memory: Move FlatView allocation to a helper
[qemu/kevin.git] / memory.c
blobeec668eec71495b81e2be14996647cea58be795c
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/misc/mmio_interface.h"
34 #include "hw/qdev-properties.h"
35 #include "migration/vmstate.h"
37 //#define DEBUG_UNASSIGNED
39 static unsigned memory_region_transaction_depth;
40 static bool memory_region_update_pending;
41 static bool ioeventfd_update_pending;
42 static bool global_dirty_log = false;
44 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
45 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47 static QTAILQ_HEAD(, AddressSpace) address_spaces
48 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50 typedef struct AddrRange AddrRange;
53 * Note that signed integers are needed for negative offsetting in aliases
54 * (large MemoryRegion::alias_offset).
56 struct AddrRange {
57 Int128 start;
58 Int128 size;
61 static AddrRange addrrange_make(Int128 start, Int128 size)
63 return (AddrRange) { start, size };
66 static bool addrrange_equal(AddrRange r1, AddrRange r2)
68 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
71 static Int128 addrrange_end(AddrRange r)
73 return int128_add(r.start, r.size);
76 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
78 int128_addto(&range.start, delta);
79 return range;
82 static bool addrrange_contains(AddrRange range, Int128 addr)
84 return int128_ge(addr, range.start)
85 && int128_lt(addr, addrrange_end(range));
88 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
90 return addrrange_contains(r1, r2.start)
91 || addrrange_contains(r2, r1.start);
94 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
96 Int128 start = int128_max(r1.start, r2.start);
97 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
98 return addrrange_make(start, int128_sub(end, start));
101 enum ListenerDirection { Forward, Reverse };
103 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
104 do { \
105 MemoryListener *_listener; \
107 switch (_direction) { \
108 case Forward: \
109 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
110 if (_listener->_callback) { \
111 _listener->_callback(_listener, ##_args); \
114 break; \
115 case Reverse: \
116 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
117 memory_listeners, link) { \
118 if (_listener->_callback) { \
119 _listener->_callback(_listener, ##_args); \
122 break; \
123 default: \
124 abort(); \
126 } while (0)
128 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
129 do { \
130 MemoryListener *_listener; \
131 struct memory_listeners_as *list = &(_as)->listeners; \
133 switch (_direction) { \
134 case Forward: \
135 QTAILQ_FOREACH(_listener, list, link_as) { \
136 if (_listener->_callback) { \
137 _listener->_callback(_listener, _section, ##_args); \
140 break; \
141 case Reverse: \
142 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
143 link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
148 break; \
149 default: \
150 abort(); \
152 } while (0)
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, as); \
158 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
159 } while(0)
161 struct CoalescedMemoryRange {
162 AddrRange addr;
163 QTAILQ_ENTRY(CoalescedMemoryRange) link;
166 struct MemoryRegionIoeventfd {
167 AddrRange addr;
168 bool match_data;
169 uint64_t data;
170 EventNotifier *e;
173 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
174 MemoryRegionIoeventfd b)
176 if (int128_lt(a.addr.start, b.addr.start)) {
177 return true;
178 } else if (int128_gt(a.addr.start, b.addr.start)) {
179 return false;
180 } else if (int128_lt(a.addr.size, b.addr.size)) {
181 return true;
182 } else if (int128_gt(a.addr.size, b.addr.size)) {
183 return false;
184 } else if (a.match_data < b.match_data) {
185 return true;
186 } else if (a.match_data > b.match_data) {
187 return false;
188 } else if (a.match_data) {
189 if (a.data < b.data) {
190 return true;
191 } else if (a.data > b.data) {
192 return false;
195 if (a.e < b.e) {
196 return true;
197 } else if (a.e > b.e) {
198 return false;
200 return false;
203 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
204 MemoryRegionIoeventfd b)
206 return !memory_region_ioeventfd_before(a, b)
207 && !memory_region_ioeventfd_before(b, a);
210 typedef struct FlatRange FlatRange;
211 typedef struct FlatView FlatView;
213 /* Range of memory in the global map. Addresses are absolute. */
214 struct FlatRange {
215 MemoryRegion *mr;
216 hwaddr offset_in_region;
217 AddrRange addr;
218 uint8_t dirty_log_mask;
219 bool romd_mode;
220 bool readonly;
223 /* Flattened global view of current active memory hierarchy. Kept in sorted
224 * order.
226 struct FlatView {
227 struct rcu_head rcu;
228 unsigned ref;
229 FlatRange *ranges;
230 unsigned nr;
231 unsigned nr_allocated;
234 typedef struct AddressSpaceOps AddressSpaceOps;
236 #define FOR_EACH_FLAT_RANGE(var, view) \
237 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
239 static inline MemoryRegionSection
240 section_from_flat_range(FlatRange *fr, AddressSpace *as)
242 return (MemoryRegionSection) {
243 .mr = fr->mr,
244 .address_space = as,
245 .offset_within_region = fr->offset_in_region,
246 .size = fr->addr.size,
247 .offset_within_address_space = int128_get64(fr->addr.start),
248 .readonly = fr->readonly,
252 static bool flatrange_equal(FlatRange *a, FlatRange *b)
254 return a->mr == b->mr
255 && addrrange_equal(a->addr, b->addr)
256 && a->offset_in_region == b->offset_in_region
257 && a->romd_mode == b->romd_mode
258 && a->readonly == b->readonly;
261 static FlatView *flatview_new(void)
263 FlatView *view;
265 view = g_new0(FlatView, 1);
266 view->ref = 1;
268 return view;
271 /* Insert a range into a given position. Caller is responsible for maintaining
272 * sorting order.
274 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
276 if (view->nr == view->nr_allocated) {
277 view->nr_allocated = MAX(2 * view->nr, 10);
278 view->ranges = g_realloc(view->ranges,
279 view->nr_allocated * sizeof(*view->ranges));
281 memmove(view->ranges + pos + 1, view->ranges + pos,
282 (view->nr - pos) * sizeof(FlatRange));
283 view->ranges[pos] = *range;
284 memory_region_ref(range->mr);
285 ++view->nr;
288 static void flatview_destroy(FlatView *view)
290 int i;
292 for (i = 0; i < view->nr; i++) {
293 memory_region_unref(view->ranges[i].mr);
295 g_free(view->ranges);
296 g_free(view);
299 static bool flatview_ref(FlatView *view)
301 return atomic_fetch_inc_nonzero(&view->ref) > 0;
304 static void flatview_unref(FlatView *view)
306 if (atomic_fetch_dec(&view->ref) == 1) {
307 flatview_destroy(view);
311 static bool can_merge(FlatRange *r1, FlatRange *r2)
313 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
314 && r1->mr == r2->mr
315 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
316 r1->addr.size),
317 int128_make64(r2->offset_in_region))
318 && r1->dirty_log_mask == r2->dirty_log_mask
319 && r1->romd_mode == r2->romd_mode
320 && r1->readonly == r2->readonly;
323 /* Attempt to simplify a view by merging adjacent ranges */
324 static void flatview_simplify(FlatView *view)
326 unsigned i, j;
328 i = 0;
329 while (i < view->nr) {
330 j = i + 1;
331 while (j < view->nr
332 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
333 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
334 ++j;
336 ++i;
337 memmove(&view->ranges[i], &view->ranges[j],
338 (view->nr - j) * sizeof(view->ranges[j]));
339 view->nr -= j - i;
343 static bool memory_region_big_endian(MemoryRegion *mr)
345 #ifdef TARGET_WORDS_BIGENDIAN
346 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
347 #else
348 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
349 #endif
352 static bool memory_region_wrong_endianness(MemoryRegion *mr)
354 #ifdef TARGET_WORDS_BIGENDIAN
355 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
356 #else
357 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
358 #endif
361 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
363 if (memory_region_wrong_endianness(mr)) {
364 switch (size) {
365 case 1:
366 break;
367 case 2:
368 *data = bswap16(*data);
369 break;
370 case 4:
371 *data = bswap32(*data);
372 break;
373 case 8:
374 *data = bswap64(*data);
375 break;
376 default:
377 abort();
382 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
384 MemoryRegion *root;
385 hwaddr abs_addr = offset;
387 abs_addr += mr->addr;
388 for (root = mr; root->container; ) {
389 root = root->container;
390 abs_addr += root->addr;
393 return abs_addr;
396 static int get_cpu_index(void)
398 if (current_cpu) {
399 return current_cpu->cpu_index;
401 return -1;
404 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
405 hwaddr addr,
406 uint64_t *value,
407 unsigned size,
408 unsigned shift,
409 uint64_t mask,
410 MemTxAttrs attrs)
412 uint64_t tmp;
414 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
415 if (mr->subpage) {
416 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
417 } else if (mr == &io_mem_notdirty) {
418 /* Accesses to code which has previously been translated into a TB show
419 * up in the MMIO path, as accesses to the io_mem_notdirty
420 * MemoryRegion. */
421 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
422 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
423 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
424 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
426 *value |= (tmp & mask) << shift;
427 return MEMTX_OK;
430 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
431 hwaddr addr,
432 uint64_t *value,
433 unsigned size,
434 unsigned shift,
435 uint64_t mask,
436 MemTxAttrs attrs)
438 uint64_t tmp;
440 tmp = mr->ops->read(mr->opaque, addr, size);
441 if (mr->subpage) {
442 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
443 } else if (mr == &io_mem_notdirty) {
444 /* Accesses to code which has previously been translated into a TB show
445 * up in the MMIO path, as accesses to the io_mem_notdirty
446 * MemoryRegion. */
447 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
448 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
449 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
450 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
452 *value |= (tmp & mask) << shift;
453 return MEMTX_OK;
456 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
457 hwaddr addr,
458 uint64_t *value,
459 unsigned size,
460 unsigned shift,
461 uint64_t mask,
462 MemTxAttrs attrs)
464 uint64_t tmp = 0;
465 MemTxResult r;
467 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
468 if (mr->subpage) {
469 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
470 } else if (mr == &io_mem_notdirty) {
471 /* Accesses to code which has previously been translated into a TB show
472 * up in the MMIO path, as accesses to the io_mem_notdirty
473 * MemoryRegion. */
474 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
475 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
476 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
477 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
479 *value |= (tmp & mask) << shift;
480 return r;
483 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
484 hwaddr addr,
485 uint64_t *value,
486 unsigned size,
487 unsigned shift,
488 uint64_t mask,
489 MemTxAttrs attrs)
491 uint64_t tmp;
493 tmp = (*value >> shift) & mask;
494 if (mr->subpage) {
495 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
496 } else if (mr == &io_mem_notdirty) {
497 /* Accesses to code which has previously been translated into a TB show
498 * up in the MMIO path, as accesses to the io_mem_notdirty
499 * MemoryRegion. */
500 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
501 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
502 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
503 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
505 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
506 return MEMTX_OK;
509 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
510 hwaddr addr,
511 uint64_t *value,
512 unsigned size,
513 unsigned shift,
514 uint64_t mask,
515 MemTxAttrs attrs)
517 uint64_t tmp;
519 tmp = (*value >> shift) & mask;
520 if (mr->subpage) {
521 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
522 } else if (mr == &io_mem_notdirty) {
523 /* Accesses to code which has previously been translated into a TB show
524 * up in the MMIO path, as accesses to the io_mem_notdirty
525 * MemoryRegion. */
526 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
527 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
528 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
529 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
531 mr->ops->write(mr->opaque, addr, tmp, size);
532 return MEMTX_OK;
535 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
536 hwaddr addr,
537 uint64_t *value,
538 unsigned size,
539 unsigned shift,
540 uint64_t mask,
541 MemTxAttrs attrs)
543 uint64_t tmp;
545 tmp = (*value >> shift) & mask;
546 if (mr->subpage) {
547 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
548 } else if (mr == &io_mem_notdirty) {
549 /* Accesses to code which has previously been translated into a TB show
550 * up in the MMIO path, as accesses to the io_mem_notdirty
551 * MemoryRegion. */
552 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
553 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
554 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
555 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
557 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
560 static MemTxResult access_with_adjusted_size(hwaddr addr,
561 uint64_t *value,
562 unsigned size,
563 unsigned access_size_min,
564 unsigned access_size_max,
565 MemTxResult (*access_fn)
566 (MemoryRegion *mr,
567 hwaddr addr,
568 uint64_t *value,
569 unsigned size,
570 unsigned shift,
571 uint64_t mask,
572 MemTxAttrs attrs),
573 MemoryRegion *mr,
574 MemTxAttrs attrs)
576 uint64_t access_mask;
577 unsigned access_size;
578 unsigned i;
579 MemTxResult r = MEMTX_OK;
581 if (!access_size_min) {
582 access_size_min = 1;
584 if (!access_size_max) {
585 access_size_max = 4;
588 /* FIXME: support unaligned access? */
589 access_size = MAX(MIN(size, access_size_max), access_size_min);
590 access_mask = -1ULL >> (64 - access_size * 8);
591 if (memory_region_big_endian(mr)) {
592 for (i = 0; i < size; i += access_size) {
593 r |= access_fn(mr, addr + i, value, access_size,
594 (size - access_size - i) * 8, access_mask, attrs);
596 } else {
597 for (i = 0; i < size; i += access_size) {
598 r |= access_fn(mr, addr + i, value, access_size, i * 8,
599 access_mask, attrs);
602 return r;
605 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
607 AddressSpace *as;
609 while (mr->container) {
610 mr = mr->container;
612 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
613 if (mr == as->root) {
614 return as;
617 return NULL;
620 /* Render a memory region into the global view. Ranges in @view obscure
621 * ranges in @mr.
623 static void render_memory_region(FlatView *view,
624 MemoryRegion *mr,
625 Int128 base,
626 AddrRange clip,
627 bool readonly)
629 MemoryRegion *subregion;
630 unsigned i;
631 hwaddr offset_in_region;
632 Int128 remain;
633 Int128 now;
634 FlatRange fr;
635 AddrRange tmp;
637 if (!mr->enabled) {
638 return;
641 int128_addto(&base, int128_make64(mr->addr));
642 readonly |= mr->readonly;
644 tmp = addrrange_make(base, mr->size);
646 if (!addrrange_intersects(tmp, clip)) {
647 return;
650 clip = addrrange_intersection(tmp, clip);
652 if (mr->alias) {
653 int128_subfrom(&base, int128_make64(mr->alias->addr));
654 int128_subfrom(&base, int128_make64(mr->alias_offset));
655 render_memory_region(view, mr->alias, base, clip, readonly);
656 return;
659 /* Render subregions in priority order. */
660 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
661 render_memory_region(view, subregion, base, clip, readonly);
664 if (!mr->terminates) {
665 return;
668 offset_in_region = int128_get64(int128_sub(clip.start, base));
669 base = clip.start;
670 remain = clip.size;
672 fr.mr = mr;
673 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
674 fr.romd_mode = mr->romd_mode;
675 fr.readonly = readonly;
677 /* Render the region itself into any gaps left by the current view. */
678 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
679 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
680 continue;
682 if (int128_lt(base, view->ranges[i].addr.start)) {
683 now = int128_min(remain,
684 int128_sub(view->ranges[i].addr.start, base));
685 fr.offset_in_region = offset_in_region;
686 fr.addr = addrrange_make(base, now);
687 flatview_insert(view, i, &fr);
688 ++i;
689 int128_addto(&base, now);
690 offset_in_region += int128_get64(now);
691 int128_subfrom(&remain, now);
693 now = int128_sub(int128_min(int128_add(base, remain),
694 addrrange_end(view->ranges[i].addr)),
695 base);
696 int128_addto(&base, now);
697 offset_in_region += int128_get64(now);
698 int128_subfrom(&remain, now);
700 if (int128_nz(remain)) {
701 fr.offset_in_region = offset_in_region;
702 fr.addr = addrrange_make(base, remain);
703 flatview_insert(view, i, &fr);
707 /* Render a memory topology into a list of disjoint absolute ranges. */
708 static FlatView *generate_memory_topology(MemoryRegion *mr)
710 FlatView *view;
712 view = flatview_new();
714 if (mr) {
715 render_memory_region(view, mr, int128_zero(),
716 addrrange_make(int128_zero(), int128_2_64()), false);
718 flatview_simplify(view);
720 return view;
723 static void address_space_add_del_ioeventfds(AddressSpace *as,
724 MemoryRegionIoeventfd *fds_new,
725 unsigned fds_new_nb,
726 MemoryRegionIoeventfd *fds_old,
727 unsigned fds_old_nb)
729 unsigned iold, inew;
730 MemoryRegionIoeventfd *fd;
731 MemoryRegionSection section;
733 /* Generate a symmetric difference of the old and new fd sets, adding
734 * and deleting as necessary.
737 iold = inew = 0;
738 while (iold < fds_old_nb || inew < fds_new_nb) {
739 if (iold < fds_old_nb
740 && (inew == fds_new_nb
741 || memory_region_ioeventfd_before(fds_old[iold],
742 fds_new[inew]))) {
743 fd = &fds_old[iold];
744 section = (MemoryRegionSection) {
745 .address_space = as,
746 .offset_within_address_space = int128_get64(fd->addr.start),
747 .size = fd->addr.size,
749 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
750 fd->match_data, fd->data, fd->e);
751 ++iold;
752 } else if (inew < fds_new_nb
753 && (iold == fds_old_nb
754 || memory_region_ioeventfd_before(fds_new[inew],
755 fds_old[iold]))) {
756 fd = &fds_new[inew];
757 section = (MemoryRegionSection) {
758 .address_space = as,
759 .offset_within_address_space = int128_get64(fd->addr.start),
760 .size = fd->addr.size,
762 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
763 fd->match_data, fd->data, fd->e);
764 ++inew;
765 } else {
766 ++iold;
767 ++inew;
772 static FlatView *address_space_get_flatview(AddressSpace *as)
774 FlatView *view;
776 rcu_read_lock();
777 do {
778 view = atomic_rcu_read(&as->current_map);
779 /* If somebody has replaced as->current_map concurrently,
780 * flatview_ref returns false.
782 } while (!flatview_ref(view));
783 rcu_read_unlock();
784 return view;
787 static void address_space_update_ioeventfds(AddressSpace *as)
789 FlatView *view;
790 FlatRange *fr;
791 unsigned ioeventfd_nb = 0;
792 MemoryRegionIoeventfd *ioeventfds = NULL;
793 AddrRange tmp;
794 unsigned i;
796 view = address_space_get_flatview(as);
797 FOR_EACH_FLAT_RANGE(fr, view) {
798 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
799 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
800 int128_sub(fr->addr.start,
801 int128_make64(fr->offset_in_region)));
802 if (addrrange_intersects(fr->addr, tmp)) {
803 ++ioeventfd_nb;
804 ioeventfds = g_realloc(ioeventfds,
805 ioeventfd_nb * sizeof(*ioeventfds));
806 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
807 ioeventfds[ioeventfd_nb-1].addr = tmp;
812 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
813 as->ioeventfds, as->ioeventfd_nb);
815 g_free(as->ioeventfds);
816 as->ioeventfds = ioeventfds;
817 as->ioeventfd_nb = ioeventfd_nb;
818 flatview_unref(view);
821 static void address_space_update_topology_pass(AddressSpace *as,
822 const FlatView *old_view,
823 const FlatView *new_view,
824 bool adding)
826 unsigned iold, inew;
827 FlatRange *frold, *frnew;
829 /* Generate a symmetric difference of the old and new memory maps.
830 * Kill ranges in the old map, and instantiate ranges in the new map.
832 iold = inew = 0;
833 while (iold < old_view->nr || inew < new_view->nr) {
834 if (iold < old_view->nr) {
835 frold = &old_view->ranges[iold];
836 } else {
837 frold = NULL;
839 if (inew < new_view->nr) {
840 frnew = &new_view->ranges[inew];
841 } else {
842 frnew = NULL;
845 if (frold
846 && (!frnew
847 || int128_lt(frold->addr.start, frnew->addr.start)
848 || (int128_eq(frold->addr.start, frnew->addr.start)
849 && !flatrange_equal(frold, frnew)))) {
850 /* In old but not in new, or in both but attributes changed. */
852 if (!adding) {
853 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
856 ++iold;
857 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
858 /* In both and unchanged (except logging may have changed) */
860 if (adding) {
861 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
862 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
863 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
864 frold->dirty_log_mask,
865 frnew->dirty_log_mask);
867 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
868 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
869 frold->dirty_log_mask,
870 frnew->dirty_log_mask);
874 ++iold;
875 ++inew;
876 } else {
877 /* In new */
879 if (adding) {
880 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
883 ++inew;
888 static void address_space_update_topology(AddressSpace *as)
890 FlatView *old_view = address_space_get_flatview(as);
891 FlatView *new_view = generate_memory_topology(as->root);
892 int i;
894 mem_begin(as);
895 for (i = 0; i < new_view->nr; i++) {
896 MemoryRegionSection mrs =
897 section_from_flat_range(&new_view->ranges[i], as);
898 mem_add(as, &mrs);
900 mem_commit(as);
902 if (!QTAILQ_EMPTY(&as->listeners)) {
903 address_space_update_topology_pass(as, old_view, new_view, false);
904 address_space_update_topology_pass(as, old_view, new_view, true);
907 /* Writes are protected by the BQL. */
908 atomic_rcu_set(&as->current_map, new_view);
909 call_rcu(old_view, flatview_unref, rcu);
911 /* Note that all the old MemoryRegions are still alive up to this
912 * point. This relieves most MemoryListeners from the need to
913 * ref/unref the MemoryRegions they get---unless they use them
914 * outside the iothread mutex, in which case precise reference
915 * counting is necessary.
917 flatview_unref(old_view);
919 address_space_update_ioeventfds(as);
922 void memory_region_transaction_begin(void)
924 qemu_flush_coalesced_mmio_buffer();
925 ++memory_region_transaction_depth;
928 void memory_region_transaction_commit(void)
930 AddressSpace *as;
932 assert(memory_region_transaction_depth);
933 assert(qemu_mutex_iothread_locked());
935 --memory_region_transaction_depth;
936 if (!memory_region_transaction_depth) {
937 if (memory_region_update_pending) {
938 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
940 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
941 address_space_update_topology(as);
943 memory_region_update_pending = false;
944 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
945 } else if (ioeventfd_update_pending) {
946 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
947 address_space_update_ioeventfds(as);
949 ioeventfd_update_pending = false;
954 static void memory_region_destructor_none(MemoryRegion *mr)
958 static void memory_region_destructor_ram(MemoryRegion *mr)
960 qemu_ram_free(mr->ram_block);
963 static bool memory_region_need_escape(char c)
965 return c == '/' || c == '[' || c == '\\' || c == ']';
968 static char *memory_region_escape_name(const char *name)
970 const char *p;
971 char *escaped, *q;
972 uint8_t c;
973 size_t bytes = 0;
975 for (p = name; *p; p++) {
976 bytes += memory_region_need_escape(*p) ? 4 : 1;
978 if (bytes == p - name) {
979 return g_memdup(name, bytes + 1);
982 escaped = g_malloc(bytes + 1);
983 for (p = name, q = escaped; *p; p++) {
984 c = *p;
985 if (unlikely(memory_region_need_escape(c))) {
986 *q++ = '\\';
987 *q++ = 'x';
988 *q++ = "0123456789abcdef"[c >> 4];
989 c = "0123456789abcdef"[c & 15];
991 *q++ = c;
993 *q = 0;
994 return escaped;
997 static void memory_region_do_init(MemoryRegion *mr,
998 Object *owner,
999 const char *name,
1000 uint64_t size)
1002 mr->size = int128_make64(size);
1003 if (size == UINT64_MAX) {
1004 mr->size = int128_2_64();
1006 mr->name = g_strdup(name);
1007 mr->owner = owner;
1008 mr->ram_block = NULL;
1010 if (name) {
1011 char *escaped_name = memory_region_escape_name(name);
1012 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1014 if (!owner) {
1015 owner = container_get(qdev_get_machine(), "/unattached");
1018 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1019 object_unref(OBJECT(mr));
1020 g_free(name_array);
1021 g_free(escaped_name);
1025 void memory_region_init(MemoryRegion *mr,
1026 Object *owner,
1027 const char *name,
1028 uint64_t size)
1030 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1031 memory_region_do_init(mr, owner, name, size);
1034 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1035 void *opaque, Error **errp)
1037 MemoryRegion *mr = MEMORY_REGION(obj);
1038 uint64_t value = mr->addr;
1040 visit_type_uint64(v, name, &value, errp);
1043 static void memory_region_get_container(Object *obj, Visitor *v,
1044 const char *name, void *opaque,
1045 Error **errp)
1047 MemoryRegion *mr = MEMORY_REGION(obj);
1048 gchar *path = (gchar *)"";
1050 if (mr->container) {
1051 path = object_get_canonical_path(OBJECT(mr->container));
1053 visit_type_str(v, name, &path, errp);
1054 if (mr->container) {
1055 g_free(path);
1059 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1060 const char *part)
1062 MemoryRegion *mr = MEMORY_REGION(obj);
1064 return OBJECT(mr->container);
1067 static void memory_region_get_priority(Object *obj, Visitor *v,
1068 const char *name, void *opaque,
1069 Error **errp)
1071 MemoryRegion *mr = MEMORY_REGION(obj);
1072 int32_t value = mr->priority;
1074 visit_type_int32(v, name, &value, errp);
1077 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1078 void *opaque, Error **errp)
1080 MemoryRegion *mr = MEMORY_REGION(obj);
1081 uint64_t value = memory_region_size(mr);
1083 visit_type_uint64(v, name, &value, errp);
1086 static void memory_region_initfn(Object *obj)
1088 MemoryRegion *mr = MEMORY_REGION(obj);
1089 ObjectProperty *op;
1091 mr->ops = &unassigned_mem_ops;
1092 mr->enabled = true;
1093 mr->romd_mode = true;
1094 mr->global_locking = true;
1095 mr->destructor = memory_region_destructor_none;
1096 QTAILQ_INIT(&mr->subregions);
1097 QTAILQ_INIT(&mr->coalesced);
1099 op = object_property_add(OBJECT(mr), "container",
1100 "link<" TYPE_MEMORY_REGION ">",
1101 memory_region_get_container,
1102 NULL, /* memory_region_set_container */
1103 NULL, NULL, &error_abort);
1104 op->resolve = memory_region_resolve_container;
1106 object_property_add(OBJECT(mr), "addr", "uint64",
1107 memory_region_get_addr,
1108 NULL, /* memory_region_set_addr */
1109 NULL, NULL, &error_abort);
1110 object_property_add(OBJECT(mr), "priority", "uint32",
1111 memory_region_get_priority,
1112 NULL, /* memory_region_set_priority */
1113 NULL, NULL, &error_abort);
1114 object_property_add(OBJECT(mr), "size", "uint64",
1115 memory_region_get_size,
1116 NULL, /* memory_region_set_size, */
1117 NULL, NULL, &error_abort);
1120 static void iommu_memory_region_initfn(Object *obj)
1122 MemoryRegion *mr = MEMORY_REGION(obj);
1124 mr->is_iommu = true;
1127 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1128 unsigned size)
1130 #ifdef DEBUG_UNASSIGNED
1131 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1132 #endif
1133 if (current_cpu != NULL) {
1134 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1136 return 0;
1139 static void unassigned_mem_write(void *opaque, hwaddr addr,
1140 uint64_t val, unsigned size)
1142 #ifdef DEBUG_UNASSIGNED
1143 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1144 #endif
1145 if (current_cpu != NULL) {
1146 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1150 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1151 unsigned size, bool is_write)
1153 return false;
1156 const MemoryRegionOps unassigned_mem_ops = {
1157 .valid.accepts = unassigned_mem_accepts,
1158 .endianness = DEVICE_NATIVE_ENDIAN,
1161 static uint64_t memory_region_ram_device_read(void *opaque,
1162 hwaddr addr, unsigned size)
1164 MemoryRegion *mr = opaque;
1165 uint64_t data = (uint64_t)~0;
1167 switch (size) {
1168 case 1:
1169 data = *(uint8_t *)(mr->ram_block->host + addr);
1170 break;
1171 case 2:
1172 data = *(uint16_t *)(mr->ram_block->host + addr);
1173 break;
1174 case 4:
1175 data = *(uint32_t *)(mr->ram_block->host + addr);
1176 break;
1177 case 8:
1178 data = *(uint64_t *)(mr->ram_block->host + addr);
1179 break;
1182 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1184 return data;
1187 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1188 uint64_t data, unsigned size)
1190 MemoryRegion *mr = opaque;
1192 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1194 switch (size) {
1195 case 1:
1196 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1197 break;
1198 case 2:
1199 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1200 break;
1201 case 4:
1202 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1203 break;
1204 case 8:
1205 *(uint64_t *)(mr->ram_block->host + addr) = data;
1206 break;
1210 static const MemoryRegionOps ram_device_mem_ops = {
1211 .read = memory_region_ram_device_read,
1212 .write = memory_region_ram_device_write,
1213 .endianness = DEVICE_HOST_ENDIAN,
1214 .valid = {
1215 .min_access_size = 1,
1216 .max_access_size = 8,
1217 .unaligned = true,
1219 .impl = {
1220 .min_access_size = 1,
1221 .max_access_size = 8,
1222 .unaligned = true,
1226 bool memory_region_access_valid(MemoryRegion *mr,
1227 hwaddr addr,
1228 unsigned size,
1229 bool is_write)
1231 int access_size_min, access_size_max;
1232 int access_size, i;
1234 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1235 return false;
1238 if (!mr->ops->valid.accepts) {
1239 return true;
1242 access_size_min = mr->ops->valid.min_access_size;
1243 if (!mr->ops->valid.min_access_size) {
1244 access_size_min = 1;
1247 access_size_max = mr->ops->valid.max_access_size;
1248 if (!mr->ops->valid.max_access_size) {
1249 access_size_max = 4;
1252 access_size = MAX(MIN(size, access_size_max), access_size_min);
1253 for (i = 0; i < size; i += access_size) {
1254 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1255 is_write)) {
1256 return false;
1260 return true;
1263 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1264 hwaddr addr,
1265 uint64_t *pval,
1266 unsigned size,
1267 MemTxAttrs attrs)
1269 *pval = 0;
1271 if (mr->ops->read) {
1272 return access_with_adjusted_size(addr, pval, size,
1273 mr->ops->impl.min_access_size,
1274 mr->ops->impl.max_access_size,
1275 memory_region_read_accessor,
1276 mr, attrs);
1277 } else if (mr->ops->read_with_attrs) {
1278 return access_with_adjusted_size(addr, pval, size,
1279 mr->ops->impl.min_access_size,
1280 mr->ops->impl.max_access_size,
1281 memory_region_read_with_attrs_accessor,
1282 mr, attrs);
1283 } else {
1284 return access_with_adjusted_size(addr, pval, size, 1, 4,
1285 memory_region_oldmmio_read_accessor,
1286 mr, attrs);
1290 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1291 hwaddr addr,
1292 uint64_t *pval,
1293 unsigned size,
1294 MemTxAttrs attrs)
1296 MemTxResult r;
1298 if (!memory_region_access_valid(mr, addr, size, false)) {
1299 *pval = unassigned_mem_read(mr, addr, size);
1300 return MEMTX_DECODE_ERROR;
1303 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1304 adjust_endianness(mr, pval, size);
1305 return r;
1308 /* Return true if an eventfd was signalled */
1309 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1310 hwaddr addr,
1311 uint64_t data,
1312 unsigned size,
1313 MemTxAttrs attrs)
1315 MemoryRegionIoeventfd ioeventfd = {
1316 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1317 .data = data,
1319 unsigned i;
1321 for (i = 0; i < mr->ioeventfd_nb; i++) {
1322 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1323 ioeventfd.e = mr->ioeventfds[i].e;
1325 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1326 event_notifier_set(ioeventfd.e);
1327 return true;
1331 return false;
1334 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1335 hwaddr addr,
1336 uint64_t data,
1337 unsigned size,
1338 MemTxAttrs attrs)
1340 if (!memory_region_access_valid(mr, addr, size, true)) {
1341 unassigned_mem_write(mr, addr, data, size);
1342 return MEMTX_DECODE_ERROR;
1345 adjust_endianness(mr, &data, size);
1347 if ((!kvm_eventfds_enabled()) &&
1348 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1349 return MEMTX_OK;
1352 if (mr->ops->write) {
1353 return access_with_adjusted_size(addr, &data, size,
1354 mr->ops->impl.min_access_size,
1355 mr->ops->impl.max_access_size,
1356 memory_region_write_accessor, mr,
1357 attrs);
1358 } else if (mr->ops->write_with_attrs) {
1359 return
1360 access_with_adjusted_size(addr, &data, size,
1361 mr->ops->impl.min_access_size,
1362 mr->ops->impl.max_access_size,
1363 memory_region_write_with_attrs_accessor,
1364 mr, attrs);
1365 } else {
1366 return access_with_adjusted_size(addr, &data, size, 1, 4,
1367 memory_region_oldmmio_write_accessor,
1368 mr, attrs);
1372 void memory_region_init_io(MemoryRegion *mr,
1373 Object *owner,
1374 const MemoryRegionOps *ops,
1375 void *opaque,
1376 const char *name,
1377 uint64_t size)
1379 memory_region_init(mr, owner, name, size);
1380 mr->ops = ops ? ops : &unassigned_mem_ops;
1381 mr->opaque = opaque;
1382 mr->terminates = true;
1385 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1386 Object *owner,
1387 const char *name,
1388 uint64_t size,
1389 Error **errp)
1391 memory_region_init(mr, owner, name, size);
1392 mr->ram = true;
1393 mr->terminates = true;
1394 mr->destructor = memory_region_destructor_ram;
1395 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1396 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1399 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1400 Object *owner,
1401 const char *name,
1402 uint64_t size,
1403 uint64_t max_size,
1404 void (*resized)(const char*,
1405 uint64_t length,
1406 void *host),
1407 Error **errp)
1409 memory_region_init(mr, owner, name, size);
1410 mr->ram = true;
1411 mr->terminates = true;
1412 mr->destructor = memory_region_destructor_ram;
1413 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1414 mr, errp);
1415 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1418 #ifdef __linux__
1419 void memory_region_init_ram_from_file(MemoryRegion *mr,
1420 struct Object *owner,
1421 const char *name,
1422 uint64_t size,
1423 bool share,
1424 const char *path,
1425 Error **errp)
1427 memory_region_init(mr, owner, name, size);
1428 mr->ram = true;
1429 mr->terminates = true;
1430 mr->destructor = memory_region_destructor_ram;
1431 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1432 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1435 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1436 struct Object *owner,
1437 const char *name,
1438 uint64_t size,
1439 bool share,
1440 int fd,
1441 Error **errp)
1443 memory_region_init(mr, owner, name, size);
1444 mr->ram = true;
1445 mr->terminates = true;
1446 mr->destructor = memory_region_destructor_ram;
1447 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
1448 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1450 #endif
1452 void memory_region_init_ram_ptr(MemoryRegion *mr,
1453 Object *owner,
1454 const char *name,
1455 uint64_t size,
1456 void *ptr)
1458 memory_region_init(mr, owner, name, size);
1459 mr->ram = true;
1460 mr->terminates = true;
1461 mr->destructor = memory_region_destructor_ram;
1462 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1464 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1465 assert(ptr != NULL);
1466 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1469 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1470 Object *owner,
1471 const char *name,
1472 uint64_t size,
1473 void *ptr)
1475 memory_region_init_ram_ptr(mr, owner, name, size, ptr);
1476 mr->ram_device = true;
1477 mr->ops = &ram_device_mem_ops;
1478 mr->opaque = mr;
1481 void memory_region_init_alias(MemoryRegion *mr,
1482 Object *owner,
1483 const char *name,
1484 MemoryRegion *orig,
1485 hwaddr offset,
1486 uint64_t size)
1488 memory_region_init(mr, owner, name, size);
1489 mr->alias = orig;
1490 mr->alias_offset = offset;
1493 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1494 struct Object *owner,
1495 const char *name,
1496 uint64_t size,
1497 Error **errp)
1499 memory_region_init(mr, owner, name, size);
1500 mr->ram = true;
1501 mr->readonly = true;
1502 mr->terminates = true;
1503 mr->destructor = memory_region_destructor_ram;
1504 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1505 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1508 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1509 Object *owner,
1510 const MemoryRegionOps *ops,
1511 void *opaque,
1512 const char *name,
1513 uint64_t size,
1514 Error **errp)
1516 assert(ops);
1517 memory_region_init(mr, owner, name, size);
1518 mr->ops = ops;
1519 mr->opaque = opaque;
1520 mr->terminates = true;
1521 mr->rom_device = true;
1522 mr->destructor = memory_region_destructor_ram;
1523 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1526 void memory_region_init_iommu(void *_iommu_mr,
1527 size_t instance_size,
1528 const char *mrtypename,
1529 Object *owner,
1530 const char *name,
1531 uint64_t size)
1533 struct IOMMUMemoryRegion *iommu_mr;
1534 struct MemoryRegion *mr;
1536 object_initialize(_iommu_mr, instance_size, mrtypename);
1537 mr = MEMORY_REGION(_iommu_mr);
1538 memory_region_do_init(mr, owner, name, size);
1539 iommu_mr = IOMMU_MEMORY_REGION(mr);
1540 mr->terminates = true; /* then re-forwards */
1541 QLIST_INIT(&iommu_mr->iommu_notify);
1542 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1545 static void memory_region_finalize(Object *obj)
1547 MemoryRegion *mr = MEMORY_REGION(obj);
1549 assert(!mr->container);
1551 /* We know the region is not visible in any address space (it
1552 * does not have a container and cannot be a root either because
1553 * it has no references, so we can blindly clear mr->enabled.
1554 * memory_region_set_enabled instead could trigger a transaction
1555 * and cause an infinite loop.
1557 mr->enabled = false;
1558 memory_region_transaction_begin();
1559 while (!QTAILQ_EMPTY(&mr->subregions)) {
1560 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1561 memory_region_del_subregion(mr, subregion);
1563 memory_region_transaction_commit();
1565 mr->destructor(mr);
1566 memory_region_clear_coalescing(mr);
1567 g_free((char *)mr->name);
1568 g_free(mr->ioeventfds);
1571 Object *memory_region_owner(MemoryRegion *mr)
1573 Object *obj = OBJECT(mr);
1574 return obj->parent;
1577 void memory_region_ref(MemoryRegion *mr)
1579 /* MMIO callbacks most likely will access data that belongs
1580 * to the owner, hence the need to ref/unref the owner whenever
1581 * the memory region is in use.
1583 * The memory region is a child of its owner. As long as the
1584 * owner doesn't call unparent itself on the memory region,
1585 * ref-ing the owner will also keep the memory region alive.
1586 * Memory regions without an owner are supposed to never go away;
1587 * we do not ref/unref them because it slows down DMA sensibly.
1589 if (mr && mr->owner) {
1590 object_ref(mr->owner);
1594 void memory_region_unref(MemoryRegion *mr)
1596 if (mr && mr->owner) {
1597 object_unref(mr->owner);
1601 uint64_t memory_region_size(MemoryRegion *mr)
1603 if (int128_eq(mr->size, int128_2_64())) {
1604 return UINT64_MAX;
1606 return int128_get64(mr->size);
1609 const char *memory_region_name(const MemoryRegion *mr)
1611 if (!mr->name) {
1612 ((MemoryRegion *)mr)->name =
1613 object_get_canonical_path_component(OBJECT(mr));
1615 return mr->name;
1618 bool memory_region_is_ram_device(MemoryRegion *mr)
1620 return mr->ram_device;
1623 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1625 uint8_t mask = mr->dirty_log_mask;
1626 if (global_dirty_log && mr->ram_block) {
1627 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1629 return mask;
1632 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1634 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1637 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1639 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1640 IOMMUNotifier *iommu_notifier;
1641 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1643 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1644 flags |= iommu_notifier->notifier_flags;
1647 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1648 imrc->notify_flag_changed(iommu_mr,
1649 iommu_mr->iommu_notify_flags,
1650 flags);
1653 iommu_mr->iommu_notify_flags = flags;
1656 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1657 IOMMUNotifier *n)
1659 IOMMUMemoryRegion *iommu_mr;
1661 if (mr->alias) {
1662 memory_region_register_iommu_notifier(mr->alias, n);
1663 return;
1666 /* We need to register for at least one bitfield */
1667 iommu_mr = IOMMU_MEMORY_REGION(mr);
1668 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1669 assert(n->start <= n->end);
1670 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1671 memory_region_update_iommu_notify_flags(iommu_mr);
1674 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1676 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1678 if (imrc->get_min_page_size) {
1679 return imrc->get_min_page_size(iommu_mr);
1681 return TARGET_PAGE_SIZE;
1684 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1686 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1687 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1688 hwaddr addr, granularity;
1689 IOMMUTLBEntry iotlb;
1691 /* If the IOMMU has its own replay callback, override */
1692 if (imrc->replay) {
1693 imrc->replay(iommu_mr, n);
1694 return;
1697 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1699 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE);
1701 if (iotlb.perm != IOMMU_NONE) {
1702 n->notify(n, &iotlb);
1705 /* if (2^64 - MR size) < granularity, it's possible to get an
1706 * infinite loop here. This should catch such a wraparound */
1707 if ((addr + granularity) < addr) {
1708 break;
1713 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
1715 IOMMUNotifier *notifier;
1717 IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
1718 memory_region_iommu_replay(iommu_mr, notifier);
1722 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1723 IOMMUNotifier *n)
1725 IOMMUMemoryRegion *iommu_mr;
1727 if (mr->alias) {
1728 memory_region_unregister_iommu_notifier(mr->alias, n);
1729 return;
1731 QLIST_REMOVE(n, node);
1732 iommu_mr = IOMMU_MEMORY_REGION(mr);
1733 memory_region_update_iommu_notify_flags(iommu_mr);
1736 void memory_region_notify_one(IOMMUNotifier *notifier,
1737 IOMMUTLBEntry *entry)
1739 IOMMUNotifierFlag request_flags;
1742 * Skip the notification if the notification does not overlap
1743 * with registered range.
1745 if (notifier->start > entry->iova + entry->addr_mask + 1 ||
1746 notifier->end < entry->iova) {
1747 return;
1750 if (entry->perm & IOMMU_RW) {
1751 request_flags = IOMMU_NOTIFIER_MAP;
1752 } else {
1753 request_flags = IOMMU_NOTIFIER_UNMAP;
1756 if (notifier->notifier_flags & request_flags) {
1757 notifier->notify(notifier, entry);
1761 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1762 IOMMUTLBEntry entry)
1764 IOMMUNotifier *iommu_notifier;
1766 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1768 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1769 memory_region_notify_one(iommu_notifier, &entry);
1773 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1775 uint8_t mask = 1 << client;
1776 uint8_t old_logging;
1778 assert(client == DIRTY_MEMORY_VGA);
1779 old_logging = mr->vga_logging_count;
1780 mr->vga_logging_count += log ? 1 : -1;
1781 if (!!old_logging == !!mr->vga_logging_count) {
1782 return;
1785 memory_region_transaction_begin();
1786 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1787 memory_region_update_pending |= mr->enabled;
1788 memory_region_transaction_commit();
1791 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1792 hwaddr size, unsigned client)
1794 assert(mr->ram_block);
1795 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1796 size, client);
1799 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1800 hwaddr size)
1802 assert(mr->ram_block);
1803 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1804 size,
1805 memory_region_get_dirty_log_mask(mr));
1808 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1809 hwaddr size, unsigned client)
1811 assert(mr->ram_block);
1812 return cpu_physical_memory_test_and_clear_dirty(
1813 memory_region_get_ram_addr(mr) + addr, size, client);
1816 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1817 hwaddr addr,
1818 hwaddr size,
1819 unsigned client)
1821 assert(mr->ram_block);
1822 return cpu_physical_memory_snapshot_and_clear_dirty(
1823 memory_region_get_ram_addr(mr) + addr, size, client);
1826 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
1827 hwaddr addr, hwaddr size)
1829 assert(mr->ram_block);
1830 return cpu_physical_memory_snapshot_get_dirty(snap,
1831 memory_region_get_ram_addr(mr) + addr, size);
1834 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1836 MemoryListener *listener;
1837 AddressSpace *as;
1838 FlatView *view;
1839 FlatRange *fr;
1841 /* If the same address space has multiple log_sync listeners, we
1842 * visit that address space's FlatView multiple times. But because
1843 * log_sync listeners are rare, it's still cheaper than walking each
1844 * address space once.
1846 QTAILQ_FOREACH(listener, &memory_listeners, link) {
1847 if (!listener->log_sync) {
1848 continue;
1850 as = listener->address_space;
1851 view = address_space_get_flatview(as);
1852 FOR_EACH_FLAT_RANGE(fr, view) {
1853 if (fr->mr == mr) {
1854 MemoryRegionSection mrs = section_from_flat_range(fr, as);
1855 listener->log_sync(listener, &mrs);
1858 flatview_unref(view);
1862 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1864 if (mr->readonly != readonly) {
1865 memory_region_transaction_begin();
1866 mr->readonly = readonly;
1867 memory_region_update_pending |= mr->enabled;
1868 memory_region_transaction_commit();
1872 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1874 if (mr->romd_mode != romd_mode) {
1875 memory_region_transaction_begin();
1876 mr->romd_mode = romd_mode;
1877 memory_region_update_pending |= mr->enabled;
1878 memory_region_transaction_commit();
1882 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1883 hwaddr size, unsigned client)
1885 assert(mr->ram_block);
1886 cpu_physical_memory_test_and_clear_dirty(
1887 memory_region_get_ram_addr(mr) + addr, size, client);
1890 int memory_region_get_fd(MemoryRegion *mr)
1892 int fd;
1894 rcu_read_lock();
1895 while (mr->alias) {
1896 mr = mr->alias;
1898 fd = mr->ram_block->fd;
1899 rcu_read_unlock();
1901 return fd;
1904 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1906 void *ptr;
1907 uint64_t offset = 0;
1909 rcu_read_lock();
1910 while (mr->alias) {
1911 offset += mr->alias_offset;
1912 mr = mr->alias;
1914 assert(mr->ram_block);
1915 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
1916 rcu_read_unlock();
1918 return ptr;
1921 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
1923 RAMBlock *block;
1925 block = qemu_ram_block_from_host(ptr, false, offset);
1926 if (!block) {
1927 return NULL;
1930 return block->mr;
1933 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1935 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1938 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1940 assert(mr->ram_block);
1942 qemu_ram_resize(mr->ram_block, newsize, errp);
1945 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1947 FlatView *view;
1948 FlatRange *fr;
1949 CoalescedMemoryRange *cmr;
1950 AddrRange tmp;
1951 MemoryRegionSection section;
1953 view = address_space_get_flatview(as);
1954 FOR_EACH_FLAT_RANGE(fr, view) {
1955 if (fr->mr == mr) {
1956 section = (MemoryRegionSection) {
1957 .address_space = as,
1958 .offset_within_address_space = int128_get64(fr->addr.start),
1959 .size = fr->addr.size,
1962 MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
1963 int128_get64(fr->addr.start),
1964 int128_get64(fr->addr.size));
1965 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1966 tmp = addrrange_shift(cmr->addr,
1967 int128_sub(fr->addr.start,
1968 int128_make64(fr->offset_in_region)));
1969 if (!addrrange_intersects(tmp, fr->addr)) {
1970 continue;
1972 tmp = addrrange_intersection(tmp, fr->addr);
1973 MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
1974 int128_get64(tmp.start),
1975 int128_get64(tmp.size));
1979 flatview_unref(view);
1982 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1984 AddressSpace *as;
1986 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1987 memory_region_update_coalesced_range_as(mr, as);
1991 void memory_region_set_coalescing(MemoryRegion *mr)
1993 memory_region_clear_coalescing(mr);
1994 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1997 void memory_region_add_coalescing(MemoryRegion *mr,
1998 hwaddr offset,
1999 uint64_t size)
2001 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2003 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2004 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2005 memory_region_update_coalesced_range(mr);
2006 memory_region_set_flush_coalesced(mr);
2009 void memory_region_clear_coalescing(MemoryRegion *mr)
2011 CoalescedMemoryRange *cmr;
2012 bool updated = false;
2014 qemu_flush_coalesced_mmio_buffer();
2015 mr->flush_coalesced_mmio = false;
2017 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2018 cmr = QTAILQ_FIRST(&mr->coalesced);
2019 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2020 g_free(cmr);
2021 updated = true;
2024 if (updated) {
2025 memory_region_update_coalesced_range(mr);
2029 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2031 mr->flush_coalesced_mmio = true;
2034 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2036 qemu_flush_coalesced_mmio_buffer();
2037 if (QTAILQ_EMPTY(&mr->coalesced)) {
2038 mr->flush_coalesced_mmio = false;
2042 void memory_region_set_global_locking(MemoryRegion *mr)
2044 mr->global_locking = true;
2047 void memory_region_clear_global_locking(MemoryRegion *mr)
2049 mr->global_locking = false;
2052 static bool userspace_eventfd_warning;
2054 void memory_region_add_eventfd(MemoryRegion *mr,
2055 hwaddr addr,
2056 unsigned size,
2057 bool match_data,
2058 uint64_t data,
2059 EventNotifier *e)
2061 MemoryRegionIoeventfd mrfd = {
2062 .addr.start = int128_make64(addr),
2063 .addr.size = int128_make64(size),
2064 .match_data = match_data,
2065 .data = data,
2066 .e = e,
2068 unsigned i;
2070 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2071 userspace_eventfd_warning))) {
2072 userspace_eventfd_warning = true;
2073 error_report("Using eventfd without MMIO binding in KVM. "
2074 "Suboptimal performance expected");
2077 if (size) {
2078 adjust_endianness(mr, &mrfd.data, size);
2080 memory_region_transaction_begin();
2081 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2082 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
2083 break;
2086 ++mr->ioeventfd_nb;
2087 mr->ioeventfds = g_realloc(mr->ioeventfds,
2088 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2089 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2090 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2091 mr->ioeventfds[i] = mrfd;
2092 ioeventfd_update_pending |= mr->enabled;
2093 memory_region_transaction_commit();
2096 void memory_region_del_eventfd(MemoryRegion *mr,
2097 hwaddr addr,
2098 unsigned size,
2099 bool match_data,
2100 uint64_t data,
2101 EventNotifier *e)
2103 MemoryRegionIoeventfd mrfd = {
2104 .addr.start = int128_make64(addr),
2105 .addr.size = int128_make64(size),
2106 .match_data = match_data,
2107 .data = data,
2108 .e = e,
2110 unsigned i;
2112 if (size) {
2113 adjust_endianness(mr, &mrfd.data, size);
2115 memory_region_transaction_begin();
2116 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2117 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
2118 break;
2121 assert(i != mr->ioeventfd_nb);
2122 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2123 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2124 --mr->ioeventfd_nb;
2125 mr->ioeventfds = g_realloc(mr->ioeventfds,
2126 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2127 ioeventfd_update_pending |= mr->enabled;
2128 memory_region_transaction_commit();
2131 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2133 MemoryRegion *mr = subregion->container;
2134 MemoryRegion *other;
2136 memory_region_transaction_begin();
2138 memory_region_ref(subregion);
2139 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2140 if (subregion->priority >= other->priority) {
2141 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2142 goto done;
2145 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2146 done:
2147 memory_region_update_pending |= mr->enabled && subregion->enabled;
2148 memory_region_transaction_commit();
2151 static void memory_region_add_subregion_common(MemoryRegion *mr,
2152 hwaddr offset,
2153 MemoryRegion *subregion)
2155 assert(!subregion->container);
2156 subregion->container = mr;
2157 subregion->addr = offset;
2158 memory_region_update_container_subregions(subregion);
2161 void memory_region_add_subregion(MemoryRegion *mr,
2162 hwaddr offset,
2163 MemoryRegion *subregion)
2165 subregion->priority = 0;
2166 memory_region_add_subregion_common(mr, offset, subregion);
2169 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2170 hwaddr offset,
2171 MemoryRegion *subregion,
2172 int priority)
2174 subregion->priority = priority;
2175 memory_region_add_subregion_common(mr, offset, subregion);
2178 void memory_region_del_subregion(MemoryRegion *mr,
2179 MemoryRegion *subregion)
2181 memory_region_transaction_begin();
2182 assert(subregion->container == mr);
2183 subregion->container = NULL;
2184 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2185 memory_region_unref(subregion);
2186 memory_region_update_pending |= mr->enabled && subregion->enabled;
2187 memory_region_transaction_commit();
2190 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2192 if (enabled == mr->enabled) {
2193 return;
2195 memory_region_transaction_begin();
2196 mr->enabled = enabled;
2197 memory_region_update_pending = true;
2198 memory_region_transaction_commit();
2201 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2203 Int128 s = int128_make64(size);
2205 if (size == UINT64_MAX) {
2206 s = int128_2_64();
2208 if (int128_eq(s, mr->size)) {
2209 return;
2211 memory_region_transaction_begin();
2212 mr->size = s;
2213 memory_region_update_pending = true;
2214 memory_region_transaction_commit();
2217 static void memory_region_readd_subregion(MemoryRegion *mr)
2219 MemoryRegion *container = mr->container;
2221 if (container) {
2222 memory_region_transaction_begin();
2223 memory_region_ref(mr);
2224 memory_region_del_subregion(container, mr);
2225 mr->container = container;
2226 memory_region_update_container_subregions(mr);
2227 memory_region_unref(mr);
2228 memory_region_transaction_commit();
2232 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2234 if (addr != mr->addr) {
2235 mr->addr = addr;
2236 memory_region_readd_subregion(mr);
2240 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2242 assert(mr->alias);
2244 if (offset == mr->alias_offset) {
2245 return;
2248 memory_region_transaction_begin();
2249 mr->alias_offset = offset;
2250 memory_region_update_pending |= mr->enabled;
2251 memory_region_transaction_commit();
2254 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2256 return mr->align;
2259 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2261 const AddrRange *addr = addr_;
2262 const FlatRange *fr = fr_;
2264 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2265 return -1;
2266 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2267 return 1;
2269 return 0;
2272 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2274 return bsearch(&addr, view->ranges, view->nr,
2275 sizeof(FlatRange), cmp_flatrange_addr);
2278 bool memory_region_is_mapped(MemoryRegion *mr)
2280 return mr->container ? true : false;
2283 /* Same as memory_region_find, but it does not add a reference to the
2284 * returned region. It must be called from an RCU critical section.
2286 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2287 hwaddr addr, uint64_t size)
2289 MemoryRegionSection ret = { .mr = NULL };
2290 MemoryRegion *root;
2291 AddressSpace *as;
2292 AddrRange range;
2293 FlatView *view;
2294 FlatRange *fr;
2296 addr += mr->addr;
2297 for (root = mr; root->container; ) {
2298 root = root->container;
2299 addr += root->addr;
2302 as = memory_region_to_address_space(root);
2303 if (!as) {
2304 return ret;
2306 range = addrrange_make(int128_make64(addr), int128_make64(size));
2308 view = atomic_rcu_read(&as->current_map);
2309 fr = flatview_lookup(view, range);
2310 if (!fr) {
2311 return ret;
2314 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2315 --fr;
2318 ret.mr = fr->mr;
2319 ret.address_space = as;
2320 range = addrrange_intersection(range, fr->addr);
2321 ret.offset_within_region = fr->offset_in_region;
2322 ret.offset_within_region += int128_get64(int128_sub(range.start,
2323 fr->addr.start));
2324 ret.size = range.size;
2325 ret.offset_within_address_space = int128_get64(range.start);
2326 ret.readonly = fr->readonly;
2327 return ret;
2330 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2331 hwaddr addr, uint64_t size)
2333 MemoryRegionSection ret;
2334 rcu_read_lock();
2335 ret = memory_region_find_rcu(mr, addr, size);
2336 if (ret.mr) {
2337 memory_region_ref(ret.mr);
2339 rcu_read_unlock();
2340 return ret;
2343 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2345 MemoryRegion *mr;
2347 rcu_read_lock();
2348 mr = memory_region_find_rcu(container, addr, 1).mr;
2349 rcu_read_unlock();
2350 return mr && mr != container;
2353 void memory_global_dirty_log_sync(void)
2355 MemoryListener *listener;
2356 AddressSpace *as;
2357 FlatView *view;
2358 FlatRange *fr;
2360 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2361 if (!listener->log_sync) {
2362 continue;
2364 as = listener->address_space;
2365 view = address_space_get_flatview(as);
2366 FOR_EACH_FLAT_RANGE(fr, view) {
2367 if (fr->dirty_log_mask) {
2368 MemoryRegionSection mrs = section_from_flat_range(fr, as);
2369 listener->log_sync(listener, &mrs);
2372 flatview_unref(view);
2376 static VMChangeStateEntry *vmstate_change;
2378 void memory_global_dirty_log_start(void)
2380 if (vmstate_change) {
2381 qemu_del_vm_change_state_handler(vmstate_change);
2382 vmstate_change = NULL;
2385 global_dirty_log = true;
2387 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2389 /* Refresh DIRTY_LOG_MIGRATION bit. */
2390 memory_region_transaction_begin();
2391 memory_region_update_pending = true;
2392 memory_region_transaction_commit();
2395 static void memory_global_dirty_log_do_stop(void)
2397 global_dirty_log = false;
2399 /* Refresh DIRTY_LOG_MIGRATION bit. */
2400 memory_region_transaction_begin();
2401 memory_region_update_pending = true;
2402 memory_region_transaction_commit();
2404 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2407 static void memory_vm_change_state_handler(void *opaque, int running,
2408 RunState state)
2410 if (running) {
2411 memory_global_dirty_log_do_stop();
2413 if (vmstate_change) {
2414 qemu_del_vm_change_state_handler(vmstate_change);
2415 vmstate_change = NULL;
2420 void memory_global_dirty_log_stop(void)
2422 if (!runstate_is_running()) {
2423 if (vmstate_change) {
2424 return;
2426 vmstate_change = qemu_add_vm_change_state_handler(
2427 memory_vm_change_state_handler, NULL);
2428 return;
2431 memory_global_dirty_log_do_stop();
2434 static void listener_add_address_space(MemoryListener *listener,
2435 AddressSpace *as)
2437 FlatView *view;
2438 FlatRange *fr;
2440 if (listener->begin) {
2441 listener->begin(listener);
2443 if (global_dirty_log) {
2444 if (listener->log_global_start) {
2445 listener->log_global_start(listener);
2449 view = address_space_get_flatview(as);
2450 FOR_EACH_FLAT_RANGE(fr, view) {
2451 MemoryRegionSection section = {
2452 .mr = fr->mr,
2453 .address_space = as,
2454 .offset_within_region = fr->offset_in_region,
2455 .size = fr->addr.size,
2456 .offset_within_address_space = int128_get64(fr->addr.start),
2457 .readonly = fr->readonly,
2459 if (fr->dirty_log_mask && listener->log_start) {
2460 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2462 if (listener->region_add) {
2463 listener->region_add(listener, &section);
2466 if (listener->commit) {
2467 listener->commit(listener);
2469 flatview_unref(view);
2472 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2474 MemoryListener *other = NULL;
2476 listener->address_space = as;
2477 if (QTAILQ_EMPTY(&memory_listeners)
2478 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2479 memory_listeners)->priority) {
2480 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2481 } else {
2482 QTAILQ_FOREACH(other, &memory_listeners, link) {
2483 if (listener->priority < other->priority) {
2484 break;
2487 QTAILQ_INSERT_BEFORE(other, listener, link);
2490 if (QTAILQ_EMPTY(&as->listeners)
2491 || listener->priority >= QTAILQ_LAST(&as->listeners,
2492 memory_listeners)->priority) {
2493 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2494 } else {
2495 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2496 if (listener->priority < other->priority) {
2497 break;
2500 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2503 listener_add_address_space(listener, as);
2506 void memory_listener_unregister(MemoryListener *listener)
2508 if (!listener->address_space) {
2509 return;
2512 QTAILQ_REMOVE(&memory_listeners, listener, link);
2513 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2514 listener->address_space = NULL;
2517 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr)
2519 void *host;
2520 unsigned size = 0;
2521 unsigned offset = 0;
2522 Object *new_interface;
2524 if (!mr || !mr->ops->request_ptr) {
2525 return false;
2529 * Avoid an update if the request_ptr call
2530 * memory_region_invalidate_mmio_ptr which seems to be likely when we use
2531 * a cache.
2533 memory_region_transaction_begin();
2535 host = mr->ops->request_ptr(mr->opaque, addr - mr->addr, &size, &offset);
2537 if (!host || !size) {
2538 memory_region_transaction_commit();
2539 return false;
2542 new_interface = object_new("mmio_interface");
2543 qdev_prop_set_uint64(DEVICE(new_interface), "start", offset);
2544 qdev_prop_set_uint64(DEVICE(new_interface), "end", offset + size - 1);
2545 qdev_prop_set_bit(DEVICE(new_interface), "ro", true);
2546 qdev_prop_set_ptr(DEVICE(new_interface), "host_ptr", host);
2547 qdev_prop_set_ptr(DEVICE(new_interface), "subregion", mr);
2548 object_property_set_bool(OBJECT(new_interface), true, "realized", NULL);
2550 memory_region_transaction_commit();
2551 return true;
2554 typedef struct MMIOPtrInvalidate {
2555 MemoryRegion *mr;
2556 hwaddr offset;
2557 unsigned size;
2558 int busy;
2559 int allocated;
2560 } MMIOPtrInvalidate;
2562 #define MAX_MMIO_INVALIDATE 10
2563 static MMIOPtrInvalidate mmio_ptr_invalidate_list[MAX_MMIO_INVALIDATE];
2565 static void memory_region_do_invalidate_mmio_ptr(CPUState *cpu,
2566 run_on_cpu_data data)
2568 MMIOPtrInvalidate *invalidate_data = (MMIOPtrInvalidate *)data.host_ptr;
2569 MemoryRegion *mr = invalidate_data->mr;
2570 hwaddr offset = invalidate_data->offset;
2571 unsigned size = invalidate_data->size;
2572 MemoryRegionSection section = memory_region_find(mr, offset, size);
2574 qemu_mutex_lock_iothread();
2576 /* Reset dirty so this doesn't happen later. */
2577 cpu_physical_memory_test_and_clear_dirty(offset, size, 1);
2579 if (section.mr != mr) {
2580 /* memory_region_find add a ref on section.mr */
2581 memory_region_unref(section.mr);
2582 if (MMIO_INTERFACE(section.mr->owner)) {
2583 /* We found the interface just drop it. */
2584 object_property_set_bool(section.mr->owner, false, "realized",
2585 NULL);
2586 object_unref(section.mr->owner);
2587 object_unparent(section.mr->owner);
2591 qemu_mutex_unlock_iothread();
2593 if (invalidate_data->allocated) {
2594 g_free(invalidate_data);
2595 } else {
2596 invalidate_data->busy = 0;
2600 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
2601 unsigned size)
2603 size_t i;
2604 MMIOPtrInvalidate *invalidate_data = NULL;
2606 for (i = 0; i < MAX_MMIO_INVALIDATE; i++) {
2607 if (atomic_cmpxchg(&(mmio_ptr_invalidate_list[i].busy), 0, 1) == 0) {
2608 invalidate_data = &mmio_ptr_invalidate_list[i];
2609 break;
2613 if (!invalidate_data) {
2614 invalidate_data = g_malloc0(sizeof(MMIOPtrInvalidate));
2615 invalidate_data->allocated = 1;
2618 invalidate_data->mr = mr;
2619 invalidate_data->offset = offset;
2620 invalidate_data->size = size;
2622 async_safe_run_on_cpu(first_cpu, memory_region_do_invalidate_mmio_ptr,
2623 RUN_ON_CPU_HOST_PTR(invalidate_data));
2626 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2628 memory_region_ref(root);
2629 memory_region_transaction_begin();
2630 as->ref_count = 1;
2631 as->root = root;
2632 as->malloced = false;
2633 as->current_map = flatview_new();
2634 as->ioeventfd_nb = 0;
2635 as->ioeventfds = NULL;
2636 QTAILQ_INIT(&as->listeners);
2637 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2638 as->name = g_strdup(name ? name : "anonymous");
2639 as->dispatch = NULL;
2640 memory_region_update_pending |= root->enabled;
2641 memory_region_transaction_commit();
2644 static void do_address_space_destroy(AddressSpace *as)
2646 bool do_free = as->malloced;
2648 address_space_destroy_dispatch(as);
2649 assert(QTAILQ_EMPTY(&as->listeners));
2651 flatview_unref(as->current_map);
2652 g_free(as->name);
2653 g_free(as->ioeventfds);
2654 memory_region_unref(as->root);
2655 if (do_free) {
2656 g_free(as);
2660 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2662 AddressSpace *as;
2664 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2665 if (root == as->root && as->malloced) {
2666 as->ref_count++;
2667 return as;
2671 as = g_malloc0(sizeof *as);
2672 address_space_init(as, root, name);
2673 as->malloced = true;
2674 return as;
2677 void address_space_destroy(AddressSpace *as)
2679 MemoryRegion *root = as->root;
2681 as->ref_count--;
2682 if (as->ref_count) {
2683 return;
2685 /* Flush out anything from MemoryListeners listening in on this */
2686 memory_region_transaction_begin();
2687 as->root = NULL;
2688 memory_region_transaction_commit();
2689 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2691 /* At this point, as->dispatch and as->current_map are dummy
2692 * entries that the guest should never use. Wait for the old
2693 * values to expire before freeing the data.
2695 as->root = root;
2696 call_rcu(as, do_address_space_destroy, rcu);
2699 static const char *memory_region_type(MemoryRegion *mr)
2701 if (memory_region_is_ram_device(mr)) {
2702 return "ramd";
2703 } else if (memory_region_is_romd(mr)) {
2704 return "romd";
2705 } else if (memory_region_is_rom(mr)) {
2706 return "rom";
2707 } else if (memory_region_is_ram(mr)) {
2708 return "ram";
2709 } else {
2710 return "i/o";
2714 typedef struct MemoryRegionList MemoryRegionList;
2716 struct MemoryRegionList {
2717 const MemoryRegion *mr;
2718 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2721 typedef QTAILQ_HEAD(mrqueue, MemoryRegionList) MemoryRegionListHead;
2723 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2724 int128_sub((size), int128_one())) : 0)
2725 #define MTREE_INDENT " "
2727 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2728 const MemoryRegion *mr, unsigned int level,
2729 hwaddr base,
2730 MemoryRegionListHead *alias_print_queue)
2732 MemoryRegionList *new_ml, *ml, *next_ml;
2733 MemoryRegionListHead submr_print_queue;
2734 const MemoryRegion *submr;
2735 unsigned int i;
2736 hwaddr cur_start, cur_end;
2738 if (!mr) {
2739 return;
2742 for (i = 0; i < level; i++) {
2743 mon_printf(f, MTREE_INDENT);
2746 cur_start = base + mr->addr;
2747 cur_end = cur_start + MR_SIZE(mr->size);
2750 * Try to detect overflow of memory region. This should never
2751 * happen normally. When it happens, we dump something to warn the
2752 * user who is observing this.
2754 if (cur_start < base || cur_end < cur_start) {
2755 mon_printf(f, "[DETECTED OVERFLOW!] ");
2758 if (mr->alias) {
2759 MemoryRegionList *ml;
2760 bool found = false;
2762 /* check if the alias is already in the queue */
2763 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2764 if (ml->mr == mr->alias) {
2765 found = true;
2769 if (!found) {
2770 ml = g_new(MemoryRegionList, 1);
2771 ml->mr = mr->alias;
2772 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2774 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2775 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2776 "-" TARGET_FMT_plx "%s\n",
2777 cur_start, cur_end,
2778 mr->priority,
2779 memory_region_type((MemoryRegion *)mr),
2780 memory_region_name(mr),
2781 memory_region_name(mr->alias),
2782 mr->alias_offset,
2783 mr->alias_offset + MR_SIZE(mr->size),
2784 mr->enabled ? "" : " [disabled]");
2785 } else {
2786 mon_printf(f,
2787 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s\n",
2788 cur_start, cur_end,
2789 mr->priority,
2790 memory_region_type((MemoryRegion *)mr),
2791 memory_region_name(mr),
2792 mr->enabled ? "" : " [disabled]");
2795 QTAILQ_INIT(&submr_print_queue);
2797 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2798 new_ml = g_new(MemoryRegionList, 1);
2799 new_ml->mr = submr;
2800 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2801 if (new_ml->mr->addr < ml->mr->addr ||
2802 (new_ml->mr->addr == ml->mr->addr &&
2803 new_ml->mr->priority > ml->mr->priority)) {
2804 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2805 new_ml = NULL;
2806 break;
2809 if (new_ml) {
2810 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2814 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2815 mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
2816 alias_print_queue);
2819 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2820 g_free(ml);
2824 static void mtree_print_flatview(fprintf_function p, void *f,
2825 AddressSpace *as)
2827 FlatView *view = address_space_get_flatview(as);
2828 FlatRange *range = &view->ranges[0];
2829 MemoryRegion *mr;
2830 int n = view->nr;
2832 if (n <= 0) {
2833 p(f, MTREE_INDENT "No rendered FlatView for "
2834 "address space '%s'\n", as->name);
2835 flatview_unref(view);
2836 return;
2839 while (n--) {
2840 mr = range->mr;
2841 if (range->offset_in_region) {
2842 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2843 TARGET_FMT_plx " (prio %d, %s): %s @" TARGET_FMT_plx "\n",
2844 int128_get64(range->addr.start),
2845 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2846 mr->priority,
2847 range->readonly ? "rom" : memory_region_type(mr),
2848 memory_region_name(mr),
2849 range->offset_in_region);
2850 } else {
2851 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2852 TARGET_FMT_plx " (prio %d, %s): %s\n",
2853 int128_get64(range->addr.start),
2854 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2855 mr->priority,
2856 range->readonly ? "rom" : memory_region_type(mr),
2857 memory_region_name(mr));
2859 range++;
2862 flatview_unref(view);
2865 void mtree_info(fprintf_function mon_printf, void *f, bool flatview)
2867 MemoryRegionListHead ml_head;
2868 MemoryRegionList *ml, *ml2;
2869 AddressSpace *as;
2871 if (flatview) {
2872 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2873 mon_printf(f, "address-space (flat view): %s\n", as->name);
2874 mtree_print_flatview(mon_printf, f, as);
2875 mon_printf(f, "\n");
2877 return;
2880 QTAILQ_INIT(&ml_head);
2882 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2883 mon_printf(f, "address-space: %s\n", as->name);
2884 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2885 mon_printf(f, "\n");
2888 /* print aliased regions */
2889 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
2890 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2891 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2892 mon_printf(f, "\n");
2895 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
2896 g_free(ml);
2900 void memory_region_init_ram(MemoryRegion *mr,
2901 struct Object *owner,
2902 const char *name,
2903 uint64_t size,
2904 Error **errp)
2906 DeviceState *owner_dev;
2907 Error *err = NULL;
2909 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
2910 if (err) {
2911 error_propagate(errp, err);
2912 return;
2914 /* This will assert if owner is neither NULL nor a DeviceState.
2915 * We only want the owner here for the purposes of defining a
2916 * unique name for migration. TODO: Ideally we should implement
2917 * a naming scheme for Objects which are not DeviceStates, in
2918 * which case we can relax this restriction.
2920 owner_dev = DEVICE(owner);
2921 vmstate_register_ram(mr, owner_dev);
2924 void memory_region_init_rom(MemoryRegion *mr,
2925 struct Object *owner,
2926 const char *name,
2927 uint64_t size,
2928 Error **errp)
2930 DeviceState *owner_dev;
2931 Error *err = NULL;
2933 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
2934 if (err) {
2935 error_propagate(errp, err);
2936 return;
2938 /* This will assert if owner is neither NULL nor a DeviceState.
2939 * We only want the owner here for the purposes of defining a
2940 * unique name for migration. TODO: Ideally we should implement
2941 * a naming scheme for Objects which are not DeviceStates, in
2942 * which case we can relax this restriction.
2944 owner_dev = DEVICE(owner);
2945 vmstate_register_ram(mr, owner_dev);
2948 void memory_region_init_rom_device(MemoryRegion *mr,
2949 struct Object *owner,
2950 const MemoryRegionOps *ops,
2951 void *opaque,
2952 const char *name,
2953 uint64_t size,
2954 Error **errp)
2956 DeviceState *owner_dev;
2957 Error *err = NULL;
2959 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
2960 name, size, &err);
2961 if (err) {
2962 error_propagate(errp, err);
2963 return;
2965 /* This will assert if owner is neither NULL nor a DeviceState.
2966 * We only want the owner here for the purposes of defining a
2967 * unique name for migration. TODO: Ideally we should implement
2968 * a naming scheme for Objects which are not DeviceStates, in
2969 * which case we can relax this restriction.
2971 owner_dev = DEVICE(owner);
2972 vmstate_register_ram(mr, owner_dev);
2975 static const TypeInfo memory_region_info = {
2976 .parent = TYPE_OBJECT,
2977 .name = TYPE_MEMORY_REGION,
2978 .instance_size = sizeof(MemoryRegion),
2979 .instance_init = memory_region_initfn,
2980 .instance_finalize = memory_region_finalize,
2983 static const TypeInfo iommu_memory_region_info = {
2984 .parent = TYPE_MEMORY_REGION,
2985 .name = TYPE_IOMMU_MEMORY_REGION,
2986 .class_size = sizeof(IOMMUMemoryRegionClass),
2987 .instance_size = sizeof(IOMMUMemoryRegion),
2988 .instance_init = iommu_memory_region_initfn,
2989 .abstract = true,
2992 static void memory_register_types(void)
2994 type_register_static(&memory_region_info);
2995 type_register_static(&iommu_memory_region_info);
2998 type_init(memory_register_types)