migration: simplify blockers
[qemu/kevin.git] / target / i386 / kvm / kvm.c
blobe7c054cc160b5a6a14051d4d1aeaa17488a23981
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <sys/ioctl.h>
20 #include <sys/utsname.h>
21 #include <sys/syscall.h>
23 #include <linux/kvm.h>
24 #include "standard-headers/asm-x86/kvm_para.h"
25 #include "hw/xen/interface/arch-x86/cpuid.h"
27 #include "cpu.h"
28 #include "host-cpu.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/hw_accel.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "kvm_i386.h"
34 #include "sev.h"
35 #include "xen-emu.h"
36 #include "hyperv.h"
37 #include "hyperv-proto.h"
39 #include "exec/gdbstub.h"
40 #include "qemu/host-utils.h"
41 #include "qemu/main-loop.h"
42 #include "qemu/ratelimit.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/memalign.h"
46 #include "hw/i386/x86.h"
47 #include "hw/i386/kvm/xen_evtchn.h"
48 #include "hw/i386/pc.h"
49 #include "hw/i386/apic.h"
50 #include "hw/i386/apic_internal.h"
51 #include "hw/i386/apic-msidef.h"
52 #include "hw/i386/intel_iommu.h"
53 #include "hw/i386/x86-iommu.h"
54 #include "hw/i386/e820_memory_layout.h"
56 #include "hw/xen/xen.h"
58 #include "hw/pci/pci.h"
59 #include "hw/pci/msi.h"
60 #include "hw/pci/msix.h"
61 #include "migration/blocker.h"
62 #include "exec/memattrs.h"
63 #include "trace.h"
65 #include CONFIG_DEVICES
67 //#define DEBUG_KVM
69 #ifdef DEBUG_KVM
70 #define DPRINTF(fmt, ...) \
71 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
72 #else
73 #define DPRINTF(fmt, ...) \
74 do { } while (0)
75 #endif
77 /* From arch/x86/kvm/lapic.h */
78 #define KVM_APIC_BUS_CYCLE_NS 1
79 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
81 #define MSR_KVM_WALL_CLOCK 0x11
82 #define MSR_KVM_SYSTEM_TIME 0x12
84 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
85 * 255 kvm_msr_entry structs */
86 #define MSR_BUF_SIZE 4096
88 static void kvm_init_msrs(X86CPU *cpu);
90 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
91 KVM_CAP_INFO(SET_TSS_ADDR),
92 KVM_CAP_INFO(EXT_CPUID),
93 KVM_CAP_INFO(MP_STATE),
94 KVM_CAP_LAST_INFO
97 static bool has_msr_star;
98 static bool has_msr_hsave_pa;
99 static bool has_msr_tsc_aux;
100 static bool has_msr_tsc_adjust;
101 static bool has_msr_tsc_deadline;
102 static bool has_msr_feature_control;
103 static bool has_msr_misc_enable;
104 static bool has_msr_smbase;
105 static bool has_msr_bndcfgs;
106 static int lm_capable_kernel;
107 static bool has_msr_hv_hypercall;
108 static bool has_msr_hv_crash;
109 static bool has_msr_hv_reset;
110 static bool has_msr_hv_vpindex;
111 static bool hv_vpindex_settable;
112 static bool has_msr_hv_runtime;
113 static bool has_msr_hv_synic;
114 static bool has_msr_hv_stimer;
115 static bool has_msr_hv_frequencies;
116 static bool has_msr_hv_reenlightenment;
117 static bool has_msr_hv_syndbg_options;
118 static bool has_msr_xss;
119 static bool has_msr_umwait;
120 static bool has_msr_spec_ctrl;
121 static bool has_tsc_scale_msr;
122 static bool has_msr_tsx_ctrl;
123 static bool has_msr_virt_ssbd;
124 static bool has_msr_smi_count;
125 static bool has_msr_arch_capabs;
126 static bool has_msr_core_capabs;
127 static bool has_msr_vmx_vmfunc;
128 static bool has_msr_ucode_rev;
129 static bool has_msr_vmx_procbased_ctls2;
130 static bool has_msr_perf_capabs;
131 static bool has_msr_pkrs;
133 static uint32_t has_architectural_pmu_version;
134 static uint32_t num_architectural_pmu_gp_counters;
135 static uint32_t num_architectural_pmu_fixed_counters;
137 static int has_xsave;
138 static int has_xsave2;
139 static int has_xcrs;
140 static int has_pit_state2;
141 static int has_sregs2;
142 static int has_exception_payload;
143 static int has_triple_fault_event;
145 static bool has_msr_mcg_ext_ctl;
147 static struct kvm_cpuid2 *cpuid_cache;
148 static struct kvm_cpuid2 *hv_cpuid_cache;
149 static struct kvm_msr_list *kvm_feature_msrs;
151 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
153 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
154 static RateLimit bus_lock_ratelimit_ctrl;
155 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
157 bool kvm_has_pit_state2(void)
159 return !!has_pit_state2;
162 bool kvm_has_smm(void)
164 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
167 bool kvm_has_adjust_clock_stable(void)
169 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
171 return (ret & KVM_CLOCK_TSC_STABLE);
174 bool kvm_has_adjust_clock(void)
176 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
179 bool kvm_has_exception_payload(void)
181 return has_exception_payload;
184 static bool kvm_x2apic_api_set_flags(uint64_t flags)
186 KVMState *s = KVM_STATE(current_accel());
188 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
191 #define MEMORIZE(fn, _result) \
192 ({ \
193 static bool _memorized; \
195 if (_memorized) { \
196 return _result; \
198 _memorized = true; \
199 _result = fn; \
202 static bool has_x2apic_api;
204 bool kvm_has_x2apic_api(void)
206 return has_x2apic_api;
209 bool kvm_enable_x2apic(void)
211 return MEMORIZE(
212 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
213 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
214 has_x2apic_api);
217 bool kvm_hv_vpindex_settable(void)
219 return hv_vpindex_settable;
222 static int kvm_get_tsc(CPUState *cs)
224 X86CPU *cpu = X86_CPU(cs);
225 CPUX86State *env = &cpu->env;
226 uint64_t value;
227 int ret;
229 if (env->tsc_valid) {
230 return 0;
233 env->tsc_valid = !runstate_is_running();
235 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
236 if (ret < 0) {
237 return ret;
240 env->tsc = value;
241 return 0;
244 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
246 kvm_get_tsc(cpu);
249 void kvm_synchronize_all_tsc(void)
251 CPUState *cpu;
253 if (kvm_enabled()) {
254 CPU_FOREACH(cpu) {
255 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
260 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
262 struct kvm_cpuid2 *cpuid;
263 int r, size;
265 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
266 cpuid = g_malloc0(size);
267 cpuid->nent = max;
268 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
269 if (r == 0 && cpuid->nent >= max) {
270 r = -E2BIG;
272 if (r < 0) {
273 if (r == -E2BIG) {
274 g_free(cpuid);
275 return NULL;
276 } else {
277 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
278 strerror(-r));
279 exit(1);
282 return cpuid;
285 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
286 * for all entries.
288 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
290 struct kvm_cpuid2 *cpuid;
291 int max = 1;
293 if (cpuid_cache != NULL) {
294 return cpuid_cache;
296 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
297 max *= 2;
299 cpuid_cache = cpuid;
300 return cpuid;
303 static bool host_tsx_broken(void)
305 int family, model, stepping;\
306 char vendor[CPUID_VENDOR_SZ + 1];
308 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
310 /* Check if we are running on a Haswell host known to have broken TSX */
311 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
312 (family == 6) &&
313 ((model == 63 && stepping < 4) ||
314 model == 60 || model == 69 || model == 70);
317 /* Returns the value for a specific register on the cpuid entry
319 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
321 uint32_t ret = 0;
322 switch (reg) {
323 case R_EAX:
324 ret = entry->eax;
325 break;
326 case R_EBX:
327 ret = entry->ebx;
328 break;
329 case R_ECX:
330 ret = entry->ecx;
331 break;
332 case R_EDX:
333 ret = entry->edx;
334 break;
336 return ret;
339 /* Find matching entry for function/index on kvm_cpuid2 struct
341 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
342 uint32_t function,
343 uint32_t index)
345 int i;
346 for (i = 0; i < cpuid->nent; ++i) {
347 if (cpuid->entries[i].function == function &&
348 cpuid->entries[i].index == index) {
349 return &cpuid->entries[i];
352 /* not found: */
353 return NULL;
356 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
357 uint32_t index, int reg)
359 struct kvm_cpuid2 *cpuid;
360 uint32_t ret = 0;
361 uint32_t cpuid_1_edx, unused;
362 uint64_t bitmask;
364 cpuid = get_supported_cpuid(s);
366 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
367 if (entry) {
368 ret = cpuid_entry_get_reg(entry, reg);
371 /* Fixups for the data returned by KVM, below */
373 if (function == 1 && reg == R_EDX) {
374 /* KVM before 2.6.30 misreports the following features */
375 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
376 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
377 ret |= CPUID_HT;
378 } else if (function == 1 && reg == R_ECX) {
379 /* We can set the hypervisor flag, even if KVM does not return it on
380 * GET_SUPPORTED_CPUID
382 ret |= CPUID_EXT_HYPERVISOR;
383 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
384 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
385 * and the irqchip is in the kernel.
387 if (kvm_irqchip_in_kernel() &&
388 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
389 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
392 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
393 * without the in-kernel irqchip
395 if (!kvm_irqchip_in_kernel()) {
396 ret &= ~CPUID_EXT_X2APIC;
399 if (enable_cpu_pm) {
400 int disable_exits = kvm_check_extension(s,
401 KVM_CAP_X86_DISABLE_EXITS);
403 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
404 ret |= CPUID_EXT_MONITOR;
407 } else if (function == 6 && reg == R_EAX) {
408 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
409 } else if (function == 7 && index == 0 && reg == R_EBX) {
410 /* Not new instructions, just an optimization. */
411 uint32_t ebx;
412 host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
413 ret |= ebx & CPUID_7_0_EBX_ERMS;
415 if (host_tsx_broken()) {
416 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
418 } else if (function == 7 && index == 0 && reg == R_EDX) {
419 /* Not new instructions, just an optimization. */
420 uint32_t edx;
421 host_cpuid(7, 0, &unused, &unused, &unused, &edx);
422 ret |= edx & CPUID_7_0_EDX_FSRM;
425 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
426 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
427 * returned by KVM_GET_MSR_INDEX_LIST.
429 if (!has_msr_arch_capabs) {
430 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
432 } else if (function == 7 && index == 1 && reg == R_EAX) {
433 /* Not new instructions, just an optimization. */
434 uint32_t eax;
435 host_cpuid(7, 1, &eax, &unused, &unused, &unused);
436 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
437 } else if (function == 7 && index == 2 && reg == R_EDX) {
438 uint32_t edx;
439 host_cpuid(7, 2, &unused, &unused, &unused, &edx);
440 ret |= edx & CPUID_7_2_EDX_MCDT_NO;
441 } else if (function == 0xd && index == 0 &&
442 (reg == R_EAX || reg == R_EDX)) {
444 * The value returned by KVM_GET_SUPPORTED_CPUID does not include
445 * features that still have to be enabled with the arch_prctl
446 * system call. QEMU needs the full value, which is retrieved
447 * with KVM_GET_DEVICE_ATTR.
449 struct kvm_device_attr attr = {
450 .group = 0,
451 .attr = KVM_X86_XCOMP_GUEST_SUPP,
452 .addr = (unsigned long) &bitmask
455 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
456 if (!sys_attr) {
457 return ret;
460 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
461 if (rc < 0) {
462 if (rc != -ENXIO) {
463 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
464 "error: %d", rc);
466 return ret;
468 ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
469 } else if (function == 0x80000001 && reg == R_ECX) {
471 * It's safe to enable TOPOEXT even if it's not returned by
472 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
473 * us to keep CPU models including TOPOEXT runnable on older kernels.
475 ret |= CPUID_EXT3_TOPOEXT;
476 } else if (function == 0x80000001 && reg == R_EDX) {
477 /* On Intel, kvm returns cpuid according to the Intel spec,
478 * so add missing bits according to the AMD spec:
480 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
481 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
482 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
483 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
484 * be enabled without the in-kernel irqchip
486 if (!kvm_irqchip_in_kernel()) {
487 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
489 if (kvm_irqchip_is_split()) {
490 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
492 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
493 ret |= 1U << KVM_HINTS_REALTIME;
496 return ret;
499 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
501 struct {
502 struct kvm_msrs info;
503 struct kvm_msr_entry entries[1];
504 } msr_data = {};
505 uint64_t value;
506 uint32_t ret, can_be_one, must_be_one;
508 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
509 return 0;
512 /* Check if requested MSR is supported feature MSR */
513 int i;
514 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
515 if (kvm_feature_msrs->indices[i] == index) {
516 break;
518 if (i == kvm_feature_msrs->nmsrs) {
519 return 0; /* if the feature MSR is not supported, simply return 0 */
522 msr_data.info.nmsrs = 1;
523 msr_data.entries[0].index = index;
525 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
526 if (ret != 1) {
527 error_report("KVM get MSR (index=0x%x) feature failed, %s",
528 index, strerror(-ret));
529 exit(1);
532 value = msr_data.entries[0].data;
533 switch (index) {
534 case MSR_IA32_VMX_PROCBASED_CTLS2:
535 if (!has_msr_vmx_procbased_ctls2) {
536 /* KVM forgot to add these bits for some time, do this ourselves. */
537 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
538 CPUID_XSAVE_XSAVES) {
539 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
541 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
542 CPUID_EXT_RDRAND) {
543 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
545 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
546 CPUID_7_0_EBX_INVPCID) {
547 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
549 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
550 CPUID_7_0_EBX_RDSEED) {
551 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
553 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
554 CPUID_EXT2_RDTSCP) {
555 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
558 /* fall through */
559 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
560 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
561 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
562 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
564 * Return true for bits that can be one, but do not have to be one.
565 * The SDM tells us which bits could have a "must be one" setting,
566 * so we can do the opposite transformation in make_vmx_msr_value.
568 must_be_one = (uint32_t)value;
569 can_be_one = (uint32_t)(value >> 32);
570 return can_be_one & ~must_be_one;
572 default:
573 return value;
577 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
578 int *max_banks)
580 int r;
582 r = kvm_check_extension(s, KVM_CAP_MCE);
583 if (r > 0) {
584 *max_banks = r;
585 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
587 return -ENOSYS;
590 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
592 CPUState *cs = CPU(cpu);
593 CPUX86State *env = &cpu->env;
594 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
595 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
596 uint64_t mcg_status = MCG_STATUS_MCIP;
597 int flags = 0;
599 if (code == BUS_MCEERR_AR) {
600 status |= MCI_STATUS_AR | 0x134;
601 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
602 } else {
603 status |= 0xc0;
604 mcg_status |= MCG_STATUS_RIPV;
607 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
608 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
609 * guest kernel back into env->mcg_ext_ctl.
611 cpu_synchronize_state(cs);
612 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
613 mcg_status |= MCG_STATUS_LMCE;
614 flags = 0;
617 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
618 (MCM_ADDR_PHYS << 6) | 0xc, flags);
621 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
623 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
625 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
626 &mff);
629 static void hardware_memory_error(void *host_addr)
631 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
632 error_report("QEMU got Hardware memory error at addr %p", host_addr);
633 exit(1);
636 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
638 X86CPU *cpu = X86_CPU(c);
639 CPUX86State *env = &cpu->env;
640 ram_addr_t ram_addr;
641 hwaddr paddr;
643 /* If we get an action required MCE, it has been injected by KVM
644 * while the VM was running. An action optional MCE instead should
645 * be coming from the main thread, which qemu_init_sigbus identifies
646 * as the "early kill" thread.
648 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
650 if ((env->mcg_cap & MCG_SER_P) && addr) {
651 ram_addr = qemu_ram_addr_from_host(addr);
652 if (ram_addr != RAM_ADDR_INVALID &&
653 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
654 kvm_hwpoison_page_add(ram_addr);
655 kvm_mce_inject(cpu, paddr, code);
658 * Use different logging severity based on error type.
659 * If there is additional MCE reporting on the hypervisor, QEMU VA
660 * could be another source to identify the PA and MCE details.
662 if (code == BUS_MCEERR_AR) {
663 error_report("Guest MCE Memory Error at QEMU addr %p and "
664 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
665 addr, paddr, "BUS_MCEERR_AR");
666 } else {
667 warn_report("Guest MCE Memory Error at QEMU addr %p and "
668 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
669 addr, paddr, "BUS_MCEERR_AO");
672 return;
675 if (code == BUS_MCEERR_AO) {
676 warn_report("Hardware memory error at addr %p of type %s "
677 "for memory used by QEMU itself instead of guest system!",
678 addr, "BUS_MCEERR_AO");
682 if (code == BUS_MCEERR_AR) {
683 hardware_memory_error(addr);
686 /* Hope we are lucky for AO MCE, just notify a event */
687 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
690 static void kvm_reset_exception(CPUX86State *env)
692 env->exception_nr = -1;
693 env->exception_pending = 0;
694 env->exception_injected = 0;
695 env->exception_has_payload = false;
696 env->exception_payload = 0;
699 static void kvm_queue_exception(CPUX86State *env,
700 int32_t exception_nr,
701 uint8_t exception_has_payload,
702 uint64_t exception_payload)
704 assert(env->exception_nr == -1);
705 assert(!env->exception_pending);
706 assert(!env->exception_injected);
707 assert(!env->exception_has_payload);
709 env->exception_nr = exception_nr;
711 if (has_exception_payload) {
712 env->exception_pending = 1;
714 env->exception_has_payload = exception_has_payload;
715 env->exception_payload = exception_payload;
716 } else {
717 env->exception_injected = 1;
719 if (exception_nr == EXCP01_DB) {
720 assert(exception_has_payload);
721 env->dr[6] = exception_payload;
722 } else if (exception_nr == EXCP0E_PAGE) {
723 assert(exception_has_payload);
724 env->cr[2] = exception_payload;
725 } else {
726 assert(!exception_has_payload);
731 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
733 CPUX86State *env = &cpu->env;
735 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
736 unsigned int bank, bank_num = env->mcg_cap & 0xff;
737 struct kvm_x86_mce mce;
739 kvm_reset_exception(env);
742 * There must be at least one bank in use if an MCE is pending.
743 * Find it and use its values for the event injection.
745 for (bank = 0; bank < bank_num; bank++) {
746 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
747 break;
750 assert(bank < bank_num);
752 mce.bank = bank;
753 mce.status = env->mce_banks[bank * 4 + 1];
754 mce.mcg_status = env->mcg_status;
755 mce.addr = env->mce_banks[bank * 4 + 2];
756 mce.misc = env->mce_banks[bank * 4 + 3];
758 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
760 return 0;
763 static void cpu_update_state(void *opaque, bool running, RunState state)
765 CPUX86State *env = opaque;
767 if (running) {
768 env->tsc_valid = false;
772 unsigned long kvm_arch_vcpu_id(CPUState *cs)
774 X86CPU *cpu = X86_CPU(cs);
775 return cpu->apic_id;
778 #ifndef KVM_CPUID_SIGNATURE_NEXT
779 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
780 #endif
782 static bool hyperv_enabled(X86CPU *cpu)
784 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
785 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
786 cpu->hyperv_features || cpu->hyperv_passthrough);
790 * Check whether target_freq is within conservative
791 * ntp correctable bounds (250ppm) of freq
793 static inline bool freq_within_bounds(int freq, int target_freq)
795 int max_freq = freq + (freq * 250 / 1000000);
796 int min_freq = freq - (freq * 250 / 1000000);
798 if (target_freq >= min_freq && target_freq <= max_freq) {
799 return true;
802 return false;
805 static int kvm_arch_set_tsc_khz(CPUState *cs)
807 X86CPU *cpu = X86_CPU(cs);
808 CPUX86State *env = &cpu->env;
809 int r, cur_freq;
810 bool set_ioctl = false;
812 if (!env->tsc_khz) {
813 return 0;
816 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
817 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
820 * If TSC scaling is supported, attempt to set TSC frequency.
822 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
823 set_ioctl = true;
827 * If desired TSC frequency is within bounds of NTP correction,
828 * attempt to set TSC frequency.
830 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
831 set_ioctl = true;
834 r = set_ioctl ?
835 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
836 -ENOTSUP;
838 if (r < 0) {
839 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
840 * TSC frequency doesn't match the one we want.
842 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
843 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
844 -ENOTSUP;
845 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
846 warn_report("TSC frequency mismatch between "
847 "VM (%" PRId64 " kHz) and host (%d kHz), "
848 "and TSC scaling unavailable",
849 env->tsc_khz, cur_freq);
850 return r;
854 return 0;
857 static bool tsc_is_stable_and_known(CPUX86State *env)
859 if (!env->tsc_khz) {
860 return false;
862 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
863 || env->user_tsc_khz;
866 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
868 static struct {
869 const char *desc;
870 struct {
871 uint32_t func;
872 int reg;
873 uint32_t bits;
874 } flags[2];
875 uint64_t dependencies;
876 } kvm_hyperv_properties[] = {
877 [HYPERV_FEAT_RELAXED] = {
878 .desc = "relaxed timing (hv-relaxed)",
879 .flags = {
880 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
881 .bits = HV_RELAXED_TIMING_RECOMMENDED}
884 [HYPERV_FEAT_VAPIC] = {
885 .desc = "virtual APIC (hv-vapic)",
886 .flags = {
887 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
888 .bits = HV_APIC_ACCESS_AVAILABLE}
891 [HYPERV_FEAT_TIME] = {
892 .desc = "clocksources (hv-time)",
893 .flags = {
894 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
895 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
898 [HYPERV_FEAT_CRASH] = {
899 .desc = "crash MSRs (hv-crash)",
900 .flags = {
901 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
902 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
905 [HYPERV_FEAT_RESET] = {
906 .desc = "reset MSR (hv-reset)",
907 .flags = {
908 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
909 .bits = HV_RESET_AVAILABLE}
912 [HYPERV_FEAT_VPINDEX] = {
913 .desc = "VP_INDEX MSR (hv-vpindex)",
914 .flags = {
915 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
916 .bits = HV_VP_INDEX_AVAILABLE}
919 [HYPERV_FEAT_RUNTIME] = {
920 .desc = "VP_RUNTIME MSR (hv-runtime)",
921 .flags = {
922 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
923 .bits = HV_VP_RUNTIME_AVAILABLE}
926 [HYPERV_FEAT_SYNIC] = {
927 .desc = "synthetic interrupt controller (hv-synic)",
928 .flags = {
929 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
930 .bits = HV_SYNIC_AVAILABLE}
933 [HYPERV_FEAT_STIMER] = {
934 .desc = "synthetic timers (hv-stimer)",
935 .flags = {
936 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
937 .bits = HV_SYNTIMERS_AVAILABLE}
939 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
941 [HYPERV_FEAT_FREQUENCIES] = {
942 .desc = "frequency MSRs (hv-frequencies)",
943 .flags = {
944 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
945 .bits = HV_ACCESS_FREQUENCY_MSRS},
946 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
947 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
950 [HYPERV_FEAT_REENLIGHTENMENT] = {
951 .desc = "reenlightenment MSRs (hv-reenlightenment)",
952 .flags = {
953 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
954 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
957 [HYPERV_FEAT_TLBFLUSH] = {
958 .desc = "paravirtualized TLB flush (hv-tlbflush)",
959 .flags = {
960 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
961 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
962 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
964 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
966 [HYPERV_FEAT_EVMCS] = {
967 .desc = "enlightened VMCS (hv-evmcs)",
968 .flags = {
969 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
970 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
972 .dependencies = BIT(HYPERV_FEAT_VAPIC)
974 [HYPERV_FEAT_IPI] = {
975 .desc = "paravirtualized IPI (hv-ipi)",
976 .flags = {
977 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
978 .bits = HV_CLUSTER_IPI_RECOMMENDED |
979 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
981 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
983 [HYPERV_FEAT_STIMER_DIRECT] = {
984 .desc = "direct mode synthetic timers (hv-stimer-direct)",
985 .flags = {
986 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
987 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
989 .dependencies = BIT(HYPERV_FEAT_STIMER)
991 [HYPERV_FEAT_AVIC] = {
992 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
993 .flags = {
994 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
995 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
998 #ifdef CONFIG_SYNDBG
999 [HYPERV_FEAT_SYNDBG] = {
1000 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
1001 .flags = {
1002 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1003 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1005 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
1007 #endif
1008 [HYPERV_FEAT_MSR_BITMAP] = {
1009 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1010 .flags = {
1011 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1012 .bits = HV_NESTED_MSR_BITMAP}
1015 [HYPERV_FEAT_XMM_INPUT] = {
1016 .desc = "XMM fast hypercall input (hv-xmm-input)",
1017 .flags = {
1018 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1019 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1022 [HYPERV_FEAT_TLBFLUSH_EXT] = {
1023 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1024 .flags = {
1025 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1026 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1028 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1030 [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1031 .desc = "direct TLB flush (hv-tlbflush-direct)",
1032 .flags = {
1033 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1034 .bits = HV_NESTED_DIRECT_FLUSH}
1036 .dependencies = BIT(HYPERV_FEAT_VAPIC)
1040 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1041 bool do_sys_ioctl)
1043 struct kvm_cpuid2 *cpuid;
1044 int r, size;
1046 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1047 cpuid = g_malloc0(size);
1048 cpuid->nent = max;
1050 if (do_sys_ioctl) {
1051 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1052 } else {
1053 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1055 if (r == 0 && cpuid->nent >= max) {
1056 r = -E2BIG;
1058 if (r < 0) {
1059 if (r == -E2BIG) {
1060 g_free(cpuid);
1061 return NULL;
1062 } else {
1063 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1064 strerror(-r));
1065 exit(1);
1068 return cpuid;
1072 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1073 * for all entries.
1075 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1077 struct kvm_cpuid2 *cpuid;
1078 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1079 int max = 11;
1080 int i;
1081 bool do_sys_ioctl;
1083 do_sys_ioctl =
1084 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1087 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1088 * unsupported, kvm_hyperv_expand_features() checks for that.
1090 assert(do_sys_ioctl || cs->kvm_state);
1093 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1094 * -E2BIG, however, it doesn't report back the right size. Keep increasing
1095 * it and re-trying until we succeed.
1097 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1098 max++;
1102 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1103 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1104 * information early, just check for the capability and set the bit
1105 * manually.
1107 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1108 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1109 for (i = 0; i < cpuid->nent; i++) {
1110 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1111 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1116 return cpuid;
1120 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1121 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1123 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1125 X86CPU *cpu = X86_CPU(cs);
1126 struct kvm_cpuid2 *cpuid;
1127 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1129 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1130 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1131 cpuid->nent = 2;
1133 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1134 entry_feat = &cpuid->entries[0];
1135 entry_feat->function = HV_CPUID_FEATURES;
1137 entry_recomm = &cpuid->entries[1];
1138 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1139 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1141 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1142 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1143 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1144 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1145 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1146 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1149 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1150 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1151 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1154 if (has_msr_hv_frequencies) {
1155 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1156 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1159 if (has_msr_hv_crash) {
1160 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1163 if (has_msr_hv_reenlightenment) {
1164 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1167 if (has_msr_hv_reset) {
1168 entry_feat->eax |= HV_RESET_AVAILABLE;
1171 if (has_msr_hv_vpindex) {
1172 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1175 if (has_msr_hv_runtime) {
1176 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1179 if (has_msr_hv_synic) {
1180 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1181 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1183 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1184 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1188 if (has_msr_hv_stimer) {
1189 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1192 if (has_msr_hv_syndbg_options) {
1193 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1194 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1195 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1198 if (kvm_check_extension(cs->kvm_state,
1199 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1200 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1201 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1204 if (kvm_check_extension(cs->kvm_state,
1205 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1206 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1209 if (kvm_check_extension(cs->kvm_state,
1210 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1211 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1212 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1215 return cpuid;
1218 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1220 struct kvm_cpuid_entry2 *entry;
1221 struct kvm_cpuid2 *cpuid;
1223 if (hv_cpuid_cache) {
1224 cpuid = hv_cpuid_cache;
1225 } else {
1226 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1227 cpuid = get_supported_hv_cpuid(cs);
1228 } else {
1230 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1231 * before KVM context is created but this is only done when
1232 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1233 * KVM_CAP_HYPERV_CPUID.
1235 assert(cs->kvm_state);
1237 cpuid = get_supported_hv_cpuid_legacy(cs);
1239 hv_cpuid_cache = cpuid;
1242 if (!cpuid) {
1243 return 0;
1246 entry = cpuid_find_entry(cpuid, func, 0);
1247 if (!entry) {
1248 return 0;
1251 return cpuid_entry_get_reg(entry, reg);
1254 static bool hyperv_feature_supported(CPUState *cs, int feature)
1256 uint32_t func, bits;
1257 int i, reg;
1259 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1261 func = kvm_hyperv_properties[feature].flags[i].func;
1262 reg = kvm_hyperv_properties[feature].flags[i].reg;
1263 bits = kvm_hyperv_properties[feature].flags[i].bits;
1265 if (!func) {
1266 continue;
1269 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1270 return false;
1274 return true;
1277 /* Checks that all feature dependencies are enabled */
1278 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1280 uint64_t deps;
1281 int dep_feat;
1283 deps = kvm_hyperv_properties[feature].dependencies;
1284 while (deps) {
1285 dep_feat = ctz64(deps);
1286 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1287 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1288 kvm_hyperv_properties[feature].desc,
1289 kvm_hyperv_properties[dep_feat].desc);
1290 return false;
1292 deps &= ~(1ull << dep_feat);
1295 return true;
1298 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1300 X86CPU *cpu = X86_CPU(cs);
1301 uint32_t r = 0;
1302 int i, j;
1304 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1305 if (!hyperv_feat_enabled(cpu, i)) {
1306 continue;
1309 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1310 if (kvm_hyperv_properties[i].flags[j].func != func) {
1311 continue;
1313 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1314 continue;
1317 r |= kvm_hyperv_properties[i].flags[j].bits;
1321 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1322 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1323 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1324 r |= DEFAULT_EVMCS_VERSION;
1328 return r;
1332 * Expand Hyper-V CPU features. In partucular, check that all the requested
1333 * features are supported by the host and the sanity of the configuration
1334 * (that all the required dependencies are included). Also, this takes care
1335 * of 'hv_passthrough' mode and fills the environment with all supported
1336 * Hyper-V features.
1338 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1340 CPUState *cs = CPU(cpu);
1341 Error *local_err = NULL;
1342 int feat;
1344 if (!hyperv_enabled(cpu))
1345 return true;
1348 * When kvm_hyperv_expand_features is called at CPU feature expansion
1349 * time per-CPU kvm_state is not available yet so we can only proceed
1350 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1352 if (!cs->kvm_state &&
1353 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1354 return true;
1356 if (cpu->hyperv_passthrough) {
1357 cpu->hyperv_vendor_id[0] =
1358 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1359 cpu->hyperv_vendor_id[1] =
1360 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1361 cpu->hyperv_vendor_id[2] =
1362 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1363 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1364 sizeof(cpu->hyperv_vendor_id) + 1);
1365 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1366 sizeof(cpu->hyperv_vendor_id));
1367 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1369 cpu->hyperv_interface_id[0] =
1370 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1371 cpu->hyperv_interface_id[1] =
1372 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1373 cpu->hyperv_interface_id[2] =
1374 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1375 cpu->hyperv_interface_id[3] =
1376 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1378 cpu->hyperv_ver_id_build =
1379 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1380 cpu->hyperv_ver_id_major =
1381 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1382 cpu->hyperv_ver_id_minor =
1383 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1384 cpu->hyperv_ver_id_sp =
1385 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1386 cpu->hyperv_ver_id_sb =
1387 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1388 cpu->hyperv_ver_id_sn =
1389 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1391 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1392 R_EAX);
1393 cpu->hyperv_limits[0] =
1394 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1395 cpu->hyperv_limits[1] =
1396 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1397 cpu->hyperv_limits[2] =
1398 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1400 cpu->hyperv_spinlock_attempts =
1401 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1404 * Mark feature as enabled in 'cpu->hyperv_features' as
1405 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1407 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1408 if (hyperv_feature_supported(cs, feat)) {
1409 cpu->hyperv_features |= BIT(feat);
1412 } else {
1413 /* Check features availability and dependencies */
1414 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1415 /* If the feature was not requested skip it. */
1416 if (!hyperv_feat_enabled(cpu, feat)) {
1417 continue;
1420 /* Check if the feature is supported by KVM */
1421 if (!hyperv_feature_supported(cs, feat)) {
1422 error_setg(errp, "Hyper-V %s is not supported by kernel",
1423 kvm_hyperv_properties[feat].desc);
1424 return false;
1427 /* Check dependencies */
1428 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1429 error_propagate(errp, local_err);
1430 return false;
1435 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1436 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1437 !cpu->hyperv_synic_kvm_only &&
1438 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1439 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1440 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1441 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1442 return false;
1445 return true;
1449 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1451 static int hyperv_fill_cpuids(CPUState *cs,
1452 struct kvm_cpuid_entry2 *cpuid_ent)
1454 X86CPU *cpu = X86_CPU(cs);
1455 struct kvm_cpuid_entry2 *c;
1456 uint32_t signature[3];
1457 uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1458 uint32_t nested_eax =
1459 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1461 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1462 HV_CPUID_IMPLEMENT_LIMITS;
1464 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1465 max_cpuid_leaf =
1466 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1469 c = &cpuid_ent[cpuid_i++];
1470 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1471 c->eax = max_cpuid_leaf;
1472 c->ebx = cpu->hyperv_vendor_id[0];
1473 c->ecx = cpu->hyperv_vendor_id[1];
1474 c->edx = cpu->hyperv_vendor_id[2];
1476 c = &cpuid_ent[cpuid_i++];
1477 c->function = HV_CPUID_INTERFACE;
1478 c->eax = cpu->hyperv_interface_id[0];
1479 c->ebx = cpu->hyperv_interface_id[1];
1480 c->ecx = cpu->hyperv_interface_id[2];
1481 c->edx = cpu->hyperv_interface_id[3];
1483 c = &cpuid_ent[cpuid_i++];
1484 c->function = HV_CPUID_VERSION;
1485 c->eax = cpu->hyperv_ver_id_build;
1486 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1487 cpu->hyperv_ver_id_minor;
1488 c->ecx = cpu->hyperv_ver_id_sp;
1489 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1490 (cpu->hyperv_ver_id_sn & 0xffffff);
1492 c = &cpuid_ent[cpuid_i++];
1493 c->function = HV_CPUID_FEATURES;
1494 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1495 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1496 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1498 /* Unconditionally required with any Hyper-V enlightenment */
1499 c->eax |= HV_HYPERCALL_AVAILABLE;
1501 /* SynIC and Vmbus devices require messages/signals hypercalls */
1502 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1503 !cpu->hyperv_synic_kvm_only) {
1504 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1508 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1509 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1511 c = &cpuid_ent[cpuid_i++];
1512 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1513 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1514 c->ebx = cpu->hyperv_spinlock_attempts;
1516 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1517 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1518 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1521 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1522 c->eax |= HV_NO_NONARCH_CORESHARING;
1523 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1524 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1525 HV_NO_NONARCH_CORESHARING;
1528 c = &cpuid_ent[cpuid_i++];
1529 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1530 c->eax = cpu->hv_max_vps;
1531 c->ebx = cpu->hyperv_limits[0];
1532 c->ecx = cpu->hyperv_limits[1];
1533 c->edx = cpu->hyperv_limits[2];
1535 if (nested_eax) {
1536 uint32_t function;
1538 /* Create zeroed 0x40000006..0x40000009 leaves */
1539 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1540 function < HV_CPUID_NESTED_FEATURES; function++) {
1541 c = &cpuid_ent[cpuid_i++];
1542 c->function = function;
1545 c = &cpuid_ent[cpuid_i++];
1546 c->function = HV_CPUID_NESTED_FEATURES;
1547 c->eax = nested_eax;
1550 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1551 c = &cpuid_ent[cpuid_i++];
1552 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1553 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1554 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1555 memcpy(signature, "Microsoft VS", 12);
1556 c->eax = 0;
1557 c->ebx = signature[0];
1558 c->ecx = signature[1];
1559 c->edx = signature[2];
1561 c = &cpuid_ent[cpuid_i++];
1562 c->function = HV_CPUID_SYNDBG_INTERFACE;
1563 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1564 c->eax = signature[0];
1565 c->ebx = 0;
1566 c->ecx = 0;
1567 c->edx = 0;
1569 c = &cpuid_ent[cpuid_i++];
1570 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1571 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1572 c->ebx = 0;
1573 c->ecx = 0;
1574 c->edx = 0;
1577 return cpuid_i;
1580 static Error *hv_passthrough_mig_blocker;
1581 static Error *hv_no_nonarch_cs_mig_blocker;
1583 /* Checks that the exposed eVMCS version range is supported by KVM */
1584 static bool evmcs_version_supported(uint16_t evmcs_version,
1585 uint16_t supported_evmcs_version)
1587 uint8_t min_version = evmcs_version & 0xff;
1588 uint8_t max_version = evmcs_version >> 8;
1589 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1590 uint8_t max_supported_version = supported_evmcs_version >> 8;
1592 return (min_version >= min_supported_version) &&
1593 (max_version <= max_supported_version);
1596 static int hyperv_init_vcpu(X86CPU *cpu)
1598 CPUState *cs = CPU(cpu);
1599 Error *local_err = NULL;
1600 int ret;
1602 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1603 error_setg(&hv_passthrough_mig_blocker,
1604 "'hv-passthrough' CPU flag prevents migration, use explicit"
1605 " set of hv-* flags instead");
1606 ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1607 if (ret < 0) {
1608 error_report_err(local_err);
1609 return ret;
1613 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1614 hv_no_nonarch_cs_mig_blocker == NULL) {
1615 error_setg(&hv_no_nonarch_cs_mig_blocker,
1616 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1617 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1618 " make sure SMT is disabled and/or that vCPUs are properly"
1619 " pinned)");
1620 ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1621 if (ret < 0) {
1622 error_report_err(local_err);
1623 return ret;
1627 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1629 * the kernel doesn't support setting vp_index; assert that its value
1630 * is in sync
1632 uint64_t value;
1634 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1635 if (ret < 0) {
1636 return ret;
1639 if (value != hyperv_vp_index(CPU(cpu))) {
1640 error_report("kernel's vp_index != QEMU's vp_index");
1641 return -ENXIO;
1645 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1646 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1647 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1648 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1649 if (ret < 0) {
1650 error_report("failed to turn on HyperV SynIC in KVM: %s",
1651 strerror(-ret));
1652 return ret;
1655 if (!cpu->hyperv_synic_kvm_only) {
1656 ret = hyperv_x86_synic_add(cpu);
1657 if (ret < 0) {
1658 error_report("failed to create HyperV SynIC: %s",
1659 strerror(-ret));
1660 return ret;
1665 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1666 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1667 uint16_t supported_evmcs_version;
1669 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1670 (uintptr_t)&supported_evmcs_version);
1673 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1674 * option sets. Note: we hardcode the maximum supported eVMCS version
1675 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1676 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1677 * to be added.
1679 if (ret < 0) {
1680 error_report("Hyper-V %s is not supported by kernel",
1681 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1682 return ret;
1685 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1686 error_report("eVMCS version range [%d..%d] is not supported by "
1687 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1688 evmcs_version >> 8, supported_evmcs_version & 0xff,
1689 supported_evmcs_version >> 8);
1690 return -ENOTSUP;
1694 if (cpu->hyperv_enforce_cpuid) {
1695 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1696 if (ret < 0) {
1697 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1698 strerror(-ret));
1699 return ret;
1703 return 0;
1706 static Error *invtsc_mig_blocker;
1708 #define KVM_MAX_CPUID_ENTRIES 100
1710 static void kvm_init_xsave(CPUX86State *env)
1712 if (has_xsave2) {
1713 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1714 } else if (has_xsave) {
1715 env->xsave_buf_len = sizeof(struct kvm_xsave);
1716 } else {
1717 return;
1720 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1721 memset(env->xsave_buf, 0, env->xsave_buf_len);
1723 * The allocated storage must be large enough for all of the
1724 * possible XSAVE state components.
1726 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1727 env->xsave_buf_len);
1730 static void kvm_init_nested_state(CPUX86State *env)
1732 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1733 uint32_t size;
1735 if (!env->nested_state) {
1736 return;
1739 size = env->nested_state->size;
1741 memset(env->nested_state, 0, size);
1742 env->nested_state->size = size;
1744 if (cpu_has_vmx(env)) {
1745 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1746 vmx_hdr = &env->nested_state->hdr.vmx;
1747 vmx_hdr->vmxon_pa = -1ull;
1748 vmx_hdr->vmcs12_pa = -1ull;
1749 } else if (cpu_has_svm(env)) {
1750 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1754 int kvm_arch_init_vcpu(CPUState *cs)
1756 struct {
1757 struct kvm_cpuid2 cpuid;
1758 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1759 } cpuid_data;
1761 * The kernel defines these structs with padding fields so there
1762 * should be no extra padding in our cpuid_data struct.
1764 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1765 sizeof(struct kvm_cpuid2) +
1766 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1768 X86CPU *cpu = X86_CPU(cs);
1769 CPUX86State *env = &cpu->env;
1770 uint32_t limit, i, j, cpuid_i;
1771 uint32_t unused;
1772 struct kvm_cpuid_entry2 *c;
1773 uint32_t signature[3];
1774 int kvm_base = KVM_CPUID_SIGNATURE;
1775 int max_nested_state_len;
1776 int r;
1777 Error *local_err = NULL;
1779 memset(&cpuid_data, 0, sizeof(cpuid_data));
1781 cpuid_i = 0;
1783 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1785 r = kvm_arch_set_tsc_khz(cs);
1786 if (r < 0) {
1787 return r;
1790 /* vcpu's TSC frequency is either specified by user, or following
1791 * the value used by KVM if the former is not present. In the
1792 * latter case, we query it from KVM and record in env->tsc_khz,
1793 * so that vcpu's TSC frequency can be migrated later via this field.
1795 if (!env->tsc_khz) {
1796 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1797 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1798 -ENOTSUP;
1799 if (r > 0) {
1800 env->tsc_khz = r;
1804 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1807 * kvm_hyperv_expand_features() is called here for the second time in case
1808 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1809 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1810 * check which Hyper-V enlightenments are supported and which are not, we
1811 * can still proceed and check/expand Hyper-V enlightenments here so legacy
1812 * behavior is preserved.
1814 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1815 error_report_err(local_err);
1816 return -ENOSYS;
1819 if (hyperv_enabled(cpu)) {
1820 r = hyperv_init_vcpu(cpu);
1821 if (r) {
1822 return r;
1825 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1826 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1827 has_msr_hv_hypercall = true;
1830 if (cs->kvm_state->xen_version) {
1831 #ifdef CONFIG_XEN_EMU
1832 struct kvm_cpuid_entry2 *xen_max_leaf;
1834 memcpy(signature, "XenVMMXenVMM", 12);
1836 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
1837 c->function = kvm_base + XEN_CPUID_SIGNATURE;
1838 c->eax = kvm_base + XEN_CPUID_TIME;
1839 c->ebx = signature[0];
1840 c->ecx = signature[1];
1841 c->edx = signature[2];
1843 c = &cpuid_data.entries[cpuid_i++];
1844 c->function = kvm_base + XEN_CPUID_VENDOR;
1845 c->eax = cs->kvm_state->xen_version;
1846 c->ebx = 0;
1847 c->ecx = 0;
1848 c->edx = 0;
1850 c = &cpuid_data.entries[cpuid_i++];
1851 c->function = kvm_base + XEN_CPUID_HVM_MSR;
1852 /* Number of hypercall-transfer pages */
1853 c->eax = 1;
1854 /* Hypercall MSR base address */
1855 if (hyperv_enabled(cpu)) {
1856 c->ebx = XEN_HYPERCALL_MSR_HYPERV;
1857 kvm_xen_init(cs->kvm_state, c->ebx);
1858 } else {
1859 c->ebx = XEN_HYPERCALL_MSR;
1861 c->ecx = 0;
1862 c->edx = 0;
1864 c = &cpuid_data.entries[cpuid_i++];
1865 c->function = kvm_base + XEN_CPUID_TIME;
1866 c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
1867 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
1868 /* default=0 (emulate if necessary) */
1869 c->ebx = 0;
1870 /* guest tsc frequency */
1871 c->ecx = env->user_tsc_khz;
1872 /* guest tsc incarnation (migration count) */
1873 c->edx = 0;
1875 c = &cpuid_data.entries[cpuid_i++];
1876 c->function = kvm_base + XEN_CPUID_HVM;
1877 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
1878 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
1879 c->function = kvm_base + XEN_CPUID_HVM;
1881 if (cpu->xen_vapic) {
1882 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
1883 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
1886 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
1888 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
1889 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
1890 c->ebx = cs->cpu_index;
1894 r = kvm_xen_init_vcpu(cs);
1895 if (r) {
1896 return r;
1899 kvm_base += 0x100;
1900 #else /* CONFIG_XEN_EMU */
1901 /* This should never happen as kvm_arch_init() would have died first. */
1902 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
1903 abort();
1904 #endif
1905 } else if (cpu->expose_kvm) {
1906 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1907 c = &cpuid_data.entries[cpuid_i++];
1908 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1909 c->eax = KVM_CPUID_FEATURES | kvm_base;
1910 c->ebx = signature[0];
1911 c->ecx = signature[1];
1912 c->edx = signature[2];
1914 c = &cpuid_data.entries[cpuid_i++];
1915 c->function = KVM_CPUID_FEATURES | kvm_base;
1916 c->eax = env->features[FEAT_KVM];
1917 c->edx = env->features[FEAT_KVM_HINTS];
1920 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1922 if (cpu->kvm_pv_enforce_cpuid) {
1923 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1924 if (r < 0) {
1925 fprintf(stderr,
1926 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1927 strerror(-r));
1928 abort();
1932 for (i = 0; i <= limit; i++) {
1933 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1934 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1935 abort();
1937 c = &cpuid_data.entries[cpuid_i++];
1939 switch (i) {
1940 case 2: {
1941 /* Keep reading function 2 till all the input is received */
1942 int times;
1944 c->function = i;
1945 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1946 KVM_CPUID_FLAG_STATE_READ_NEXT;
1947 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1948 times = c->eax & 0xff;
1950 for (j = 1; j < times; ++j) {
1951 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1952 fprintf(stderr, "cpuid_data is full, no space for "
1953 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1954 abort();
1956 c = &cpuid_data.entries[cpuid_i++];
1957 c->function = i;
1958 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1959 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1961 break;
1963 case 0x1f:
1964 if (env->nr_dies < 2) {
1965 break;
1967 /* fallthrough */
1968 case 4:
1969 case 0xb:
1970 case 0xd:
1971 for (j = 0; ; j++) {
1972 if (i == 0xd && j == 64) {
1973 break;
1976 if (i == 0x1f && j == 64) {
1977 break;
1980 c->function = i;
1981 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1982 c->index = j;
1983 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1985 if (i == 4 && c->eax == 0) {
1986 break;
1988 if (i == 0xb && !(c->ecx & 0xff00)) {
1989 break;
1991 if (i == 0x1f && !(c->ecx & 0xff00)) {
1992 break;
1994 if (i == 0xd && c->eax == 0) {
1995 continue;
1997 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1998 fprintf(stderr, "cpuid_data is full, no space for "
1999 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2000 abort();
2002 c = &cpuid_data.entries[cpuid_i++];
2004 break;
2005 case 0x7:
2006 case 0x12:
2007 for (j = 0; ; j++) {
2008 c->function = i;
2009 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2010 c->index = j;
2011 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2013 if (j > 1 && (c->eax & 0xf) != 1) {
2014 break;
2017 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2018 fprintf(stderr, "cpuid_data is full, no space for "
2019 "cpuid(eax:0x12,ecx:0x%x)\n", j);
2020 abort();
2022 c = &cpuid_data.entries[cpuid_i++];
2024 break;
2025 case 0x14:
2026 case 0x1d:
2027 case 0x1e: {
2028 uint32_t times;
2030 c->function = i;
2031 c->index = 0;
2032 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2033 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2034 times = c->eax;
2036 for (j = 1; j <= times; ++j) {
2037 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2038 fprintf(stderr, "cpuid_data is full, no space for "
2039 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2040 abort();
2042 c = &cpuid_data.entries[cpuid_i++];
2043 c->function = i;
2044 c->index = j;
2045 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2046 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2048 break;
2050 default:
2051 c->function = i;
2052 c->flags = 0;
2053 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2054 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2056 * KVM already returns all zeroes if a CPUID entry is missing,
2057 * so we can omit it and avoid hitting KVM's 80-entry limit.
2059 cpuid_i--;
2061 break;
2065 if (limit >= 0x0a) {
2066 uint32_t eax, edx;
2068 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
2070 has_architectural_pmu_version = eax & 0xff;
2071 if (has_architectural_pmu_version > 0) {
2072 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
2074 /* Shouldn't be more than 32, since that's the number of bits
2075 * available in EBX to tell us _which_ counters are available.
2076 * Play it safe.
2078 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
2079 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
2082 if (has_architectural_pmu_version > 1) {
2083 num_architectural_pmu_fixed_counters = edx & 0x1f;
2085 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
2086 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
2092 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
2094 for (i = 0x80000000; i <= limit; i++) {
2095 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2096 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
2097 abort();
2099 c = &cpuid_data.entries[cpuid_i++];
2101 switch (i) {
2102 case 0x8000001d:
2103 /* Query for all AMD cache information leaves */
2104 for (j = 0; ; j++) {
2105 c->function = i;
2106 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2107 c->index = j;
2108 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2110 if (c->eax == 0) {
2111 break;
2113 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2114 fprintf(stderr, "cpuid_data is full, no space for "
2115 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2116 abort();
2118 c = &cpuid_data.entries[cpuid_i++];
2120 break;
2121 default:
2122 c->function = i;
2123 c->flags = 0;
2124 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2125 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2127 * KVM already returns all zeroes if a CPUID entry is missing,
2128 * so we can omit it and avoid hitting KVM's 80-entry limit.
2130 cpuid_i--;
2132 break;
2136 /* Call Centaur's CPUID instructions they are supported. */
2137 if (env->cpuid_xlevel2 > 0) {
2138 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2140 for (i = 0xC0000000; i <= limit; i++) {
2141 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2142 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2143 abort();
2145 c = &cpuid_data.entries[cpuid_i++];
2147 c->function = i;
2148 c->flags = 0;
2149 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2153 cpuid_data.cpuid.nent = cpuid_i;
2155 if (((env->cpuid_version >> 8)&0xF) >= 6
2156 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2157 (CPUID_MCE | CPUID_MCA)
2158 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
2159 uint64_t mcg_cap, unsupported_caps;
2160 int banks;
2161 int ret;
2163 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2164 if (ret < 0) {
2165 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2166 return ret;
2169 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2170 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2171 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2172 return -ENOTSUP;
2175 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2176 if (unsupported_caps) {
2177 if (unsupported_caps & MCG_LMCE_P) {
2178 error_report("kvm: LMCE not supported");
2179 return -ENOTSUP;
2181 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2182 unsupported_caps);
2185 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2186 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2187 if (ret < 0) {
2188 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2189 return ret;
2193 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2195 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2196 if (c) {
2197 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2198 !!(c->ecx & CPUID_EXT_SMX);
2201 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2202 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2203 has_msr_feature_control = true;
2206 if (env->mcg_cap & MCG_LMCE_P) {
2207 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2210 if (!env->user_tsc_khz) {
2211 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2212 invtsc_mig_blocker == NULL) {
2213 error_setg(&invtsc_mig_blocker,
2214 "State blocked by non-migratable CPU device"
2215 " (invtsc flag)");
2216 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2217 if (r < 0) {
2218 error_report_err(local_err);
2219 return r;
2224 if (cpu->vmware_cpuid_freq
2225 /* Guests depend on 0x40000000 to detect this feature, so only expose
2226 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2227 && cpu->expose_kvm
2228 && kvm_base == KVM_CPUID_SIGNATURE
2229 /* TSC clock must be stable and known for this feature. */
2230 && tsc_is_stable_and_known(env)) {
2232 c = &cpuid_data.entries[cpuid_i++];
2233 c->function = KVM_CPUID_SIGNATURE | 0x10;
2234 c->eax = env->tsc_khz;
2235 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2236 c->ecx = c->edx = 0;
2238 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2239 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2242 cpuid_data.cpuid.nent = cpuid_i;
2244 cpuid_data.cpuid.padding = 0;
2245 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2246 if (r) {
2247 goto fail;
2249 kvm_init_xsave(env);
2251 max_nested_state_len = kvm_max_nested_state_length();
2252 if (max_nested_state_len > 0) {
2253 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2255 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2256 env->nested_state = g_malloc0(max_nested_state_len);
2257 env->nested_state->size = max_nested_state_len;
2259 kvm_init_nested_state(env);
2263 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2265 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2266 has_msr_tsc_aux = false;
2269 kvm_init_msrs(cpu);
2271 return 0;
2273 fail:
2274 migrate_del_blocker(&invtsc_mig_blocker);
2276 return r;
2279 int kvm_arch_destroy_vcpu(CPUState *cs)
2281 X86CPU *cpu = X86_CPU(cs);
2282 CPUX86State *env = &cpu->env;
2284 g_free(env->xsave_buf);
2286 g_free(cpu->kvm_msr_buf);
2287 cpu->kvm_msr_buf = NULL;
2289 g_free(env->nested_state);
2290 env->nested_state = NULL;
2292 qemu_del_vm_change_state_handler(cpu->vmsentry);
2294 return 0;
2297 void kvm_arch_reset_vcpu(X86CPU *cpu)
2299 CPUX86State *env = &cpu->env;
2301 env->xcr0 = 1;
2302 if (kvm_irqchip_in_kernel()) {
2303 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2304 KVM_MP_STATE_UNINITIALIZED;
2305 } else {
2306 env->mp_state = KVM_MP_STATE_RUNNABLE;
2309 /* enabled by default */
2310 env->poll_control_msr = 1;
2312 kvm_init_nested_state(env);
2314 sev_es_set_reset_vector(CPU(cpu));
2317 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2319 CPUX86State *env = &cpu->env;
2320 int i;
2323 * Reset SynIC after all other devices have been reset to let them remove
2324 * their SINT routes first.
2326 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2327 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2328 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2331 hyperv_x86_synic_reset(cpu);
2335 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2337 CPUX86State *env = &cpu->env;
2339 /* APs get directly into wait-for-SIPI state. */
2340 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2341 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2345 static int kvm_get_supported_feature_msrs(KVMState *s)
2347 int ret = 0;
2349 if (kvm_feature_msrs != NULL) {
2350 return 0;
2353 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2354 return 0;
2357 struct kvm_msr_list msr_list;
2359 msr_list.nmsrs = 0;
2360 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2361 if (ret < 0 && ret != -E2BIG) {
2362 error_report("Fetch KVM feature MSR list failed: %s",
2363 strerror(-ret));
2364 return ret;
2367 assert(msr_list.nmsrs > 0);
2368 kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2369 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2371 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2372 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2374 if (ret < 0) {
2375 error_report("Fetch KVM feature MSR list failed: %s",
2376 strerror(-ret));
2377 g_free(kvm_feature_msrs);
2378 kvm_feature_msrs = NULL;
2379 return ret;
2382 return 0;
2385 static int kvm_get_supported_msrs(KVMState *s)
2387 int ret = 0;
2388 struct kvm_msr_list msr_list, *kvm_msr_list;
2391 * Obtain MSR list from KVM. These are the MSRs that we must
2392 * save/restore.
2394 msr_list.nmsrs = 0;
2395 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2396 if (ret < 0 && ret != -E2BIG) {
2397 return ret;
2400 * Old kernel modules had a bug and could write beyond the provided
2401 * memory. Allocate at least a safe amount of 1K.
2403 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2404 msr_list.nmsrs *
2405 sizeof(msr_list.indices[0])));
2407 kvm_msr_list->nmsrs = msr_list.nmsrs;
2408 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2409 if (ret >= 0) {
2410 int i;
2412 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2413 switch (kvm_msr_list->indices[i]) {
2414 case MSR_STAR:
2415 has_msr_star = true;
2416 break;
2417 case MSR_VM_HSAVE_PA:
2418 has_msr_hsave_pa = true;
2419 break;
2420 case MSR_TSC_AUX:
2421 has_msr_tsc_aux = true;
2422 break;
2423 case MSR_TSC_ADJUST:
2424 has_msr_tsc_adjust = true;
2425 break;
2426 case MSR_IA32_TSCDEADLINE:
2427 has_msr_tsc_deadline = true;
2428 break;
2429 case MSR_IA32_SMBASE:
2430 has_msr_smbase = true;
2431 break;
2432 case MSR_SMI_COUNT:
2433 has_msr_smi_count = true;
2434 break;
2435 case MSR_IA32_MISC_ENABLE:
2436 has_msr_misc_enable = true;
2437 break;
2438 case MSR_IA32_BNDCFGS:
2439 has_msr_bndcfgs = true;
2440 break;
2441 case MSR_IA32_XSS:
2442 has_msr_xss = true;
2443 break;
2444 case MSR_IA32_UMWAIT_CONTROL:
2445 has_msr_umwait = true;
2446 break;
2447 case HV_X64_MSR_CRASH_CTL:
2448 has_msr_hv_crash = true;
2449 break;
2450 case HV_X64_MSR_RESET:
2451 has_msr_hv_reset = true;
2452 break;
2453 case HV_X64_MSR_VP_INDEX:
2454 has_msr_hv_vpindex = true;
2455 break;
2456 case HV_X64_MSR_VP_RUNTIME:
2457 has_msr_hv_runtime = true;
2458 break;
2459 case HV_X64_MSR_SCONTROL:
2460 has_msr_hv_synic = true;
2461 break;
2462 case HV_X64_MSR_STIMER0_CONFIG:
2463 has_msr_hv_stimer = true;
2464 break;
2465 case HV_X64_MSR_TSC_FREQUENCY:
2466 has_msr_hv_frequencies = true;
2467 break;
2468 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2469 has_msr_hv_reenlightenment = true;
2470 break;
2471 case HV_X64_MSR_SYNDBG_OPTIONS:
2472 has_msr_hv_syndbg_options = true;
2473 break;
2474 case MSR_IA32_SPEC_CTRL:
2475 has_msr_spec_ctrl = true;
2476 break;
2477 case MSR_AMD64_TSC_RATIO:
2478 has_tsc_scale_msr = true;
2479 break;
2480 case MSR_IA32_TSX_CTRL:
2481 has_msr_tsx_ctrl = true;
2482 break;
2483 case MSR_VIRT_SSBD:
2484 has_msr_virt_ssbd = true;
2485 break;
2486 case MSR_IA32_ARCH_CAPABILITIES:
2487 has_msr_arch_capabs = true;
2488 break;
2489 case MSR_IA32_CORE_CAPABILITY:
2490 has_msr_core_capabs = true;
2491 break;
2492 case MSR_IA32_PERF_CAPABILITIES:
2493 has_msr_perf_capabs = true;
2494 break;
2495 case MSR_IA32_VMX_VMFUNC:
2496 has_msr_vmx_vmfunc = true;
2497 break;
2498 case MSR_IA32_UCODE_REV:
2499 has_msr_ucode_rev = true;
2500 break;
2501 case MSR_IA32_VMX_PROCBASED_CTLS2:
2502 has_msr_vmx_procbased_ctls2 = true;
2503 break;
2504 case MSR_IA32_PKRS:
2505 has_msr_pkrs = true;
2506 break;
2511 g_free(kvm_msr_list);
2513 return ret;
2516 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2517 uint64_t *val)
2519 CPUState *cs = CPU(cpu);
2521 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2522 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2524 return true;
2527 static Notifier smram_machine_done;
2528 static KVMMemoryListener smram_listener;
2529 static AddressSpace smram_address_space;
2530 static MemoryRegion smram_as_root;
2531 static MemoryRegion smram_as_mem;
2533 static void register_smram_listener(Notifier *n, void *unused)
2535 MemoryRegion *smram =
2536 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2538 /* Outer container... */
2539 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2540 memory_region_set_enabled(&smram_as_root, true);
2542 /* ... with two regions inside: normal system memory with low
2543 * priority, and...
2545 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2546 get_system_memory(), 0, ~0ull);
2547 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2548 memory_region_set_enabled(&smram_as_mem, true);
2550 if (smram) {
2551 /* ... SMRAM with higher priority */
2552 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2553 memory_region_set_enabled(smram, true);
2556 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2557 kvm_memory_listener_register(kvm_state, &smram_listener,
2558 &smram_address_space, 1, "kvm-smram");
2561 int kvm_arch_get_default_type(MachineState *ms)
2563 return 0;
2566 int kvm_arch_init(MachineState *ms, KVMState *s)
2568 uint64_t identity_base = 0xfffbc000;
2569 uint64_t shadow_mem;
2570 int ret;
2571 struct utsname utsname;
2572 Error *local_err = NULL;
2575 * Initialize SEV context, if required
2577 * If no memory encryption is requested (ms->cgs == NULL) this is
2578 * a no-op.
2580 * It's also a no-op if a non-SEV confidential guest support
2581 * mechanism is selected. SEV is the only mechanism available to
2582 * select on x86 at present, so this doesn't arise, but if new
2583 * mechanisms are supported in future (e.g. TDX), they'll need
2584 * their own initialization either here or elsewhere.
2586 ret = sev_kvm_init(ms->cgs, &local_err);
2587 if (ret < 0) {
2588 error_report_err(local_err);
2589 return ret;
2592 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2593 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2594 return -ENOTSUP;
2597 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2598 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2599 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2600 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2602 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2604 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2605 if (has_exception_payload) {
2606 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2607 if (ret < 0) {
2608 error_report("kvm: Failed to enable exception payload cap: %s",
2609 strerror(-ret));
2610 return ret;
2614 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2615 if (has_triple_fault_event) {
2616 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2617 if (ret < 0) {
2618 error_report("kvm: Failed to enable triple fault event cap: %s",
2619 strerror(-ret));
2620 return ret;
2624 if (s->xen_version) {
2625 #ifdef CONFIG_XEN_EMU
2626 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2627 error_report("kvm: Xen support only available in PC machine");
2628 return -ENOTSUP;
2630 /* hyperv_enabled() doesn't work yet. */
2631 uint32_t msr = XEN_HYPERCALL_MSR;
2632 ret = kvm_xen_init(s, msr);
2633 if (ret < 0) {
2634 return ret;
2636 #else
2637 error_report("kvm: Xen support not enabled in qemu");
2638 return -ENOTSUP;
2639 #endif
2642 ret = kvm_get_supported_msrs(s);
2643 if (ret < 0) {
2644 return ret;
2647 kvm_get_supported_feature_msrs(s);
2649 uname(&utsname);
2650 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2653 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2654 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2655 * Since these must be part of guest physical memory, we need to allocate
2656 * them, both by setting their start addresses in the kernel and by
2657 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2659 * Older KVM versions may not support setting the identity map base. In
2660 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2661 * size.
2663 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2664 /* Allows up to 16M BIOSes. */
2665 identity_base = 0xfeffc000;
2667 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2668 if (ret < 0) {
2669 return ret;
2673 /* Set TSS base one page after EPT identity map. */
2674 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2675 if (ret < 0) {
2676 return ret;
2679 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2680 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2681 if (ret < 0) {
2682 fprintf(stderr, "e820_add_entry() table is full\n");
2683 return ret;
2686 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2687 if (shadow_mem != -1) {
2688 shadow_mem /= 4096;
2689 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2690 if (ret < 0) {
2691 return ret;
2695 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2696 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2697 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2698 smram_machine_done.notify = register_smram_listener;
2699 qemu_add_machine_init_done_notifier(&smram_machine_done);
2702 if (enable_cpu_pm) {
2703 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2704 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2705 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2706 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2707 #endif
2708 if (disable_exits) {
2709 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2710 KVM_X86_DISABLE_EXITS_HLT |
2711 KVM_X86_DISABLE_EXITS_PAUSE |
2712 KVM_X86_DISABLE_EXITS_CSTATE);
2715 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2716 disable_exits);
2717 if (ret < 0) {
2718 error_report("kvm: guest stopping CPU not supported: %s",
2719 strerror(-ret));
2723 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2724 X86MachineState *x86ms = X86_MACHINE(ms);
2726 if (x86ms->bus_lock_ratelimit > 0) {
2727 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2728 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2729 error_report("kvm: bus lock detection unsupported");
2730 return -ENOTSUP;
2732 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2733 KVM_BUS_LOCK_DETECTION_EXIT);
2734 if (ret < 0) {
2735 error_report("kvm: Failed to enable bus lock detection cap: %s",
2736 strerror(-ret));
2737 return ret;
2739 ratelimit_init(&bus_lock_ratelimit_ctrl);
2740 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2741 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2745 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2746 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2747 uint64_t notify_window_flags =
2748 ((uint64_t)s->notify_window << 32) |
2749 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2750 KVM_X86_NOTIFY_VMEXIT_USER;
2751 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2752 notify_window_flags);
2753 if (ret < 0) {
2754 error_report("kvm: Failed to enable notify vmexit cap: %s",
2755 strerror(-ret));
2756 return ret;
2759 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2760 bool r;
2762 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2763 KVM_MSR_EXIT_REASON_FILTER);
2764 if (ret) {
2765 error_report("Could not enable user space MSRs: %s",
2766 strerror(-ret));
2767 exit(1);
2770 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2771 kvm_rdmsr_core_thread_count, NULL);
2772 if (!r) {
2773 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2774 strerror(-ret));
2775 exit(1);
2779 return 0;
2782 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2784 lhs->selector = rhs->selector;
2785 lhs->base = rhs->base;
2786 lhs->limit = rhs->limit;
2787 lhs->type = 3;
2788 lhs->present = 1;
2789 lhs->dpl = 3;
2790 lhs->db = 0;
2791 lhs->s = 1;
2792 lhs->l = 0;
2793 lhs->g = 0;
2794 lhs->avl = 0;
2795 lhs->unusable = 0;
2798 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2800 unsigned flags = rhs->flags;
2801 lhs->selector = rhs->selector;
2802 lhs->base = rhs->base;
2803 lhs->limit = rhs->limit;
2804 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2805 lhs->present = (flags & DESC_P_MASK) != 0;
2806 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2807 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2808 lhs->s = (flags & DESC_S_MASK) != 0;
2809 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2810 lhs->g = (flags & DESC_G_MASK) != 0;
2811 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2812 lhs->unusable = !lhs->present;
2813 lhs->padding = 0;
2816 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2818 lhs->selector = rhs->selector;
2819 lhs->base = rhs->base;
2820 lhs->limit = rhs->limit;
2821 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2822 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2823 (rhs->dpl << DESC_DPL_SHIFT) |
2824 (rhs->db << DESC_B_SHIFT) |
2825 (rhs->s * DESC_S_MASK) |
2826 (rhs->l << DESC_L_SHIFT) |
2827 (rhs->g * DESC_G_MASK) |
2828 (rhs->avl * DESC_AVL_MASK);
2831 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2833 if (set) {
2834 *kvm_reg = *qemu_reg;
2835 } else {
2836 *qemu_reg = *kvm_reg;
2840 static int kvm_getput_regs(X86CPU *cpu, int set)
2842 CPUX86State *env = &cpu->env;
2843 struct kvm_regs regs;
2844 int ret = 0;
2846 if (!set) {
2847 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2848 if (ret < 0) {
2849 return ret;
2853 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2854 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2855 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2856 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2857 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2858 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2859 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2860 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2861 #ifdef TARGET_X86_64
2862 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2863 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2864 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2865 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2866 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2867 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2868 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2869 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2870 #endif
2872 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2873 kvm_getput_reg(&regs.rip, &env->eip, set);
2875 if (set) {
2876 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2879 return ret;
2882 static int kvm_put_fpu(X86CPU *cpu)
2884 CPUX86State *env = &cpu->env;
2885 struct kvm_fpu fpu;
2886 int i;
2888 memset(&fpu, 0, sizeof fpu);
2889 fpu.fsw = env->fpus & ~(7 << 11);
2890 fpu.fsw |= (env->fpstt & 7) << 11;
2891 fpu.fcw = env->fpuc;
2892 fpu.last_opcode = env->fpop;
2893 fpu.last_ip = env->fpip;
2894 fpu.last_dp = env->fpdp;
2895 for (i = 0; i < 8; ++i) {
2896 fpu.ftwx |= (!env->fptags[i]) << i;
2898 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2899 for (i = 0; i < CPU_NB_REGS; i++) {
2900 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2901 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2903 fpu.mxcsr = env->mxcsr;
2905 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2908 static int kvm_put_xsave(X86CPU *cpu)
2910 CPUX86State *env = &cpu->env;
2911 void *xsave = env->xsave_buf;
2913 if (!has_xsave) {
2914 return kvm_put_fpu(cpu);
2916 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2918 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2921 static int kvm_put_xcrs(X86CPU *cpu)
2923 CPUX86State *env = &cpu->env;
2924 struct kvm_xcrs xcrs = {};
2926 if (!has_xcrs) {
2927 return 0;
2930 xcrs.nr_xcrs = 1;
2931 xcrs.flags = 0;
2932 xcrs.xcrs[0].xcr = 0;
2933 xcrs.xcrs[0].value = env->xcr0;
2934 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2937 static int kvm_put_sregs(X86CPU *cpu)
2939 CPUX86State *env = &cpu->env;
2940 struct kvm_sregs sregs;
2943 * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2944 * always followed by KVM_SET_VCPU_EVENTS.
2946 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2948 if ((env->eflags & VM_MASK)) {
2949 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2950 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2951 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2952 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2953 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2954 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2955 } else {
2956 set_seg(&sregs.cs, &env->segs[R_CS]);
2957 set_seg(&sregs.ds, &env->segs[R_DS]);
2958 set_seg(&sregs.es, &env->segs[R_ES]);
2959 set_seg(&sregs.fs, &env->segs[R_FS]);
2960 set_seg(&sregs.gs, &env->segs[R_GS]);
2961 set_seg(&sregs.ss, &env->segs[R_SS]);
2964 set_seg(&sregs.tr, &env->tr);
2965 set_seg(&sregs.ldt, &env->ldt);
2967 sregs.idt.limit = env->idt.limit;
2968 sregs.idt.base = env->idt.base;
2969 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2970 sregs.gdt.limit = env->gdt.limit;
2971 sregs.gdt.base = env->gdt.base;
2972 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2974 sregs.cr0 = env->cr[0];
2975 sregs.cr2 = env->cr[2];
2976 sregs.cr3 = env->cr[3];
2977 sregs.cr4 = env->cr[4];
2979 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2980 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2982 sregs.efer = env->efer;
2984 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2987 static int kvm_put_sregs2(X86CPU *cpu)
2989 CPUX86State *env = &cpu->env;
2990 struct kvm_sregs2 sregs;
2991 int i;
2993 sregs.flags = 0;
2995 if ((env->eflags & VM_MASK)) {
2996 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2997 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2998 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2999 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3000 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3001 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3002 } else {
3003 set_seg(&sregs.cs, &env->segs[R_CS]);
3004 set_seg(&sregs.ds, &env->segs[R_DS]);
3005 set_seg(&sregs.es, &env->segs[R_ES]);
3006 set_seg(&sregs.fs, &env->segs[R_FS]);
3007 set_seg(&sregs.gs, &env->segs[R_GS]);
3008 set_seg(&sregs.ss, &env->segs[R_SS]);
3011 set_seg(&sregs.tr, &env->tr);
3012 set_seg(&sregs.ldt, &env->ldt);
3014 sregs.idt.limit = env->idt.limit;
3015 sregs.idt.base = env->idt.base;
3016 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3017 sregs.gdt.limit = env->gdt.limit;
3018 sregs.gdt.base = env->gdt.base;
3019 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3021 sregs.cr0 = env->cr[0];
3022 sregs.cr2 = env->cr[2];
3023 sregs.cr3 = env->cr[3];
3024 sregs.cr4 = env->cr[4];
3026 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3027 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3029 sregs.efer = env->efer;
3031 if (env->pdptrs_valid) {
3032 for (i = 0; i < 4; i++) {
3033 sregs.pdptrs[i] = env->pdptrs[i];
3035 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3038 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3042 static void kvm_msr_buf_reset(X86CPU *cpu)
3044 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3047 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3049 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3050 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3051 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3053 assert((void *)(entry + 1) <= limit);
3055 entry->index = index;
3056 entry->reserved = 0;
3057 entry->data = value;
3058 msrs->nmsrs++;
3061 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3063 kvm_msr_buf_reset(cpu);
3064 kvm_msr_entry_add(cpu, index, value);
3066 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3069 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3071 int ret;
3072 struct {
3073 struct kvm_msrs info;
3074 struct kvm_msr_entry entries[1];
3075 } msr_data = {
3076 .info.nmsrs = 1,
3077 .entries[0].index = index,
3080 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3081 if (ret < 0) {
3082 return ret;
3084 assert(ret == 1);
3085 *value = msr_data.entries[0].data;
3086 return ret;
3088 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3090 int ret;
3092 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3093 assert(ret == 1);
3096 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3098 CPUX86State *env = &cpu->env;
3099 int ret;
3101 if (!has_msr_tsc_deadline) {
3102 return 0;
3105 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3106 if (ret < 0) {
3107 return ret;
3110 assert(ret == 1);
3111 return 0;
3115 * Provide a separate write service for the feature control MSR in order to
3116 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3117 * before writing any other state because forcibly leaving nested mode
3118 * invalidates the VCPU state.
3120 static int kvm_put_msr_feature_control(X86CPU *cpu)
3122 int ret;
3124 if (!has_msr_feature_control) {
3125 return 0;
3128 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3129 cpu->env.msr_ia32_feature_control);
3130 if (ret < 0) {
3131 return ret;
3134 assert(ret == 1);
3135 return 0;
3138 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3140 uint32_t default1, can_be_one, can_be_zero;
3141 uint32_t must_be_one;
3143 switch (index) {
3144 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3145 default1 = 0x00000016;
3146 break;
3147 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3148 default1 = 0x0401e172;
3149 break;
3150 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3151 default1 = 0x000011ff;
3152 break;
3153 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3154 default1 = 0x00036dff;
3155 break;
3156 case MSR_IA32_VMX_PROCBASED_CTLS2:
3157 default1 = 0;
3158 break;
3159 default:
3160 abort();
3163 /* If a feature bit is set, the control can be either set or clear.
3164 * Otherwise the value is limited to either 0 or 1 by default1.
3166 can_be_one = features | default1;
3167 can_be_zero = features | ~default1;
3168 must_be_one = ~can_be_zero;
3171 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3172 * Bit 32:63 -> 1 if the control bit can be one.
3174 return must_be_one | (((uint64_t)can_be_one) << 32);
3177 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3179 uint64_t kvm_vmx_basic =
3180 kvm_arch_get_supported_msr_feature(kvm_state,
3181 MSR_IA32_VMX_BASIC);
3183 if (!kvm_vmx_basic) {
3184 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3185 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3187 return;
3190 uint64_t kvm_vmx_misc =
3191 kvm_arch_get_supported_msr_feature(kvm_state,
3192 MSR_IA32_VMX_MISC);
3193 uint64_t kvm_vmx_ept_vpid =
3194 kvm_arch_get_supported_msr_feature(kvm_state,
3195 MSR_IA32_VMX_EPT_VPID_CAP);
3198 * If the guest is 64-bit, a value of 1 is allowed for the host address
3199 * space size vmexit control.
3201 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3202 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3205 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
3206 * not change them for backwards compatibility.
3208 uint64_t fixed_vmx_basic = kvm_vmx_basic &
3209 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3210 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3211 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3214 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
3215 * change in the future but are always zero for now, clear them to be
3216 * future proof. Bits 32-63 in theory could change, though KVM does
3217 * not support dual-monitor treatment and probably never will; mask
3218 * them out as well.
3220 uint64_t fixed_vmx_misc = kvm_vmx_misc &
3221 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3222 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3225 * EPT memory types should not change either, so we do not bother
3226 * adding features for them.
3228 uint64_t fixed_vmx_ept_mask =
3229 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3230 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3231 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3233 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3234 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3235 f[FEAT_VMX_PROCBASED_CTLS]));
3236 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3237 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3238 f[FEAT_VMX_PINBASED_CTLS]));
3239 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3240 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3241 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3242 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3243 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3244 f[FEAT_VMX_ENTRY_CTLS]));
3245 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3246 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3247 f[FEAT_VMX_SECONDARY_CTLS]));
3248 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3249 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3250 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3251 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3252 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3253 f[FEAT_VMX_MISC] | fixed_vmx_misc);
3254 if (has_msr_vmx_vmfunc) {
3255 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3259 * Just to be safe, write these with constant values. The CRn_FIXED1
3260 * MSRs are generated by KVM based on the vCPU's CPUID.
3262 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3263 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3264 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3265 CR4_VMXE_MASK);
3267 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3268 /* TSC multiplier (0x2032). */
3269 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3270 } else {
3271 /* Preemption timer (0x482E). */
3272 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3276 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3278 uint64_t kvm_perf_cap =
3279 kvm_arch_get_supported_msr_feature(kvm_state,
3280 MSR_IA32_PERF_CAPABILITIES);
3282 if (kvm_perf_cap) {
3283 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3284 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3288 static int kvm_buf_set_msrs(X86CPU *cpu)
3290 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3291 if (ret < 0) {
3292 return ret;
3295 if (ret < cpu->kvm_msr_buf->nmsrs) {
3296 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3297 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3298 (uint32_t)e->index, (uint64_t)e->data);
3301 assert(ret == cpu->kvm_msr_buf->nmsrs);
3302 return 0;
3305 static void kvm_init_msrs(X86CPU *cpu)
3307 CPUX86State *env = &cpu->env;
3309 kvm_msr_buf_reset(cpu);
3310 if (has_msr_arch_capabs) {
3311 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3312 env->features[FEAT_ARCH_CAPABILITIES]);
3315 if (has_msr_core_capabs) {
3316 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3317 env->features[FEAT_CORE_CAPABILITY]);
3320 if (has_msr_perf_capabs && cpu->enable_pmu) {
3321 kvm_msr_entry_add_perf(cpu, env->features);
3324 if (has_msr_ucode_rev) {
3325 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3329 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3330 * all kernels with MSR features should have them.
3332 if (kvm_feature_msrs && cpu_has_vmx(env)) {
3333 kvm_msr_entry_add_vmx(cpu, env->features);
3336 assert(kvm_buf_set_msrs(cpu) == 0);
3339 static int kvm_put_msrs(X86CPU *cpu, int level)
3341 CPUX86State *env = &cpu->env;
3342 int i;
3344 kvm_msr_buf_reset(cpu);
3346 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3347 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3348 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3349 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3350 if (has_msr_star) {
3351 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3353 if (has_msr_hsave_pa) {
3354 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3356 if (has_msr_tsc_aux) {
3357 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3359 if (has_msr_tsc_adjust) {
3360 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3362 if (has_msr_misc_enable) {
3363 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3364 env->msr_ia32_misc_enable);
3366 if (has_msr_smbase) {
3367 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3369 if (has_msr_smi_count) {
3370 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3372 if (has_msr_pkrs) {
3373 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3375 if (has_msr_bndcfgs) {
3376 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3378 if (has_msr_xss) {
3379 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3381 if (has_msr_umwait) {
3382 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3384 if (has_msr_spec_ctrl) {
3385 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3387 if (has_tsc_scale_msr) {
3388 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3391 if (has_msr_tsx_ctrl) {
3392 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3394 if (has_msr_virt_ssbd) {
3395 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3398 #ifdef TARGET_X86_64
3399 if (lm_capable_kernel) {
3400 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3401 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3402 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3403 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3405 #endif
3408 * The following MSRs have side effects on the guest or are too heavy
3409 * for normal writeback. Limit them to reset or full state updates.
3411 if (level >= KVM_PUT_RESET_STATE) {
3412 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3413 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3414 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3415 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3416 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3418 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3419 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3421 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3422 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3424 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3425 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3428 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3429 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3432 if (has_architectural_pmu_version > 0) {
3433 if (has_architectural_pmu_version > 1) {
3434 /* Stop the counter. */
3435 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3436 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3439 /* Set the counter values. */
3440 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3441 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3442 env->msr_fixed_counters[i]);
3444 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3445 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3446 env->msr_gp_counters[i]);
3447 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3448 env->msr_gp_evtsel[i]);
3450 if (has_architectural_pmu_version > 1) {
3451 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3452 env->msr_global_status);
3453 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3454 env->msr_global_ovf_ctrl);
3456 /* Now start the PMU. */
3457 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3458 env->msr_fixed_ctr_ctrl);
3459 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3460 env->msr_global_ctrl);
3464 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3465 * only sync them to KVM on the first cpu
3467 if (current_cpu == first_cpu) {
3468 if (has_msr_hv_hypercall) {
3469 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3470 env->msr_hv_guest_os_id);
3471 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3472 env->msr_hv_hypercall);
3474 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3475 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3476 env->msr_hv_tsc);
3478 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3479 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3480 env->msr_hv_reenlightenment_control);
3481 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3482 env->msr_hv_tsc_emulation_control);
3483 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3484 env->msr_hv_tsc_emulation_status);
3486 #ifdef CONFIG_SYNDBG
3487 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3488 has_msr_hv_syndbg_options) {
3489 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3490 hyperv_syndbg_query_options());
3492 #endif
3494 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3495 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3496 env->msr_hv_vapic);
3498 if (has_msr_hv_crash) {
3499 int j;
3501 for (j = 0; j < HV_CRASH_PARAMS; j++)
3502 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3503 env->msr_hv_crash_params[j]);
3505 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3507 if (has_msr_hv_runtime) {
3508 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3510 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3511 && hv_vpindex_settable) {
3512 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3513 hyperv_vp_index(CPU(cpu)));
3515 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3516 int j;
3518 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3520 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3521 env->msr_hv_synic_control);
3522 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3523 env->msr_hv_synic_evt_page);
3524 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3525 env->msr_hv_synic_msg_page);
3527 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3528 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3529 env->msr_hv_synic_sint[j]);
3532 if (has_msr_hv_stimer) {
3533 int j;
3535 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3536 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3537 env->msr_hv_stimer_config[j]);
3540 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3541 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3542 env->msr_hv_stimer_count[j]);
3545 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3546 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3548 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3549 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3550 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3551 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3552 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3553 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3554 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3555 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3556 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3557 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3558 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3559 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3560 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3561 /* The CPU GPs if we write to a bit above the physical limit of
3562 * the host CPU (and KVM emulates that)
3564 uint64_t mask = env->mtrr_var[i].mask;
3565 mask &= phys_mask;
3567 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3568 env->mtrr_var[i].base);
3569 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3572 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3573 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3574 0x14, 1, R_EAX) & 0x7;
3576 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3577 env->msr_rtit_ctrl);
3578 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3579 env->msr_rtit_status);
3580 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3581 env->msr_rtit_output_base);
3582 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3583 env->msr_rtit_output_mask);
3584 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3585 env->msr_rtit_cr3_match);
3586 for (i = 0; i < addr_num; i++) {
3587 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3588 env->msr_rtit_addrs[i]);
3592 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3593 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3594 env->msr_ia32_sgxlepubkeyhash[0]);
3595 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3596 env->msr_ia32_sgxlepubkeyhash[1]);
3597 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3598 env->msr_ia32_sgxlepubkeyhash[2]);
3599 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3600 env->msr_ia32_sgxlepubkeyhash[3]);
3603 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3604 kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3605 env->msr_xfd);
3606 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3607 env->msr_xfd_err);
3610 if (kvm_enabled() && cpu->enable_pmu &&
3611 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3612 uint64_t depth;
3613 int ret;
3616 * Only migrate Arch LBR states when the host Arch LBR depth
3617 * equals that of source guest's, this is to avoid mismatch
3618 * of guest/host config for the msr hence avoid unexpected
3619 * misbehavior.
3621 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3623 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3624 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3625 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3627 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3628 if (!env->lbr_records[i].from) {
3629 continue;
3631 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3632 env->lbr_records[i].from);
3633 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3634 env->lbr_records[i].to);
3635 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3636 env->lbr_records[i].info);
3641 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3642 * kvm_put_msr_feature_control. */
3645 if (env->mcg_cap) {
3646 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3647 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3648 if (has_msr_mcg_ext_ctl) {
3649 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3651 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3652 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3656 return kvm_buf_set_msrs(cpu);
3660 static int kvm_get_fpu(X86CPU *cpu)
3662 CPUX86State *env = &cpu->env;
3663 struct kvm_fpu fpu;
3664 int i, ret;
3666 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3667 if (ret < 0) {
3668 return ret;
3671 env->fpstt = (fpu.fsw >> 11) & 7;
3672 env->fpus = fpu.fsw;
3673 env->fpuc = fpu.fcw;
3674 env->fpop = fpu.last_opcode;
3675 env->fpip = fpu.last_ip;
3676 env->fpdp = fpu.last_dp;
3677 for (i = 0; i < 8; ++i) {
3678 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3680 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3681 for (i = 0; i < CPU_NB_REGS; i++) {
3682 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3683 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3685 env->mxcsr = fpu.mxcsr;
3687 return 0;
3690 static int kvm_get_xsave(X86CPU *cpu)
3692 CPUX86State *env = &cpu->env;
3693 void *xsave = env->xsave_buf;
3694 int type, ret;
3696 if (!has_xsave) {
3697 return kvm_get_fpu(cpu);
3700 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3701 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3702 if (ret < 0) {
3703 return ret;
3705 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3707 return 0;
3710 static int kvm_get_xcrs(X86CPU *cpu)
3712 CPUX86State *env = &cpu->env;
3713 int i, ret;
3714 struct kvm_xcrs xcrs;
3716 if (!has_xcrs) {
3717 return 0;
3720 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3721 if (ret < 0) {
3722 return ret;
3725 for (i = 0; i < xcrs.nr_xcrs; i++) {
3726 /* Only support xcr0 now */
3727 if (xcrs.xcrs[i].xcr == 0) {
3728 env->xcr0 = xcrs.xcrs[i].value;
3729 break;
3732 return 0;
3735 static int kvm_get_sregs(X86CPU *cpu)
3737 CPUX86State *env = &cpu->env;
3738 struct kvm_sregs sregs;
3739 int ret;
3741 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3742 if (ret < 0) {
3743 return ret;
3747 * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3748 * always preceded by KVM_GET_VCPU_EVENTS.
3751 get_seg(&env->segs[R_CS], &sregs.cs);
3752 get_seg(&env->segs[R_DS], &sregs.ds);
3753 get_seg(&env->segs[R_ES], &sregs.es);
3754 get_seg(&env->segs[R_FS], &sregs.fs);
3755 get_seg(&env->segs[R_GS], &sregs.gs);
3756 get_seg(&env->segs[R_SS], &sregs.ss);
3758 get_seg(&env->tr, &sregs.tr);
3759 get_seg(&env->ldt, &sregs.ldt);
3761 env->idt.limit = sregs.idt.limit;
3762 env->idt.base = sregs.idt.base;
3763 env->gdt.limit = sregs.gdt.limit;
3764 env->gdt.base = sregs.gdt.base;
3766 env->cr[0] = sregs.cr0;
3767 env->cr[2] = sregs.cr2;
3768 env->cr[3] = sregs.cr3;
3769 env->cr[4] = sregs.cr4;
3771 env->efer = sregs.efer;
3773 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3774 x86_update_hflags(env);
3776 return 0;
3779 static int kvm_get_sregs2(X86CPU *cpu)
3781 CPUX86State *env = &cpu->env;
3782 struct kvm_sregs2 sregs;
3783 int i, ret;
3785 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3786 if (ret < 0) {
3787 return ret;
3790 get_seg(&env->segs[R_CS], &sregs.cs);
3791 get_seg(&env->segs[R_DS], &sregs.ds);
3792 get_seg(&env->segs[R_ES], &sregs.es);
3793 get_seg(&env->segs[R_FS], &sregs.fs);
3794 get_seg(&env->segs[R_GS], &sregs.gs);
3795 get_seg(&env->segs[R_SS], &sregs.ss);
3797 get_seg(&env->tr, &sregs.tr);
3798 get_seg(&env->ldt, &sregs.ldt);
3800 env->idt.limit = sregs.idt.limit;
3801 env->idt.base = sregs.idt.base;
3802 env->gdt.limit = sregs.gdt.limit;
3803 env->gdt.base = sregs.gdt.base;
3805 env->cr[0] = sregs.cr0;
3806 env->cr[2] = sregs.cr2;
3807 env->cr[3] = sregs.cr3;
3808 env->cr[4] = sregs.cr4;
3810 env->efer = sregs.efer;
3812 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3814 if (env->pdptrs_valid) {
3815 for (i = 0; i < 4; i++) {
3816 env->pdptrs[i] = sregs.pdptrs[i];
3820 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3821 x86_update_hflags(env);
3823 return 0;
3826 static int kvm_get_msrs(X86CPU *cpu)
3828 CPUX86State *env = &cpu->env;
3829 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3830 int ret, i;
3831 uint64_t mtrr_top_bits;
3833 kvm_msr_buf_reset(cpu);
3835 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3836 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3837 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3838 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3839 if (has_msr_star) {
3840 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3842 if (has_msr_hsave_pa) {
3843 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3845 if (has_msr_tsc_aux) {
3846 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3848 if (has_msr_tsc_adjust) {
3849 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3851 if (has_msr_tsc_deadline) {
3852 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3854 if (has_msr_misc_enable) {
3855 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3857 if (has_msr_smbase) {
3858 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3860 if (has_msr_smi_count) {
3861 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3863 if (has_msr_feature_control) {
3864 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3866 if (has_msr_pkrs) {
3867 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3869 if (has_msr_bndcfgs) {
3870 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3872 if (has_msr_xss) {
3873 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3875 if (has_msr_umwait) {
3876 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3878 if (has_msr_spec_ctrl) {
3879 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3881 if (has_tsc_scale_msr) {
3882 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3885 if (has_msr_tsx_ctrl) {
3886 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3888 if (has_msr_virt_ssbd) {
3889 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3891 if (!env->tsc_valid) {
3892 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3893 env->tsc_valid = !runstate_is_running();
3896 #ifdef TARGET_X86_64
3897 if (lm_capable_kernel) {
3898 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3899 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3900 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3901 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3903 #endif
3904 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3905 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3906 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3907 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3909 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3910 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3912 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3913 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3915 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3916 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3918 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3919 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3921 if (has_architectural_pmu_version > 0) {
3922 if (has_architectural_pmu_version > 1) {
3923 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3924 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3925 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3926 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3928 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3929 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3931 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3932 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3933 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3937 if (env->mcg_cap) {
3938 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3939 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3940 if (has_msr_mcg_ext_ctl) {
3941 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3943 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3944 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3948 if (has_msr_hv_hypercall) {
3949 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3950 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3952 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3953 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3955 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3956 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3958 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3959 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3960 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3961 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3963 if (has_msr_hv_syndbg_options) {
3964 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3966 if (has_msr_hv_crash) {
3967 int j;
3969 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3970 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3973 if (has_msr_hv_runtime) {
3974 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3976 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3977 uint32_t msr;
3979 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3980 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3981 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3982 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3983 kvm_msr_entry_add(cpu, msr, 0);
3986 if (has_msr_hv_stimer) {
3987 uint32_t msr;
3989 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3990 msr++) {
3991 kvm_msr_entry_add(cpu, msr, 0);
3994 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3995 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3996 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3997 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3998 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3999 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4000 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4001 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4002 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4003 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4004 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4005 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4006 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4007 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4008 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4009 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4013 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4014 int addr_num =
4015 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4017 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4018 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4019 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4020 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4021 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4022 for (i = 0; i < addr_num; i++) {
4023 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4027 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4028 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4029 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4030 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4031 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4034 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4035 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4036 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4039 if (kvm_enabled() && cpu->enable_pmu &&
4040 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4041 uint64_t depth;
4043 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4044 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4045 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4046 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4048 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4049 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4050 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4051 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4056 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4057 if (ret < 0) {
4058 return ret;
4061 if (ret < cpu->kvm_msr_buf->nmsrs) {
4062 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4063 error_report("error: failed to get MSR 0x%" PRIx32,
4064 (uint32_t)e->index);
4067 assert(ret == cpu->kvm_msr_buf->nmsrs);
4069 * MTRR masks: Each mask consists of 5 parts
4070 * a 10..0: must be zero
4071 * b 11 : valid bit
4072 * c n-1.12: actual mask bits
4073 * d 51..n: reserved must be zero
4074 * e 63.52: reserved must be zero
4076 * 'n' is the number of physical bits supported by the CPU and is
4077 * apparently always <= 52. We know our 'n' but don't know what
4078 * the destinations 'n' is; it might be smaller, in which case
4079 * it masks (c) on loading. It might be larger, in which case
4080 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4081 * we're migrating to.
4084 if (cpu->fill_mtrr_mask) {
4085 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4086 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4087 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4088 } else {
4089 mtrr_top_bits = 0;
4092 for (i = 0; i < ret; i++) {
4093 uint32_t index = msrs[i].index;
4094 switch (index) {
4095 case MSR_IA32_SYSENTER_CS:
4096 env->sysenter_cs = msrs[i].data;
4097 break;
4098 case MSR_IA32_SYSENTER_ESP:
4099 env->sysenter_esp = msrs[i].data;
4100 break;
4101 case MSR_IA32_SYSENTER_EIP:
4102 env->sysenter_eip = msrs[i].data;
4103 break;
4104 case MSR_PAT:
4105 env->pat = msrs[i].data;
4106 break;
4107 case MSR_STAR:
4108 env->star = msrs[i].data;
4109 break;
4110 #ifdef TARGET_X86_64
4111 case MSR_CSTAR:
4112 env->cstar = msrs[i].data;
4113 break;
4114 case MSR_KERNELGSBASE:
4115 env->kernelgsbase = msrs[i].data;
4116 break;
4117 case MSR_FMASK:
4118 env->fmask = msrs[i].data;
4119 break;
4120 case MSR_LSTAR:
4121 env->lstar = msrs[i].data;
4122 break;
4123 #endif
4124 case MSR_IA32_TSC:
4125 env->tsc = msrs[i].data;
4126 break;
4127 case MSR_TSC_AUX:
4128 env->tsc_aux = msrs[i].data;
4129 break;
4130 case MSR_TSC_ADJUST:
4131 env->tsc_adjust = msrs[i].data;
4132 break;
4133 case MSR_IA32_TSCDEADLINE:
4134 env->tsc_deadline = msrs[i].data;
4135 break;
4136 case MSR_VM_HSAVE_PA:
4137 env->vm_hsave = msrs[i].data;
4138 break;
4139 case MSR_KVM_SYSTEM_TIME:
4140 env->system_time_msr = msrs[i].data;
4141 break;
4142 case MSR_KVM_WALL_CLOCK:
4143 env->wall_clock_msr = msrs[i].data;
4144 break;
4145 case MSR_MCG_STATUS:
4146 env->mcg_status = msrs[i].data;
4147 break;
4148 case MSR_MCG_CTL:
4149 env->mcg_ctl = msrs[i].data;
4150 break;
4151 case MSR_MCG_EXT_CTL:
4152 env->mcg_ext_ctl = msrs[i].data;
4153 break;
4154 case MSR_IA32_MISC_ENABLE:
4155 env->msr_ia32_misc_enable = msrs[i].data;
4156 break;
4157 case MSR_IA32_SMBASE:
4158 env->smbase = msrs[i].data;
4159 break;
4160 case MSR_SMI_COUNT:
4161 env->msr_smi_count = msrs[i].data;
4162 break;
4163 case MSR_IA32_FEATURE_CONTROL:
4164 env->msr_ia32_feature_control = msrs[i].data;
4165 break;
4166 case MSR_IA32_BNDCFGS:
4167 env->msr_bndcfgs = msrs[i].data;
4168 break;
4169 case MSR_IA32_XSS:
4170 env->xss = msrs[i].data;
4171 break;
4172 case MSR_IA32_UMWAIT_CONTROL:
4173 env->umwait = msrs[i].data;
4174 break;
4175 case MSR_IA32_PKRS:
4176 env->pkrs = msrs[i].data;
4177 break;
4178 default:
4179 if (msrs[i].index >= MSR_MC0_CTL &&
4180 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4181 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4183 break;
4184 case MSR_KVM_ASYNC_PF_EN:
4185 env->async_pf_en_msr = msrs[i].data;
4186 break;
4187 case MSR_KVM_ASYNC_PF_INT:
4188 env->async_pf_int_msr = msrs[i].data;
4189 break;
4190 case MSR_KVM_PV_EOI_EN:
4191 env->pv_eoi_en_msr = msrs[i].data;
4192 break;
4193 case MSR_KVM_STEAL_TIME:
4194 env->steal_time_msr = msrs[i].data;
4195 break;
4196 case MSR_KVM_POLL_CONTROL: {
4197 env->poll_control_msr = msrs[i].data;
4198 break;
4200 case MSR_CORE_PERF_FIXED_CTR_CTRL:
4201 env->msr_fixed_ctr_ctrl = msrs[i].data;
4202 break;
4203 case MSR_CORE_PERF_GLOBAL_CTRL:
4204 env->msr_global_ctrl = msrs[i].data;
4205 break;
4206 case MSR_CORE_PERF_GLOBAL_STATUS:
4207 env->msr_global_status = msrs[i].data;
4208 break;
4209 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4210 env->msr_global_ovf_ctrl = msrs[i].data;
4211 break;
4212 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4213 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4214 break;
4215 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4216 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4217 break;
4218 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4219 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4220 break;
4221 case HV_X64_MSR_HYPERCALL:
4222 env->msr_hv_hypercall = msrs[i].data;
4223 break;
4224 case HV_X64_MSR_GUEST_OS_ID:
4225 env->msr_hv_guest_os_id = msrs[i].data;
4226 break;
4227 case HV_X64_MSR_APIC_ASSIST_PAGE:
4228 env->msr_hv_vapic = msrs[i].data;
4229 break;
4230 case HV_X64_MSR_REFERENCE_TSC:
4231 env->msr_hv_tsc = msrs[i].data;
4232 break;
4233 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4234 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4235 break;
4236 case HV_X64_MSR_VP_RUNTIME:
4237 env->msr_hv_runtime = msrs[i].data;
4238 break;
4239 case HV_X64_MSR_SCONTROL:
4240 env->msr_hv_synic_control = msrs[i].data;
4241 break;
4242 case HV_X64_MSR_SIEFP:
4243 env->msr_hv_synic_evt_page = msrs[i].data;
4244 break;
4245 case HV_X64_MSR_SIMP:
4246 env->msr_hv_synic_msg_page = msrs[i].data;
4247 break;
4248 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4249 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4250 break;
4251 case HV_X64_MSR_STIMER0_CONFIG:
4252 case HV_X64_MSR_STIMER1_CONFIG:
4253 case HV_X64_MSR_STIMER2_CONFIG:
4254 case HV_X64_MSR_STIMER3_CONFIG:
4255 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4256 msrs[i].data;
4257 break;
4258 case HV_X64_MSR_STIMER0_COUNT:
4259 case HV_X64_MSR_STIMER1_COUNT:
4260 case HV_X64_MSR_STIMER2_COUNT:
4261 case HV_X64_MSR_STIMER3_COUNT:
4262 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4263 msrs[i].data;
4264 break;
4265 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4266 env->msr_hv_reenlightenment_control = msrs[i].data;
4267 break;
4268 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4269 env->msr_hv_tsc_emulation_control = msrs[i].data;
4270 break;
4271 case HV_X64_MSR_TSC_EMULATION_STATUS:
4272 env->msr_hv_tsc_emulation_status = msrs[i].data;
4273 break;
4274 case HV_X64_MSR_SYNDBG_OPTIONS:
4275 env->msr_hv_syndbg_options = msrs[i].data;
4276 break;
4277 case MSR_MTRRdefType:
4278 env->mtrr_deftype = msrs[i].data;
4279 break;
4280 case MSR_MTRRfix64K_00000:
4281 env->mtrr_fixed[0] = msrs[i].data;
4282 break;
4283 case MSR_MTRRfix16K_80000:
4284 env->mtrr_fixed[1] = msrs[i].data;
4285 break;
4286 case MSR_MTRRfix16K_A0000:
4287 env->mtrr_fixed[2] = msrs[i].data;
4288 break;
4289 case MSR_MTRRfix4K_C0000:
4290 env->mtrr_fixed[3] = msrs[i].data;
4291 break;
4292 case MSR_MTRRfix4K_C8000:
4293 env->mtrr_fixed[4] = msrs[i].data;
4294 break;
4295 case MSR_MTRRfix4K_D0000:
4296 env->mtrr_fixed[5] = msrs[i].data;
4297 break;
4298 case MSR_MTRRfix4K_D8000:
4299 env->mtrr_fixed[6] = msrs[i].data;
4300 break;
4301 case MSR_MTRRfix4K_E0000:
4302 env->mtrr_fixed[7] = msrs[i].data;
4303 break;
4304 case MSR_MTRRfix4K_E8000:
4305 env->mtrr_fixed[8] = msrs[i].data;
4306 break;
4307 case MSR_MTRRfix4K_F0000:
4308 env->mtrr_fixed[9] = msrs[i].data;
4309 break;
4310 case MSR_MTRRfix4K_F8000:
4311 env->mtrr_fixed[10] = msrs[i].data;
4312 break;
4313 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4314 if (index & 1) {
4315 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4316 mtrr_top_bits;
4317 } else {
4318 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4320 break;
4321 case MSR_IA32_SPEC_CTRL:
4322 env->spec_ctrl = msrs[i].data;
4323 break;
4324 case MSR_AMD64_TSC_RATIO:
4325 env->amd_tsc_scale_msr = msrs[i].data;
4326 break;
4327 case MSR_IA32_TSX_CTRL:
4328 env->tsx_ctrl = msrs[i].data;
4329 break;
4330 case MSR_VIRT_SSBD:
4331 env->virt_ssbd = msrs[i].data;
4332 break;
4333 case MSR_IA32_RTIT_CTL:
4334 env->msr_rtit_ctrl = msrs[i].data;
4335 break;
4336 case MSR_IA32_RTIT_STATUS:
4337 env->msr_rtit_status = msrs[i].data;
4338 break;
4339 case MSR_IA32_RTIT_OUTPUT_BASE:
4340 env->msr_rtit_output_base = msrs[i].data;
4341 break;
4342 case MSR_IA32_RTIT_OUTPUT_MASK:
4343 env->msr_rtit_output_mask = msrs[i].data;
4344 break;
4345 case MSR_IA32_RTIT_CR3_MATCH:
4346 env->msr_rtit_cr3_match = msrs[i].data;
4347 break;
4348 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4349 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4350 break;
4351 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4352 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4353 msrs[i].data;
4354 break;
4355 case MSR_IA32_XFD:
4356 env->msr_xfd = msrs[i].data;
4357 break;
4358 case MSR_IA32_XFD_ERR:
4359 env->msr_xfd_err = msrs[i].data;
4360 break;
4361 case MSR_ARCH_LBR_CTL:
4362 env->msr_lbr_ctl = msrs[i].data;
4363 break;
4364 case MSR_ARCH_LBR_DEPTH:
4365 env->msr_lbr_depth = msrs[i].data;
4366 break;
4367 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4368 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4369 break;
4370 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4371 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4372 break;
4373 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4374 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4375 break;
4379 return 0;
4382 static int kvm_put_mp_state(X86CPU *cpu)
4384 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4386 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4389 static int kvm_get_mp_state(X86CPU *cpu)
4391 CPUState *cs = CPU(cpu);
4392 CPUX86State *env = &cpu->env;
4393 struct kvm_mp_state mp_state;
4394 int ret;
4396 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4397 if (ret < 0) {
4398 return ret;
4400 env->mp_state = mp_state.mp_state;
4401 if (kvm_irqchip_in_kernel()) {
4402 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4404 return 0;
4407 static int kvm_get_apic(X86CPU *cpu)
4409 DeviceState *apic = cpu->apic_state;
4410 struct kvm_lapic_state kapic;
4411 int ret;
4413 if (apic && kvm_irqchip_in_kernel()) {
4414 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4415 if (ret < 0) {
4416 return ret;
4419 kvm_get_apic_state(apic, &kapic);
4421 return 0;
4424 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4426 CPUState *cs = CPU(cpu);
4427 CPUX86State *env = &cpu->env;
4428 struct kvm_vcpu_events events = {};
4430 if (!kvm_has_vcpu_events()) {
4431 return 0;
4434 events.flags = 0;
4436 if (has_exception_payload) {
4437 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4438 events.exception.pending = env->exception_pending;
4439 events.exception_has_payload = env->exception_has_payload;
4440 events.exception_payload = env->exception_payload;
4442 events.exception.nr = env->exception_nr;
4443 events.exception.injected = env->exception_injected;
4444 events.exception.has_error_code = env->has_error_code;
4445 events.exception.error_code = env->error_code;
4447 events.interrupt.injected = (env->interrupt_injected >= 0);
4448 events.interrupt.nr = env->interrupt_injected;
4449 events.interrupt.soft = env->soft_interrupt;
4451 events.nmi.injected = env->nmi_injected;
4452 events.nmi.pending = env->nmi_pending;
4453 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4455 events.sipi_vector = env->sipi_vector;
4457 if (has_msr_smbase) {
4458 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4459 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4460 if (kvm_irqchip_in_kernel()) {
4461 /* As soon as these are moved to the kernel, remove them
4462 * from cs->interrupt_request.
4464 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4465 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4466 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4467 } else {
4468 /* Keep these in cs->interrupt_request. */
4469 events.smi.pending = 0;
4470 events.smi.latched_init = 0;
4472 /* Stop SMI delivery on old machine types to avoid a reboot
4473 * on an inward migration of an old VM.
4475 if (!cpu->kvm_no_smi_migration) {
4476 events.flags |= KVM_VCPUEVENT_VALID_SMM;
4480 if (level >= KVM_PUT_RESET_STATE) {
4481 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4482 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4483 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4487 if (has_triple_fault_event) {
4488 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4489 events.triple_fault.pending = env->triple_fault_pending;
4492 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4495 static int kvm_get_vcpu_events(X86CPU *cpu)
4497 CPUX86State *env = &cpu->env;
4498 struct kvm_vcpu_events events;
4499 int ret;
4501 if (!kvm_has_vcpu_events()) {
4502 return 0;
4505 memset(&events, 0, sizeof(events));
4506 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4507 if (ret < 0) {
4508 return ret;
4511 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4512 env->exception_pending = events.exception.pending;
4513 env->exception_has_payload = events.exception_has_payload;
4514 env->exception_payload = events.exception_payload;
4515 } else {
4516 env->exception_pending = 0;
4517 env->exception_has_payload = false;
4519 env->exception_injected = events.exception.injected;
4520 env->exception_nr =
4521 (env->exception_pending || env->exception_injected) ?
4522 events.exception.nr : -1;
4523 env->has_error_code = events.exception.has_error_code;
4524 env->error_code = events.exception.error_code;
4526 env->interrupt_injected =
4527 events.interrupt.injected ? events.interrupt.nr : -1;
4528 env->soft_interrupt = events.interrupt.soft;
4530 env->nmi_injected = events.nmi.injected;
4531 env->nmi_pending = events.nmi.pending;
4532 if (events.nmi.masked) {
4533 env->hflags2 |= HF2_NMI_MASK;
4534 } else {
4535 env->hflags2 &= ~HF2_NMI_MASK;
4538 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4539 if (events.smi.smm) {
4540 env->hflags |= HF_SMM_MASK;
4541 } else {
4542 env->hflags &= ~HF_SMM_MASK;
4544 if (events.smi.pending) {
4545 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4546 } else {
4547 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4549 if (events.smi.smm_inside_nmi) {
4550 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4551 } else {
4552 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4554 if (events.smi.latched_init) {
4555 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4556 } else {
4557 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4561 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4562 env->triple_fault_pending = events.triple_fault.pending;
4565 env->sipi_vector = events.sipi_vector;
4567 return 0;
4570 static int kvm_guest_debug_workarounds(X86CPU *cpu)
4572 CPUState *cs = CPU(cpu);
4573 CPUX86State *env = &cpu->env;
4574 int ret = 0;
4575 unsigned long reinject_trap = 0;
4577 if (!kvm_has_vcpu_events()) {
4578 if (env->exception_nr == EXCP01_DB) {
4579 reinject_trap = KVM_GUESTDBG_INJECT_DB;
4580 } else if (env->exception_injected == EXCP03_INT3) {
4581 reinject_trap = KVM_GUESTDBG_INJECT_BP;
4583 kvm_reset_exception(env);
4587 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4588 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4589 * by updating the debug state once again if single-stepping is on.
4590 * Another reason to call kvm_update_guest_debug here is a pending debug
4591 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4592 * reinject them via SET_GUEST_DEBUG.
4594 if (reinject_trap ||
4595 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4596 ret = kvm_update_guest_debug(cs, reinject_trap);
4598 return ret;
4601 static int kvm_put_debugregs(X86CPU *cpu)
4603 CPUX86State *env = &cpu->env;
4604 struct kvm_debugregs dbgregs;
4605 int i;
4607 if (!kvm_has_debugregs()) {
4608 return 0;
4611 memset(&dbgregs, 0, sizeof(dbgregs));
4612 for (i = 0; i < 4; i++) {
4613 dbgregs.db[i] = env->dr[i];
4615 dbgregs.dr6 = env->dr[6];
4616 dbgregs.dr7 = env->dr[7];
4617 dbgregs.flags = 0;
4619 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4622 static int kvm_get_debugregs(X86CPU *cpu)
4624 CPUX86State *env = &cpu->env;
4625 struct kvm_debugregs dbgregs;
4626 int i, ret;
4628 if (!kvm_has_debugregs()) {
4629 return 0;
4632 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4633 if (ret < 0) {
4634 return ret;
4636 for (i = 0; i < 4; i++) {
4637 env->dr[i] = dbgregs.db[i];
4639 env->dr[4] = env->dr[6] = dbgregs.dr6;
4640 env->dr[5] = env->dr[7] = dbgregs.dr7;
4642 return 0;
4645 static int kvm_put_nested_state(X86CPU *cpu)
4647 CPUX86State *env = &cpu->env;
4648 int max_nested_state_len = kvm_max_nested_state_length();
4650 if (!env->nested_state) {
4651 return 0;
4655 * Copy flags that are affected by reset from env->hflags and env->hflags2.
4657 if (env->hflags & HF_GUEST_MASK) {
4658 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4659 } else {
4660 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4663 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4664 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4665 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4666 } else {
4667 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4670 assert(env->nested_state->size <= max_nested_state_len);
4671 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4674 static int kvm_get_nested_state(X86CPU *cpu)
4676 CPUX86State *env = &cpu->env;
4677 int max_nested_state_len = kvm_max_nested_state_length();
4678 int ret;
4680 if (!env->nested_state) {
4681 return 0;
4685 * It is possible that migration restored a smaller size into
4686 * nested_state->hdr.size than what our kernel support.
4687 * We preserve migration origin nested_state->hdr.size for
4688 * call to KVM_SET_NESTED_STATE but wish that our next call
4689 * to KVM_GET_NESTED_STATE will use max size our kernel support.
4691 env->nested_state->size = max_nested_state_len;
4693 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4694 if (ret < 0) {
4695 return ret;
4699 * Copy flags that are affected by reset to env->hflags and env->hflags2.
4701 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4702 env->hflags |= HF_GUEST_MASK;
4703 } else {
4704 env->hflags &= ~HF_GUEST_MASK;
4707 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4708 if (cpu_has_svm(env)) {
4709 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4710 env->hflags2 |= HF2_GIF_MASK;
4711 } else {
4712 env->hflags2 &= ~HF2_GIF_MASK;
4716 return ret;
4719 int kvm_arch_put_registers(CPUState *cpu, int level)
4721 X86CPU *x86_cpu = X86_CPU(cpu);
4722 int ret;
4724 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4727 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4728 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4729 * precede kvm_put_nested_state() when 'real' nested state is set.
4731 if (level >= KVM_PUT_RESET_STATE) {
4732 ret = kvm_put_msr_feature_control(x86_cpu);
4733 if (ret < 0) {
4734 return ret;
4738 /* must be before kvm_put_nested_state so that EFER.SVME is set */
4739 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4740 if (ret < 0) {
4741 return ret;
4744 if (level >= KVM_PUT_RESET_STATE) {
4745 ret = kvm_put_nested_state(x86_cpu);
4746 if (ret < 0) {
4747 return ret;
4751 if (level == KVM_PUT_FULL_STATE) {
4752 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4753 * because TSC frequency mismatch shouldn't abort migration,
4754 * unless the user explicitly asked for a more strict TSC
4755 * setting (e.g. using an explicit "tsc-freq" option).
4757 kvm_arch_set_tsc_khz(cpu);
4760 #ifdef CONFIG_XEN_EMU
4761 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4762 ret = kvm_put_xen_state(cpu);
4763 if (ret < 0) {
4764 return ret;
4767 #endif
4769 ret = kvm_getput_regs(x86_cpu, 1);
4770 if (ret < 0) {
4771 return ret;
4773 ret = kvm_put_xsave(x86_cpu);
4774 if (ret < 0) {
4775 return ret;
4777 ret = kvm_put_xcrs(x86_cpu);
4778 if (ret < 0) {
4779 return ret;
4781 /* must be before kvm_put_msrs */
4782 ret = kvm_inject_mce_oldstyle(x86_cpu);
4783 if (ret < 0) {
4784 return ret;
4786 ret = kvm_put_msrs(x86_cpu, level);
4787 if (ret < 0) {
4788 return ret;
4790 ret = kvm_put_vcpu_events(x86_cpu, level);
4791 if (ret < 0) {
4792 return ret;
4794 if (level >= KVM_PUT_RESET_STATE) {
4795 ret = kvm_put_mp_state(x86_cpu);
4796 if (ret < 0) {
4797 return ret;
4801 ret = kvm_put_tscdeadline_msr(x86_cpu);
4802 if (ret < 0) {
4803 return ret;
4805 ret = kvm_put_debugregs(x86_cpu);
4806 if (ret < 0) {
4807 return ret;
4809 /* must be last */
4810 ret = kvm_guest_debug_workarounds(x86_cpu);
4811 if (ret < 0) {
4812 return ret;
4814 return 0;
4817 int kvm_arch_get_registers(CPUState *cs)
4819 X86CPU *cpu = X86_CPU(cs);
4820 int ret;
4822 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4824 ret = kvm_get_vcpu_events(cpu);
4825 if (ret < 0) {
4826 goto out;
4829 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4830 * KVM_GET_REGS and KVM_GET_SREGS.
4832 ret = kvm_get_mp_state(cpu);
4833 if (ret < 0) {
4834 goto out;
4836 ret = kvm_getput_regs(cpu, 0);
4837 if (ret < 0) {
4838 goto out;
4840 ret = kvm_get_xsave(cpu);
4841 if (ret < 0) {
4842 goto out;
4844 ret = kvm_get_xcrs(cpu);
4845 if (ret < 0) {
4846 goto out;
4848 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4849 if (ret < 0) {
4850 goto out;
4852 ret = kvm_get_msrs(cpu);
4853 if (ret < 0) {
4854 goto out;
4856 ret = kvm_get_apic(cpu);
4857 if (ret < 0) {
4858 goto out;
4860 ret = kvm_get_debugregs(cpu);
4861 if (ret < 0) {
4862 goto out;
4864 ret = kvm_get_nested_state(cpu);
4865 if (ret < 0) {
4866 goto out;
4868 #ifdef CONFIG_XEN_EMU
4869 if (xen_mode == XEN_EMULATE) {
4870 ret = kvm_get_xen_state(cs);
4871 if (ret < 0) {
4872 goto out;
4875 #endif
4876 ret = 0;
4877 out:
4878 cpu_sync_bndcs_hflags(&cpu->env);
4879 return ret;
4882 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4884 X86CPU *x86_cpu = X86_CPU(cpu);
4885 CPUX86State *env = &x86_cpu->env;
4886 int ret;
4888 /* Inject NMI */
4889 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4890 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4891 qemu_mutex_lock_iothread();
4892 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4893 qemu_mutex_unlock_iothread();
4894 DPRINTF("injected NMI\n");
4895 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4896 if (ret < 0) {
4897 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4898 strerror(-ret));
4901 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4902 qemu_mutex_lock_iothread();
4903 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4904 qemu_mutex_unlock_iothread();
4905 DPRINTF("injected SMI\n");
4906 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4907 if (ret < 0) {
4908 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4909 strerror(-ret));
4914 if (!kvm_pic_in_kernel()) {
4915 qemu_mutex_lock_iothread();
4918 /* Force the VCPU out of its inner loop to process any INIT requests
4919 * or (for userspace APIC, but it is cheap to combine the checks here)
4920 * pending TPR access reports.
4922 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4923 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4924 !(env->hflags & HF_SMM_MASK)) {
4925 cpu->exit_request = 1;
4927 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4928 cpu->exit_request = 1;
4932 if (!kvm_pic_in_kernel()) {
4933 /* Try to inject an interrupt if the guest can accept it */
4934 if (run->ready_for_interrupt_injection &&
4935 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4936 (env->eflags & IF_MASK)) {
4937 int irq;
4939 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4940 irq = cpu_get_pic_interrupt(env);
4941 if (irq >= 0) {
4942 struct kvm_interrupt intr;
4944 intr.irq = irq;
4945 DPRINTF("injected interrupt %d\n", irq);
4946 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4947 if (ret < 0) {
4948 fprintf(stderr,
4949 "KVM: injection failed, interrupt lost (%s)\n",
4950 strerror(-ret));
4955 /* If we have an interrupt but the guest is not ready to receive an
4956 * interrupt, request an interrupt window exit. This will
4957 * cause a return to userspace as soon as the guest is ready to
4958 * receive interrupts. */
4959 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4960 run->request_interrupt_window = 1;
4961 } else {
4962 run->request_interrupt_window = 0;
4965 DPRINTF("setting tpr\n");
4966 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4968 qemu_mutex_unlock_iothread();
4972 static void kvm_rate_limit_on_bus_lock(void)
4974 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4976 if (delay_ns) {
4977 g_usleep(delay_ns / SCALE_US);
4981 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4983 X86CPU *x86_cpu = X86_CPU(cpu);
4984 CPUX86State *env = &x86_cpu->env;
4986 if (run->flags & KVM_RUN_X86_SMM) {
4987 env->hflags |= HF_SMM_MASK;
4988 } else {
4989 env->hflags &= ~HF_SMM_MASK;
4991 if (run->if_flag) {
4992 env->eflags |= IF_MASK;
4993 } else {
4994 env->eflags &= ~IF_MASK;
4996 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4997 kvm_rate_limit_on_bus_lock();
5000 #ifdef CONFIG_XEN_EMU
5002 * If the callback is asserted as a GSI (or PCI INTx) then check if
5003 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5004 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5005 * EOI and only resample then, exactly how the VFIO eventfd pairs
5006 * are designed to work for level triggered interrupts.
5008 if (x86_cpu->env.xen_callback_asserted) {
5009 kvm_xen_maybe_deassert_callback(cpu);
5011 #endif
5013 /* We need to protect the apic state against concurrent accesses from
5014 * different threads in case the userspace irqchip is used. */
5015 if (!kvm_irqchip_in_kernel()) {
5016 qemu_mutex_lock_iothread();
5018 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5019 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5020 if (!kvm_irqchip_in_kernel()) {
5021 qemu_mutex_unlock_iothread();
5023 return cpu_get_mem_attrs(env);
5026 int kvm_arch_process_async_events(CPUState *cs)
5028 X86CPU *cpu = X86_CPU(cs);
5029 CPUX86State *env = &cpu->env;
5031 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5032 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5033 assert(env->mcg_cap);
5035 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5037 kvm_cpu_synchronize_state(cs);
5039 if (env->exception_nr == EXCP08_DBLE) {
5040 /* this means triple fault */
5041 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5042 cs->exit_request = 1;
5043 return 0;
5045 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5046 env->has_error_code = 0;
5048 cs->halted = 0;
5049 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5050 env->mp_state = KVM_MP_STATE_RUNNABLE;
5054 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5055 !(env->hflags & HF_SMM_MASK)) {
5056 kvm_cpu_synchronize_state(cs);
5057 do_cpu_init(cpu);
5060 if (kvm_irqchip_in_kernel()) {
5061 return 0;
5064 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5065 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5066 apic_poll_irq(cpu->apic_state);
5068 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5069 (env->eflags & IF_MASK)) ||
5070 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5071 cs->halted = 0;
5073 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5074 kvm_cpu_synchronize_state(cs);
5075 do_cpu_sipi(cpu);
5077 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5078 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5079 kvm_cpu_synchronize_state(cs);
5080 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5081 env->tpr_access_type);
5084 return cs->halted;
5087 static int kvm_handle_halt(X86CPU *cpu)
5089 CPUState *cs = CPU(cpu);
5090 CPUX86State *env = &cpu->env;
5092 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5093 (env->eflags & IF_MASK)) &&
5094 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5095 cs->halted = 1;
5096 return EXCP_HLT;
5099 return 0;
5102 static int kvm_handle_tpr_access(X86CPU *cpu)
5104 CPUState *cs = CPU(cpu);
5105 struct kvm_run *run = cs->kvm_run;
5107 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5108 run->tpr_access.is_write ? TPR_ACCESS_WRITE
5109 : TPR_ACCESS_READ);
5110 return 1;
5113 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5115 static const uint8_t int3 = 0xcc;
5117 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5118 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5119 return -EINVAL;
5121 return 0;
5124 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5126 uint8_t int3;
5128 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5129 return -EINVAL;
5131 if (int3 != 0xcc) {
5132 return 0;
5134 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5135 return -EINVAL;
5137 return 0;
5140 static struct {
5141 target_ulong addr;
5142 int len;
5143 int type;
5144 } hw_breakpoint[4];
5146 static int nb_hw_breakpoint;
5148 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5150 int n;
5152 for (n = 0; n < nb_hw_breakpoint; n++) {
5153 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5154 (hw_breakpoint[n].len == len || len == -1)) {
5155 return n;
5158 return -1;
5161 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5163 switch (type) {
5164 case GDB_BREAKPOINT_HW:
5165 len = 1;
5166 break;
5167 case GDB_WATCHPOINT_WRITE:
5168 case GDB_WATCHPOINT_ACCESS:
5169 switch (len) {
5170 case 1:
5171 break;
5172 case 2:
5173 case 4:
5174 case 8:
5175 if (addr & (len - 1)) {
5176 return -EINVAL;
5178 break;
5179 default:
5180 return -EINVAL;
5182 break;
5183 default:
5184 return -ENOSYS;
5187 if (nb_hw_breakpoint == 4) {
5188 return -ENOBUFS;
5190 if (find_hw_breakpoint(addr, len, type) >= 0) {
5191 return -EEXIST;
5193 hw_breakpoint[nb_hw_breakpoint].addr = addr;
5194 hw_breakpoint[nb_hw_breakpoint].len = len;
5195 hw_breakpoint[nb_hw_breakpoint].type = type;
5196 nb_hw_breakpoint++;
5198 return 0;
5201 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5203 int n;
5205 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5206 if (n < 0) {
5207 return -ENOENT;
5209 nb_hw_breakpoint--;
5210 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5212 return 0;
5215 void kvm_arch_remove_all_hw_breakpoints(void)
5217 nb_hw_breakpoint = 0;
5220 static CPUWatchpoint hw_watchpoint;
5222 static int kvm_handle_debug(X86CPU *cpu,
5223 struct kvm_debug_exit_arch *arch_info)
5225 CPUState *cs = CPU(cpu);
5226 CPUX86State *env = &cpu->env;
5227 int ret = 0;
5228 int n;
5230 if (arch_info->exception == EXCP01_DB) {
5231 if (arch_info->dr6 & DR6_BS) {
5232 if (cs->singlestep_enabled) {
5233 ret = EXCP_DEBUG;
5235 } else {
5236 for (n = 0; n < 4; n++) {
5237 if (arch_info->dr6 & (1 << n)) {
5238 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5239 case 0x0:
5240 ret = EXCP_DEBUG;
5241 break;
5242 case 0x1:
5243 ret = EXCP_DEBUG;
5244 cs->watchpoint_hit = &hw_watchpoint;
5245 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5246 hw_watchpoint.flags = BP_MEM_WRITE;
5247 break;
5248 case 0x3:
5249 ret = EXCP_DEBUG;
5250 cs->watchpoint_hit = &hw_watchpoint;
5251 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5252 hw_watchpoint.flags = BP_MEM_ACCESS;
5253 break;
5258 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5259 ret = EXCP_DEBUG;
5261 if (ret == 0) {
5262 cpu_synchronize_state(cs);
5263 assert(env->exception_nr == -1);
5265 /* pass to guest */
5266 kvm_queue_exception(env, arch_info->exception,
5267 arch_info->exception == EXCP01_DB,
5268 arch_info->dr6);
5269 env->has_error_code = 0;
5272 return ret;
5275 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5277 const uint8_t type_code[] = {
5278 [GDB_BREAKPOINT_HW] = 0x0,
5279 [GDB_WATCHPOINT_WRITE] = 0x1,
5280 [GDB_WATCHPOINT_ACCESS] = 0x3
5282 const uint8_t len_code[] = {
5283 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5285 int n;
5287 if (kvm_sw_breakpoints_active(cpu)) {
5288 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5290 if (nb_hw_breakpoint > 0) {
5291 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5292 dbg->arch.debugreg[7] = 0x0600;
5293 for (n = 0; n < nb_hw_breakpoint; n++) {
5294 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5295 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5296 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5297 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5302 static bool kvm_install_msr_filters(KVMState *s)
5304 uint64_t zero = 0;
5305 struct kvm_msr_filter filter = {
5306 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5308 int r, i, j = 0;
5310 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5311 KVMMSRHandlers *handler = &msr_handlers[i];
5312 if (handler->msr) {
5313 struct kvm_msr_filter_range *range = &filter.ranges[j++];
5315 *range = (struct kvm_msr_filter_range) {
5316 .flags = 0,
5317 .nmsrs = 1,
5318 .base = handler->msr,
5319 .bitmap = (__u8 *)&zero,
5322 if (handler->rdmsr) {
5323 range->flags |= KVM_MSR_FILTER_READ;
5326 if (handler->wrmsr) {
5327 range->flags |= KVM_MSR_FILTER_WRITE;
5332 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5333 if (r) {
5334 return false;
5337 return true;
5340 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5341 QEMUWRMSRHandler *wrmsr)
5343 int i;
5345 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5346 if (!msr_handlers[i].msr) {
5347 msr_handlers[i] = (KVMMSRHandlers) {
5348 .msr = msr,
5349 .rdmsr = rdmsr,
5350 .wrmsr = wrmsr,
5353 if (!kvm_install_msr_filters(s)) {
5354 msr_handlers[i] = (KVMMSRHandlers) { };
5355 return false;
5358 return true;
5362 return false;
5365 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5367 int i;
5368 bool r;
5370 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5371 KVMMSRHandlers *handler = &msr_handlers[i];
5372 if (run->msr.index == handler->msr) {
5373 if (handler->rdmsr) {
5374 r = handler->rdmsr(cpu, handler->msr,
5375 (uint64_t *)&run->msr.data);
5376 run->msr.error = r ? 0 : 1;
5377 return 0;
5382 assert(false);
5385 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5387 int i;
5388 bool r;
5390 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5391 KVMMSRHandlers *handler = &msr_handlers[i];
5392 if (run->msr.index == handler->msr) {
5393 if (handler->wrmsr) {
5394 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5395 run->msr.error = r ? 0 : 1;
5396 return 0;
5401 assert(false);
5404 static bool has_sgx_provisioning;
5406 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5408 int fd, ret;
5410 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5411 return false;
5414 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5415 if (fd < 0) {
5416 return false;
5419 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5420 if (ret) {
5421 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5422 exit(1);
5424 close(fd);
5425 return true;
5428 bool kvm_enable_sgx_provisioning(KVMState *s)
5430 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5433 static bool host_supports_vmx(void)
5435 uint32_t ecx, unused;
5437 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5438 return ecx & CPUID_EXT_VMX;
5441 #define VMX_INVALID_GUEST_STATE 0x80000021
5443 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5445 X86CPU *cpu = X86_CPU(cs);
5446 uint64_t code;
5447 int ret;
5448 bool ctx_invalid;
5449 char str[256];
5450 KVMState *state;
5452 switch (run->exit_reason) {
5453 case KVM_EXIT_HLT:
5454 DPRINTF("handle_hlt\n");
5455 qemu_mutex_lock_iothread();
5456 ret = kvm_handle_halt(cpu);
5457 qemu_mutex_unlock_iothread();
5458 break;
5459 case KVM_EXIT_SET_TPR:
5460 ret = 0;
5461 break;
5462 case KVM_EXIT_TPR_ACCESS:
5463 qemu_mutex_lock_iothread();
5464 ret = kvm_handle_tpr_access(cpu);
5465 qemu_mutex_unlock_iothread();
5466 break;
5467 case KVM_EXIT_FAIL_ENTRY:
5468 code = run->fail_entry.hardware_entry_failure_reason;
5469 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5470 code);
5471 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5472 fprintf(stderr,
5473 "\nIf you're running a guest on an Intel machine without "
5474 "unrestricted mode\n"
5475 "support, the failure can be most likely due to the guest "
5476 "entering an invalid\n"
5477 "state for Intel VT. For example, the guest maybe running "
5478 "in big real mode\n"
5479 "which is not supported on less recent Intel processors."
5480 "\n\n");
5482 ret = -1;
5483 break;
5484 case KVM_EXIT_EXCEPTION:
5485 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5486 run->ex.exception, run->ex.error_code);
5487 ret = -1;
5488 break;
5489 case KVM_EXIT_DEBUG:
5490 DPRINTF("kvm_exit_debug\n");
5491 qemu_mutex_lock_iothread();
5492 ret = kvm_handle_debug(cpu, &run->debug.arch);
5493 qemu_mutex_unlock_iothread();
5494 break;
5495 case KVM_EXIT_HYPERV:
5496 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5497 break;
5498 case KVM_EXIT_IOAPIC_EOI:
5499 ioapic_eoi_broadcast(run->eoi.vector);
5500 ret = 0;
5501 break;
5502 case KVM_EXIT_X86_BUS_LOCK:
5503 /* already handled in kvm_arch_post_run */
5504 ret = 0;
5505 break;
5506 case KVM_EXIT_NOTIFY:
5507 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5508 state = KVM_STATE(current_accel());
5509 sprintf(str, "Encounter a notify exit with %svalid context in"
5510 " guest. There can be possible misbehaves in guest."
5511 " Please have a look.", ctx_invalid ? "in" : "");
5512 if (ctx_invalid ||
5513 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5514 warn_report("KVM internal error: %s", str);
5515 ret = -1;
5516 } else {
5517 warn_report_once("KVM: %s", str);
5518 ret = 0;
5520 break;
5521 case KVM_EXIT_X86_RDMSR:
5522 /* We only enable MSR filtering, any other exit is bogus */
5523 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5524 ret = kvm_handle_rdmsr(cpu, run);
5525 break;
5526 case KVM_EXIT_X86_WRMSR:
5527 /* We only enable MSR filtering, any other exit is bogus */
5528 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5529 ret = kvm_handle_wrmsr(cpu, run);
5530 break;
5531 #ifdef CONFIG_XEN_EMU
5532 case KVM_EXIT_XEN:
5533 ret = kvm_xen_handle_exit(cpu, &run->xen);
5534 break;
5535 #endif
5536 default:
5537 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5538 ret = -1;
5539 break;
5542 return ret;
5545 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5547 X86CPU *cpu = X86_CPU(cs);
5548 CPUX86State *env = &cpu->env;
5550 kvm_cpu_synchronize_state(cs);
5551 return !(env->cr[0] & CR0_PE_MASK) ||
5552 ((env->segs[R_CS].selector & 3) != 3);
5555 void kvm_arch_init_irq_routing(KVMState *s)
5557 /* We know at this point that we're using the in-kernel
5558 * irqchip, so we can use irqfds, and on x86 we know
5559 * we can use msi via irqfd and GSI routing.
5561 kvm_msi_via_irqfd_allowed = true;
5562 kvm_gsi_routing_allowed = true;
5564 if (kvm_irqchip_is_split()) {
5565 KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5566 int i;
5568 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5569 MSI routes for signaling interrupts to the local apics. */
5570 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5571 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5572 error_report("Could not enable split IRQ mode.");
5573 exit(1);
5576 kvm_irqchip_commit_route_changes(&c);
5580 int kvm_arch_irqchip_create(KVMState *s)
5582 int ret;
5583 if (kvm_kernel_irqchip_split()) {
5584 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5585 if (ret) {
5586 error_report("Could not enable split irqchip mode: %s",
5587 strerror(-ret));
5588 exit(1);
5589 } else {
5590 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5591 kvm_split_irqchip = true;
5592 return 1;
5594 } else {
5595 return 0;
5599 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5601 CPUX86State *env;
5602 uint64_t ext_id;
5604 if (!first_cpu) {
5605 return address;
5607 env = &X86_CPU(first_cpu)->env;
5608 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5609 return address;
5613 * If the remappable format bit is set, or the upper bits are
5614 * already set in address_hi, or the low extended bits aren't
5615 * there anyway, do nothing.
5617 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5618 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5619 return address;
5622 address &= ~ext_id;
5623 address |= ext_id << 35;
5624 return address;
5627 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5628 uint64_t address, uint32_t data, PCIDevice *dev)
5630 X86IOMMUState *iommu = x86_iommu_get_default();
5632 if (iommu) {
5633 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5635 if (class->int_remap) {
5636 int ret;
5637 MSIMessage src, dst;
5639 src.address = route->u.msi.address_hi;
5640 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5641 src.address |= route->u.msi.address_lo;
5642 src.data = route->u.msi.data;
5644 ret = class->int_remap(iommu, &src, &dst, dev ? \
5645 pci_requester_id(dev) : \
5646 X86_IOMMU_SID_INVALID);
5647 if (ret) {
5648 trace_kvm_x86_fixup_msi_error(route->gsi);
5649 return 1;
5653 * Handled untranslated compatibility format interrupt with
5654 * extended destination ID in the low bits 11-5. */
5655 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5657 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5658 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5659 route->u.msi.data = dst.data;
5660 return 0;
5664 #ifdef CONFIG_XEN_EMU
5665 if (xen_mode == XEN_EMULATE) {
5666 int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5669 * If it was a PIRQ and successfully routed (handled == 0) or it was
5670 * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
5672 if (handled <= 0) {
5673 return handled;
5676 #endif
5678 address = kvm_swizzle_msi_ext_dest_id(address);
5679 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5680 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5681 return 0;
5684 typedef struct MSIRouteEntry MSIRouteEntry;
5686 struct MSIRouteEntry {
5687 PCIDevice *dev; /* Device pointer */
5688 int vector; /* MSI/MSIX vector index */
5689 int virq; /* Virtual IRQ index */
5690 QLIST_ENTRY(MSIRouteEntry) list;
5693 /* List of used GSI routes */
5694 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5695 QLIST_HEAD_INITIALIZER(msi_route_list);
5697 void kvm_update_msi_routes_all(void *private, bool global,
5698 uint32_t index, uint32_t mask)
5700 int cnt = 0, vector;
5701 MSIRouteEntry *entry;
5702 MSIMessage msg;
5703 PCIDevice *dev;
5705 /* TODO: explicit route update */
5706 QLIST_FOREACH(entry, &msi_route_list, list) {
5707 cnt++;
5708 vector = entry->vector;
5709 dev = entry->dev;
5710 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5711 msg = msix_get_message(dev, vector);
5712 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5713 msg = msi_get_message(dev, vector);
5714 } else {
5716 * Either MSI/MSIX is disabled for the device, or the
5717 * specific message was masked out. Skip this one.
5719 continue;
5721 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5723 kvm_irqchip_commit_routes(kvm_state);
5724 trace_kvm_x86_update_msi_routes(cnt);
5727 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5728 int vector, PCIDevice *dev)
5730 static bool notify_list_inited = false;
5731 MSIRouteEntry *entry;
5733 if (!dev) {
5734 /* These are (possibly) IOAPIC routes only used for split
5735 * kernel irqchip mode, while what we are housekeeping are
5736 * PCI devices only. */
5737 return 0;
5740 entry = g_new0(MSIRouteEntry, 1);
5741 entry->dev = dev;
5742 entry->vector = vector;
5743 entry->virq = route->gsi;
5744 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5746 trace_kvm_x86_add_msi_route(route->gsi);
5748 if (!notify_list_inited) {
5749 /* For the first time we do add route, add ourselves into
5750 * IOMMU's IEC notify list if needed. */
5751 X86IOMMUState *iommu = x86_iommu_get_default();
5752 if (iommu) {
5753 x86_iommu_iec_register_notifier(iommu,
5754 kvm_update_msi_routes_all,
5755 NULL);
5757 notify_list_inited = true;
5759 return 0;
5762 int kvm_arch_release_virq_post(int virq)
5764 MSIRouteEntry *entry, *next;
5765 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5766 if (entry->virq == virq) {
5767 trace_kvm_x86_remove_msi_route(virq);
5768 QLIST_REMOVE(entry, list);
5769 g_free(entry);
5770 break;
5773 return 0;
5776 int kvm_arch_msi_data_to_gsi(uint32_t data)
5778 abort();
5781 bool kvm_has_waitpkg(void)
5783 return has_msr_umwait;
5786 bool kvm_arch_cpu_check_are_resettable(void)
5788 return !sev_es_enabled();
5791 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025
5793 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5795 KVMState *s = kvm_state;
5796 uint64_t supported;
5798 mask &= XSTATE_DYNAMIC_MASK;
5799 if (!mask) {
5800 return;
5803 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5804 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5805 * about them already because they are not supported features.
5807 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5808 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5809 mask &= supported;
5811 while (mask) {
5812 int bit = ctz64(mask);
5813 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5814 if (rc) {
5816 * Older kernel version (<5.17) do not support
5817 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5818 * any dynamic feature from kvm_arch_get_supported_cpuid.
5820 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5821 "for feature bit %d", bit);
5823 mask &= ~BIT_ULL(bit);
5827 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5829 KVMState *s = KVM_STATE(obj);
5830 return s->notify_vmexit;
5833 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5835 KVMState *s = KVM_STATE(obj);
5837 if (s->fd != -1) {
5838 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5839 return;
5842 s->notify_vmexit = value;
5845 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5846 const char *name, void *opaque,
5847 Error **errp)
5849 KVMState *s = KVM_STATE(obj);
5850 uint32_t value = s->notify_window;
5852 visit_type_uint32(v, name, &value, errp);
5855 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5856 const char *name, void *opaque,
5857 Error **errp)
5859 KVMState *s = KVM_STATE(obj);
5860 uint32_t value;
5862 if (s->fd != -1) {
5863 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5864 return;
5867 if (!visit_type_uint32(v, name, &value, errp)) {
5868 return;
5871 s->notify_window = value;
5874 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5875 const char *name, void *opaque,
5876 Error **errp)
5878 KVMState *s = KVM_STATE(obj);
5879 uint32_t value = s->xen_version;
5881 visit_type_uint32(v, name, &value, errp);
5884 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5885 const char *name, void *opaque,
5886 Error **errp)
5888 KVMState *s = KVM_STATE(obj);
5889 Error *error = NULL;
5890 uint32_t value;
5892 visit_type_uint32(v, name, &value, &error);
5893 if (error) {
5894 error_propagate(errp, error);
5895 return;
5898 s->xen_version = value;
5899 if (value && xen_mode == XEN_DISABLED) {
5900 xen_mode = XEN_EMULATE;
5904 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5905 const char *name, void *opaque,
5906 Error **errp)
5908 KVMState *s = KVM_STATE(obj);
5909 uint16_t value = s->xen_gnttab_max_frames;
5911 visit_type_uint16(v, name, &value, errp);
5914 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5915 const char *name, void *opaque,
5916 Error **errp)
5918 KVMState *s = KVM_STATE(obj);
5919 Error *error = NULL;
5920 uint16_t value;
5922 visit_type_uint16(v, name, &value, &error);
5923 if (error) {
5924 error_propagate(errp, error);
5925 return;
5928 s->xen_gnttab_max_frames = value;
5931 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5932 const char *name, void *opaque,
5933 Error **errp)
5935 KVMState *s = KVM_STATE(obj);
5936 uint16_t value = s->xen_evtchn_max_pirq;
5938 visit_type_uint16(v, name, &value, errp);
5941 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5942 const char *name, void *opaque,
5943 Error **errp)
5945 KVMState *s = KVM_STATE(obj);
5946 Error *error = NULL;
5947 uint16_t value;
5949 visit_type_uint16(v, name, &value, &error);
5950 if (error) {
5951 error_propagate(errp, error);
5952 return;
5955 s->xen_evtchn_max_pirq = value;
5958 void kvm_arch_accel_class_init(ObjectClass *oc)
5960 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5961 &NotifyVmexitOption_lookup,
5962 kvm_arch_get_notify_vmexit,
5963 kvm_arch_set_notify_vmexit);
5964 object_class_property_set_description(oc, "notify-vmexit",
5965 "Enable notify VM exit");
5967 object_class_property_add(oc, "notify-window", "uint32",
5968 kvm_arch_get_notify_window,
5969 kvm_arch_set_notify_window,
5970 NULL, NULL);
5971 object_class_property_set_description(oc, "notify-window",
5972 "Clock cycles without an event window "
5973 "after which a notification VM exit occurs");
5975 object_class_property_add(oc, "xen-version", "uint32",
5976 kvm_arch_get_xen_version,
5977 kvm_arch_set_xen_version,
5978 NULL, NULL);
5979 object_class_property_set_description(oc, "xen-version",
5980 "Xen version to be emulated "
5981 "(in XENVER_version form "
5982 "e.g. 0x4000a for 4.10)");
5984 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5985 kvm_arch_get_xen_gnttab_max_frames,
5986 kvm_arch_set_xen_gnttab_max_frames,
5987 NULL, NULL);
5988 object_class_property_set_description(oc, "xen-gnttab-max-frames",
5989 "Maximum number of grant table frames");
5991 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5992 kvm_arch_get_xen_evtchn_max_pirq,
5993 kvm_arch_set_xen_evtchn_max_pirq,
5994 NULL, NULL);
5995 object_class_property_set_description(oc, "xen-evtchn-max-pirq",
5996 "Maximum number of Xen PIRQs");
5999 void kvm_set_max_apic_id(uint32_t max_apic_id)
6001 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);