev_path,
746 verbs->device->ibdev_path,
747 port.link_layer,
748 port.link_layer == IBV_LINK_LAYER_INFINIBAND ? "Infiniband"
749 : port.link_layer == IBV_LINK_LAYER_ETHERNET ? "Ethernet"
750 : "Unknown");
754 * Trace RDMA gid addressing information.
755 * Useful for understanding the RDMA device hierarchy in the kernel.
757 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
759 char sgid[33];
760 char dgid[33];
761 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
762 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
763 trace_qemu_rdma_dump_gid(who, sgid, dgid);
767 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
768 * We will try the next addrinfo struct, and fail if there are
769 * no other valid addresses to bind against.
771 * If user is listening on '[::]', then we will not have a opened a device
772 * yet and have no way of verifying if the device is RoCE or not.
774 * In this case, the source VM will throw an error for ALL types of
775 * connections (both IPv4 and IPv6) if the destination machine does not have
776 * a regular infiniband network available for use.
778 * The only way to guarantee that an error is thrown for broken kernels is
779 * for the management software to choose a *specific* interface at bind time
780 * and validate what time of hardware it is.
782 * Unfortunately, this puts the user in a fix:
784 * If the source VM connects with an IPv4 address without knowing that the
785 * destination has bound to '[::]' the migration will unconditionally fail
786 * unless the management software is explicitly listening on the IPv4
787 * address while using a RoCE-based device.
789 * If the source VM connects with an IPv6 address, then we're OK because we can
790 * throw an error on the source (and similarly on the destination).
792 * But in mixed environments, this will be broken for a while until it is fixed
793 * inside linux.
795 * We do provide a *tiny* bit of help in this function: We can list all of the
796 * devices in the system and check to see if all the devices are RoCE or
797 * Infiniband.
799 * If we detect that we have a *pure* RoCE environment, then we can safely
800 * thrown an error even if the management software has specified '[::]' as the
801 * bind address.
803 * However, if there is are multiple hetergeneous devices, then we cannot make
804 * this assumption and the user just has to be sure they know what they are
805 * doing.
807 * Patches are being reviewed on linux-rdma.
809 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
811 /* This bug only exists in linux, to our knowledge. */
812 #ifdef CONFIG_LINUX
813 struct ibv_port_attr port_attr;
816 * Verbs are only NULL if management has bound to '[::]'.
818 * Let's iterate through all the devices and see if there any pure IB
819 * devices (non-ethernet).
821 * If not, then we can safely proceed with the migration.
822 * Otherwise, there are no guarantees until the bug is fixed in linux.
824 if (!verbs) {
825 int num_devices;
826 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
827 bool roce_found = false;
828 bool ib_found = false;
830 for (int x = 0; x < num_devices; x++) {
831 verbs = ibv_open_device(dev_list[x]);
833 * ibv_open_device() is not documented to set errno. If
834 * it does, it's somebody else's doc bug. If it doesn't,
835 * the use of errno below is wrong.
836 * TODO Find out whether ibv_open_device() sets errno.
838 if (!verbs) {
839 if (errno == EPERM) {
840 continue;
841 } else {
842 error_setg_errno(errp, errno,
843 "could not open RDMA device context");
844 return -1;
848 if (ibv_query_port(verbs, 1, &port_attr)) {
849 ibv_close_device(verbs);
850 error_setg(errp,
851 "RDMA ERROR: Could not query initial IB port");
852 return -1;
855 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
856 ib_found = true;
857 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
858 roce_found = true;
861 ibv_close_device(verbs);
865 if (roce_found) {
866 if (ib_found) {
867 warn_report("migrations may fail:"
868 " IPv6 over RoCE / iWARP in linux"
869 " is broken. But since you appear to have a"
870 " mixed RoCE / IB environment, be sure to only"
871 " migrate over the IB fabric until the kernel "
872 " fixes the bug.");
873 } else {
874 error_setg(errp, "RDMA ERROR: "
875 "You only have RoCE / iWARP devices in your systems"
876 " and your management software has specified '[::]'"
877 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
878 return -1;
882 return 0;
886 * If we have a verbs context, that means that some other than '[::]' was
887 * used by the management software for binding. In which case we can
888 * actually warn the user about a potentially broken kernel.
891 /* IB ports start with 1, not 0 */
892 if (ibv_query_port(verbs, 1, &port_attr)) {
893 error_setg(errp, "RDMA ERROR: Could not query initial IB port");
894 return -1;
897 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
898 error_setg(errp, "RDMA ERROR: "
899 "Linux kernel's RoCE / iWARP does not support IPv6 "
900 "(but patches on linux-rdma in progress)");
901 return -1;
904 #endif
906 return 0;
910 * Figure out which RDMA device corresponds to the requested IP hostname
911 * Also create the initial connection manager identifiers for opening
912 * the connection.
914 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
916 Error *err = NULL;
917 int ret;
918 struct rdma_addrinfo *res;
919 char port_str[16];
920 struct rdma_cm_event *cm_event;
921 char ip[40] = "unknown";
923 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
924 error_setg(errp, "RDMA ERROR: RDMA hostname has not been set");
925 return -1;
928 /* create CM channel */
929 rdma->channel = rdma_create_event_channel();
930 if (!rdma->channel) {
931 error_setg(errp, "RDMA ERROR: could not create CM channel");
932 return -1;
935 /* create CM id */
936 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
937 if (ret < 0) {
938 error_setg(errp, "RDMA ERROR: could not create channel id");
939 goto err_resolve_create_id;
942 snprintf(port_str, 16, "%d", rdma->port);
943 port_str[15] = '\0';
945 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
946 if (ret) {
947 error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
948 rdma->host);
949 goto err_resolve_get_addr;
952 /* Try all addresses, saving the first error in @err */
953 for (struct rdma_addrinfo *e = res; e != NULL; e = e->ai_next) {
954 Error **local_errp = err ? NULL : &err;
956 inet_ntop(e->ai_family,
957 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
958 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
960 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
961 RDMA_RESOLVE_TIMEOUT_MS);
962 if (ret >= 0) {
963 if (e->ai_family == AF_INET6) {
964 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs,
965 local_errp);
966 if (ret < 0) {
967 continue;
970 error_free(err);
971 goto route;
975 rdma_freeaddrinfo(res);
976 if (err) {
977 error_propagate(errp, err);
978 } else {
979 error_setg(errp, "RDMA ERROR: could not resolve address %s",
980 rdma->host);
982 goto err_resolve_get_addr;
984 route:
985 rdma_freeaddrinfo(res);
986 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
988 ret = rdma_get_cm_event(rdma->channel, &cm_event);
989 if (ret < 0) {
990 error_setg(errp, "RDMA ERROR: could not perform event_addr_resolved");
991 goto err_resolve_get_addr;
994 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
995 error_setg(errp,
996 "RDMA ERROR: result not equal to event_addr_resolved %s",
997 rdma_event_str(cm_event->event));
998 rdma_ack_cm_event(cm_event);
999 goto err_resolve_get_addr;
1001 rdma_ack_cm_event(cm_event);
1003 /* resolve route */
1004 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1005 if (ret < 0) {
1006 error_setg(errp, "RDMA ERROR: could not resolve rdma route");
1007 goto err_resolve_get_addr;
1010 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1011 if (ret < 0) {
1012 error_setg(errp, "RDMA ERROR: could not perform event_route_resolved");
1013 goto err_resolve_get_addr;
1015 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1016 error_setg(errp, "RDMA ERROR: "
1017 "result not equal to event_route_resolved: %s",
1018 rdma_event_str(cm_event->event));
1019 rdma_ack_cm_event(cm_event);
1020 goto err_resolve_get_addr;
1022 rdma_ack_cm_event(cm_event);
1023 rdma->verbs = rdma->cm_id->verbs;
1024 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1025 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1026 return 0;
1028 err_resolve_get_addr:
1029 rdma_destroy_id(rdma->cm_id);
1030 rdma->cm_id = NULL;
1031 err_resolve_create_id:
1032 rdma_destroy_event_channel(rdma->channel);
1033 rdma->channel = NULL;
1034 return -1;
1038 * Create protection domain and completion queues
1040 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma, Error **errp)
1042 /* allocate pd */
1043 rdma->pd = ibv_alloc_pd(rdma->verbs);
1044 if (!rdma->pd) {
1045 error_setg(errp, "failed to allocate protection domain");
1046 return -1;
1049 /* create receive completion channel */
1050 rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1051 if (!rdma->recv_comp_channel) {
1052 error_setg(errp, "failed to allocate receive completion channel");
1053 goto err_alloc_pd_cq;
1057 * Completion queue can be filled by read work requests.
1059 rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1060 NULL, rdma->recv_comp_channel, 0);
1061 if (!rdma->recv_cq) {
1062 error_setg(errp, "failed to allocate receive completion queue");
1063 goto err_alloc_pd_cq;
1066 /* create send completion channel */
1067 rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1068 if (!rdma->send_comp_channel) {
1069 error_setg(errp, "failed to allocate send completion channel");
1070 goto err_alloc_pd_cq;
1073 rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074 NULL, rdma->send_comp_channel, 0);
1075 if (!rdma->send_cq) {
1076 error_setg(errp, "failed to allocate send completion queue");
1077 goto err_alloc_pd_cq;
1080 return 0;
1082 err_alloc_pd_cq:
1083 if (rdma->pd) {
1084 ibv_dealloc_pd(rdma->pd);
1086 if (rdma->recv_comp_channel) {
1087 ibv_destroy_comp_channel(rdma->recv_comp_channel);
1089 if (rdma->send_comp_channel) {
1090 ibv_destroy_comp_channel(rdma->send_comp_channel);
1092 if (rdma->recv_cq) {
1093 ibv_destroy_cq(rdma->recv_cq);
1094 rdma->recv_cq = NULL;
1096 rdma->pd = NULL;
1097 rdma->recv_comp_channel = NULL;
1098 rdma->send_comp_channel = NULL;
1099 return -1;
1104 * Create queue pairs.
1106 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1108 struct ibv_qp_init_attr attr = { 0 };
1110 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1111 attr.cap.max_recv_wr = 3;
1112 attr.cap.max_send_sge = 1;
1113 attr.cap.max_recv_sge = 1;
1114 attr.send_cq = rdma->send_cq;
1115 attr.recv_cq = rdma->recv_cq;
1116 attr.qp_type = IBV_QPT_RC;
1118 if (rdma_create_qp(rdma->cm_id, rdma->pd, &attr) < 0) {
1119 return -1;
1122 rdma->qp = rdma->cm_id->qp;
1123 return 0;
1126 /* Check whether On-Demand Paging is supported by RDAM device */
1127 static bool rdma_support_odp(struct ibv_context *dev)
1129 struct ibv_device_attr_ex attr = {0};
1131 if (ibv_query_device_ex(dev, NULL, &attr)) {
1132 return false;
1135 if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1136 return true;
1139 return false;
1143 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1144 * The responder mr registering with ODP will sent RNR NAK back to
1145 * the requester in the face of the page fault.
1147 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1148 uint32_t len, uint32_t lkey,
1149 const char *name, bool wr)
1151 #ifdef HAVE_IBV_ADVISE_MR
1152 int ret;
1153 int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1154 IBV_ADVISE_MR_ADVICE_PREFETCH;
1155 struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1157 ret = ibv_advise_mr(pd, advice,
1158 IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1159 /* ignore the error */
1160 trace_qemu_rdma_advise_mr(name, len, addr, strerror(ret));
1161 #endif
1164 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma, Error **errp)
1166 int i;
1167 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1169 for (i = 0; i < local->nb_blocks; i++) {
1170 int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1172 local->block[i].mr =
1173 ibv_reg_mr(rdma->pd,
1174 local->block[i].local_host_addr,
1175 local->block[i].length, access
1178 * ibv_reg_mr() is not documented to set errno. If it does,
1179 * it's somebody else's doc bug. If it doesn't, the use of
1180 * errno below is wrong.
1181 * TODO Find out whether ibv_reg_mr() sets errno.
1183 if (!local->block[i].mr &&
1184 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1185 access |= IBV_ACCESS_ON_DEMAND;
1186 /* register ODP mr */
1187 local->block[i].mr =
1188 ibv_reg_mr(rdma->pd,
1189 local->block[i].local_host_addr,
1190 local->block[i].length, access);
1191 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1193 if (local->block[i].mr) {
1194 qemu_rdma_advise_prefetch_mr(rdma->pd,
1195 (uintptr_t)local->block[i].local_host_addr,
1196 local->block[i].length,
1197 local->block[i].mr->lkey,
1198 local->block[i].block_name,
1199 true);
1203 if (!local->block[i].mr) {
1204 error_setg_errno(errp, errno,
1205 "Failed to register local dest ram block!");
1206 goto err;
1208 rdma->total_registrations++;
1211 return 0;
1213 err:
1214 for (i--; i >= 0; i--) {
1215 ibv_dereg_mr(local->block[i].mr);
1216 local->block[i].mr = NULL;
1217 rdma->total_registrations--;
1220 return -1;
1225 * Find the ram block that corresponds to the page requested to be
1226 * transmitted by QEMU.
1228 * Once the block is found, also identify which 'chunk' within that
1229 * block that the page belongs to.
1231 static void qemu_rdma_search_ram_block(RDMAContext *rdma,
1232 uintptr_t block_offset,
1233 uint64_t offset,
1234 uint64_t length,
1235 uint64_t *block_index,
1236 uint64_t *chunk_index)
1238 uint64_t current_addr = block_offset + offset;
1239 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1240 (void *) block_offset);
1241 assert(block);
1242 assert(current_addr >= block->offset);
1243 assert((current_addr + length) <= (block->offset + block->length));
1245 *block_index = block->index;
1246 *chunk_index = ram_chunk_index(block->local_host_addr,
1247 block->local_host_addr + (current_addr - block->offset));
1251 * Register a chunk with IB. If the chunk was already registered
1252 * previously, then skip.
1254 * Also return the keys associated with the registration needed
1255 * to perform the actual RDMA operation.
1257 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1258 RDMALocalBlock *block, uintptr_t host_addr,
1259 uint32_t *lkey, uint32_t *rkey, int chunk,
1260 uint8_t *chunk_start, uint8_t *chunk_end)
1262 if (block->mr) {
1263 if (lkey) {
1264 *lkey = block->mr->lkey;
1266 if (rkey) {
1267 *rkey = block->mr->rkey;
1269 return 0;
1272 /* allocate memory to store chunk MRs */
1273 if (!block->pmr) {
1274 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1278 * If 'rkey', then we're the destination, so grant access to the source.
1280 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1282 if (!block->pmr[chunk]) {
1283 uint64_t len = chunk_end - chunk_start;
1284 int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1287 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1289 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1291 * ibv_reg_mr() is not documented to set errno. If it does,
1292 * it's somebody else's doc bug. If it doesn't, the use of
1293 * errno below is wrong.
1294 * TODO Find out whether ibv_reg_mr() sets errno.
1296 if (!block->pmr[chunk] &&
1297 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1298 access |= IBV_ACCESS_ON_DEMAND;
1299 /* register ODP mr */
1300 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1301 trace_qemu_rdma_register_odp_mr(block->block_name);
1303 if (block->pmr[chunk]) {
1304 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1305 len, block->pmr[chunk]->lkey,
1306 block->block_name, rkey);
1311 if (!block->pmr[chunk]) {
1312 return -1;
1314 rdma->total_registrations++;
1316 if (lkey) {
1317 *lkey = block->pmr[chunk]->lkey;
1319 if (rkey) {
1320 *rkey = block->pmr[chunk]->rkey;
1322 return 0;
1326 * Register (at connection time) the memory used for control
1327 * channel messages.
1329 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1331 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1332 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1333 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1334 if (rdma->wr_data[idx].control_mr) {
1335 rdma->total_registrations++;
1336 return 0;
1338 return -1;
1342 * Perform a non-optimized memory unregistration after every transfer
1343 * for demonstration purposes, only if pin-all is not requested.
1345 * Potential optimizations:
1346 * 1. Start a new thread to run this function continuously
1347 - for bit clearing
1348 - and for receipt of unregister messages
1349 * 2. Use an LRU.
1350 * 3. Use workload hints.
1352 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1354 Error *err = NULL;
1356 while (rdma->unregistrations[rdma->unregister_current]) {
1357 int ret;
1358 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1359 uint64_t chunk =
1360 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1361 uint64_t index =
1362 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1363 RDMALocalBlock *block =
1364 &(rdma->local_ram_blocks.block[index]);
1365 RDMARegister reg = { .current_index = index };
1366 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1368 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1369 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1370 .repeat = 1,
1373 trace_qemu_rdma_unregister_waiting_proc(chunk,
1374 rdma->unregister_current);
1376 rdma->unregistrations[rdma->unregister_current] = 0;
1377 rdma->unregister_current++;
1379 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1380 rdma->unregister_current = 0;
1385 * Unregistration is speculative (because migration is single-threaded
1386 * and we cannot break the protocol's inifinband message ordering).
1387 * Thus, if the memory is currently being used for transmission,
1388 * then abort the attempt to unregister and try again
1389 * later the next time a completion is received for this memory.
1391 clear_bit(chunk, block->unregister_bitmap);
1393 if (test_bit(chunk, block->transit_bitmap)) {
1394 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1395 continue;
1398 trace_qemu_rdma_unregister_waiting_send(chunk);
1400 ret = ibv_dereg_mr(block->pmr[chunk]);
1401 block->pmr[chunk] = NULL;
1402 block->remote_keys[chunk] = 0;
1404 if (ret != 0) {
1405 error_report("unregistration chunk failed: %s",
1406 strerror(ret));
1407 return -1;
1409 rdma->total_registrations--;
1411 reg.key.chunk = chunk;
1412 register_to_network(rdma, &reg);
1413 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1414 &resp, NULL, NULL, &err);
1415 if (ret < 0) {
1416 error_report_err(err);
1417 return -1;
1420 trace_qemu_rdma_unregister_waiting_complete(chunk);
1423 return 0;
1426 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1427 uint64_t chunk)
1429 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1431 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1432 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1434 return result;
1438 * Consult the connection manager to see a work request
1439 * (of any kind) has completed.
1440 * Return the work request ID that completed.
1442 static int qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1443 uint64_t *wr_id_out, uint32_t *byte_len)
1445 int ret;
1446 struct ibv_wc wc;
1447 uint64_t wr_id;
1449 ret = ibv_poll_cq(cq, 1, &wc);
1451 if (!ret) {
1452 *wr_id_out = RDMA_WRID_NONE;
1453 return 0;
1456 if (ret < 0) {
1457 return -1;
1460 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1462 if (wc.status != IBV_WC_SUCCESS) {
1463 return -1;
1466 if (rdma->control_ready_expected &&
1467 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1468 trace_qemu_rdma_poll_recv(wr_id - RDMA_WRID_RECV_CONTROL, wr_id,
1469 rdma->nb_sent);
1470 rdma->control_ready_expected = 0;
1473 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1474 uint64_t chunk =
1475 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1476 uint64_t index =
1477 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1478 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1480 trace_qemu_rdma_poll_write(wr_id, rdma->nb_sent,
1481 index, chunk, block->local_host_addr,
1482 (void *)(uintptr_t)block->remote_host_addr);
1484 clear_bit(chunk, block->transit_bitmap);
1486 if (rdma->nb_sent > 0) {
1487 rdma->nb_sent--;
1489 } else {
1490 trace_qemu_rdma_poll_other(wr_id, rdma->nb_sent);
1493 *wr_id_out = wc.wr_id;
1494 if (byte_len) {
1495 *byte_len = wc.byte_len;
1498 return 0;
1501 /* Wait for activity on the completion channel.
1502 * Returns 0 on success, none-0 on error.
1504 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1505 struct ibv_comp_channel *comp_channel)
1507 struct rdma_cm_event *cm_event;
1510 * Coroutine doesn't start until migration_fd_process_incoming()
1511 * so don't yield unless we know we're running inside of a coroutine.
1513 if (rdma->migration_started_on_destination &&
1514 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1515 yield_until_fd_readable(comp_channel->fd);
1516 } else {
1517 /* This is the source side, we're in a separate thread
1518 * or destination prior to migration_fd_process_incoming()
1519 * after postcopy, the destination also in a separate thread.
1520 * we can't yield; so we have to poll the fd.
1521 * But we need to be able to handle 'cancel' or an error
1522 * without hanging forever.
1524 while (!rdma->errored && !rdma->received_error) {
1525 GPollFD pfds[2];
1526 pfds[0].fd = comp_channel->fd;
1527 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1528 pfds[0].revents = 0;
1530 pfds[1].fd = rdma->channel->fd;
1531 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1532 pfds[1].revents = 0;
1534 /* 0.1s timeout, should be fine for a 'cancel' */
1535 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1536 case 2:
1537 case 1: /* fd active */
1538 if (pfds[0].revents) {
1539 return 0;
1542 if (pfds[1].revents) {
1543 if (rdma_get_cm_event(rdma->channel, &cm_event) < 0) {
1544 return -1;
1547 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1548 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1549 rdma_ack_cm_event(cm_event);
1550 return -1;
1552 rdma_ack_cm_event(cm_event);
1554 break;
1556 case 0: /* Timeout, go around again */
1557 break;
1559 default: /* Error of some type -
1560 * I don't trust errno from qemu_poll_ns
1562 return -1;
1565 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1566 /* Bail out and let the cancellation happen */
1567 return -1;
1572 if (rdma->received_error) {
1573 return -1;
1575 return -rdma->errored;
1578 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, uint64_t wrid)
1580 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1581 rdma->recv_comp_channel;
1584 static struct ibv_cq *to_cq(RDMAContext *rdma, uint64_t wrid)
1586 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1590 * Block until the next work request has completed.
1592 * First poll to see if a work request has already completed,
1593 * otherwise block.
1595 * If we encounter completed work requests for IDs other than
1596 * the one we're interested in, then that's generally an error.
1598 * The only exception is actual RDMA Write completions. These
1599 * completions only need to be recorded, but do not actually
1600 * need further processing.
1602 static int qemu_rdma_block_for_wrid(RDMAContext *rdma,
1603 uint64_t wrid_requested,
1604 uint32_t *byte_len)
1606 int num_cq_events = 0, ret;
1607 struct ibv_cq *cq;
1608 void *cq_ctx;
1609 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1610 struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1611 struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1613 if (ibv_req_notify_cq(poll_cq, 0)) {
1614 return -1;
1616 /* poll cq first */
1617 while (wr_id != wrid_requested) {
1618 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1619 if (ret < 0) {
1620 return -1;
1623 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1625 if (wr_id == RDMA_WRID_NONE) {
1626 break;
1628 if (wr_id != wrid_requested) {
1629 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1633 if (wr_id == wrid_requested) {
1634 return 0;
1637 while (1) {
1638 ret = qemu_rdma_wait_comp_channel(rdma, ch);
1639 if (ret < 0) {
1640 goto err_block_for_wrid;
1643 ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1644 if (ret < 0) {
1645 goto err_block_for_wrid;
1648 num_cq_events++;
1650 if (ibv_req_notify_cq(cq, 0)) {
1651 goto err_block_for_wrid;
1654 while (wr_id != wrid_requested) {
1655 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1656 if (ret < 0) {
1657 goto err_block_for_wrid;
1660 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1662 if (wr_id == RDMA_WRID_NONE) {
1663 break;
1665 if (wr_id != wrid_requested) {
1666 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1670 if (wr_id == wrid_requested) {
1671 goto success_block_for_wrid;
1675 success_block_for_wrid:
1676 if (num_cq_events) {
1677 ibv_ack_cq_events(cq, num_cq_events);
1679 return 0;
1681 err_block_for_wrid:
1682 if (num_cq_events) {
1683 ibv_ack_cq_events(cq, num_cq_events);
1686 rdma->errored = true;
1687 return -1;
1691 * Post a SEND message work request for the control channel
1692 * containing some data and block until the post completes.
1694 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1695 RDMAControlHeader *head,
1696 Error **errp)
1698 int ret;
1699 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1700 struct ibv_send_wr *bad_wr;
1701 struct ibv_sge sge = {
1702 .addr = (uintptr_t)(wr->control),
1703 .length = head->len + sizeof(RDMAControlHeader),
1704 .lkey = wr->control_mr->lkey,
1706 struct ibv_send_wr send_wr = {
1707 .wr_id = RDMA_WRID_SEND_CONTROL,
1708 .opcode = IBV_WR_SEND,
1709 .send_flags = IBV_SEND_SIGNALED,
1710 .sg_list = &sge,
1711 .num_sge = 1,
1714 trace_qemu_rdma_post_send_control(control_desc(head->type));
1717 * We don't actually need to do a memcpy() in here if we used
1718 * the "sge" properly, but since we're only sending control messages
1719 * (not RAM in a performance-critical path), then its OK for now.
1721 * The copy makes the RDMAControlHeader simpler to manipulate
1722 * for the time being.
1724 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1725 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1726 control_to_network((void *) wr->control);
1728 if (buf) {
1729 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1733 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1735 if (ret > 0) {
1736 error_setg(errp, "Failed to use post IB SEND for control");
1737 return -1;
1740 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1741 if (ret < 0) {
1742 error_setg(errp, "rdma migration: send polling control error");
1743 return -1;
1746 return 0;
1750 * Post a RECV work request in anticipation of some future receipt
1751 * of data on the control channel.
1753 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx,
1754 Error **errp)
1756 struct ibv_recv_wr *bad_wr;
1757 struct ibv_sge sge = {
1758 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1759 .length = RDMA_CONTROL_MAX_BUFFER,
1760 .lkey = rdma->wr_data[idx].control_mr->lkey,
1763 struct ibv_recv_wr recv_wr = {
1764 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1765 .sg_list = &sge,
1766 .num_sge = 1,
1770 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1771 error_setg(errp, "error posting control recv");
1772 return -1;
1775 return 0;
1779 * Block and wait for a RECV control channel message to arrive.
1781 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1782 RDMAControlHeader *head, uint32_t expecting, int idx,
1783 Error **errp)
1785 uint32_t byte_len;
1786 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1787 &byte_len);
1789 if (ret < 0) {
1790 error_setg(errp, "rdma migration: recv polling control error!");
1791 return -1;
1794 network_to_control((void *) rdma->wr_data[idx].control);
1795 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1797 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1799 if (expecting == RDMA_CONTROL_NONE) {
1800 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1801 head->type);
1802 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1803 error_setg(errp, "Was expecting a %s (%d) control message"
1804 ", but got: %s (%d), length: %d",
1805 control_desc(expecting), expecting,
1806 control_desc(head->type), head->type, head->len);
1807 if (head->type == RDMA_CONTROL_ERROR) {
1808 rdma->received_error = true;
1810 return -1;
1812 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1813 error_setg(errp, "too long length: %d", head->len);
1814 return -1;
1816 if (sizeof(*head) + head->len != byte_len) {
1817 error_setg(errp, "Malformed length: %d byte_len %d",
1818 head->len, byte_len);
1819 return -1;
1822 return 0;
1826 * When a RECV work request has completed, the work request's
1827 * buffer is pointed at the header.
1829 * This will advance the pointer to the data portion
1830 * of the control message of the work request's buffer that
1831 * was populated after the work request finished.
1833 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1834 RDMAControlHeader *head)
1836 rdma->wr_data[idx].control_len = head->len;
1837 rdma->wr_data[idx].control_curr =
1838 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1842 * This is an 'atomic' high-level operation to deliver a single, unified
1843 * control-channel message.
1845 * Additionally, if the user is expecting some kind of reply to this message,
1846 * they can request a 'resp' response message be filled in by posting an
1847 * additional work request on behalf of the user and waiting for an additional
1848 * completion.
1850 * The extra (optional) response is used during registration to us from having
1851 * to perform an *additional* exchange of message just to provide a response by
1852 * instead piggy-backing on the acknowledgement.
1854 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1855 uint8_t *data, RDMAControlHeader *resp,
1856 int *resp_idx,
1857 int (*callback)(RDMAContext *rdma,
1858 Error **errp),
1859 Error **errp)
1861 int ret;
1864 * Wait until the dest is ready before attempting to deliver the message
1865 * by waiting for a READY message.
1867 if (rdma->control_ready_expected) {
1868 RDMAControlHeader resp_ignored;
1870 ret = qemu_rdma_exchange_get_response(rdma, &resp_ignored,
1871 RDMA_CONTROL_READY,
1872 RDMA_WRID_READY, errp);
1873 if (ret < 0) {
1874 return -1;
1879 * If the user is expecting a response, post a WR in anticipation of it.
1881 if (resp) {
1882 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA, errp);
1883 if (ret < 0) {
1884 return -1;
1889 * Post a WR to replace the one we just consumed for the READY message.
1891 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
1892 if (ret < 0) {
1893 return -1;
1897 * Deliver the control message that was requested.
1899 ret = qemu_rdma_post_send_control(rdma, data, head, errp);
1901 if (ret < 0) {
1902 return -1;
1906 * If we're expecting a response, block and wait for it.
1908 if (resp) {
1909 if (callback) {
1910 trace_qemu_rdma_exchange_send_issue_callback();
1911 ret = callback(rdma, errp);
1912 if (ret < 0) {
1913 return -1;
1917 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1918 ret = qemu_rdma_exchange_get_response(rdma, resp,
1919 resp->type, RDMA_WRID_DATA,
1920 errp);
1922 if (ret < 0) {
1923 return -1;
1926 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1927 if (resp_idx) {
1928 *resp_idx = RDMA_WRID_DATA;
1930 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1933 rdma->control_ready_expected = 1;
1935 return 0;
1939 * This is an 'atomic' high-level operation to receive a single, unified
1940 * control-channel message.
1942 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1943 uint32_t expecting, Error **errp)
1945 RDMAControlHeader ready = {
1946 .len = 0,
1947 .type = RDMA_CONTROL_READY,
1948 .repeat = 1,
1950 int ret;
1953 * Inform the source that we're ready to receive a message.
1955 ret = qemu_rdma_post_send_control(rdma, NULL, &ready, errp);
1957 if (ret < 0) {
1958 return -1;
1962 * Block and wait for the message.
1964 ret = qemu_rdma_exchange_get_response(rdma, head,
1965 expecting, RDMA_WRID_READY, errp);
1967 if (ret < 0) {
1968 return -1;
1971 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1974 * Post a new RECV work request to replace the one we just consumed.
1976 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
1977 if (ret < 0) {
1978 return -1;
1981 return 0;
1985 * Write an actual chunk of memory using RDMA.
1987 * If we're using dynamic registration on the dest-side, we have to
1988 * send a registration command first.
1990 static int qemu_rdma_write_one(RDMAContext *rdma,
1991 int current_index, uint64_t current_addr,
1992 uint64_t length, Error **errp)
1994 struct ibv_sge sge;
1995 struct ibv_send_wr send_wr = { 0 };
1996 struct ibv_send_wr *bad_wr;
1997 int reg_result_idx, ret, count = 0;
1998 uint64_t chunk, chunks;
1999 uint8_t *chunk_start, *chunk_end;
2000 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2001 RDMARegister reg;
2002 RDMARegisterResult *reg_result;
2003 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2004 RDMAControlHeader head = { .len = sizeof(RDMARegister),
2005 .type = RDMA_CONTROL_REGISTER_REQUEST,
2006 .repeat = 1,
2009 retry:
2010 sge.addr = (uintptr_t)(block->local_host_addr +
2011 (current_addr - block->offset));
2012 sge.length = length;
2014 chunk = ram_chunk_index(block->local_host_addr,
2015 (uint8_t *)(uintptr_t)sge.addr);
2016 chunk_start = ram_chunk_start(block, chunk);
2018 if (block->is_ram_block) {
2019 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2021 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2022 chunks--;
2024 } else {
2025 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2027 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2028 chunks--;
2032 trace_qemu_rdma_write_one_top(chunks + 1,
2033 (chunks + 1) *
2034 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2036 chunk_end = ram_chunk_end(block, chunk + chunks);
2039 while (test_bit(chunk, block->transit_bitmap)) {
2040 (void)count;
2041 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2042 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2044 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2046 if (ret < 0) {
2047 error_setg(errp, "Failed to Wait for previous write to complete "
2048 "block %d chunk %" PRIu64
2049 " current %" PRIu64 " len %" PRIu64 " %d",
2050 current_index, chunk, sge.addr, length, rdma->nb_sent);
2051 return -1;
2055 if (!rdma->pin_all || !block->is_ram_block) {
2056 if (!block->remote_keys[chunk]) {
2058 * This chunk has not yet been registered, so first check to see
2059 * if the entire chunk is zero. If so, tell the other size to
2060 * memset() + madvise() the entire chunk without RDMA.
2063 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2064 RDMACompress comp = {
2065 .offset = current_addr,
2066 .value = 0,
2067 .block_idx = current_index,
2068 .length = length,
2071 head.len = sizeof(comp);
2072 head.type = RDMA_CONTROL_COMPRESS;
2074 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2075 current_index, current_addr);
2077 compress_to_network(rdma, &comp);
2078 ret = qemu_rdma_exchange_send(rdma, &head,
2079 (uint8_t *) &comp, NULL, NULL, NULL, errp);
2081 if (ret < 0) {
2082 return -1;
2086 * TODO: Here we are sending something, but we are not
2087 * accounting for anything transferred. The following is wrong:
2089 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2091 * because we are using some kind of compression. I
2092 * would think that head.len would be the more similar
2093 * thing to a correct value.
2095 stat64_add(&mig_stats.zero_pages,
2096 sge.length / qemu_target_page_size());
2097 return 1;
2101 * Otherwise, tell other side to register.
2103 reg.current_index = current_index;
2104 if (block->is_ram_block) {
2105 reg.key.current_addr = current_addr;
2106 } else {
2107 reg.key.chunk = chunk;
2109 reg.chunks = chunks;
2111 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2112 current_addr);
2114 register_to_network(rdma, &reg);
2115 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2116 &resp, &reg_result_idx, NULL, errp);
2117 if (ret < 0) {
2118 return -1;
2121 /* try to overlap this single registration with the one we sent. */
2122 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2123 &sge.lkey, NULL, chunk,
2124 chunk_start, chunk_end)) {
2125 error_setg(errp, "cannot get lkey");
2126 return -1;
2129 reg_result = (RDMARegisterResult *)
2130 rdma->wr_data[reg_result_idx].control_curr;
2132 network_to_result(reg_result);
2134 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2135 reg_result->rkey, chunk);
2137 block->remote_keys[chunk] = reg_result->rkey;
2138 block->remote_host_addr = reg_result->host_addr;
2139 } else {
2140 /* already registered before */
2141 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2142 &sge.lkey, NULL, chunk,
2143 chunk_start, chunk_end)) {
2144 error_setg(errp, "cannot get lkey!");
2145 return -1;
2149 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2150 } else {
2151 send_wr.wr.rdma.rkey = block->remote_rkey;
2153 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2154 &sge.lkey, NULL, chunk,
2155 chunk_start, chunk_end)) {
2156 error_setg(errp, "cannot get lkey!");
2157 return -1;
2162 * Encode the ram block index and chunk within this wrid.
2163 * We will use this information at the time of completion
2164 * to figure out which bitmap to check against and then which
2165 * chunk in the bitmap to look for.
2167 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2168 current_index, chunk);
2170 send_wr.opcode = IBV_WR_RDMA_WRITE;
2171 send_wr.send_flags = IBV_SEND_SIGNALED;
2172 send_wr.sg_list = &sge;
2173 send_wr.num_sge = 1;
2174 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2175 (current_addr - block->offset);
2177 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2178 sge.length);
2181 * ibv_post_send() does not return negative error numbers,
2182 * per the specification they are positive - no idea why.
2184 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2186 if (ret == ENOMEM) {
2187 trace_qemu_rdma_write_one_queue_full();
2188 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2189 if (ret < 0) {
2190 error_setg(errp, "rdma migration: failed to make "
2191 "room in full send queue!");
2192 return -1;
2195 goto retry;
2197 } else if (ret > 0) {
2198 error_setg_errno(errp, ret,
2199 "rdma migration: post rdma write failed");
2200 return -1;
2203 set_bit(chunk, block->transit_bitmap);
2204 stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2206 * We are adding to transferred the amount of data written, but no
2207 * overhead at all. I will assume that RDMA is magicaly and don't
2208 * need to transfer (at least) the addresses where it wants to
2209 * write the pages. Here it looks like it should be something
2210 * like:
2211 * sizeof(send_wr) + sge.length
2212 * but this being RDMA, who knows.
2214 stat64_add(&mig_stats.rdma_bytes, sge.length);
2215 ram_transferred_add(sge.length);
2216 rdma->total_writes++;
2218 return 0;
2222 * Push out any unwritten RDMA operations.
2224 * We support sending out multiple chunks at the same time.
2225 * Not all of them need to get signaled in the completion queue.
2227 static int qemu_rdma_write_flush(RDMAContext *rdma, Error **errp)
2229 int ret;
2231 if (!rdma->current_length) {
2232 return 0;
2235 ret = qemu_rdma_write_one(rdma, rdma->current_index, rdma->current_addr,
2236 rdma->current_length, errp);
2238 if (ret < 0) {
2239 return -1;
2242 if (ret == 0) {
2243 rdma->nb_sent++;
2244 trace_qemu_rdma_write_flush(rdma->nb_sent);
2247 rdma->current_length = 0;
2248 rdma->current_addr = 0;
2250 return 0;
2253 static inline bool qemu_rdma_buffer_mergeable(RDMAContext *rdma,
2254 uint64_t offset, uint64_t len)
2256 RDMALocalBlock *block;
2257 uint8_t *host_addr;
2258 uint8_t *chunk_end;
2260 if (rdma->current_index < 0) {
2261 return false;
2264 if (rdma->current_chunk < 0) {
2265 return false;
2268 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2269 host_addr = block->local_host_addr + (offset - block->offset);
2270 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2272 if (rdma->current_length == 0) {
2273 return false;
2277 * Only merge into chunk sequentially.
2279 if (offset != (rdma->current_addr + rdma->current_length)) {
2280 return false;
2283 if (offset < block->offset) {
2284 return false;
2287 if ((offset + len) > (block->offset + block->length)) {
2288 return false;
2291 if ((host_addr + len) > chunk_end) {
2292 return false;
2295 return true;
2299 * We're not actually writing here, but doing three things:
2301 * 1. Identify the chunk the buffer belongs to.
2302 * 2. If the chunk is full or the buffer doesn't belong to the current
2303 * chunk, then start a new chunk and flush() the old chunk.
2304 * 3. To keep the hardware busy, we also group chunks into batches
2305 * and only require that a batch gets acknowledged in the completion
2306 * queue instead of each individual chunk.
2308 static int qemu_rdma_write(RDMAContext *rdma,
2309 uint64_t block_offset, uint64_t offset,
2310 uint64_t len, Error **errp)
2312 uint64_t current_addr = block_offset + offset;
2313 uint64_t index = rdma->current_index;
2314 uint64_t chunk = rdma->current_chunk;
2316 /* If we cannot merge it, we flush the current buffer first. */
2317 if (!qemu_rdma_buffer_mergeable(rdma, current_addr, len)) {
2318 if (qemu_rdma_write_flush(rdma, errp) < 0) {
2319 return -1;
2321 rdma->current_length = 0;
2322 rdma->current_addr = current_addr;
2324 qemu_rdma_search_ram_block(rdma, block_offset,
2325 offset, len, &index, &chunk);
2326 rdma->current_index = index;
2327 rdma->current_chunk = chunk;
2330 /* merge it */
2331 rdma->current_length += len;
2333 /* flush it if buffer is too large */
2334 if (rdma->current_length >= RDMA_MERGE_MAX) {
2335 return qemu_rdma_write_flush(rdma, errp);
2338 return 0;
2341 static void qemu_rdma_cleanup(RDMAContext *rdma)
2343 Error *err = NULL;
2345 if (rdma->cm_id && rdma->connected) {
2346 if ((rdma->errored ||
2347 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2348 !rdma->received_error) {
2349 RDMAControlHeader head = { .len = 0,
2350 .type = RDMA_CONTROL_ERROR,
2351 .repeat = 1,
2353 warn_report("Early error. Sending error.");
2354 if (qemu_rdma_post_send_control(rdma, NULL, &head, &err) < 0) {
2355 warn_report_err(err);
2359 rdma_disconnect(rdma->cm_id);
2360 trace_qemu_rdma_cleanup_disconnect();
2361 rdma->connected = false;
2364 if (rdma->channel) {
2365 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2367 g_free(rdma->dest_blocks);
2368 rdma->dest_blocks = NULL;
2370 for (int i = 0; i < RDMA_WRID_MAX; i++) {
2371 if (rdma->wr_data[i].control_mr) {
2372 rdma->total_registrations--;
2373 ibv_dereg_mr(rdma->wr_data[i].control_mr);
2375 rdma->wr_data[i].control_mr = NULL;
2378 if (rdma->local_ram_blocks.block) {
2379 while (rdma->local_ram_blocks.nb_blocks) {
2380 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2384 if (rdma->qp) {
2385 rdma_destroy_qp(rdma->cm_id);
2386 rdma->qp = NULL;
2388 if (rdma->recv_cq) {
2389 ibv_destroy_cq(rdma->recv_cq);
2390 rdma->recv_cq = NULL;
2392 if (rdma->send_cq) {
2393 ibv_destroy_cq(rdma->send_cq);
2394 rdma->send_cq = NULL;
2396 if (rdma->recv_comp_channel) {
2397 ibv_destroy_comp_channel(rdma->recv_comp_channel);
2398 rdma->recv_comp_channel = NULL;
2400 if (rdma->send_comp_channel) {
2401 ibv_destroy_comp_channel(rdma->send_comp_channel);
2402 rdma->send_comp_channel = NULL;
2404 if (rdma->pd) {
2405 ibv_dealloc_pd(rdma->pd);
2406 rdma->pd = NULL;
2408 if (rdma->cm_id) {
2409 rdma_destroy_id(rdma->cm_id);
2410 rdma->cm_id = NULL;
2413 /* the destination side, listen_id and channel is shared */
2414 if (rdma->listen_id) {
2415 if (!rdma->is_return_path) {
2416 rdma_destroy_id(rdma->listen_id);
2418 rdma->listen_id = NULL;
2420 if (rdma->channel) {
2421 if (!rdma->is_return_path) {
2422 rdma_destroy_event_channel(rdma->channel);
2424 rdma->channel = NULL;
2428 if (rdma->channel) {
2429 rdma_destroy_event_channel(rdma->channel);
2430 rdma->channel = NULL;
2432 g_free(rdma->host);
2433 rdma->host = NULL;
2437 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2439 int ret;
2442 * Will be validated against destination's actual capabilities
2443 * after the connect() completes.
2445 rdma->pin_all = pin_all;
2447 ret = qemu_rdma_resolve_host(rdma, errp);
2448 if (ret < 0) {
2449 goto err_rdma_source_init;
2452 ret = qemu_rdma_alloc_pd_cq(rdma, errp);
2453 if (ret < 0) {
2454 goto err_rdma_source_init;
2457 ret = qemu_rdma_alloc_qp(rdma);
2458 if (ret < 0) {
2459 error_setg(errp, "RDMA ERROR: rdma migration: error allocating qp!");
2460 goto err_rdma_source_init;
2463 qemu_rdma_init_ram_blocks(rdma);
2465 /* Build the hash that maps from offset to RAMBlock */
2466 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2467 for (int i = 0; i < rdma->local_ram_blocks.nb_blocks; i++) {
2468 g_hash_table_insert(rdma->blockmap,
2469 (void *)(uintptr_t)rdma->local_ram_blocks.block[i].offset,
2470 &rdma->local_ram_blocks.block[i]);
2473 for (int i = 0; i < RDMA_WRID_MAX; i++) {
2474 ret = qemu_rdma_reg_control(rdma, i);
2475 if (ret < 0) {
2476 error_setg(errp, "RDMA ERROR: rdma migration: error "
2477 "registering %d control!", i);
2478 goto err_rdma_source_init;
2482 return 0;
2484 err_rdma_source_init:
2485 qemu_rdma_cleanup(rdma);
2486 return -1;
2489 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2490 struct rdma_cm_event **cm_event,
2491 long msec, Error **errp)
2493 int ret;
2494 struct pollfd poll_fd = {
2495 .fd = rdma->channel->fd,
2496 .events = POLLIN,
2497 .revents = 0
2500 do {
2501 ret = poll(&poll_fd, 1, msec);
2502 } while (ret < 0 && errno == EINTR);
2504 if (ret == 0) {
2505 error_setg(errp, "RDMA ERROR: poll cm event timeout");
2506 return -1;
2507 } else if (ret < 0) {
2508 error_setg(errp, "RDMA ERROR: failed to poll cm event, errno=%i",
2509 errno);
2510 return -1;
2511 } else if (poll_fd.revents & POLLIN) {
2512 if (rdma_get_cm_event(rdma->channel, cm_event) < 0) {
2513 error_setg(errp, "RDMA ERROR: failed to get cm event");
2514 return -1;
2516 return 0;
2517 } else {
2518 error_setg(errp, "RDMA ERROR: no POLLIN event, revent=%x",
2519 poll_fd.revents);
2520 return -1;
2524 static int qemu_rdma_connect(RDMAContext *rdma, bool return_path,
2525 Error **errp)
2527 RDMACapabilities cap = {
2528 .version = RDMA_CONTROL_VERSION_CURRENT,
2529 .flags = 0,
2531 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2532 .retry_count = 5,
2533 .private_data = &cap,
2534 .private_data_len = sizeof(cap),
2536 struct rdma_cm_event *cm_event;
2537 int ret;
2540 * Only negotiate the capability with destination if the user
2541 * on the source first requested the capability.
2543 if (rdma->pin_all) {
2544 trace_qemu_rdma_connect_pin_all_requested();
2545 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2548 caps_to_network(&cap);
2550 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
2551 if (ret < 0) {
2552 goto err_rdma_source_connect;
2555 ret = rdma_connect(rdma->cm_id, &conn_param);
2556 if (ret < 0) {
2557 error_setg_errno(errp, errno,
2558 "RDMA ERROR: connecting to destination!");
2559 goto err_rdma_source_connect;
2562 if (return_path) {
2563 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2564 } else {
2565 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2566 if (ret < 0) {
2567 error_setg_errno(errp, errno,
2568 "RDMA ERROR: failed to get cm event");
2571 if (ret < 0) {
2572 goto err_rdma_source_connect;
2575 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2576 error_setg(errp, "RDMA ERROR: connecting to destination!");
2577 rdma_ack_cm_event(cm_event);
2578 goto err_rdma_source_connect;
2580 rdma->connected = true;
2582 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2583 network_to_caps(&cap);
2586 * Verify that the *requested* capabilities are supported by the destination
2587 * and disable them otherwise.
2589 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2590 warn_report("RDMA: Server cannot support pinning all memory. "
2591 "Will register memory dynamically.");
2592 rdma->pin_all = false;
2595 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2597 rdma_ack_cm_event(cm_event);
2599 rdma->control_ready_expected = 1;
2600 rdma->nb_sent = 0;
2601 return 0;
2603 err_rdma_source_connect:
2604 qemu_rdma_cleanup(rdma);
2605 return -1;
2608 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2610 Error *err = NULL;
2611 int ret;
2612 struct rdma_cm_id *listen_id;
2613 char ip[40] = "unknown";
2614 struct rdma_addrinfo *res, *e;
2615 char port_str[16];
2616 int reuse = 1;
2618 for (int i = 0; i < RDMA_WRID_MAX; i++) {
2619 rdma->wr_data[i].control_len = 0;
2620 rdma->wr_data[i].control_curr = NULL;
2623 if (!rdma->host || !rdma->host[0]) {
2624 error_setg(errp, "RDMA ERROR: RDMA host is not set!");
2625 rdma->errored = true;
2626 return -1;
2628 /* create CM channel */
2629 rdma->channel = rdma_create_event_channel();
2630 if (!rdma->channel) {
2631 error_setg(errp, "RDMA ERROR: could not create rdma event channel");
2632 rdma->errored = true;
2633 return -1;
2636 /* create CM id */
2637 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2638 if (ret < 0) {
2639 error_setg(errp, "RDMA ERROR: could not create cm_id!");
2640 goto err_dest_init_create_listen_id;
2643 snprintf(port_str, 16, "%d", rdma->port);
2644 port_str[15] = '\0';
2646 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2647 if (ret) {
2648 error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
2649 rdma->host);
2650 goto err_dest_init_bind_addr;
2653 ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2654 &reuse, sizeof reuse);
2655 if (ret < 0) {
2656 error_setg(errp, "RDMA ERROR: Error: could not set REUSEADDR option");
2657 goto err_dest_init_bind_addr;
2660 /* Try all addresses, saving the first error in @err */
2661 for (e = res; e != NULL; e = e->ai_next) {
2662 Error **local_errp = err ? NULL : &err;
2664 inet_ntop(e->ai_family,
2665 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2666 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2667 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2668 if (ret < 0) {
2669 continue;
2671 if (e->ai_family == AF_INET6) {
2672 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs,
2673 local_errp);
2674 if (ret < 0) {
2675 continue;
2678 error_free(err);
2679 break;
2682 rdma_freeaddrinfo(res);
2683 if (!e) {
2684 if (err) {
2685 error_propagate(errp, err);
2686 } else {
2687 error_setg(errp, "RDMA ERROR: Error: could not rdma_bind_addr!");
2689 goto err_dest_init_bind_addr;
2692 rdma->listen_id = listen_id;
2693 qemu_rdma_dump_gid("dest_init", listen_id);
2694 return 0;
2696 err_dest_init_bind_addr:
2697 rdma_destroy_id(listen_id);
2698 err_dest_init_create_listen_id:
2699 rdma_destroy_event_channel(rdma->channel);
2700 rdma->channel = NULL;
2701 rdma->errored = true;
2702 return -1;
2706 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2707 RDMAContext *rdma)
2709 for (int i = 0; i < RDMA_WRID_MAX; i++) {
2710 rdma_return_path->wr_data[i].control_len = 0;
2711 rdma_return_path->wr_data[i].control_curr = NULL;
2714 /*the CM channel and CM id is shared*/
2715 rdma_return_path->channel = rdma->channel;
2716 rdma_return_path->listen_id = rdma->listen_id;
2718 rdma->return_path = rdma_return_path;
2719 rdma_return_path->return_path = rdma;
2720 rdma_return_path->is_return_path = true;
2723 static RDMAContext *qemu_rdma_data_init(InetSocketAddress *saddr, Error **errp)
2725 RDMAContext *rdma = NULL;
2727 rdma = g_new0(RDMAContext, 1);
2728 rdma->current_index = -1;
2729 rdma->current_chunk = -1;
2731 rdma->host = g_strdup(saddr->host);
2732 rdma->port = atoi(saddr->port);
2733 return rdma;
2737 * QEMUFile interface to the control channel.
2738 * SEND messages for control only.
2739 * VM's ram is handled with regular RDMA messages.
2741 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2742 const struct iovec *iov,
2743 size_t niov,
2744 int *fds,
2745 size_t nfds,
2746 int flags,
2747 Error **errp)
2749 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2750 RDMAContext *rdma;
2751 int ret;
2752 ssize_t done = 0;
2753 size_t len;
2755 RCU_READ_LOCK_GUARD();
2756 rdma = qatomic_rcu_read(&rioc->rdmaout);
2758 if (!rdma) {
2759 error_setg(errp, "RDMA control channel output is not set");
2760 return -1;
2763 if (rdma->errored) {
2764 error_setg(errp,
2765 "RDMA is in an error state waiting migration to abort!");
2766 return -1;
2770 * Push out any writes that
2771 * we're queued up for VM's ram.
2773 ret = qemu_rdma_write_flush(rdma, errp);
2774 if (ret < 0) {
2775 rdma->errored = true;
2776 return -1;
2779 for (int i = 0; i < niov; i++) {
2780 size_t remaining = iov[i].iov_len;
2781 uint8_t * data = (void *)iov[i].iov_base;
2782 while (remaining) {
2783 RDMAControlHeader head = {};
2785 len = MIN(remaining, RDMA_SEND_INCREMENT);
2786 remaining -= len;
2788 head.len = len;
2789 head.type = RDMA_CONTROL_QEMU_FILE;
2791 ret = qemu_rdma_exchange_send(rdma, &head,
2792 data, NULL, NULL, NULL, errp);
2794 if (ret < 0) {
2795 rdma->errored = true;
2796 return -1;
2799 data += len;
2800 done += len;
2804 return done;
2807 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2808 size_t size, int idx)
2810 size_t len = 0;
2812 if (rdma->wr_data[idx].control_len) {
2813 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2815 len = MIN(size, rdma->wr_data[idx].control_len);
2816 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2817 rdma->wr_data[idx].control_curr += len;
2818 rdma->wr_data[idx].control_len -= len;
2821 return len;
2825 * QEMUFile interface to the control channel.
2826 * RDMA links don't use bytestreams, so we have to
2827 * return bytes to QEMUFile opportunistically.
2829 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2830 const struct iovec *iov,
2831 size_t niov,
2832 int **fds,
2833 size_t *nfds,
2834 int flags,
2835 Error **errp)
2837 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2838 RDMAContext *rdma;
2839 RDMAControlHeader head;
2840 int ret;
2841 ssize_t done = 0;
2842 size_t len;
2844 RCU_READ_LOCK_GUARD();
2845 rdma = qatomic_rcu_read(&rioc->rdmain);
2847 if (!rdma) {
2848 error_setg(errp, "RDMA control channel input is not set");
2849 return -1;
2852 if (rdma->errored) {
2853 error_setg(errp,
2854 "RDMA is in an error state waiting migration to abort!");
2855 return -1;
2858 for (int i = 0; i < niov; i++) {
2859 size_t want = iov[i].iov_len;
2860 uint8_t *data = (void *)iov[i].iov_base;
2863 * First, we hold on to the last SEND message we
2864 * were given and dish out the bytes until we run
2865 * out of bytes.
2867 len = qemu_rdma_fill(rdma, data, want, 0);
2868 done += len;
2869 want -= len;
2870 /* Got what we needed, so go to next iovec */
2871 if (want == 0) {
2872 continue;
2875 /* If we got any data so far, then don't wait
2876 * for more, just return what we have */
2877 if (done > 0) {
2878 break;
2882 /* We've got nothing at all, so lets wait for
2883 * more to arrive
2885 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE,
2886 errp);
2888 if (ret < 0) {
2889 rdma->errored = true;
2890 return -1;
2894 * SEND was received with new bytes, now try again.
2896 len = qemu_rdma_fill(rdma, data, want, 0);
2897 done += len;
2898 want -= len;
2900 /* Still didn't get enough, so lets just return */
2901 if (want) {
2902 if (done == 0) {
2903 return QIO_CHANNEL_ERR_BLOCK;
2904 } else {
2905 break;
2909 return done;
2913 * Block until all the outstanding chunks have been delivered by the hardware.
2915 static int qemu_rdma_drain_cq(RDMAContext *rdma)
2917 Error *err = NULL;
2919 if (qemu_rdma_write_flush(rdma, &err) < 0) {
2920 error_report_err(err);
2921 return -1;
2924 while (rdma->nb_sent) {
2925 if (qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL) < 0) {
2926 error_report("rdma migration: complete polling error!");
2927 return -1;
2931 qemu_rdma_unregister_waiting(rdma);
2933 return 0;
2937 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2938 bool blocking,
2939 Error **errp)
2941 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2942 /* XXX we should make readv/writev actually honour this :-) */
2943 rioc->blocking = blocking;
2944 return 0;
2948 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2949 struct QIOChannelRDMASource {
2950 GSource parent;
2951 QIOChannelRDMA *rioc;
2952 GIOCondition condition;
2955 static gboolean
2956 qio_channel_rdma_source_prepare(GSource *source,
2957 gint *timeout)
2959 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2960 RDMAContext *rdma;
2961 GIOCondition cond = 0;
2962 *timeout = -1;
2964 RCU_READ_LOCK_GUARD();
2965 if (rsource->condition == G_IO_IN) {
2966 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2967 } else {
2968 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2971 if (!rdma) {
2972 error_report("RDMAContext is NULL when prepare Gsource");
2973 return FALSE;
2976 if (rdma->wr_data[0].control_len) {
2977 cond |= G_IO_IN;
2979 cond |= G_IO_OUT;
2981 return cond & rsource->condition;
2984 static gboolean
2985 qio_channel_rdma_source_check(GSource *source)
2987 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2988 RDMAContext *rdma;
2989 GIOCondition cond = 0;
2991 RCU_READ_LOCK_GUARD();
2992 if (rsource->condition == G_IO_IN) {
2993 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2994 } else {
2995 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2998 if (!rdma) {
2999 error_report("RDMAContext is NULL when check Gsource");
3000 return FALSE;
3003 if (rdma->wr_data[0].control_len) {
3004 cond |= G_IO_IN;
3006 cond |= G_IO_OUT;
3008 return cond & rsource->condition;
3011 static gboolean
3012 qio_channel_rdma_source_dispatch(GSource *source,
3013 GSourceFunc callback,
3014 gpointer user_data)
3016 QIOChannelFunc func = (QIOChannelFunc)callback;
3017 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3018 RDMAContext *rdma;
3019 GIOCondition cond = 0;
3021 RCU_READ_LOCK_GUARD();
3022 if (rsource->condition == G_IO_IN) {
3023 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3024 } else {
3025 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3028 if (!rdma) {
3029 error_report("RDMAContext is NULL when dispatch Gsource");
3030 return FALSE;
3033 if (rdma->wr_data[0].control_len) {
3034 cond |= G_IO_IN;
3036 cond |= G_IO_OUT;
3038 return (*func)(QIO_CHANNEL(rsource->rioc),
3039 (cond & rsource->condition),
3040 user_data);
3043 static void
3044 qio_channel_rdma_source_finalize(GSource *source)
3046 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3048 object_unref(OBJECT(ssource->rioc));
3051 static GSourceFuncs qio_channel_rdma_source_funcs = {
3052 qio_channel_rdma_source_prepare,
3053 qio_channel_rdma_source_check,
3054 qio_channel_rdma_source_dispatch,
3055 qio_channel_rdma_source_finalize
3058 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3059 GIOCondition condition)
3061 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3062 QIOChannelRDMASource *ssource;
3063 GSource *source;
3065 source = g_source_new(&qio_channel_rdma_source_funcs,
3066 sizeof(QIOChannelRDMASource));
3067 ssource = (QIOChannelRDMASource *)source;
3069 ssource->rioc = rioc;
3070 object_ref(OBJECT(rioc));
3072 ssource->condition = condition;
3074 return source;
3077 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3078 AioContext *read_ctx,
3079 IOHandler *io_read,
3080 AioContext *write_ctx,
3081 IOHandler *io_write,
3082 void *opaque)
3084 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3085 if (io_read) {
3086 aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3087 io_read, io_write, NULL, NULL, opaque);
3088 aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3089 io_read, io_write, NULL, NULL, opaque);
3090 } else {
3091 aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3092 io_read, io_write, NULL, NULL, opaque);
3093 aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3094 io_read, io_write, NULL, NULL, opaque);
3098 struct rdma_close_rcu {
3099 struct rcu_head rcu;
3100 RDMAContext *rdmain;
3101 RDMAContext *rdmaout;
3104 /* callback from qio_channel_rdma_close via call_rcu */
3105 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3107 if (rcu->rdmain) {
3108 qemu_rdma_cleanup(rcu->rdmain);
3111 if (rcu->rdmaout) {
3112 qemu_rdma_cleanup(rcu->rdmaout);
3115 g_free(rcu->rdmain);
3116 g_free(rcu->rdmaout);
3117 g_free(rcu);
3120 static int qio_channel_rdma_close(QIOChannel *ioc,
3121 Error **errp)
3123 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3124 RDMAContext *rdmain, *rdmaout;
3125 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3127 trace_qemu_rdma_close();
3129 rdmain = rioc->rdmain;
3130 if (rdmain) {
3131 qatomic_rcu_set(&rioc->rdmain, NULL);
3134 rdmaout = rioc->rdmaout;
3135 if (rdmaout) {
3136 qatomic_rcu_set(&rioc->rdmaout, NULL);
3139 rcu->rdmain = rdmain;
3140 rcu->rdmaout = rdmaout;
3141 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3143 return 0;
3146 static int
3147 qio_channel_rdma_shutdown(QIOChannel *ioc,
3148 QIOChannelShutdown how,
3149 Error **errp)
3151 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3152 RDMAContext *rdmain, *rdmaout;
3154 RCU_READ_LOCK_GUARD();
3156 rdmain = qatomic_rcu_read(&rioc->rdmain);
3157 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3159 switch (how) {
3160 case QIO_CHANNEL_SHUTDOWN_READ:
3161 if (rdmain) {
3162 rdmain->errored = true;
3164 break;
3165 case QIO_CHANNEL_SHUTDOWN_WRITE:
3166 if (rdmaout) {
3167 rdmaout->errored = true;
3169 break;
3170 case QIO_CHANNEL_SHUTDOWN_BOTH:
3171 default:
3172 if (rdmain) {
3173 rdmain->errored = true;
3175 if (rdmaout) {
3176 rdmaout->errored = true;
3178 break;
3181 return 0;
3185 * Parameters:
3186 * @offset == 0 :
3187 * This means that 'block_offset' is a full virtual address that does not
3188 * belong to a RAMBlock of the virtual machine and instead
3189 * represents a private malloc'd memory area that the caller wishes to
3190 * transfer.
3192 * @offset != 0 :
3193 * Offset is an offset to be added to block_offset and used
3194 * to also lookup the corresponding RAMBlock.
3196 * @size : Number of bytes to transfer
3198 * @pages_sent : User-specificed pointer to indicate how many pages were
3199 * sent. Usually, this will not be more than a few bytes of
3200 * the protocol because most transfers are sent asynchronously.
3202 static int qemu_rdma_save_page(QEMUFile *f, ram_addr_t block_offset,
3203 ram_addr_t offset, size_t size)
3205 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3206 Error *err = NULL;
3207 RDMAContext *rdma;
3208 int ret;
3210 RCU_READ_LOCK_GUARD();
3211 rdma = qatomic_rcu_read(&rioc->rdmaout);
3213 if (!rdma) {
3214 return -1;
3217 if (rdma_errored(rdma)) {
3218 return -1;
3221 qemu_fflush(f);
3224 * Add this page to the current 'chunk'. If the chunk
3225 * is full, or the page doesn't belong to the current chunk,
3226 * an actual RDMA write will occur and a new chunk will be formed.
3228 ret = qemu_rdma_write(rdma, block_offset, offset, size, &err);
3229 if (ret < 0) {
3230 error_report_err(err);
3231 goto err;
3235 * Drain the Completion Queue if possible, but do not block,
3236 * just poll.
3238 * If nothing to poll, the end of the iteration will do this
3239 * again to make sure we don't overflow the request queue.
3241 while (1) {
3242 uint64_t wr_id, wr_id_in;
3243 ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3245 if (ret < 0) {
3246 error_report("rdma migration: polling error");
3247 goto err;
3250 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3252 if (wr_id == RDMA_WRID_NONE) {
3253 break;
3257 while (1) {
3258 uint64_t wr_id, wr_id_in;
3259 ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3261 if (ret < 0) {
3262 error_report("rdma migration: polling error");
3263 goto err;
3266 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3268 if (wr_id == RDMA_WRID_NONE) {
3269 break;
3273 return RAM_SAVE_CONTROL_DELAYED;
3275 err:
3276 rdma->errored = true;
3277 return -1;
3280 int rdma_control_save_page(QEMUFile *f, ram_addr_t block_offset,
3281 ram_addr_t offset, size_t size)
3283 if (!migrate_rdma() || migration_in_postcopy()) {
3284 return RAM_SAVE_CONTROL_NOT_SUPP;
3287 int ret = qemu_rdma_save_page(f, block_offset, offset, size);
3289 if (ret != RAM_SAVE_CONTROL_DELAYED &&
3290 ret != RAM_SAVE_CONTROL_NOT_SUPP) {
3291 if (ret < 0) {
3292 qemu_file_set_error(f, ret);
3295 return ret;
3298 static void rdma_accept_incoming_migration(void *opaque);
3300 static void rdma_cm_poll_handler(void *opaque)
3302 RDMAContext *rdma = opaque;
3303 struct rdma_cm_event *cm_event;
3304 MigrationIncomingState *mis = migration_incoming_get_current();
3306 if (rdma_get_cm_event(rdma->channel, &cm_event) < 0) {
3307 error_report("get_cm_event failed %d", errno);
3308 return;
3311 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3312 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3313 if (!rdma->errored &&
3314 migration_incoming_get_current()->state !=
3315 MIGRATION_STATUS_COMPLETED) {
3316 error_report("receive cm event, cm event is %d", cm_event->event);
3317 rdma->errored = true;
3318 if (rdma->return_path) {
3319 rdma->return_path->errored = true;
3322 rdma_ack_cm_event(cm_event);
3323 if (mis->loadvm_co) {
3324 qemu_coroutine_enter(mis->loadvm_co);
3326 return;
3328 rdma_ack_cm_event(cm_event);
3331 static int qemu_rdma_accept(RDMAContext *rdma)
3333 Error *err = NULL;
3334 RDMACapabilities cap;
3335 struct rdma_conn_param conn_param = {
3336 .responder_resources = 2,
3337 .private_data = &cap,
3338 .private_data_len = sizeof(cap),
3340 RDMAContext *rdma_return_path = NULL;
3341 g_autoptr(InetSocketAddress) isock = g_new0(InetSocketAddress, 1);
3342 struct rdma_cm_event *cm_event;
3343 struct ibv_context *verbs;
3344 int ret;
3346 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3347 if (ret < 0) {
3348 goto err_rdma_dest_wait;
3351 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3352 rdma_ack_cm_event(cm_event);
3353 goto err_rdma_dest_wait;
3356 isock->host = rdma->host;
3357 isock->port = g_strdup_printf("%d", rdma->port);
3360 * initialize the RDMAContext for return path for postcopy after first
3361 * connection request reached.
3363 if ((migrate_postcopy() || migrate_return_path())
3364 && !rdma->is_return_path) {
3365 rdma_return_path = qemu_rdma_data_init(isock, NULL);
3366 if (rdma_return_path == NULL) {
3367 rdma_ack_cm_event(cm_event);
3368 goto err_rdma_dest_wait;
3371 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3374 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3376 network_to_caps(&cap);
3378 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3379 error_report("Unknown source RDMA version: %d, bailing...",
3380 cap.version);
3381 rdma_ack_cm_event(cm_event);
3382 goto err_rdma_dest_wait;
3386 * Respond with only the capabilities this version of QEMU knows about.
3388 cap.flags &= known_capabilities;
3391 * Enable the ones that we do know about.
3392 * Add other checks here as new ones are introduced.
3394 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3395 rdma->pin_all = true;
3398 rdma->cm_id = cm_event->id;
3399 verbs = cm_event->id->verbs;
3401 rdma_ack_cm_event(cm_event);
3403 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3405 caps_to_network(&cap);
3407 trace_qemu_rdma_accept_pin_verbsc(verbs);
3409 if (!rdma->verbs) {
3410 rdma->verbs = verbs;
3411 } else if (rdma->verbs != verbs) {
3412 error_report("ibv context not matching %p, %p!", rdma->verbs,
3413 verbs);
3414 goto err_rdma_dest_wait;
3417 qemu_rdma_dump_id("dest_init", verbs);
3419 ret = qemu_rdma_alloc_pd_cq(rdma, &err);
3420 if (ret < 0) {
3421 error_report_err(err);
3422 goto err_rdma_dest_wait;
3425 ret = qemu_rdma_alloc_qp(rdma);
3426 if (ret < 0) {
3427 error_report("rdma migration: error allocating qp!");
3428 goto err_rdma_dest_wait;
3431 qemu_rdma_init_ram_blocks(rdma);
3433 for (int i = 0; i < RDMA_WRID_MAX; i++) {
3434 ret = qemu_rdma_reg_control(rdma, i);
3435 if (ret < 0) {
3436 error_report("rdma: error registering %d control", i);
3437 goto err_rdma_dest_wait;
3441 /* Accept the second connection request for return path */
3442 if ((migrate_postcopy() || migrate_return_path())
3443 && !rdma->is_return_path) {
3444 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3445 NULL,
3446 (void *)(intptr_t)rdma->return_path);
3447 } else {
3448 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3449 NULL, rdma);
3452 ret = rdma_accept(rdma->cm_id, &conn_param);
3453 if (ret < 0) {
3454 error_report("rdma_accept failed");
3455 goto err_rdma_dest_wait;
3458 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3459 if (ret < 0) {
3460 error_report("rdma_accept get_cm_event failed");
3461 goto err_rdma_dest_wait;
3464 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3465 error_report("rdma_accept not event established");
3466 rdma_ack_cm_event(cm_event);
3467 goto err_rdma_dest_wait;
3470 rdma_ack_cm_event(cm_event);
3471 rdma->connected = true;
3473 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, &err);
3474 if (ret < 0) {
3475 error_report_err(err);
3476 goto err_rdma_dest_wait;
3479 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3481 return 0;
3483 err_rdma_dest_wait:
3484 rdma->errored = true;
3485 qemu_rdma_cleanup(rdma);
3486 g_free(rdma_return_path);
3487 return -1;
3490 static int dest_ram_sort_func(const void *a, const void *b)
3492 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3493 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3495 return (a_index < b_index) ? -1 : (a_index != b_index);
3499 * During each iteration of the migration, we listen for instructions
3500 * by the source VM to perform dynamic page registrations before they
3501 * can perform RDMA operations.
3503 * We respond with the 'rkey'.
3505 * Keep doing this until the source tells us to stop.
3507 int rdma_registration_handle(QEMUFile *f)
3509 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3510 .type = RDMA_CONTROL_REGISTER_RESULT,
3511 .repeat = 0,
3513 RDMAControlHeader unreg_resp = { .len = 0,
3514 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3515 .repeat = 0,
3517 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3518 .repeat = 1 };
3519 QIOChannelRDMA *rioc;
3520 Error *err = NULL;
3521 RDMAContext *rdma;
3522 RDMALocalBlocks *local;
3523 RDMAControlHeader head;
3524 RDMARegister *reg, *registers;
3525 RDMACompress *comp;
3526 RDMARegisterResult *reg_result;
3527 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3528 RDMALocalBlock *block;
3529 void *host_addr;
3530 int ret;
3531 int idx = 0;
3533 if (!migrate_rdma()) {
3534 return 0;
3537 RCU_READ_LOCK_GUARD();
3538 rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3539 rdma = qatomic_rcu_read(&rioc->rdmain);
3541 if (!rdma) {
3542 return -1;
3545 if (rdma_errored(rdma)) {
3546 return -1;
3549 local = &rdma->local_ram_blocks;
3550 do {
3551 trace_rdma_registration_handle_wait();
3553 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE, &err);
3555 if (ret < 0) {
3556 error_report_err(err);
3557 break;
3560 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3561 error_report("rdma: Too many requests in this message (%d)."
3562 "Bailing.", head.repeat);
3563 break;
3566 switch (head.type) {
3567 case RDMA_CONTROL_COMPRESS:
3568 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3569 network_to_compress(comp);
3571 trace_rdma_registration_handle_compress(comp->length,
3572 comp->block_idx,
3573 comp->offset);
3574 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3575 error_report("rdma: 'compress' bad block index %u (vs %d)",
3576 (unsigned int)comp->block_idx,
3577 rdma->local_ram_blocks.nb_blocks);
3578 goto err;
3580 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3582 host_addr = block->local_host_addr +
3583 (comp->offset - block->offset);
3584 if (comp->value) {
3585 error_report("rdma: Zero page with non-zero (%d) value",
3586 comp->value);
3587 goto err;
3589 ram_handle_zero(host_addr, comp->length);
3590 break;
3592 case RDMA_CONTROL_REGISTER_FINISHED:
3593 trace_rdma_registration_handle_finished();
3594 return 0;
3596 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3597 trace_rdma_registration_handle_ram_blocks();
3599 /* Sort our local RAM Block list so it's the same as the source,
3600 * we can do this since we've filled in a src_index in the list
3601 * as we received the RAMBlock list earlier.
3603 qsort(rdma->local_ram_blocks.block,
3604 rdma->local_ram_blocks.nb_blocks,
3605 sizeof(RDMALocalBlock), dest_ram_sort_func);
3606 for (int i = 0; i < local->nb_blocks; i++) {
3607 local->block[i].index = i;
3610 if (rdma->pin_all) {
3611 ret = qemu_rdma_reg_whole_ram_blocks(rdma, &err);
3612 if (ret < 0) {
3613 error_report_err(err);
3614 goto err;
3619 * Dest uses this to prepare to transmit the RAMBlock descriptions
3620 * to the source VM after connection setup.
3621 * Both sides use the "remote" structure to communicate and update
3622 * their "local" descriptions with what was sent.
3624 for (int i = 0; i < local->nb_blocks; i++) {
3625 rdma->dest_blocks[i].remote_host_addr =
3626 (uintptr_t)(local->block[i].local_host_addr);
3628 if (rdma->pin_all) {
3629 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3632 rdma->dest_blocks[i].offset = local->block[i].offset;
3633 rdma->dest_blocks[i].length = local->block[i].length;
3635 dest_block_to_network(&rdma->dest_blocks[i]);
3636 trace_rdma_registration_handle_ram_blocks_loop(
3637 local->block[i].block_name,
3638 local->block[i].offset,
3639 local->block[i].length,
3640 local->block[i].local_host_addr,
3641 local->block[i].src_index);
3644 blocks.len = rdma->local_ram_blocks.nb_blocks
3645 * sizeof(RDMADestBlock);
3648 ret = qemu_rdma_post_send_control(rdma,
3649 (uint8_t *) rdma->dest_blocks, &blocks,
3650 &err);
3652 if (ret < 0) {
3653 error_report_err(err);
3654 goto err;
3657 break;
3658 case RDMA_CONTROL_REGISTER_REQUEST:
3659 trace_rdma_registration_handle_register(head.repeat);
3661 reg_resp.repeat = head.repeat;
3662 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3664 for (int count = 0; count < head.repeat; count++) {
3665 uint64_t chunk;
3666 uint8_t *chunk_start, *chunk_end;
3668 reg = &registers[count];
3669 network_to_register(reg);
3671 reg_result = &results[count];
3673 trace_rdma_registration_handle_register_loop(count,
3674 reg->current_index, reg->key.current_addr, reg->chunks);
3676 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3677 error_report("rdma: 'register' bad block index %u (vs %d)",
3678 (unsigned int)reg->current_index,
3679 rdma->local_ram_blocks.nb_blocks);
3680 goto err;
3682 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3683 if (block->is_ram_block) {
3684 if (block->offset > reg->key.current_addr) {
3685 error_report("rdma: bad register address for block %s"
3686 " offset: %" PRIx64 " current_addr: %" PRIx64,
3687 block->block_name, block->offset,
3688 reg->key.current_addr);
3689 goto err;
3691 host_addr = (block->local_host_addr +
3692 (reg->key.current_addr - block->offset));
3693 chunk = ram_chunk_index(block->local_host_addr,
3694 (uint8_t *) host_addr);
3695 } else {
3696 chunk = reg->key.chunk;
3697 host_addr = block->local_host_addr +
3698 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3699 /* Check for particularly bad chunk value */
3700 if (host_addr < (void *)block->local_host_addr) {
3701 error_report("rdma: bad chunk for block %s"
3702 " chunk: %" PRIx64,
3703 block->block_name, reg->key.chunk);
3704 goto err;
3707 chunk_start = ram_chunk_start(block, chunk);
3708 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3709 /* avoid "-Waddress-of-packed-member" warning */
3710 uint32_t tmp_rkey = 0;
3711 if (qemu_rdma_register_and_get_keys(rdma, block,
3712 (uintptr_t)host_addr, NULL, &tmp_rkey,
3713 chunk, chunk_start, chunk_end)) {
3714 error_report("cannot get rkey");
3715 goto err;
3717 reg_result->rkey = tmp_rkey;
3719 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3721 trace_rdma_registration_handle_register_rkey(reg_result->rkey);
3723 result_to_network(reg_result);
3726 ret = qemu_rdma_post_send_control(rdma,
3727 (uint8_t *) results, &reg_resp, &err);
3729 if (ret < 0) {
3730 error_report_err(err);
3731 goto err;
3733 break;
3734 case RDMA_CONTROL_UNREGISTER_REQUEST:
3735 trace_rdma_registration_handle_unregister(head.repeat);
3736 unreg_resp.repeat = head.repeat;
3737 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3739 for (int count = 0; count < head.repeat; count++) {
3740 reg = &registers[count];
3741 network_to_register(reg);
3743 trace_rdma_registration_handle_unregister_loop(count,
3744 reg->current_index, reg->key.chunk);
3746 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3748 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3749 block->pmr[reg->key.chunk] = NULL;
3751 if (ret != 0) {
3752 error_report("rdma unregistration chunk failed: %s",
3753 strerror(errno));
3754 goto err;
3757 rdma->total_registrations--;
3759 trace_rdma_registration_handle_unregister_success(reg->key.chunk);
3762 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp, &err);
3764 if (ret < 0) {
3765 error_report_err(err);
3766 goto err;
3768 break;
3769 case RDMA_CONTROL_REGISTER_RESULT:
3770 error_report("Invalid RESULT message at dest.");
3771 goto err;
3772 default:
3773 error_report("Unknown control message %s", control_desc(head.type));
3774 goto err;
3776 } while (1);
3778 err:
3779 rdma->errored = true;
3780 return -1;
3783 /* Destination:
3784 * Called during the initial RAM load section which lists the
3785 * RAMBlocks by name. This lets us know the order of the RAMBlocks on
3786 * the source. We've already built our local RAMBlock list, but not
3787 * yet sent the list to the source.
3789 int rdma_block_notification_handle(QEMUFile *f, const char *name)
3791 int curr;
3792 int found = -1;
3794 if (!migrate_rdma()) {
3795 return 0;
3798 RCU_READ_LOCK_GUARD();
3799 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3800 RDMAContext *rdma = qatomic_rcu_read(&rioc->rdmain);
3802 if (!rdma) {
3803 return -1;
3806 /* Find the matching RAMBlock in our local list */
3807 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3808 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3809 found = curr;
3810 break;
3814 if (found == -1) {
3815 error_report("RAMBlock '%s' not found on destination", name);
3816 return -1;
3819 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3820 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3821 rdma->next_src_index++;
3823 return 0;
3826 int rdma_registration_start(QEMUFile *f, uint64_t flags)
3828 if (!migrate_rdma() || migration_in_postcopy()) {
3829 return 0;
3832 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3833 RCU_READ_LOCK_GUARD();
3834 RDMAContext *rdma = qatomic_rcu_read(&rioc->rdmaout);
3835 if (!rdma) {
3836 return -1;
3839 if (rdma_errored(rdma)) {
3840 return -1;
3843 trace_rdma_registration_start(flags);
3844 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3845 return qemu_fflush(f);
3849 * Inform dest that dynamic registrations are done for now.
3850 * First, flush writes, if any.
3852 int rdma_registration_stop(QEMUFile *f, uint64_t flags)
3854 QIOChannelRDMA *rioc;
3855 Error *err = NULL;
3856 RDMAContext *rdma;
3857 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3858 int ret;
3860 if (!migrate_rdma() || migration_in_postcopy()) {
3861 return 0;
3864 RCU_READ_LOCK_GUARD();
3865 rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3866 rdma = qatomic_rcu_read(&rioc->rdmaout);
3867 if (!rdma) {
3868 return -1;
3871 if (rdma_errored(rdma)) {
3872 return -1;
3875 qemu_fflush(f);
3876 ret = qemu_rdma_drain_cq(rdma);
3878 if (ret < 0) {
3879 goto err;
3882 if (flags == RAM_CONTROL_SETUP) {
3883 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3884 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3885 int reg_result_idx, nb_dest_blocks;
3887 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3888 trace_rdma_registration_stop_ram();
3891 * Make sure that we parallelize the pinning on both sides.
3892 * For very large guests, doing this serially takes a really
3893 * long time, so we have to 'interleave' the pinning locally
3894 * with the control messages by performing the pinning on this
3895 * side before we receive the control response from the other
3896 * side that the pinning has completed.
3898 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3899 &reg_result_idx, rdma->pin_all ?
3900 qemu_rdma_reg_whole_ram_blocks : NULL,
3901 &err);
3902 if (ret < 0) {
3903 error_report_err(err);
3904 return -1;
3907 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3910 * The protocol uses two different sets of rkeys (mutually exclusive):
3911 * 1. One key to represent the virtual address of the entire ram block.
3912 * (dynamic chunk registration disabled - pin everything with one rkey.)
3913 * 2. One to represent individual chunks within a ram block.
3914 * (dynamic chunk registration enabled - pin individual chunks.)
3916 * Once the capability is successfully negotiated, the destination transmits
3917 * the keys to use (or sends them later) including the virtual addresses
3918 * and then propagates the remote ram block descriptions to his local copy.
3921 if (local->nb_blocks != nb_dest_blocks) {
3922 error_report("ram blocks mismatch (Number of blocks %d vs %d)",
3923 local->nb_blocks, nb_dest_blocks);
3924 error_printf("Your QEMU command line parameters are probably "
3925 "not identical on both the source and destination.");
3926 rdma->errored = true;
3927 return -1;
3930 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3931 memcpy(rdma->dest_blocks,
3932 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3933 for (int i = 0; i < nb_dest_blocks; i++) {
3934 network_to_dest_block(&rdma->dest_blocks[i]);
3936 /* We require that the blocks are in the same order */
3937 if (rdma->dest_blocks[i].length != local->block[i].length) {
3938 error_report("Block %s/%d has a different length %" PRIu64
3939 "vs %" PRIu64,
3940 local->block[i].block_name, i,
3941 local->block[i].length,
3942 rdma->dest_blocks[i].length);
3943 rdma->errored = true;
3944 return -1;
3946 local->block[i].remote_host_addr =
3947 rdma->dest_blocks[i].remote_host_addr;
3948 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3952 trace_rdma_registration_stop(flags);
3954 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3955 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL, &err);
3957 if (ret < 0) {
3958 error_report_err(err);
3959 goto err;
3962 return 0;
3963 err:
3964 rdma->errored = true;
3965 return -1;
3968 static void qio_channel_rdma_finalize(Object *obj)
3970 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3971 if (rioc->rdmain) {
3972 qemu_rdma_cleanup(rioc->rdmain);
3973 g_free(rioc->rdmain);
3974 rioc->rdmain = NULL;
3976 if (rioc->rdmaout) {
3977 qemu_rdma_cleanup(rioc->rdmaout);
3978 g_free(rioc->rdmaout);
3979 rioc->rdmaout = NULL;
3983 static void qio_channel_rdma_class_init(ObjectClass *klass,
3984 void *class_data G_GNUC_UNUSED)
3986 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3988 ioc_klass->io_writev = qio_channel_rdma_writev;
3989 ioc_klass->io_readv = qio_channel_rdma_readv;
3990 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3991 ioc_klass->io_close = qio_channel_rdma_close;
3992 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3993 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3994 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3997 static const TypeInfo qio_channel_rdma_info = {
3998 .parent = TYPE_QIO_CHANNEL,
3999 .name = TYPE_QIO_CHANNEL_RDMA,
4000 .instance_size = sizeof(QIOChannelRDMA),
4001 .instance_finalize = qio_channel_rdma_finalize,
4002 .class_init = qio_channel_rdma_class_init,
4005 static void qio_channel_rdma_register_types(void)
4007 type_register_static(&qio_channel_rdma_info);
4010 type_init(qio_channel_rdma_register_types);
4012 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4014 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4016 rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4017 rioc->rdmain = rdma;
4018 rioc->rdmaout = rdma->return_path;
4020 return rioc->file;
4023 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4025 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4027 rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4028 rioc->rdmaout = rdma;
4029 rioc->rdmain = rdma->return_path;
4031 return rioc->file;
4034 static void rdma_accept_incoming_migration(void *opaque)
4036 RDMAContext *rdma = opaque;
4037 QEMUFile *f;
4038 Error *local_err = NULL;
4040 trace_qemu_rdma_accept_incoming_migration();
4041 if (qemu_rdma_accept(rdma) < 0) {
4042 error_report("RDMA ERROR: Migration initialization failed");
4043 return;
4046 trace_qemu_rdma_accept_incoming_migration_accepted();
4048 if (rdma->is_return_path) {
4049 return;
4052 f = rdma_new_input(rdma);
4053 if (f == NULL) {
4054 error_report("RDMA ERROR: could not open RDMA for input");
4055 qemu_rdma_cleanup(rdma);
4056 return;
4059 rdma->migration_started_on_destination = 1;
4060 migration_fd_process_incoming(f, &local_err);
4061 if (local_err) {
4062 error_reportf_err(local_err, "RDMA ERROR:");
4066 void rdma_start_incoming_migration(InetSocketAddress *host_port,
4067 Error **errp)
4069 MigrationState *s = migrate_get_current();
4070 int ret;
4071 RDMAContext *rdma;
4073 trace_rdma_start_incoming_migration();
4075 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4076 if (ram_block_discard_is_required()) {
4077 error_setg(errp, "RDMA: cannot disable RAM discard");
4078 return;
4081 rdma = qemu_rdma_data_init(host_port, errp);
4082 if (rdma == NULL) {
4083 goto err;
4086 ret = qemu_rdma_dest_init(rdma, errp);
4087 if (ret < 0) {
4088 goto err;
4091 trace_rdma_start_incoming_migration_after_dest_init();
4093 ret = rdma_listen(rdma->listen_id, 5);
4095 if (ret < 0) {
4096 error_setg(errp, "RDMA ERROR: listening on socket!");
4097 goto cleanup_rdma;
4100 trace_rdma_start_incoming_migration_after_rdma_listen();
4101 s->rdma_migration = true;
4102 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4103 NULL, (void *)(intptr_t)rdma);
4104 return;
4106 cleanup_rdma:
4107 qemu_rdma_cleanup(rdma);
4108 err:
4109 if (rdma) {
4110 g_free(rdma->host);
4112 g_free(rdma);
4115 void rdma_start_outgoing_migration(void *opaque,
4116 InetSocketAddress *host_port, Error **errp)
4118 MigrationState *s = opaque;
4119 RDMAContext *rdma_return_path = NULL;
4120 RDMAContext *rdma;
4121 int ret;
4123 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4124 if (ram_block_discard_is_required()) {
4125 error_setg(errp, "RDMA: cannot disable RAM discard");
4126 return;
4129 rdma = qemu_rdma_data_init(host_port, errp);
4130 if (rdma == NULL) {
4131 goto err;
4134 ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4136 if (ret < 0) {
4137 goto err;
4140 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4141 ret = qemu_rdma_connect(rdma, false, errp);
4143 if (ret < 0) {
4144 goto err;
4147 /* RDMA postcopy need a separate queue pair for return path */
4148 if (migrate_postcopy() || migrate_return_path()) {
4149 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4151 if (rdma_return_path == NULL) {
4152 goto return_path_err;
4155 ret = qemu_rdma_source_init(rdma_return_path,
4156 migrate_rdma_pin_all(), errp);
4158 if (ret < 0) {
4159 goto return_path_err;
4162 ret = qemu_rdma_connect(rdma_return_path, true, errp);
4164 if (ret < 0) {
4165 goto return_path_err;
4168 rdma->return_path = rdma_return_path;
4169 rdma_return_path->return_path = rdma;
4170 rdma_return_path->is_return_path = true;
4173 trace_rdma_start_outgoing_migration_after_rdma_connect();
4175 s->to_dst_file = rdma_new_output(rdma);
4176 s->rdma_migration = true;
4177 migrate_fd_connect(s, NULL);
4178 return;
4179 return_path_err:
4180 qemu_rdma_cleanup(rdma);
4181 err:
4182 g_free(rdma);
4183 g_free(rdma_return_path);