migration: simplify blockers
[qemu/kevin.git] / hw / ppc / spapr.c
blobb25093be28d18af21e58c1b1a9047708921b246a
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
91 #include "monitor/monitor.h"
93 #include <libfdt.h>
95 /* SLOF memory layout:
97 * SLOF raw image loaded at 0, copies its romfs right below the flat
98 * device-tree, then position SLOF itself 31M below that
100 * So we set FW_OVERHEAD to 40MB which should account for all of that
101 * and more
103 * We load our kernel at 4M, leaving space for SLOF initial image
105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE 0x400000
107 #define FW_FILE_NAME "slof.bin"
108 #define FW_FILE_NAME_VOF "vof.bin"
109 #define FW_OVERHEAD 0x2800000
110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
112 #define MIN_RMA_SLOF (128 * MiB)
114 #define PHANDLE_INTC 0x00001111
116 /* These two functions implement the VCPU id numbering: one to compute them
117 * all and one to identify thread 0 of a VCORE. Any change to the first one
118 * is likely to have an impact on the second one, so let's keep them close.
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
122 MachineState *ms = MACHINE(spapr);
123 unsigned int smp_threads = ms->smp.threads;
125 assert(spapr->vsmt);
126 return
127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130 PowerPCCPU *cpu)
132 assert(spapr->vsmt);
133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
138 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139 * and newer QEMUs don't even have them. In both cases, we don't want
140 * to send anything on the wire.
142 return false;
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146 .name = "icp/server",
147 .version_id = 1,
148 .minimum_version_id = 1,
149 .needed = pre_2_10_vmstate_dummy_icp_needed,
150 .fields = (VMStateField[]) {
151 VMSTATE_UNUSED(4), /* uint32_t xirr */
152 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
153 VMSTATE_UNUSED(1), /* uint8_t mfrr */
154 VMSTATE_END_OF_LIST()
158 static void pre_2_10_vmstate_register_dummy_icp(int i)
160 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
166 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
167 (void *)(uintptr_t) i);
170 int spapr_max_server_number(SpaprMachineState *spapr)
172 MachineState *ms = MACHINE(spapr);
174 assert(spapr->vsmt);
175 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
179 int smt_threads)
181 int i, ret = 0;
182 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
183 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
184 int index = spapr_get_vcpu_id(cpu);
186 if (cpu->compat_pvr) {
187 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
188 if (ret < 0) {
189 return ret;
193 /* Build interrupt servers and gservers properties */
194 for (i = 0; i < smt_threads; i++) {
195 servers_prop[i] = cpu_to_be32(index + i);
196 /* Hack, direct the group queues back to cpu 0 */
197 gservers_prop[i*2] = cpu_to_be32(index + i);
198 gservers_prop[i*2 + 1] = 0;
200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
201 servers_prop, sizeof(*servers_prop) * smt_threads);
202 if (ret < 0) {
203 return ret;
205 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
206 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
208 return ret;
211 static void spapr_dt_pa_features(SpaprMachineState *spapr,
212 PowerPCCPU *cpu,
213 void *fdt, int offset)
215 uint8_t pa_features_206[] = { 6, 0,
216 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
217 uint8_t pa_features_207[] = { 24, 0,
218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
219 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
222 uint8_t pa_features_300[] = { 66, 0,
223 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
224 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
225 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
226 /* 6: DS207 */
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
228 /* 16: Vector */
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
230 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
232 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
234 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
235 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
236 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
238 /* 42: PM, 44: PC RA, 46: SC vec'd */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
240 /* 48: SIMD, 50: QP BFP, 52: String */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
242 /* 54: DecFP, 56: DecI, 58: SHA */
243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
244 /* 60: NM atomic, 62: RNG */
245 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
247 uint8_t *pa_features = NULL;
248 size_t pa_size;
250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
251 pa_features = pa_features_206;
252 pa_size = sizeof(pa_features_206);
254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
255 pa_features = pa_features_207;
256 pa_size = sizeof(pa_features_207);
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_300;
260 pa_size = sizeof(pa_features_300);
262 if (!pa_features) {
263 return;
266 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
268 * Note: we keep CI large pages off by default because a 64K capable
269 * guest provisioned with large pages might otherwise try to map a qemu
270 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
271 * even if that qemu runs on a 4k host.
272 * We dd this bit back here if we are confident this is not an issue
274 pa_features[3] |= 0x20;
276 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
277 pa_features[24] |= 0x80; /* Transactional memory support */
279 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
280 /* Workaround for broken kernels that attempt (guest) radix
281 * mode when they can't handle it, if they see the radix bit set
282 * in pa-features. So hide it from them. */
283 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
286 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
289 static hwaddr spapr_node0_size(MachineState *machine)
291 if (machine->numa_state->num_nodes) {
292 int i;
293 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
294 if (machine->numa_state->nodes[i].node_mem) {
295 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
296 machine->ram_size);
300 return machine->ram_size;
303 static void add_str(GString *s, const gchar *s1)
305 g_string_append_len(s, s1, strlen(s1) + 1);
308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
309 hwaddr start, hwaddr size)
311 char mem_name[32];
312 uint64_t mem_reg_property[2];
313 int off;
315 mem_reg_property[0] = cpu_to_be64(start);
316 mem_reg_property[1] = cpu_to_be64(size);
318 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
319 off = fdt_add_subnode(fdt, 0, mem_name);
320 _FDT(off);
321 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
322 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
323 sizeof(mem_reg_property))));
324 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
325 return off;
328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
330 MemoryDeviceInfoList *info;
332 for (info = list; info; info = info->next) {
333 MemoryDeviceInfo *value = info->value;
335 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
336 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
338 if (addr >= pcdimm_info->addr &&
339 addr < (pcdimm_info->addr + pcdimm_info->size)) {
340 return pcdimm_info->node;
345 return -1;
348 struct sPAPRDrconfCellV2 {
349 uint32_t seq_lmbs;
350 uint64_t base_addr;
351 uint32_t drc_index;
352 uint32_t aa_index;
353 uint32_t flags;
354 } QEMU_PACKED;
356 typedef struct DrconfCellQueue {
357 struct sPAPRDrconfCellV2 cell;
358 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
359 } DrconfCellQueue;
361 static DrconfCellQueue *
362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
363 uint32_t drc_index, uint32_t aa_index,
364 uint32_t flags)
366 DrconfCellQueue *elem;
368 elem = g_malloc0(sizeof(*elem));
369 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
370 elem->cell.base_addr = cpu_to_be64(base_addr);
371 elem->cell.drc_index = cpu_to_be32(drc_index);
372 elem->cell.aa_index = cpu_to_be32(aa_index);
373 elem->cell.flags = cpu_to_be32(flags);
375 return elem;
378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
379 int offset, MemoryDeviceInfoList *dimms)
381 MachineState *machine = MACHINE(spapr);
382 uint8_t *int_buf, *cur_index;
383 int ret;
384 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
385 uint64_t addr, cur_addr, size;
386 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
387 uint64_t mem_end = machine->device_memory->base +
388 memory_region_size(&machine->device_memory->mr);
389 uint32_t node, buf_len, nr_entries = 0;
390 SpaprDrc *drc;
391 DrconfCellQueue *elem, *next;
392 MemoryDeviceInfoList *info;
393 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
394 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
396 /* Entry to cover RAM and the gap area */
397 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
398 SPAPR_LMB_FLAGS_RESERVED |
399 SPAPR_LMB_FLAGS_DRC_INVALID);
400 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
401 nr_entries++;
403 cur_addr = machine->device_memory->base;
404 for (info = dimms; info; info = info->next) {
405 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
407 addr = di->addr;
408 size = di->size;
409 node = di->node;
412 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
413 * area is marked hotpluggable in the next iteration for the bigger
414 * chunk including the NVDIMM occupied area.
416 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
417 continue;
419 /* Entry for hot-pluggable area */
420 if (cur_addr < addr) {
421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
422 g_assert(drc);
423 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
424 cur_addr, spapr_drc_index(drc), -1, 0);
425 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
426 nr_entries++;
429 /* Entry for DIMM */
430 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
431 g_assert(drc);
432 elem = spapr_get_drconf_cell(size / lmb_size, addr,
433 spapr_drc_index(drc), node,
434 (SPAPR_LMB_FLAGS_ASSIGNED |
435 SPAPR_LMB_FLAGS_HOTREMOVABLE));
436 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
437 nr_entries++;
438 cur_addr = addr + size;
441 /* Entry for remaining hotpluggable area */
442 if (cur_addr < mem_end) {
443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
444 g_assert(drc);
445 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
446 cur_addr, spapr_drc_index(drc), -1, 0);
447 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
448 nr_entries++;
451 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
452 int_buf = cur_index = g_malloc0(buf_len);
453 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
454 cur_index += sizeof(nr_entries);
456 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
457 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
458 cur_index += sizeof(elem->cell);
459 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
460 g_free(elem);
463 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
464 g_free(int_buf);
465 if (ret < 0) {
466 return -1;
468 return 0;
471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
472 int offset, MemoryDeviceInfoList *dimms)
474 MachineState *machine = MACHINE(spapr);
475 int i, ret;
476 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
477 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
478 uint32_t nr_lmbs = (machine->device_memory->base +
479 memory_region_size(&machine->device_memory->mr)) /
480 lmb_size;
481 uint32_t *int_buf, *cur_index, buf_len;
484 * Allocate enough buffer size to fit in ibm,dynamic-memory
486 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
487 cur_index = int_buf = g_malloc0(buf_len);
488 int_buf[0] = cpu_to_be32(nr_lmbs);
489 cur_index++;
490 for (i = 0; i < nr_lmbs; i++) {
491 uint64_t addr = i * lmb_size;
492 uint32_t *dynamic_memory = cur_index;
494 if (i >= device_lmb_start) {
495 SpaprDrc *drc;
497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
498 g_assert(drc);
500 dynamic_memory[0] = cpu_to_be32(addr >> 32);
501 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
502 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
503 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
504 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
505 if (memory_region_present(get_system_memory(), addr)) {
506 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
507 } else {
508 dynamic_memory[5] = cpu_to_be32(0);
510 } else {
512 * LMB information for RMA, boot time RAM and gap b/n RAM and
513 * device memory region -- all these are marked as reserved
514 * and as having no valid DRC.
516 dynamic_memory[0] = cpu_to_be32(addr >> 32);
517 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
518 dynamic_memory[2] = cpu_to_be32(0);
519 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
520 dynamic_memory[4] = cpu_to_be32(-1);
521 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
522 SPAPR_LMB_FLAGS_DRC_INVALID);
525 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
527 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
528 g_free(int_buf);
529 if (ret < 0) {
530 return -1;
532 return 0;
536 * Adds ibm,dynamic-reconfiguration-memory node.
537 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
538 * of this device tree node.
540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
541 void *fdt)
543 MachineState *machine = MACHINE(spapr);
544 int ret, offset;
545 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
546 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
547 cpu_to_be32(lmb_size & 0xffffffff)};
548 MemoryDeviceInfoList *dimms = NULL;
550 /* Don't create the node if there is no device memory. */
551 if (!machine->device_memory) {
552 return 0;
555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558 sizeof(prop_lmb_size));
559 if (ret < 0) {
560 return ret;
563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564 if (ret < 0) {
565 return ret;
568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569 if (ret < 0) {
570 return ret;
573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574 dimms = qmp_memory_device_list();
575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577 } else {
578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
580 qapi_free_MemoryDeviceInfoList(dimms);
582 if (ret < 0) {
583 return ret;
586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
588 return ret;
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
593 MachineState *machine = MACHINE(spapr);
594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595 hwaddr mem_start, node_size;
596 int i, nb_nodes = machine->numa_state->num_nodes;
597 NodeInfo *nodes = machine->numa_state->nodes;
599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600 if (!nodes[i].node_mem) {
601 continue;
603 if (mem_start >= machine->ram_size) {
604 node_size = 0;
605 } else {
606 node_size = nodes[i].node_mem;
607 if (node_size > machine->ram_size - mem_start) {
608 node_size = machine->ram_size - mem_start;
611 if (!mem_start) {
612 /* spapr_machine_init() checks for rma_size <= node0_size
613 * already */
614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615 mem_start += spapr->rma_size;
616 node_size -= spapr->rma_size;
618 for ( ; node_size; ) {
619 hwaddr sizetmp = pow2floor(node_size);
621 /* mem_start != 0 here */
622 if (ctzl(mem_start) < ctzl(sizetmp)) {
623 sizetmp = 1ULL << ctzl(mem_start);
626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627 node_size -= sizetmp;
628 mem_start += sizetmp;
632 /* Generate ibm,dynamic-reconfiguration-memory node if required */
633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634 int ret;
636 g_assert(smc->dr_lmb_enabled);
637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638 if (ret) {
639 return ret;
643 return 0;
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647 SpaprMachineState *spapr)
649 MachineState *ms = MACHINE(spapr);
650 PowerPCCPU *cpu = POWERPC_CPU(cs);
651 CPUPPCState *env = &cpu->env;
652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653 int index = spapr_get_vcpu_id(cpu);
654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655 0xffffffff, 0xffffffff};
656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657 : SPAPR_TIMEBASE_FREQ;
658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659 uint32_t page_sizes_prop[64];
660 size_t page_sizes_prop_size;
661 unsigned int smp_threads = ms->smp.threads;
662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665 SpaprDrc *drc;
666 int drc_index;
667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668 int i;
670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671 if (drc) {
672 drc_index = spapr_drc_index(drc);
673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681 env->dcache_line_size)));
682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683 env->dcache_line_size)));
684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685 env->icache_line_size)));
686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687 env->icache_line_size)));
689 if (pcc->l1_dcache_size) {
690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691 pcc->l1_dcache_size)));
692 } else {
693 warn_report("Unknown L1 dcache size for cpu");
695 if (pcc->l1_icache_size) {
696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697 pcc->l1_icache_size)));
698 } else {
699 warn_report("Unknown L1 icache size for cpu");
702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
709 if (ppc_has_spr(cpu, SPR_PURR)) {
710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
712 if (ppc_has_spr(cpu, SPR_PURR)) {
713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718 segs, sizeof(segs))));
721 /* Advertise VSX (vector extensions) if available
722 * 1 == VMX / Altivec available
723 * 2 == VSX available
725 * Only CPUs for which we create core types in spapr_cpu_core.c
726 * are possible, and all of those have VMX */
727 if (env->insns_flags & PPC_ALTIVEC) {
728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730 } else {
731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
735 /* Advertise DFP (Decimal Floating Point) if available
736 * 0 / no property == no DFP
737 * 1 == DFP available */
738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743 sizeof(page_sizes_prop));
744 if (page_sizes_prop_size) {
745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746 page_sizes_prop, page_sizes_prop_size)));
749 spapr_dt_pa_features(spapr, cpu, fdt, offset);
751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752 cs->cpu_index / vcpus_per_socket)));
754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755 pft_size_prop, sizeof(pft_size_prop))));
757 if (ms->numa_state->num_nodes > 1) {
758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
763 if (pcc->radix_page_info) {
764 for (i = 0; i < pcc->radix_page_info->count; i++) {
765 radix_AP_encodings[i] =
766 cpu_to_be32(pcc->radix_page_info->entries[i]);
768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769 radix_AP_encodings,
770 pcc->radix_page_info->count *
771 sizeof(radix_AP_encodings[0]))));
775 * We set this property to let the guest know that it can use the large
776 * decrementer and its width in bits.
778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780 pcc->lrg_decr_bits)));
783 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs,
784 int cpus_offset)
786 PowerPCCPU *cpu = POWERPC_CPU(cs);
787 int index = spapr_get_vcpu_id(cpu);
788 DeviceClass *dc = DEVICE_GET_CLASS(cs);
789 g_autofree char *nodename = NULL;
790 int offset;
792 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
793 return;
796 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
797 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
798 _FDT(offset);
799 spapr_dt_cpu(cs, fdt, offset, spapr);
803 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
805 CPUState **rev;
806 CPUState *cs;
807 int n_cpus;
808 int cpus_offset;
809 int i;
811 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
812 _FDT(cpus_offset);
813 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
814 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
817 * We walk the CPUs in reverse order to ensure that CPU DT nodes
818 * created by fdt_add_subnode() end up in the right order in FDT
819 * for the guest kernel the enumerate the CPUs correctly.
821 * The CPU list cannot be traversed in reverse order, so we need
822 * to do extra work.
824 n_cpus = 0;
825 rev = NULL;
826 CPU_FOREACH(cs) {
827 rev = g_renew(CPUState *, rev, n_cpus + 1);
828 rev[n_cpus++] = cs;
831 for (i = n_cpus - 1; i >= 0; i--) {
832 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset);
835 g_free(rev);
838 static int spapr_dt_rng(void *fdt)
840 int node;
841 int ret;
843 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
844 if (node <= 0) {
845 return -1;
847 ret = fdt_setprop_string(fdt, node, "device_type",
848 "ibm,platform-facilities");
849 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
850 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
852 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
853 if (node <= 0) {
854 return -1;
856 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
858 return ret ? -1 : 0;
861 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
863 MachineState *ms = MACHINE(spapr);
864 int rtas;
865 GString *hypertas = g_string_sized_new(256);
866 GString *qemu_hypertas = g_string_sized_new(256);
867 uint32_t lrdr_capacity[] = {
870 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
871 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
872 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
875 /* Do we have device memory? */
876 if (MACHINE(spapr)->device_memory) {
877 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
878 memory_region_size(&MACHINE(spapr)->device_memory->mr);
880 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
881 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
884 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
886 /* hypertas */
887 add_str(hypertas, "hcall-pft");
888 add_str(hypertas, "hcall-term");
889 add_str(hypertas, "hcall-dabr");
890 add_str(hypertas, "hcall-interrupt");
891 add_str(hypertas, "hcall-tce");
892 add_str(hypertas, "hcall-vio");
893 add_str(hypertas, "hcall-splpar");
894 add_str(hypertas, "hcall-join");
895 add_str(hypertas, "hcall-bulk");
896 add_str(hypertas, "hcall-set-mode");
897 add_str(hypertas, "hcall-sprg0");
898 add_str(hypertas, "hcall-copy");
899 add_str(hypertas, "hcall-debug");
900 add_str(hypertas, "hcall-vphn");
901 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
902 add_str(hypertas, "hcall-rpt-invalidate");
905 add_str(qemu_hypertas, "hcall-memop1");
907 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
908 add_str(hypertas, "hcall-multi-tce");
911 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
912 add_str(hypertas, "hcall-hpt-resize");
915 add_str(hypertas, "hcall-watchdog");
917 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
918 hypertas->str, hypertas->len));
919 g_string_free(hypertas, TRUE);
920 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
921 qemu_hypertas->str, qemu_hypertas->len));
922 g_string_free(qemu_hypertas, TRUE);
924 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
927 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
928 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
930 * The system reset requirements are driven by existing Linux and PowerVM
931 * implementation which (contrary to PAPR) saves r3 in the error log
932 * structure like machine check, so Linux expects to find the saved r3
933 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
934 * does not look at the error value).
936 * System reset interrupts are not subject to interlock like machine
937 * check, so this memory area could be corrupted if the sreset is
938 * interrupted by a machine check (or vice versa) if it was shared. To
939 * prevent this, system reset uses per-CPU areas for the sreset save
940 * area. A system reset that interrupts a system reset handler could
941 * still overwrite this area, but Linux doesn't try to recover in that
942 * case anyway.
944 * The extra 8 bytes is required because Linux's FWNMI error log check
945 * is off-by-one.
947 * RTAS_MIN_SIZE is required for the RTAS blob itself.
949 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
950 RTAS_ERROR_LOG_MAX +
951 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
952 sizeof(uint64_t)));
953 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
954 RTAS_ERROR_LOG_MAX));
955 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
956 RTAS_EVENT_SCAN_RATE));
958 g_assert(msi_nonbroken);
959 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
962 * According to PAPR, rtas ibm,os-term does not guarantee a return
963 * back to the guest cpu.
965 * While an additional ibm,extended-os-term property indicates
966 * that rtas call return will always occur. Set this property.
968 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
970 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
971 lrdr_capacity, sizeof(lrdr_capacity)));
973 spapr_dt_rtas_tokens(fdt, rtas);
977 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
978 * and the XIVE features that the guest may request and thus the valid
979 * values for bytes 23..26 of option vector 5:
981 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
982 int chosen)
984 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
986 char val[2 * 4] = {
987 23, 0x00, /* XICS / XIVE mode */
988 24, 0x00, /* Hash/Radix, filled in below. */
989 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
990 26, 0x40, /* Radix options: GTSE == yes. */
993 if (spapr->irq->xics && spapr->irq->xive) {
994 val[1] = SPAPR_OV5_XIVE_BOTH;
995 } else if (spapr->irq->xive) {
996 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
997 } else {
998 assert(spapr->irq->xics);
999 val[1] = SPAPR_OV5_XIVE_LEGACY;
1002 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1003 first_ppc_cpu->compat_pvr)) {
1005 * If we're in a pre POWER9 compat mode then the guest should
1006 * do hash and use the legacy interrupt mode
1008 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1009 val[3] = 0x00; /* Hash */
1010 spapr_check_mmu_mode(false);
1011 } else if (kvm_enabled()) {
1012 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1013 val[3] = 0x80; /* OV5_MMU_BOTH */
1014 } else if (kvmppc_has_cap_mmu_radix()) {
1015 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1016 } else {
1017 val[3] = 0x00; /* Hash */
1019 } else {
1020 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1021 val[3] = 0xC0;
1023 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1024 val, sizeof(val)));
1027 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1029 MachineState *machine = MACHINE(spapr);
1030 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1031 int chosen;
1033 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1035 if (reset) {
1036 const char *boot_device = spapr->boot_device;
1037 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1038 size_t cb = 0;
1039 g_autofree char *bootlist = get_boot_devices_list(&cb);
1041 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1042 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1043 machine->kernel_cmdline));
1046 if (spapr->initrd_size) {
1047 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1048 spapr->initrd_base));
1049 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1050 spapr->initrd_base + spapr->initrd_size));
1053 if (spapr->kernel_size) {
1054 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1055 cpu_to_be64(spapr->kernel_size) };
1057 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1058 &kprop, sizeof(kprop)));
1059 if (spapr->kernel_le) {
1060 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1063 if (machine->boot_config.has_menu && machine->boot_config.menu) {
1064 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1066 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1067 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1068 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1070 if (cb && bootlist) {
1071 int i;
1073 for (i = 0; i < cb; i++) {
1074 if (bootlist[i] == '\n') {
1075 bootlist[i] = ' ';
1078 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1081 if (boot_device && strlen(boot_device)) {
1082 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1085 if (spapr->want_stdout_path && stdout_path) {
1087 * "linux,stdout-path" and "stdout" properties are
1088 * deprecated by linux kernel. New platforms should only
1089 * use the "stdout-path" property. Set the new property
1090 * and continue using older property to remain compatible
1091 * with the existing firmware.
1093 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1094 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1098 * We can deal with BAR reallocation just fine, advertise it
1099 * to the guest
1101 if (smc->linux_pci_probe) {
1102 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1105 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1108 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1110 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1113 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1115 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1116 * KVM to work under pHyp with some guest co-operation */
1117 int hypervisor;
1118 uint8_t hypercall[16];
1120 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1121 /* indicate KVM hypercall interface */
1122 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1123 if (kvmppc_has_cap_fixup_hcalls()) {
1125 * Older KVM versions with older guest kernels were broken
1126 * with the magic page, don't allow the guest to map it.
1128 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall,
1129 sizeof(hypercall))) {
1130 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1131 hypercall, sizeof(hypercall)));
1136 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1138 MachineState *machine = MACHINE(spapr);
1139 MachineClass *mc = MACHINE_GET_CLASS(machine);
1140 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1141 uint32_t root_drc_type_mask = 0;
1142 int ret;
1143 void *fdt;
1144 SpaprPhbState *phb;
1145 char *buf;
1147 fdt = g_malloc0(space);
1148 _FDT((fdt_create_empty_tree(fdt, space)));
1150 /* Root node */
1151 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1152 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1153 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1155 /* Guest UUID & Name*/
1156 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1157 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1158 if (qemu_uuid_set) {
1159 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1161 g_free(buf);
1163 if (qemu_get_vm_name()) {
1164 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1165 qemu_get_vm_name()));
1168 /* Host Model & Serial Number */
1169 if (spapr->host_model) {
1170 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1171 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1172 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1173 g_free(buf);
1176 if (spapr->host_serial) {
1177 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1178 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1179 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1180 g_free(buf);
1183 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1184 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1186 /* /interrupt controller */
1187 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1189 ret = spapr_dt_memory(spapr, fdt);
1190 if (ret < 0) {
1191 error_report("couldn't setup memory nodes in fdt");
1192 exit(1);
1195 /* /vdevice */
1196 spapr_dt_vdevice(spapr->vio_bus, fdt);
1198 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1199 ret = spapr_dt_rng(fdt);
1200 if (ret < 0) {
1201 error_report("could not set up rng device in the fdt");
1202 exit(1);
1206 QLIST_FOREACH(phb, &spapr->phbs, list) {
1207 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1208 if (ret < 0) {
1209 error_report("couldn't setup PCI devices in fdt");
1210 exit(1);
1214 spapr_dt_cpus(fdt, spapr);
1216 /* ibm,drc-indexes and friends */
1217 if (smc->dr_lmb_enabled) {
1218 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1220 if (smc->dr_phb_enabled) {
1221 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1223 if (mc->nvdimm_supported) {
1224 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1226 if (root_drc_type_mask) {
1227 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1230 if (mc->has_hotpluggable_cpus) {
1231 int offset = fdt_path_offset(fdt, "/cpus");
1232 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1233 if (ret < 0) {
1234 error_report("Couldn't set up CPU DR device tree properties");
1235 exit(1);
1239 /* /event-sources */
1240 spapr_dt_events(spapr, fdt);
1242 /* /rtas */
1243 spapr_dt_rtas(spapr, fdt);
1245 /* /chosen */
1246 spapr_dt_chosen(spapr, fdt, reset);
1248 /* /hypervisor */
1249 if (kvm_enabled()) {
1250 spapr_dt_hypervisor(spapr, fdt);
1253 /* Build memory reserve map */
1254 if (reset) {
1255 if (spapr->kernel_size) {
1256 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1257 spapr->kernel_size)));
1259 if (spapr->initrd_size) {
1260 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1261 spapr->initrd_size)));
1265 /* NVDIMM devices */
1266 if (mc->nvdimm_supported) {
1267 spapr_dt_persistent_memory(spapr, fdt);
1270 return fdt;
1273 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1275 SpaprMachineState *spapr = opaque;
1277 return (addr & 0x0fffffff) + spapr->kernel_addr;
1280 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1281 PowerPCCPU *cpu)
1283 CPUPPCState *env = &cpu->env;
1285 /* The TCG path should also be holding the BQL at this point */
1286 g_assert(qemu_mutex_iothread_locked());
1288 g_assert(!vhyp_cpu_in_nested(cpu));
1290 if (FIELD_EX64(env->msr, MSR, PR)) {
1291 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1292 env->gpr[3] = H_PRIVILEGE;
1293 } else {
1294 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1298 struct LPCRSyncState {
1299 target_ulong value;
1300 target_ulong mask;
1303 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1305 struct LPCRSyncState *s = arg.host_ptr;
1306 PowerPCCPU *cpu = POWERPC_CPU(cs);
1307 CPUPPCState *env = &cpu->env;
1308 target_ulong lpcr;
1310 cpu_synchronize_state(cs);
1311 lpcr = env->spr[SPR_LPCR];
1312 lpcr &= ~s->mask;
1313 lpcr |= s->value;
1314 ppc_store_lpcr(cpu, lpcr);
1317 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1319 CPUState *cs;
1320 struct LPCRSyncState s = {
1321 .value = value,
1322 .mask = mask
1324 CPU_FOREACH(cs) {
1325 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1329 /* May be used when the machine is not running */
1330 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1332 CPUState *cs;
1333 CPU_FOREACH(cs) {
1334 PowerPCCPU *cpu = POWERPC_CPU(cs);
1335 CPUPPCState *env = &cpu->env;
1336 target_ulong lpcr;
1338 lpcr = env->spr[SPR_LPCR];
1339 lpcr &= ~(LPCR_HR | LPCR_UPRT);
1340 ppc_store_lpcr(cpu, lpcr);
1345 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1346 target_ulong lpid, ppc_v3_pate_t *entry)
1348 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1349 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1351 if (!spapr_cpu->in_nested) {
1352 assert(lpid == 0);
1354 /* Copy PATE1:GR into PATE0:HR */
1355 entry->dw0 = spapr->patb_entry & PATE0_HR;
1356 entry->dw1 = spapr->patb_entry;
1358 } else {
1359 uint64_t patb, pats;
1361 assert(lpid != 0);
1363 patb = spapr->nested_ptcr & PTCR_PATB;
1364 pats = spapr->nested_ptcr & PTCR_PATS;
1366 /* Check if partition table is properly aligned */
1367 if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1368 return false;
1371 /* Calculate number of entries */
1372 pats = 1ull << (pats + 12 - 4);
1373 if (pats <= lpid) {
1374 return false;
1377 /* Grab entry */
1378 patb += 16 * lpid;
1379 entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1380 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1383 return true;
1386 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1387 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1388 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1389 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1390 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1393 * Get the fd to access the kernel htab, re-opening it if necessary
1395 static int get_htab_fd(SpaprMachineState *spapr)
1397 Error *local_err = NULL;
1399 if (spapr->htab_fd >= 0) {
1400 return spapr->htab_fd;
1403 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1404 if (spapr->htab_fd < 0) {
1405 error_report_err(local_err);
1408 return spapr->htab_fd;
1411 void close_htab_fd(SpaprMachineState *spapr)
1413 if (spapr->htab_fd >= 0) {
1414 close(spapr->htab_fd);
1416 spapr->htab_fd = -1;
1419 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1421 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1423 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1426 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1428 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1430 assert(kvm_enabled());
1432 if (!spapr->htab) {
1433 return 0;
1436 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1439 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1440 hwaddr ptex, int n)
1442 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1443 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1445 if (!spapr->htab) {
1447 * HTAB is controlled by KVM. Fetch into temporary buffer
1449 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1450 kvmppc_read_hptes(hptes, ptex, n);
1451 return hptes;
1455 * HTAB is controlled by QEMU. Just point to the internally
1456 * accessible PTEG.
1458 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1461 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1462 const ppc_hash_pte64_t *hptes,
1463 hwaddr ptex, int n)
1465 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1467 if (!spapr->htab) {
1468 g_free((void *)hptes);
1471 /* Nothing to do for qemu managed HPT */
1474 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1475 uint64_t pte0, uint64_t pte1)
1477 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1478 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1480 if (!spapr->htab) {
1481 kvmppc_write_hpte(ptex, pte0, pte1);
1482 } else {
1483 if (pte0 & HPTE64_V_VALID) {
1484 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1486 * When setting valid, we write PTE1 first. This ensures
1487 * proper synchronization with the reading code in
1488 * ppc_hash64_pteg_search()
1490 smp_wmb();
1491 stq_p(spapr->htab + offset, pte0);
1492 } else {
1493 stq_p(spapr->htab + offset, pte0);
1495 * When clearing it we set PTE0 first. This ensures proper
1496 * synchronization with the reading code in
1497 * ppc_hash64_pteg_search()
1499 smp_wmb();
1500 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1505 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1506 uint64_t pte1)
1508 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1509 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1511 if (!spapr->htab) {
1512 /* There should always be a hash table when this is called */
1513 error_report("spapr_hpte_set_c called with no hash table !");
1514 return;
1517 /* The HW performs a non-atomic byte update */
1518 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1521 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1522 uint64_t pte1)
1524 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1525 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1527 if (!spapr->htab) {
1528 /* There should always be a hash table when this is called */
1529 error_report("spapr_hpte_set_r called with no hash table !");
1530 return;
1533 /* The HW performs a non-atomic byte update */
1534 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1537 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1539 int shift;
1541 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1542 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1543 * that's much more than is needed for Linux guests */
1544 shift = ctz64(pow2ceil(ramsize)) - 7;
1545 shift = MAX(shift, 18); /* Minimum architected size */
1546 shift = MIN(shift, 46); /* Maximum architected size */
1547 return shift;
1550 void spapr_free_hpt(SpaprMachineState *spapr)
1552 qemu_vfree(spapr->htab);
1553 spapr->htab = NULL;
1554 spapr->htab_shift = 0;
1555 close_htab_fd(spapr);
1558 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1560 ERRP_GUARD();
1561 long rc;
1563 /* Clean up any HPT info from a previous boot */
1564 spapr_free_hpt(spapr);
1566 rc = kvmppc_reset_htab(shift);
1568 if (rc == -EOPNOTSUPP) {
1569 error_setg(errp, "HPT not supported in nested guests");
1570 return -EOPNOTSUPP;
1573 if (rc < 0) {
1574 /* kernel-side HPT needed, but couldn't allocate one */
1575 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1576 shift);
1577 error_append_hint(errp, "Try smaller maxmem?\n");
1578 return -errno;
1579 } else if (rc > 0) {
1580 /* kernel-side HPT allocated */
1581 if (rc != shift) {
1582 error_setg(errp,
1583 "Requested order %d HPT, but kernel allocated order %ld",
1584 shift, rc);
1585 error_append_hint(errp, "Try smaller maxmem?\n");
1586 return -ENOSPC;
1589 spapr->htab_shift = shift;
1590 spapr->htab = NULL;
1591 } else {
1592 /* kernel-side HPT not needed, allocate in userspace instead */
1593 size_t size = 1ULL << shift;
1594 int i;
1596 spapr->htab = qemu_memalign(size, size);
1597 memset(spapr->htab, 0, size);
1598 spapr->htab_shift = shift;
1600 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1601 DIRTY_HPTE(HPTE(spapr->htab, i));
1604 /* We're setting up a hash table, so that means we're not radix */
1605 spapr->patb_entry = 0;
1606 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1607 return 0;
1610 void spapr_setup_hpt(SpaprMachineState *spapr)
1612 int hpt_shift;
1614 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1615 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1616 } else {
1617 uint64_t current_ram_size;
1619 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1620 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1622 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1624 if (kvm_enabled()) {
1625 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1627 /* Check our RMA fits in the possible VRMA */
1628 if (vrma_limit < spapr->rma_size) {
1629 error_report("Unable to create %" HWADDR_PRIu
1630 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1631 spapr->rma_size / MiB, vrma_limit / MiB);
1632 exit(EXIT_FAILURE);
1637 void spapr_check_mmu_mode(bool guest_radix)
1639 if (guest_radix) {
1640 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1641 error_report("Guest requested unavailable MMU mode (radix).");
1642 exit(EXIT_FAILURE);
1644 } else {
1645 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1646 && !kvmppc_has_cap_mmu_hash_v3()) {
1647 error_report("Guest requested unavailable MMU mode (hash).");
1648 exit(EXIT_FAILURE);
1653 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1655 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1656 PowerPCCPU *first_ppc_cpu;
1657 hwaddr fdt_addr;
1658 void *fdt;
1659 int rc;
1661 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) {
1663 * Record-replay snapshot load must not consume random, this was
1664 * already replayed from initial machine reset.
1666 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1669 pef_kvm_reset(machine->cgs, &error_fatal);
1670 spapr_caps_apply(spapr);
1672 first_ppc_cpu = POWERPC_CPU(first_cpu);
1673 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1674 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1675 spapr->max_compat_pvr)) {
1677 * If using KVM with radix mode available, VCPUs can be started
1678 * without a HPT because KVM will start them in radix mode.
1679 * Set the GR bit in PATE so that we know there is no HPT.
1681 spapr->patb_entry = PATE1_GR;
1682 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1683 } else {
1684 spapr_setup_hpt(spapr);
1687 qemu_devices_reset(reason);
1689 spapr_ovec_cleanup(spapr->ov5_cas);
1690 spapr->ov5_cas = spapr_ovec_new();
1692 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1695 * This is fixing some of the default configuration of the XIVE
1696 * devices. To be called after the reset of the machine devices.
1698 spapr_irq_reset(spapr, &error_fatal);
1701 * There is no CAS under qtest. Simulate one to please the code that
1702 * depends on spapr->ov5_cas. This is especially needed to test device
1703 * unplug, so we do that before resetting the DRCs.
1705 if (qtest_enabled()) {
1706 spapr_ovec_cleanup(spapr->ov5_cas);
1707 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1710 spapr_nvdimm_finish_flushes();
1712 /* DRC reset may cause a device to be unplugged. This will cause troubles
1713 * if this device is used by another device (eg, a running vhost backend
1714 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1715 * situations, we reset DRCs after all devices have been reset.
1717 spapr_drc_reset_all(spapr);
1719 spapr_clear_pending_events(spapr);
1722 * We place the device tree just below either the top of the RMA,
1723 * or just below 2GB, whichever is lower, so that it can be
1724 * processed with 32-bit real mode code if necessary
1726 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1728 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1729 if (spapr->vof) {
1730 spapr_vof_reset(spapr, fdt, &error_fatal);
1732 * Do not pack the FDT as the client may change properties.
1733 * VOF client does not expect the FDT so we do not load it to the VM.
1735 } else {
1736 rc = fdt_pack(fdt);
1737 /* Should only fail if we've built a corrupted tree */
1738 assert(rc == 0);
1740 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1741 0, fdt_addr, 0);
1742 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1744 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1746 g_free(spapr->fdt_blob);
1747 spapr->fdt_size = fdt_totalsize(fdt);
1748 spapr->fdt_initial_size = spapr->fdt_size;
1749 spapr->fdt_blob = fdt;
1751 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1752 machine->fdt = fdt;
1754 /* Set up the entry state */
1755 first_ppc_cpu->env.gpr[5] = 0;
1757 spapr->fwnmi_system_reset_addr = -1;
1758 spapr->fwnmi_machine_check_addr = -1;
1759 spapr->fwnmi_machine_check_interlock = -1;
1761 /* Signal all vCPUs waiting on this condition */
1762 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1764 migrate_del_blocker(&spapr->fwnmi_migration_blocker);
1767 static void spapr_create_nvram(SpaprMachineState *spapr)
1769 DeviceState *dev = qdev_new("spapr-nvram");
1770 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1772 if (dinfo) {
1773 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1774 &error_fatal);
1777 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1779 spapr->nvram = (struct SpaprNvram *)dev;
1782 static void spapr_rtc_create(SpaprMachineState *spapr)
1784 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1785 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1786 &error_fatal, NULL);
1787 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1788 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1789 "date");
1792 /* Returns whether we want to use VGA or not */
1793 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1795 vga_interface_created = true;
1796 switch (vga_interface_type) {
1797 case VGA_NONE:
1798 return false;
1799 case VGA_DEVICE:
1800 return true;
1801 case VGA_STD:
1802 case VGA_VIRTIO:
1803 case VGA_CIRRUS:
1804 return pci_vga_init(pci_bus) != NULL;
1805 default:
1806 error_setg(errp,
1807 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1808 return false;
1812 static int spapr_pre_load(void *opaque)
1814 int rc;
1816 rc = spapr_caps_pre_load(opaque);
1817 if (rc) {
1818 return rc;
1821 return 0;
1824 static int spapr_post_load(void *opaque, int version_id)
1826 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1827 int err = 0;
1829 err = spapr_caps_post_migration(spapr);
1830 if (err) {
1831 return err;
1835 * In earlier versions, there was no separate qdev for the PAPR
1836 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1837 * So when migrating from those versions, poke the incoming offset
1838 * value into the RTC device
1840 if (version_id < 3) {
1841 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1842 if (err) {
1843 return err;
1847 if (kvm_enabled() && spapr->patb_entry) {
1848 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1849 bool radix = !!(spapr->patb_entry & PATE1_GR);
1850 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1853 * Update LPCR:HR and UPRT as they may not be set properly in
1854 * the stream
1856 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1857 LPCR_HR | LPCR_UPRT);
1859 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1860 if (err) {
1861 error_report("Process table config unsupported by the host");
1862 return -EINVAL;
1866 err = spapr_irq_post_load(spapr, version_id);
1867 if (err) {
1868 return err;
1871 return err;
1874 static int spapr_pre_save(void *opaque)
1876 int rc;
1878 rc = spapr_caps_pre_save(opaque);
1879 if (rc) {
1880 return rc;
1883 return 0;
1886 static bool version_before_3(void *opaque, int version_id)
1888 return version_id < 3;
1891 static bool spapr_pending_events_needed(void *opaque)
1893 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1894 return !QTAILQ_EMPTY(&spapr->pending_events);
1897 static const VMStateDescription vmstate_spapr_event_entry = {
1898 .name = "spapr_event_log_entry",
1899 .version_id = 1,
1900 .minimum_version_id = 1,
1901 .fields = (VMStateField[]) {
1902 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1903 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1904 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1905 NULL, extended_length),
1906 VMSTATE_END_OF_LIST()
1910 static const VMStateDescription vmstate_spapr_pending_events = {
1911 .name = "spapr_pending_events",
1912 .version_id = 1,
1913 .minimum_version_id = 1,
1914 .needed = spapr_pending_events_needed,
1915 .fields = (VMStateField[]) {
1916 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1917 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1918 VMSTATE_END_OF_LIST()
1922 static bool spapr_ov5_cas_needed(void *opaque)
1924 SpaprMachineState *spapr = opaque;
1925 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1926 bool cas_needed;
1928 /* Prior to the introduction of SpaprOptionVector, we had two option
1929 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1930 * Both of these options encode machine topology into the device-tree
1931 * in such a way that the now-booted OS should still be able to interact
1932 * appropriately with QEMU regardless of what options were actually
1933 * negotiatied on the source side.
1935 * As such, we can avoid migrating the CAS-negotiated options if these
1936 * are the only options available on the current machine/platform.
1937 * Since these are the only options available for pseries-2.7 and
1938 * earlier, this allows us to maintain old->new/new->old migration
1939 * compatibility.
1941 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1942 * via default pseries-2.8 machines and explicit command-line parameters.
1943 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1944 * of the actual CAS-negotiated values to continue working properly. For
1945 * example, availability of memory unplug depends on knowing whether
1946 * OV5_HP_EVT was negotiated via CAS.
1948 * Thus, for any cases where the set of available CAS-negotiatable
1949 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1950 * include the CAS-negotiated options in the migration stream, unless
1951 * if they affect boot time behaviour only.
1953 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1954 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1955 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1957 /* We need extra information if we have any bits outside the mask
1958 * defined above */
1959 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1961 spapr_ovec_cleanup(ov5_mask);
1963 return cas_needed;
1966 static const VMStateDescription vmstate_spapr_ov5_cas = {
1967 .name = "spapr_option_vector_ov5_cas",
1968 .version_id = 1,
1969 .minimum_version_id = 1,
1970 .needed = spapr_ov5_cas_needed,
1971 .fields = (VMStateField[]) {
1972 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1973 vmstate_spapr_ovec, SpaprOptionVector),
1974 VMSTATE_END_OF_LIST()
1978 static bool spapr_patb_entry_needed(void *opaque)
1980 SpaprMachineState *spapr = opaque;
1982 return !!spapr->patb_entry;
1985 static const VMStateDescription vmstate_spapr_patb_entry = {
1986 .name = "spapr_patb_entry",
1987 .version_id = 1,
1988 .minimum_version_id = 1,
1989 .needed = spapr_patb_entry_needed,
1990 .fields = (VMStateField[]) {
1991 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1992 VMSTATE_END_OF_LIST()
1996 static bool spapr_irq_map_needed(void *opaque)
1998 SpaprMachineState *spapr = opaque;
2000 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2003 static const VMStateDescription vmstate_spapr_irq_map = {
2004 .name = "spapr_irq_map",
2005 .version_id = 1,
2006 .minimum_version_id = 1,
2007 .needed = spapr_irq_map_needed,
2008 .fields = (VMStateField[]) {
2009 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2010 VMSTATE_END_OF_LIST()
2014 static bool spapr_dtb_needed(void *opaque)
2016 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2018 return smc->update_dt_enabled;
2021 static int spapr_dtb_pre_load(void *opaque)
2023 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2025 g_free(spapr->fdt_blob);
2026 spapr->fdt_blob = NULL;
2027 spapr->fdt_size = 0;
2029 return 0;
2032 static const VMStateDescription vmstate_spapr_dtb = {
2033 .name = "spapr_dtb",
2034 .version_id = 1,
2035 .minimum_version_id = 1,
2036 .needed = spapr_dtb_needed,
2037 .pre_load = spapr_dtb_pre_load,
2038 .fields = (VMStateField[]) {
2039 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2040 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2041 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2042 fdt_size),
2043 VMSTATE_END_OF_LIST()
2047 static bool spapr_fwnmi_needed(void *opaque)
2049 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2051 return spapr->fwnmi_machine_check_addr != -1;
2054 static int spapr_fwnmi_pre_save(void *opaque)
2056 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2059 * Check if machine check handling is in progress and print a
2060 * warning message.
2062 if (spapr->fwnmi_machine_check_interlock != -1) {
2063 warn_report("A machine check is being handled during migration. The"
2064 "handler may run and log hardware error on the destination");
2067 return 0;
2070 static const VMStateDescription vmstate_spapr_fwnmi = {
2071 .name = "spapr_fwnmi",
2072 .version_id = 1,
2073 .minimum_version_id = 1,
2074 .needed = spapr_fwnmi_needed,
2075 .pre_save = spapr_fwnmi_pre_save,
2076 .fields = (VMStateField[]) {
2077 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2078 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2079 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2080 VMSTATE_END_OF_LIST()
2084 static const VMStateDescription vmstate_spapr = {
2085 .name = "spapr",
2086 .version_id = 3,
2087 .minimum_version_id = 1,
2088 .pre_load = spapr_pre_load,
2089 .post_load = spapr_post_load,
2090 .pre_save = spapr_pre_save,
2091 .fields = (VMStateField[]) {
2092 /* used to be @next_irq */
2093 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2095 /* RTC offset */
2096 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2098 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2099 VMSTATE_END_OF_LIST()
2101 .subsections = (const VMStateDescription*[]) {
2102 &vmstate_spapr_ov5_cas,
2103 &vmstate_spapr_patb_entry,
2104 &vmstate_spapr_pending_events,
2105 &vmstate_spapr_cap_htm,
2106 &vmstate_spapr_cap_vsx,
2107 &vmstate_spapr_cap_dfp,
2108 &vmstate_spapr_cap_cfpc,
2109 &vmstate_spapr_cap_sbbc,
2110 &vmstate_spapr_cap_ibs,
2111 &vmstate_spapr_cap_hpt_maxpagesize,
2112 &vmstate_spapr_irq_map,
2113 &vmstate_spapr_cap_nested_kvm_hv,
2114 &vmstate_spapr_dtb,
2115 &vmstate_spapr_cap_large_decr,
2116 &vmstate_spapr_cap_ccf_assist,
2117 &vmstate_spapr_cap_fwnmi,
2118 &vmstate_spapr_fwnmi,
2119 &vmstate_spapr_cap_rpt_invalidate,
2120 NULL
2124 static int htab_save_setup(QEMUFile *f, void *opaque)
2126 SpaprMachineState *spapr = opaque;
2128 /* "Iteration" header */
2129 if (!spapr->htab_shift) {
2130 qemu_put_be32(f, -1);
2131 } else {
2132 qemu_put_be32(f, spapr->htab_shift);
2135 if (spapr->htab) {
2136 spapr->htab_save_index = 0;
2137 spapr->htab_first_pass = true;
2138 } else {
2139 if (spapr->htab_shift) {
2140 assert(kvm_enabled());
2145 return 0;
2148 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2149 int chunkstart, int n_valid, int n_invalid)
2151 qemu_put_be32(f, chunkstart);
2152 qemu_put_be16(f, n_valid);
2153 qemu_put_be16(f, n_invalid);
2154 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2155 HASH_PTE_SIZE_64 * n_valid);
2158 static void htab_save_end_marker(QEMUFile *f)
2160 qemu_put_be32(f, 0);
2161 qemu_put_be16(f, 0);
2162 qemu_put_be16(f, 0);
2165 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2166 int64_t max_ns)
2168 bool has_timeout = max_ns != -1;
2169 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2170 int index = spapr->htab_save_index;
2171 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2173 assert(spapr->htab_first_pass);
2175 do {
2176 int chunkstart;
2178 /* Consume invalid HPTEs */
2179 while ((index < htabslots)
2180 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2181 CLEAN_HPTE(HPTE(spapr->htab, index));
2182 index++;
2185 /* Consume valid HPTEs */
2186 chunkstart = index;
2187 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2188 && HPTE_VALID(HPTE(spapr->htab, index))) {
2189 CLEAN_HPTE(HPTE(spapr->htab, index));
2190 index++;
2193 if (index > chunkstart) {
2194 int n_valid = index - chunkstart;
2196 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2198 if (has_timeout &&
2199 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2200 break;
2203 } while ((index < htabslots) && !migration_rate_exceeded(f));
2205 if (index >= htabslots) {
2206 assert(index == htabslots);
2207 index = 0;
2208 spapr->htab_first_pass = false;
2210 spapr->htab_save_index = index;
2213 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2214 int64_t max_ns)
2216 bool final = max_ns < 0;
2217 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2218 int examined = 0, sent = 0;
2219 int index = spapr->htab_save_index;
2220 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2222 assert(!spapr->htab_first_pass);
2224 do {
2225 int chunkstart, invalidstart;
2227 /* Consume non-dirty HPTEs */
2228 while ((index < htabslots)
2229 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2230 index++;
2231 examined++;
2234 chunkstart = index;
2235 /* Consume valid dirty HPTEs */
2236 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2237 && HPTE_DIRTY(HPTE(spapr->htab, index))
2238 && HPTE_VALID(HPTE(spapr->htab, index))) {
2239 CLEAN_HPTE(HPTE(spapr->htab, index));
2240 index++;
2241 examined++;
2244 invalidstart = index;
2245 /* Consume invalid dirty HPTEs */
2246 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2247 && HPTE_DIRTY(HPTE(spapr->htab, index))
2248 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2249 CLEAN_HPTE(HPTE(spapr->htab, index));
2250 index++;
2251 examined++;
2254 if (index > chunkstart) {
2255 int n_valid = invalidstart - chunkstart;
2256 int n_invalid = index - invalidstart;
2258 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2259 sent += index - chunkstart;
2261 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2262 break;
2266 if (examined >= htabslots) {
2267 break;
2270 if (index >= htabslots) {
2271 assert(index == htabslots);
2272 index = 0;
2274 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2276 if (index >= htabslots) {
2277 assert(index == htabslots);
2278 index = 0;
2281 spapr->htab_save_index = index;
2283 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2286 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2287 #define MAX_KVM_BUF_SIZE 2048
2289 static int htab_save_iterate(QEMUFile *f, void *opaque)
2291 SpaprMachineState *spapr = opaque;
2292 int fd;
2293 int rc = 0;
2295 /* Iteration header */
2296 if (!spapr->htab_shift) {
2297 qemu_put_be32(f, -1);
2298 return 1;
2299 } else {
2300 qemu_put_be32(f, 0);
2303 if (!spapr->htab) {
2304 assert(kvm_enabled());
2306 fd = get_htab_fd(spapr);
2307 if (fd < 0) {
2308 return fd;
2311 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2312 if (rc < 0) {
2313 return rc;
2315 } else if (spapr->htab_first_pass) {
2316 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2317 } else {
2318 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2321 htab_save_end_marker(f);
2323 return rc;
2326 static int htab_save_complete(QEMUFile *f, void *opaque)
2328 SpaprMachineState *spapr = opaque;
2329 int fd;
2331 /* Iteration header */
2332 if (!spapr->htab_shift) {
2333 qemu_put_be32(f, -1);
2334 return 0;
2335 } else {
2336 qemu_put_be32(f, 0);
2339 if (!spapr->htab) {
2340 int rc;
2342 assert(kvm_enabled());
2344 fd = get_htab_fd(spapr);
2345 if (fd < 0) {
2346 return fd;
2349 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2350 if (rc < 0) {
2351 return rc;
2353 } else {
2354 if (spapr->htab_first_pass) {
2355 htab_save_first_pass(f, spapr, -1);
2357 htab_save_later_pass(f, spapr, -1);
2360 /* End marker */
2361 htab_save_end_marker(f);
2363 return 0;
2366 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2368 SpaprMachineState *spapr = opaque;
2369 uint32_t section_hdr;
2370 int fd = -1;
2371 Error *local_err = NULL;
2373 if (version_id < 1 || version_id > 1) {
2374 error_report("htab_load() bad version");
2375 return -EINVAL;
2378 section_hdr = qemu_get_be32(f);
2380 if (section_hdr == -1) {
2381 spapr_free_hpt(spapr);
2382 return 0;
2385 if (section_hdr) {
2386 int ret;
2388 /* First section gives the htab size */
2389 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2390 if (ret < 0) {
2391 error_report_err(local_err);
2392 return ret;
2394 return 0;
2397 if (!spapr->htab) {
2398 assert(kvm_enabled());
2400 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2401 if (fd < 0) {
2402 error_report_err(local_err);
2403 return fd;
2407 while (true) {
2408 uint32_t index;
2409 uint16_t n_valid, n_invalid;
2411 index = qemu_get_be32(f);
2412 n_valid = qemu_get_be16(f);
2413 n_invalid = qemu_get_be16(f);
2415 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2416 /* End of Stream */
2417 break;
2420 if ((index + n_valid + n_invalid) >
2421 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2422 /* Bad index in stream */
2423 error_report(
2424 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2425 index, n_valid, n_invalid, spapr->htab_shift);
2426 return -EINVAL;
2429 if (spapr->htab) {
2430 if (n_valid) {
2431 qemu_get_buffer(f, HPTE(spapr->htab, index),
2432 HASH_PTE_SIZE_64 * n_valid);
2434 if (n_invalid) {
2435 memset(HPTE(spapr->htab, index + n_valid), 0,
2436 HASH_PTE_SIZE_64 * n_invalid);
2438 } else {
2439 int rc;
2441 assert(fd >= 0);
2443 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2444 &local_err);
2445 if (rc < 0) {
2446 error_report_err(local_err);
2447 return rc;
2452 if (!spapr->htab) {
2453 assert(fd >= 0);
2454 close(fd);
2457 return 0;
2460 static void htab_save_cleanup(void *opaque)
2462 SpaprMachineState *spapr = opaque;
2464 close_htab_fd(spapr);
2467 static SaveVMHandlers savevm_htab_handlers = {
2468 .save_setup = htab_save_setup,
2469 .save_live_iterate = htab_save_iterate,
2470 .save_live_complete_precopy = htab_save_complete,
2471 .save_cleanup = htab_save_cleanup,
2472 .load_state = htab_load,
2475 static void spapr_boot_set(void *opaque, const char *boot_device,
2476 Error **errp)
2478 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2480 g_free(spapr->boot_device);
2481 spapr->boot_device = g_strdup(boot_device);
2484 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2486 MachineState *machine = MACHINE(spapr);
2487 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2488 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2489 int i;
2491 g_assert(!nr_lmbs || machine->device_memory);
2492 for (i = 0; i < nr_lmbs; i++) {
2493 uint64_t addr;
2495 addr = i * lmb_size + machine->device_memory->base;
2496 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2497 addr / lmb_size);
2502 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2503 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2504 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2506 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2508 int i;
2510 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2511 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2512 " is not aligned to %" PRIu64 " MiB",
2513 machine->ram_size,
2514 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2515 return;
2518 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2519 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2520 " is not aligned to %" PRIu64 " MiB",
2521 machine->ram_size,
2522 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2523 return;
2526 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2527 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2528 error_setg(errp,
2529 "Node %d memory size 0x%" PRIx64
2530 " is not aligned to %" PRIu64 " MiB",
2531 i, machine->numa_state->nodes[i].node_mem,
2532 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2533 return;
2538 /* find cpu slot in machine->possible_cpus by core_id */
2539 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2541 int index = id / ms->smp.threads;
2543 if (index >= ms->possible_cpus->len) {
2544 return NULL;
2546 if (idx) {
2547 *idx = index;
2549 return &ms->possible_cpus->cpus[index];
2552 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2554 MachineState *ms = MACHINE(spapr);
2555 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2556 Error *local_err = NULL;
2557 bool vsmt_user = !!spapr->vsmt;
2558 int kvm_smt = kvmppc_smt_threads();
2559 int ret;
2560 unsigned int smp_threads = ms->smp.threads;
2562 if (tcg_enabled()) {
2563 if (smp_threads > 1 &&
2564 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2565 spapr->max_compat_pvr)) {
2566 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2567 return;
2570 if (smp_threads > 8) {
2571 error_setg(errp, "TCG cannot support more than 8 threads/core "
2572 "on a pseries machine");
2573 return;
2576 if (!is_power_of_2(smp_threads)) {
2577 error_setg(errp, "Cannot support %d threads/core on a pseries "
2578 "machine because it must be a power of 2", smp_threads);
2579 return;
2582 /* Determine the VSMT mode to use: */
2583 if (vsmt_user) {
2584 if (spapr->vsmt < smp_threads) {
2585 error_setg(errp, "Cannot support VSMT mode %d"
2586 " because it must be >= threads/core (%d)",
2587 spapr->vsmt, smp_threads);
2588 return;
2590 /* In this case, spapr->vsmt has been set by the command line */
2591 } else if (!smc->smp_threads_vsmt) {
2593 * Default VSMT value is tricky, because we need it to be as
2594 * consistent as possible (for migration), but this requires
2595 * changing it for at least some existing cases. We pick 8 as
2596 * the value that we'd get with KVM on POWER8, the
2597 * overwhelmingly common case in production systems.
2599 spapr->vsmt = MAX(8, smp_threads);
2600 } else {
2601 spapr->vsmt = smp_threads;
2604 /* KVM: If necessary, set the SMT mode: */
2605 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2606 ret = kvmppc_set_smt_threads(spapr->vsmt);
2607 if (ret) {
2608 /* Looks like KVM isn't able to change VSMT mode */
2609 error_setg(&local_err,
2610 "Failed to set KVM's VSMT mode to %d (errno %d)",
2611 spapr->vsmt, ret);
2612 /* We can live with that if the default one is big enough
2613 * for the number of threads, and a submultiple of the one
2614 * we want. In this case we'll waste some vcpu ids, but
2615 * behaviour will be correct */
2616 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2617 warn_report_err(local_err);
2618 } else {
2619 if (!vsmt_user) {
2620 error_append_hint(&local_err,
2621 "On PPC, a VM with %d threads/core"
2622 " on a host with %d threads/core"
2623 " requires the use of VSMT mode %d.\n",
2624 smp_threads, kvm_smt, spapr->vsmt);
2626 kvmppc_error_append_smt_possible_hint(&local_err);
2627 error_propagate(errp, local_err);
2631 /* else TCG: nothing to do currently */
2634 static void spapr_init_cpus(SpaprMachineState *spapr)
2636 MachineState *machine = MACHINE(spapr);
2637 MachineClass *mc = MACHINE_GET_CLASS(machine);
2638 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2639 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2640 const CPUArchIdList *possible_cpus;
2641 unsigned int smp_cpus = machine->smp.cpus;
2642 unsigned int smp_threads = machine->smp.threads;
2643 unsigned int max_cpus = machine->smp.max_cpus;
2644 int boot_cores_nr = smp_cpus / smp_threads;
2645 int i;
2647 possible_cpus = mc->possible_cpu_arch_ids(machine);
2648 if (mc->has_hotpluggable_cpus) {
2649 if (smp_cpus % smp_threads) {
2650 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2651 smp_cpus, smp_threads);
2652 exit(1);
2654 if (max_cpus % smp_threads) {
2655 error_report("max_cpus (%u) must be multiple of threads (%u)",
2656 max_cpus, smp_threads);
2657 exit(1);
2659 } else {
2660 if (max_cpus != smp_cpus) {
2661 error_report("This machine version does not support CPU hotplug");
2662 exit(1);
2664 boot_cores_nr = possible_cpus->len;
2667 if (smc->pre_2_10_has_unused_icps) {
2668 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2669 /* Dummy entries get deregistered when real ICPState objects
2670 * are registered during CPU core hotplug.
2672 pre_2_10_vmstate_register_dummy_icp(i);
2676 for (i = 0; i < possible_cpus->len; i++) {
2677 int core_id = i * smp_threads;
2679 if (mc->has_hotpluggable_cpus) {
2680 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2681 spapr_vcpu_id(spapr, core_id));
2684 if (i < boot_cores_nr) {
2685 Object *core = object_new(type);
2686 int nr_threads = smp_threads;
2688 /* Handle the partially filled core for older machine types */
2689 if ((i + 1) * smp_threads >= smp_cpus) {
2690 nr_threads = smp_cpus - i * smp_threads;
2693 object_property_set_int(core, "nr-threads", nr_threads,
2694 &error_fatal);
2695 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2696 &error_fatal);
2697 qdev_realize(DEVICE(core), NULL, &error_fatal);
2699 object_unref(core);
2704 static PCIHostState *spapr_create_default_phb(void)
2706 DeviceState *dev;
2708 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2709 qdev_prop_set_uint32(dev, "index", 0);
2710 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2712 return PCI_HOST_BRIDGE(dev);
2715 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2717 MachineState *machine = MACHINE(spapr);
2718 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2719 hwaddr rma_size = machine->ram_size;
2720 hwaddr node0_size = spapr_node0_size(machine);
2722 /* RMA has to fit in the first NUMA node */
2723 rma_size = MIN(rma_size, node0_size);
2726 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2727 * never exceed that
2729 rma_size = MIN(rma_size, 1 * TiB);
2732 * Clamp the RMA size based on machine type. This is for
2733 * migration compatibility with older qemu versions, which limited
2734 * the RMA size for complicated and mostly bad reasons.
2736 if (smc->rma_limit) {
2737 rma_size = MIN(rma_size, smc->rma_limit);
2740 if (rma_size < MIN_RMA_SLOF) {
2741 error_setg(errp,
2742 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2743 "ldMiB guest RMA (Real Mode Area memory)",
2744 MIN_RMA_SLOF / MiB);
2745 return 0;
2748 return rma_size;
2751 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2753 MachineState *machine = MACHINE(spapr);
2754 int i;
2756 for (i = 0; i < machine->ram_slots; i++) {
2757 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2761 /* pSeries LPAR / sPAPR hardware init */
2762 static void spapr_machine_init(MachineState *machine)
2764 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2765 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2766 MachineClass *mc = MACHINE_GET_CLASS(machine);
2767 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2768 const char *bios_name = machine->firmware ?: bios_default;
2769 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2770 const char *kernel_filename = machine->kernel_filename;
2771 const char *initrd_filename = machine->initrd_filename;
2772 PCIHostState *phb;
2773 bool has_vga;
2774 int i;
2775 MemoryRegion *sysmem = get_system_memory();
2776 long load_limit, fw_size;
2777 Error *resize_hpt_err = NULL;
2779 if (!filename) {
2780 error_report("Could not find LPAR firmware '%s'", bios_name);
2781 exit(1);
2783 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2784 if (fw_size <= 0) {
2785 error_report("Could not load LPAR firmware '%s'", filename);
2786 exit(1);
2790 * if Secure VM (PEF) support is configured, then initialize it
2792 pef_kvm_init(machine->cgs, &error_fatal);
2794 msi_nonbroken = true;
2796 QLIST_INIT(&spapr->phbs);
2797 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2799 /* Determine capabilities to run with */
2800 spapr_caps_init(spapr);
2802 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2803 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2805 * If the user explicitly requested a mode we should either
2806 * supply it, or fail completely (which we do below). But if
2807 * it's not set explicitly, we reset our mode to something
2808 * that works
2810 if (resize_hpt_err) {
2811 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2812 error_free(resize_hpt_err);
2813 resize_hpt_err = NULL;
2814 } else {
2815 spapr->resize_hpt = smc->resize_hpt_default;
2819 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2821 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2823 * User requested HPT resize, but this host can't supply it. Bail out
2825 error_report_err(resize_hpt_err);
2826 exit(1);
2828 error_free(resize_hpt_err);
2830 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2832 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2833 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2836 * VSMT must be set in order to be able to compute VCPU ids, ie to
2837 * call spapr_max_server_number() or spapr_vcpu_id().
2839 spapr_set_vsmt_mode(spapr, &error_fatal);
2841 /* Set up Interrupt Controller before we create the VCPUs */
2842 spapr_irq_init(spapr, &error_fatal);
2844 /* Set up containers for ibm,client-architecture-support negotiated options
2846 spapr->ov5 = spapr_ovec_new();
2847 spapr->ov5_cas = spapr_ovec_new();
2849 if (smc->dr_lmb_enabled) {
2850 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2851 spapr_validate_node_memory(machine, &error_fatal);
2854 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2856 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2857 if (!smc->pre_6_2_numa_affinity) {
2858 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2861 /* advertise support for dedicated HP event source to guests */
2862 if (spapr->use_hotplug_event_source) {
2863 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2866 /* advertise support for HPT resizing */
2867 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2868 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2871 /* advertise support for ibm,dyamic-memory-v2 */
2872 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2874 /* advertise XIVE on POWER9 machines */
2875 if (spapr->irq->xive) {
2876 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2879 /* init CPUs */
2880 spapr_init_cpus(spapr);
2882 /* Init numa_assoc_array */
2883 spapr_numa_associativity_init(spapr, machine);
2885 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2886 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2887 spapr->max_compat_pvr)) {
2888 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2889 /* KVM and TCG always allow GTSE with radix... */
2890 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2892 /* ... but not with hash (currently). */
2894 if (kvm_enabled()) {
2895 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2896 kvmppc_enable_logical_ci_hcalls();
2897 kvmppc_enable_set_mode_hcall();
2899 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2900 kvmppc_enable_clear_ref_mod_hcalls();
2902 /* Enable H_PAGE_INIT */
2903 kvmppc_enable_h_page_init();
2906 /* map RAM */
2907 memory_region_add_subregion(sysmem, 0, machine->ram);
2909 /* initialize hotplug memory address space */
2910 if (machine->ram_size < machine->maxram_size) {
2911 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2912 hwaddr device_mem_base;
2915 * Limit the number of hotpluggable memory slots to half the number
2916 * slots that KVM supports, leaving the other half for PCI and other
2917 * devices. However ensure that number of slots doesn't drop below 32.
2919 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2920 SPAPR_MAX_RAM_SLOTS;
2922 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2923 max_memslots = SPAPR_MAX_RAM_SLOTS;
2925 if (machine->ram_slots > max_memslots) {
2926 error_report("Specified number of memory slots %"
2927 PRIu64" exceeds max supported %d",
2928 machine->ram_slots, max_memslots);
2929 exit(1);
2932 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2933 machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2936 if (smc->dr_lmb_enabled) {
2937 spapr_create_lmb_dr_connectors(spapr);
2940 if (mc->nvdimm_supported) {
2941 spapr_create_nvdimm_dr_connectors(spapr);
2944 /* Set up RTAS event infrastructure */
2945 spapr_events_init(spapr);
2947 /* Set up the RTC RTAS interfaces */
2948 spapr_rtc_create(spapr);
2950 /* Set up VIO bus */
2951 spapr->vio_bus = spapr_vio_bus_init();
2953 for (i = 0; serial_hd(i); i++) {
2954 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2957 /* We always have at least the nvram device on VIO */
2958 spapr_create_nvram(spapr);
2961 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2962 * connectors (described in root DT node's "ibm,drc-types" property)
2963 * are pre-initialized here. additional child connectors (such as
2964 * connectors for a PHBs PCI slots) are added as needed during their
2965 * parent's realization.
2967 if (smc->dr_phb_enabled) {
2968 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2969 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2973 /* Set up PCI */
2974 spapr_pci_rtas_init();
2976 phb = spapr_create_default_phb();
2978 for (i = 0; i < nb_nics; i++) {
2979 NICInfo *nd = &nd_table[i];
2981 if (!nd->model) {
2982 nd->model = g_strdup("spapr-vlan");
2985 if (g_str_equal(nd->model, "spapr-vlan") ||
2986 g_str_equal(nd->model, "ibmveth")) {
2987 spapr_vlan_create(spapr->vio_bus, nd);
2988 } else {
2989 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2993 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2994 spapr_vscsi_create(spapr->vio_bus);
2997 /* Graphics */
2998 has_vga = spapr_vga_init(phb->bus, &error_fatal);
2999 if (has_vga) {
3000 spapr->want_stdout_path = !machine->enable_graphics;
3001 machine->usb |= defaults_enabled() && !machine->usb_disabled;
3002 } else {
3003 spapr->want_stdout_path = true;
3006 if (machine->usb) {
3007 if (smc->use_ohci_by_default) {
3008 pci_create_simple(phb->bus, -1, "pci-ohci");
3009 } else {
3010 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3013 if (has_vga) {
3014 USBBus *usb_bus = usb_bus_find(-1);
3016 usb_create_simple(usb_bus, "usb-kbd");
3017 usb_create_simple(usb_bus, "usb-mouse");
3021 if (kernel_filename) {
3022 uint64_t loaded_addr = 0;
3024 spapr->kernel_size = load_elf(kernel_filename, NULL,
3025 translate_kernel_address, spapr,
3026 NULL, &loaded_addr, NULL, NULL, 1,
3027 PPC_ELF_MACHINE, 0, 0);
3028 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3029 spapr->kernel_size = load_elf(kernel_filename, NULL,
3030 translate_kernel_address, spapr,
3031 NULL, &loaded_addr, NULL, NULL, 0,
3032 PPC_ELF_MACHINE, 0, 0);
3033 spapr->kernel_le = spapr->kernel_size > 0;
3035 if (spapr->kernel_size < 0) {
3036 error_report("error loading %s: %s", kernel_filename,
3037 load_elf_strerror(spapr->kernel_size));
3038 exit(1);
3041 if (spapr->kernel_addr != loaded_addr) {
3042 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3043 " to 0x%"PRIx64,
3044 spapr->kernel_addr, loaded_addr);
3045 spapr->kernel_addr = loaded_addr;
3048 /* load initrd */
3049 if (initrd_filename) {
3050 /* Try to locate the initrd in the gap between the kernel
3051 * and the firmware. Add a bit of space just in case
3053 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3054 + 0x1ffff) & ~0xffff;
3055 spapr->initrd_size = load_image_targphys(initrd_filename,
3056 spapr->initrd_base,
3057 load_limit
3058 - spapr->initrd_base);
3059 if (spapr->initrd_size < 0) {
3060 error_report("could not load initial ram disk '%s'",
3061 initrd_filename);
3062 exit(1);
3067 /* FIXME: Should register things through the MachineState's qdev
3068 * interface, this is a legacy from the sPAPREnvironment structure
3069 * which predated MachineState but had a similar function */
3070 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3071 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3072 &savevm_htab_handlers, spapr);
3074 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3076 qemu_register_boot_set(spapr_boot_set, spapr);
3079 * Nothing needs to be done to resume a suspended guest because
3080 * suspending does not change the machine state, so no need for
3081 * a ->wakeup method.
3083 qemu_register_wakeup_support();
3085 if (kvm_enabled()) {
3086 /* to stop and start vmclock */
3087 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3088 &spapr->tb);
3090 kvmppc_spapr_enable_inkernel_multitce();
3093 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3094 if (spapr->vof) {
3095 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3096 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3099 spapr_watchdog_init(spapr);
3102 #define DEFAULT_KVM_TYPE "auto"
3103 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3106 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3107 * accommodate the 'HV' and 'PV' formats that exists in the
3108 * wild. The 'auto' mode is being introduced already as
3109 * lower-case, thus we don't need to bother checking for
3110 * "AUTO".
3112 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3113 return 0;
3116 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3117 return 1;
3120 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3121 return 2;
3124 error_report("Unknown kvm-type specified '%s'", vm_type);
3125 return -1;
3129 * Implementation of an interface to adjust firmware path
3130 * for the bootindex property handling.
3132 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3133 DeviceState *dev)
3135 #define CAST(type, obj, name) \
3136 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3137 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3138 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3139 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3140 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3142 if (d && bus) {
3143 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3144 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3145 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3147 if (spapr) {
3149 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3150 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3151 * 0x8000 | (target << 8) | (bus << 5) | lun
3152 * (see the "Logical unit addressing format" table in SAM5)
3154 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3155 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3156 (uint64_t)id << 48);
3157 } else if (virtio) {
3159 * We use SRP luns of the form 01000000 | (target << 8) | lun
3160 * in the top 32 bits of the 64-bit LUN
3161 * Note: the quote above is from SLOF and it is wrong,
3162 * the actual binding is:
3163 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3165 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3166 if (d->lun >= 256) {
3167 /* Use the LUN "flat space addressing method" */
3168 id |= 0x4000;
3170 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3171 (uint64_t)id << 32);
3172 } else if (usb) {
3174 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3175 * in the top 32 bits of the 64-bit LUN
3177 unsigned usb_port = atoi(usb->port->path);
3178 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3179 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3180 (uint64_t)id << 32);
3185 * SLOF probes the USB devices, and if it recognizes that the device is a
3186 * storage device, it changes its name to "storage" instead of "usb-host",
3187 * and additionally adds a child node for the SCSI LUN, so the correct
3188 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3190 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3191 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3192 if (usb_device_is_scsi_storage(usbdev)) {
3193 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3197 if (phb) {
3198 /* Replace "pci" with "pci@800000020000000" */
3199 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3202 if (vsc) {
3203 /* Same logic as virtio above */
3204 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3205 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3208 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3209 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3210 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3211 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn));
3214 if (pcidev) {
3215 return spapr_pci_fw_dev_name(pcidev);
3218 return NULL;
3221 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3223 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3225 return g_strdup(spapr->kvm_type);
3228 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3230 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3232 g_free(spapr->kvm_type);
3233 spapr->kvm_type = g_strdup(value);
3236 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3238 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3240 return spapr->use_hotplug_event_source;
3243 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3244 Error **errp)
3246 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3248 spapr->use_hotplug_event_source = value;
3251 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3253 return true;
3256 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3258 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3260 switch (spapr->resize_hpt) {
3261 case SPAPR_RESIZE_HPT_DEFAULT:
3262 return g_strdup("default");
3263 case SPAPR_RESIZE_HPT_DISABLED:
3264 return g_strdup("disabled");
3265 case SPAPR_RESIZE_HPT_ENABLED:
3266 return g_strdup("enabled");
3267 case SPAPR_RESIZE_HPT_REQUIRED:
3268 return g_strdup("required");
3270 g_assert_not_reached();
3273 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3275 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3277 if (strcmp(value, "default") == 0) {
3278 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3279 } else if (strcmp(value, "disabled") == 0) {
3280 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3281 } else if (strcmp(value, "enabled") == 0) {
3282 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3283 } else if (strcmp(value, "required") == 0) {
3284 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3285 } else {
3286 error_setg(errp, "Bad value for \"resize-hpt\" property");
3290 static bool spapr_get_vof(Object *obj, Error **errp)
3292 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3294 return spapr->vof != NULL;
3297 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3301 if (spapr->vof) {
3302 vof_cleanup(spapr->vof);
3303 g_free(spapr->vof);
3304 spapr->vof = NULL;
3306 if (!value) {
3307 return;
3309 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3312 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3314 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3316 if (spapr->irq == &spapr_irq_xics_legacy) {
3317 return g_strdup("legacy");
3318 } else if (spapr->irq == &spapr_irq_xics) {
3319 return g_strdup("xics");
3320 } else if (spapr->irq == &spapr_irq_xive) {
3321 return g_strdup("xive");
3322 } else if (spapr->irq == &spapr_irq_dual) {
3323 return g_strdup("dual");
3325 g_assert_not_reached();
3328 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3330 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3332 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3333 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3334 return;
3337 /* The legacy IRQ backend can not be set */
3338 if (strcmp(value, "xics") == 0) {
3339 spapr->irq = &spapr_irq_xics;
3340 } else if (strcmp(value, "xive") == 0) {
3341 spapr->irq = &spapr_irq_xive;
3342 } else if (strcmp(value, "dual") == 0) {
3343 spapr->irq = &spapr_irq_dual;
3344 } else {
3345 error_setg(errp, "Bad value for \"ic-mode\" property");
3349 static char *spapr_get_host_model(Object *obj, Error **errp)
3351 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3353 return g_strdup(spapr->host_model);
3356 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3358 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3360 g_free(spapr->host_model);
3361 spapr->host_model = g_strdup(value);
3364 static char *spapr_get_host_serial(Object *obj, Error **errp)
3366 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3368 return g_strdup(spapr->host_serial);
3371 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3373 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3375 g_free(spapr->host_serial);
3376 spapr->host_serial = g_strdup(value);
3379 static void spapr_instance_init(Object *obj)
3381 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3382 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3383 MachineState *ms = MACHINE(spapr);
3384 MachineClass *mc = MACHINE_GET_CLASS(ms);
3387 * NVDIMM support went live in 5.1 without considering that, in
3388 * other archs, the user needs to enable NVDIMM support with the
3389 * 'nvdimm' machine option and the default behavior is NVDIMM
3390 * support disabled. It is too late to roll back to the standard
3391 * behavior without breaking 5.1 guests.
3393 if (mc->nvdimm_supported) {
3394 ms->nvdimms_state->is_enabled = true;
3397 spapr->htab_fd = -1;
3398 spapr->use_hotplug_event_source = true;
3399 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3400 object_property_add_str(obj, "kvm-type",
3401 spapr_get_kvm_type, spapr_set_kvm_type);
3402 object_property_set_description(obj, "kvm-type",
3403 "Specifies the KVM virtualization mode (auto,"
3404 " hv, pr). Defaults to 'auto'. This mode will use"
3405 " any available KVM module loaded in the host,"
3406 " where kvm_hv takes precedence if both kvm_hv and"
3407 " kvm_pr are loaded.");
3408 object_property_add_bool(obj, "modern-hotplug-events",
3409 spapr_get_modern_hotplug_events,
3410 spapr_set_modern_hotplug_events);
3411 object_property_set_description(obj, "modern-hotplug-events",
3412 "Use dedicated hotplug event mechanism in"
3413 " place of standard EPOW events when possible"
3414 " (required for memory hot-unplug support)");
3415 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3416 "Maximum permitted CPU compatibility mode");
3418 object_property_add_str(obj, "resize-hpt",
3419 spapr_get_resize_hpt, spapr_set_resize_hpt);
3420 object_property_set_description(obj, "resize-hpt",
3421 "Resizing of the Hash Page Table (enabled, disabled, required)");
3422 object_property_add_uint32_ptr(obj, "vsmt",
3423 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3424 object_property_set_description(obj, "vsmt",
3425 "Virtual SMT: KVM behaves as if this were"
3426 " the host's SMT mode");
3428 object_property_add_bool(obj, "vfio-no-msix-emulation",
3429 spapr_get_msix_emulation, NULL);
3431 object_property_add_uint64_ptr(obj, "kernel-addr",
3432 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3433 object_property_set_description(obj, "kernel-addr",
3434 stringify(KERNEL_LOAD_ADDR)
3435 " for -kernel is the default");
3436 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3438 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3439 object_property_set_description(obj, "x-vof",
3440 "Enable Virtual Open Firmware (experimental)");
3442 /* The machine class defines the default interrupt controller mode */
3443 spapr->irq = smc->irq;
3444 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3445 spapr_set_ic_mode);
3446 object_property_set_description(obj, "ic-mode",
3447 "Specifies the interrupt controller mode (xics, xive, dual)");
3449 object_property_add_str(obj, "host-model",
3450 spapr_get_host_model, spapr_set_host_model);
3451 object_property_set_description(obj, "host-model",
3452 "Host model to advertise in guest device tree");
3453 object_property_add_str(obj, "host-serial",
3454 spapr_get_host_serial, spapr_set_host_serial);
3455 object_property_set_description(obj, "host-serial",
3456 "Host serial number to advertise in guest device tree");
3459 static void spapr_machine_finalizefn(Object *obj)
3461 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3463 g_free(spapr->kvm_type);
3466 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3468 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3469 PowerPCCPU *cpu = POWERPC_CPU(cs);
3470 CPUPPCState *env = &cpu->env;
3472 cpu_synchronize_state(cs);
3473 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3474 if (spapr->fwnmi_system_reset_addr != -1) {
3475 uint64_t rtas_addr, addr;
3477 /* get rtas addr from fdt */
3478 rtas_addr = spapr_get_rtas_addr();
3479 if (!rtas_addr) {
3480 qemu_system_guest_panicked(NULL);
3481 return;
3484 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3485 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3486 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3487 env->gpr[3] = addr;
3489 ppc_cpu_do_system_reset(cs);
3490 if (spapr->fwnmi_system_reset_addr != -1) {
3491 env->nip = spapr->fwnmi_system_reset_addr;
3495 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3497 CPUState *cs;
3499 CPU_FOREACH(cs) {
3500 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3504 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3505 void *fdt, int *fdt_start_offset, Error **errp)
3507 uint64_t addr;
3508 uint32_t node;
3510 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3511 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3512 &error_abort);
3513 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3514 SPAPR_MEMORY_BLOCK_SIZE);
3515 return 0;
3518 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3519 bool dedicated_hp_event_source)
3521 SpaprDrc *drc;
3522 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3523 int i;
3524 uint64_t addr = addr_start;
3525 bool hotplugged = spapr_drc_hotplugged(dev);
3527 for (i = 0; i < nr_lmbs; i++) {
3528 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3529 addr / SPAPR_MEMORY_BLOCK_SIZE);
3530 g_assert(drc);
3533 * memory_device_get_free_addr() provided a range of free addresses
3534 * that doesn't overlap with any existing mapping at pre-plug. The
3535 * corresponding LMB DRCs are thus assumed to be all attachable.
3537 spapr_drc_attach(drc, dev);
3538 if (!hotplugged) {
3539 spapr_drc_reset(drc);
3541 addr += SPAPR_MEMORY_BLOCK_SIZE;
3543 /* send hotplug notification to the
3544 * guest only in case of hotplugged memory
3546 if (hotplugged) {
3547 if (dedicated_hp_event_source) {
3548 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3549 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3550 g_assert(drc);
3551 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3552 nr_lmbs,
3553 spapr_drc_index(drc));
3554 } else {
3555 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3556 nr_lmbs);
3561 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3563 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3564 PCDIMMDevice *dimm = PC_DIMM(dev);
3565 uint64_t size, addr;
3566 int64_t slot;
3567 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3569 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3571 pc_dimm_plug(dimm, MACHINE(ms));
3573 if (!is_nvdimm) {
3574 addr = object_property_get_uint(OBJECT(dimm),
3575 PC_DIMM_ADDR_PROP, &error_abort);
3576 spapr_add_lmbs(dev, addr, size,
3577 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3578 } else {
3579 slot = object_property_get_int(OBJECT(dimm),
3580 PC_DIMM_SLOT_PROP, &error_abort);
3581 /* We should have valid slot number at this point */
3582 g_assert(slot >= 0);
3583 spapr_add_nvdimm(dev, slot);
3587 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3588 Error **errp)
3590 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3591 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3592 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3593 PCDIMMDevice *dimm = PC_DIMM(dev);
3594 Error *local_err = NULL;
3595 uint64_t size;
3596 Object *memdev;
3597 hwaddr pagesize;
3599 if (!smc->dr_lmb_enabled) {
3600 error_setg(errp, "Memory hotplug not supported for this machine");
3601 return;
3604 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3605 if (local_err) {
3606 error_propagate(errp, local_err);
3607 return;
3610 if (is_nvdimm) {
3611 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3612 return;
3614 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3615 error_setg(errp, "Hotplugged memory size must be a multiple of "
3616 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3617 return;
3620 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3621 &error_abort);
3622 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3623 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3624 return;
3627 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3630 struct SpaprDimmState {
3631 PCDIMMDevice *dimm;
3632 uint32_t nr_lmbs;
3633 QTAILQ_ENTRY(SpaprDimmState) next;
3636 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3637 PCDIMMDevice *dimm)
3639 SpaprDimmState *dimm_state = NULL;
3641 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3642 if (dimm_state->dimm == dimm) {
3643 break;
3646 return dimm_state;
3649 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3650 uint32_t nr_lmbs,
3651 PCDIMMDevice *dimm)
3653 SpaprDimmState *ds = NULL;
3656 * If this request is for a DIMM whose removal had failed earlier
3657 * (due to guest's refusal to remove the LMBs), we would have this
3658 * dimm already in the pending_dimm_unplugs list. In that
3659 * case don't add again.
3661 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3662 if (!ds) {
3663 ds = g_new0(SpaprDimmState, 1);
3664 ds->nr_lmbs = nr_lmbs;
3665 ds->dimm = dimm;
3666 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3668 return ds;
3671 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3672 SpaprDimmState *dimm_state)
3674 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3675 g_free(dimm_state);
3678 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3679 PCDIMMDevice *dimm)
3681 SpaprDrc *drc;
3682 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3683 &error_abort);
3684 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3685 uint32_t avail_lmbs = 0;
3686 uint64_t addr_start, addr;
3687 int i;
3689 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3690 &error_abort);
3692 addr = addr_start;
3693 for (i = 0; i < nr_lmbs; i++) {
3694 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3695 addr / SPAPR_MEMORY_BLOCK_SIZE);
3696 g_assert(drc);
3697 if (drc->dev) {
3698 avail_lmbs++;
3700 addr += SPAPR_MEMORY_BLOCK_SIZE;
3703 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3706 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3708 SpaprDimmState *ds;
3709 PCDIMMDevice *dimm;
3710 SpaprDrc *drc;
3711 uint32_t nr_lmbs;
3712 uint64_t size, addr_start, addr;
3713 g_autofree char *qapi_error = NULL;
3714 int i;
3716 if (!dev) {
3717 return;
3720 dimm = PC_DIMM(dev);
3721 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3724 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3725 * unplug state, but one of its DRC is marked as unplug_requested.
3726 * This is bad and weird enough to g_assert() out.
3728 g_assert(ds);
3730 spapr_pending_dimm_unplugs_remove(spapr, ds);
3732 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3733 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3735 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3736 &error_abort);
3738 addr = addr_start;
3739 for (i = 0; i < nr_lmbs; i++) {
3740 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3741 addr / SPAPR_MEMORY_BLOCK_SIZE);
3742 g_assert(drc);
3744 drc->unplug_requested = false;
3745 addr += SPAPR_MEMORY_BLOCK_SIZE;
3749 * Tell QAPI that something happened and the memory
3750 * hotunplug wasn't successful. Keep sending
3751 * MEM_UNPLUG_ERROR even while sending
3752 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3753 * MEM_UNPLUG_ERROR is due.
3755 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3756 "for device %s", dev->id);
3758 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3760 qapi_event_send_device_unplug_guest_error(dev->id,
3761 dev->canonical_path);
3764 /* Callback to be called during DRC release. */
3765 void spapr_lmb_release(DeviceState *dev)
3767 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3768 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3769 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3771 /* This information will get lost if a migration occurs
3772 * during the unplug process. In this case recover it. */
3773 if (ds == NULL) {
3774 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3775 g_assert(ds);
3776 /* The DRC being examined by the caller at least must be counted */
3777 g_assert(ds->nr_lmbs);
3780 if (--ds->nr_lmbs) {
3781 return;
3785 * Now that all the LMBs have been removed by the guest, call the
3786 * unplug handler chain. This can never fail.
3788 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3789 object_unparent(OBJECT(dev));
3792 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3794 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3795 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3797 /* We really shouldn't get this far without anything to unplug */
3798 g_assert(ds);
3800 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3801 qdev_unrealize(dev);
3802 spapr_pending_dimm_unplugs_remove(spapr, ds);
3805 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3806 DeviceState *dev, Error **errp)
3808 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3809 PCDIMMDevice *dimm = PC_DIMM(dev);
3810 uint32_t nr_lmbs;
3811 uint64_t size, addr_start, addr;
3812 int i;
3813 SpaprDrc *drc;
3815 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3816 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3817 return;
3820 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3821 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3823 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3824 &error_abort);
3827 * An existing pending dimm state for this DIMM means that there is an
3828 * unplug operation in progress, waiting for the spapr_lmb_release
3829 * callback to complete the job (BQL can't cover that far). In this case,
3830 * bail out to avoid detaching DRCs that were already released.
3832 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3833 error_setg(errp, "Memory unplug already in progress for device %s",
3834 dev->id);
3835 return;
3838 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3840 addr = addr_start;
3841 for (i = 0; i < nr_lmbs; i++) {
3842 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3843 addr / SPAPR_MEMORY_BLOCK_SIZE);
3844 g_assert(drc);
3846 spapr_drc_unplug_request(drc);
3847 addr += SPAPR_MEMORY_BLOCK_SIZE;
3850 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3851 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3852 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3853 nr_lmbs, spapr_drc_index(drc));
3856 /* Callback to be called during DRC release. */
3857 void spapr_core_release(DeviceState *dev)
3859 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3861 /* Call the unplug handler chain. This can never fail. */
3862 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3863 object_unparent(OBJECT(dev));
3866 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3868 MachineState *ms = MACHINE(hotplug_dev);
3869 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3870 CPUCore *cc = CPU_CORE(dev);
3871 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3873 if (smc->pre_2_10_has_unused_icps) {
3874 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3875 int i;
3877 for (i = 0; i < cc->nr_threads; i++) {
3878 CPUState *cs = CPU(sc->threads[i]);
3880 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3884 assert(core_slot);
3885 core_slot->cpu = NULL;
3886 qdev_unrealize(dev);
3889 static
3890 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3891 Error **errp)
3893 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3894 int index;
3895 SpaprDrc *drc;
3896 CPUCore *cc = CPU_CORE(dev);
3898 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3899 error_setg(errp, "Unable to find CPU core with core-id: %d",
3900 cc->core_id);
3901 return;
3903 if (index == 0) {
3904 error_setg(errp, "Boot CPU core may not be unplugged");
3905 return;
3908 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3909 spapr_vcpu_id(spapr, cc->core_id));
3910 g_assert(drc);
3912 if (!spapr_drc_unplug_requested(drc)) {
3913 spapr_drc_unplug_request(drc);
3917 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3918 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3919 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3920 * attempt (e.g. the kernel will refuse to remove the last online
3921 * CPU), we will never attempt it again because unplug_requested
3922 * will still be 'true' in that case.
3924 spapr_hotplug_req_remove_by_index(drc);
3927 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3928 void *fdt, int *fdt_start_offset, Error **errp)
3930 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3931 CPUState *cs = CPU(core->threads[0]);
3932 PowerPCCPU *cpu = POWERPC_CPU(cs);
3933 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3934 int id = spapr_get_vcpu_id(cpu);
3935 g_autofree char *nodename = NULL;
3936 int offset;
3938 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3939 offset = fdt_add_subnode(fdt, 0, nodename);
3941 spapr_dt_cpu(cs, fdt, offset, spapr);
3944 * spapr_dt_cpu() does not fill the 'name' property in the
3945 * CPU node. The function is called during boot process, before
3946 * and after CAS, and overwriting the 'name' property written
3947 * by SLOF is not allowed.
3949 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3950 * CPUs more compatible with the coldplugged ones, which have
3951 * the 'name' property. Linux Kernel also relies on this
3952 * property to identify CPU nodes.
3954 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3956 *fdt_start_offset = offset;
3957 return 0;
3960 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3962 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3963 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3964 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3965 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3966 CPUCore *cc = CPU_CORE(dev);
3967 CPUState *cs;
3968 SpaprDrc *drc;
3969 CPUArchId *core_slot;
3970 int index;
3971 bool hotplugged = spapr_drc_hotplugged(dev);
3972 int i;
3974 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3975 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3977 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3978 spapr_vcpu_id(spapr, cc->core_id));
3980 g_assert(drc || !mc->has_hotpluggable_cpus);
3982 if (drc) {
3984 * spapr_core_pre_plug() already buys us this is a brand new
3985 * core being plugged into a free slot. Nothing should already
3986 * be attached to the corresponding DRC.
3988 spapr_drc_attach(drc, dev);
3990 if (hotplugged) {
3992 * Send hotplug notification interrupt to the guest only
3993 * in case of hotplugged CPUs.
3995 spapr_hotplug_req_add_by_index(drc);
3996 } else {
3997 spapr_drc_reset(drc);
4001 core_slot->cpu = OBJECT(dev);
4004 * Set compatibility mode to match the boot CPU, which was either set
4005 * by the machine reset code or by CAS. This really shouldn't fail at
4006 * this point.
4008 if (hotplugged) {
4009 for (i = 0; i < cc->nr_threads; i++) {
4010 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4011 &error_abort);
4015 if (smc->pre_2_10_has_unused_icps) {
4016 for (i = 0; i < cc->nr_threads; i++) {
4017 cs = CPU(core->threads[i]);
4018 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4023 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4024 Error **errp)
4026 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4027 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4028 CPUCore *cc = CPU_CORE(dev);
4029 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4030 const char *type = object_get_typename(OBJECT(dev));
4031 CPUArchId *core_slot;
4032 int index;
4033 unsigned int smp_threads = machine->smp.threads;
4035 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4036 error_setg(errp, "CPU hotplug not supported for this machine");
4037 return;
4040 if (strcmp(base_core_type, type)) {
4041 error_setg(errp, "CPU core type should be %s", base_core_type);
4042 return;
4045 if (cc->core_id % smp_threads) {
4046 error_setg(errp, "invalid core id %d", cc->core_id);
4047 return;
4051 * In general we should have homogeneous threads-per-core, but old
4052 * (pre hotplug support) machine types allow the last core to have
4053 * reduced threads as a compatibility hack for when we allowed
4054 * total vcpus not a multiple of threads-per-core.
4056 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4057 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4058 smp_threads);
4059 return;
4062 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4063 if (!core_slot) {
4064 error_setg(errp, "core id %d out of range", cc->core_id);
4065 return;
4068 if (core_slot->cpu) {
4069 error_setg(errp, "core %d already populated", cc->core_id);
4070 return;
4073 numa_cpu_pre_plug(core_slot, dev, errp);
4076 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4077 void *fdt, int *fdt_start_offset, Error **errp)
4079 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4080 int intc_phandle;
4082 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4083 if (intc_phandle <= 0) {
4084 return -1;
4087 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4088 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4089 return -1;
4092 /* generally SLOF creates these, for hotplug it's up to QEMU */
4093 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4095 return 0;
4098 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4099 Error **errp)
4101 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4102 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4103 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4104 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4105 SpaprDrc *drc;
4107 if (dev->hotplugged && !smc->dr_phb_enabled) {
4108 error_setg(errp, "PHB hotplug not supported for this machine");
4109 return false;
4112 if (sphb->index == (uint32_t)-1) {
4113 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4114 return false;
4117 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4118 if (drc && drc->dev) {
4119 error_setg(errp, "PHB %d already attached", sphb->index);
4120 return false;
4124 * This will check that sphb->index doesn't exceed the maximum number of
4125 * PHBs for the current machine type.
4127 return
4128 smc->phb_placement(spapr, sphb->index,
4129 &sphb->buid, &sphb->io_win_addr,
4130 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4131 windows_supported, sphb->dma_liobn,
4132 errp);
4135 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4137 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4138 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4139 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4140 SpaprDrc *drc;
4141 bool hotplugged = spapr_drc_hotplugged(dev);
4143 if (!smc->dr_phb_enabled) {
4144 return;
4147 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4148 /* hotplug hooks should check it's enabled before getting this far */
4149 assert(drc);
4151 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4152 spapr_drc_attach(drc, dev);
4154 if (hotplugged) {
4155 spapr_hotplug_req_add_by_index(drc);
4156 } else {
4157 spapr_drc_reset(drc);
4161 void spapr_phb_release(DeviceState *dev)
4163 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4165 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4166 object_unparent(OBJECT(dev));
4169 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4171 qdev_unrealize(dev);
4174 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4175 DeviceState *dev, Error **errp)
4177 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4178 SpaprDrc *drc;
4180 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4181 assert(drc);
4183 if (!spapr_drc_unplug_requested(drc)) {
4184 spapr_drc_unplug_request(drc);
4185 spapr_hotplug_req_remove_by_index(drc);
4186 } else {
4187 error_setg(errp,
4188 "PCI Host Bridge unplug already in progress for device %s",
4189 dev->id);
4193 static
4194 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4195 Error **errp)
4197 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4199 if (spapr->tpm_proxy != NULL) {
4200 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4201 return false;
4204 return true;
4207 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4209 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4210 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4212 /* Already checked in spapr_tpm_proxy_pre_plug() */
4213 g_assert(spapr->tpm_proxy == NULL);
4215 spapr->tpm_proxy = tpm_proxy;
4218 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4220 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4222 qdev_unrealize(dev);
4223 object_unparent(OBJECT(dev));
4224 spapr->tpm_proxy = NULL;
4227 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4228 DeviceState *dev, Error **errp)
4230 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4231 spapr_memory_plug(hotplug_dev, dev);
4232 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4233 spapr_core_plug(hotplug_dev, dev);
4234 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4235 spapr_phb_plug(hotplug_dev, dev);
4236 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4237 spapr_tpm_proxy_plug(hotplug_dev, dev);
4241 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4242 DeviceState *dev, Error **errp)
4244 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4245 spapr_memory_unplug(hotplug_dev, dev);
4246 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4247 spapr_core_unplug(hotplug_dev, dev);
4248 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4249 spapr_phb_unplug(hotplug_dev, dev);
4250 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4251 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4255 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4257 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4259 * CAS will process all pending unplug requests.
4261 * HACK: a guest could theoretically have cleared all bits in OV5,
4262 * but none of the guests we care for do.
4264 spapr_ovec_empty(spapr->ov5_cas);
4267 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4268 DeviceState *dev, Error **errp)
4270 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4271 MachineClass *mc = MACHINE_GET_CLASS(sms);
4272 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4274 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4275 if (spapr_memory_hot_unplug_supported(sms)) {
4276 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4277 } else {
4278 error_setg(errp, "Memory hot unplug not supported for this guest");
4280 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4281 if (!mc->has_hotpluggable_cpus) {
4282 error_setg(errp, "CPU hot unplug not supported on this machine");
4283 return;
4285 spapr_core_unplug_request(hotplug_dev, dev, errp);
4286 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4287 if (!smc->dr_phb_enabled) {
4288 error_setg(errp, "PHB hot unplug not supported on this machine");
4289 return;
4291 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4292 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4293 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4297 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4298 DeviceState *dev, Error **errp)
4300 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4301 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4302 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4303 spapr_core_pre_plug(hotplug_dev, dev, errp);
4304 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4305 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4306 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4307 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4311 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4312 DeviceState *dev)
4314 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4315 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4316 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4317 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4318 return HOTPLUG_HANDLER(machine);
4320 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4321 PCIDevice *pcidev = PCI_DEVICE(dev);
4322 PCIBus *root = pci_device_root_bus(pcidev);
4323 SpaprPhbState *phb =
4324 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4325 TYPE_SPAPR_PCI_HOST_BRIDGE);
4327 if (phb) {
4328 return HOTPLUG_HANDLER(phb);
4331 return NULL;
4334 static CpuInstanceProperties
4335 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4337 CPUArchId *core_slot;
4338 MachineClass *mc = MACHINE_GET_CLASS(machine);
4340 /* make sure possible_cpu are initialized */
4341 mc->possible_cpu_arch_ids(machine);
4342 /* get CPU core slot containing thread that matches cpu_index */
4343 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4344 assert(core_slot);
4345 return core_slot->props;
4348 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4350 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4353 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4355 int i;
4356 unsigned int smp_threads = machine->smp.threads;
4357 unsigned int smp_cpus = machine->smp.cpus;
4358 const char *core_type;
4359 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4360 MachineClass *mc = MACHINE_GET_CLASS(machine);
4362 if (!mc->has_hotpluggable_cpus) {
4363 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4365 if (machine->possible_cpus) {
4366 assert(machine->possible_cpus->len == spapr_max_cores);
4367 return machine->possible_cpus;
4370 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4371 if (!core_type) {
4372 error_report("Unable to find sPAPR CPU Core definition");
4373 exit(1);
4376 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4377 sizeof(CPUArchId) * spapr_max_cores);
4378 machine->possible_cpus->len = spapr_max_cores;
4379 for (i = 0; i < machine->possible_cpus->len; i++) {
4380 int core_id = i * smp_threads;
4382 machine->possible_cpus->cpus[i].type = core_type;
4383 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4384 machine->possible_cpus->cpus[i].arch_id = core_id;
4385 machine->possible_cpus->cpus[i].props.has_core_id = true;
4386 machine->possible_cpus->cpus[i].props.core_id = core_id;
4388 return machine->possible_cpus;
4391 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4392 uint64_t *buid, hwaddr *pio,
4393 hwaddr *mmio32, hwaddr *mmio64,
4394 unsigned n_dma, uint32_t *liobns, Error **errp)
4397 * New-style PHB window placement.
4399 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4400 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4401 * windows.
4403 * Some guest kernels can't work with MMIO windows above 1<<46
4404 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4406 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4407 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4408 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4409 * 1TiB 64-bit MMIO windows for each PHB.
4411 const uint64_t base_buid = 0x800000020000000ULL;
4412 int i;
4414 /* Sanity check natural alignments */
4415 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4416 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4417 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4418 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4419 /* Sanity check bounds */
4420 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4421 SPAPR_PCI_MEM32_WIN_SIZE);
4422 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4423 SPAPR_PCI_MEM64_WIN_SIZE);
4425 if (index >= SPAPR_MAX_PHBS) {
4426 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4427 SPAPR_MAX_PHBS - 1);
4428 return false;
4431 *buid = base_buid + index;
4432 for (i = 0; i < n_dma; ++i) {
4433 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4436 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4437 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4438 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4439 return true;
4442 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4444 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4446 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4449 static void spapr_ics_resend(XICSFabric *dev)
4451 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4453 ics_resend(spapr->ics);
4456 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4458 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4460 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4463 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4464 Monitor *mon)
4466 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4468 spapr_irq_print_info(spapr, mon);
4469 monitor_printf(mon, "irqchip: %s\n",
4470 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4474 * This is a XIVE only operation
4476 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4477 uint8_t nvt_blk, uint32_t nvt_idx,
4478 bool cam_ignore, uint8_t priority,
4479 uint32_t logic_serv, XiveTCTXMatch *match)
4481 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4482 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4483 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4484 int count;
4486 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4487 priority, logic_serv, match);
4488 if (count < 0) {
4489 return count;
4493 * When we implement the save and restore of the thread interrupt
4494 * contexts in the enter/exit CPU handlers of the machine and the
4495 * escalations in QEMU, we should be able to handle non dispatched
4496 * vCPUs.
4498 * Until this is done, the sPAPR machine should find at least one
4499 * matching context always.
4501 if (count == 0) {
4502 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4503 nvt_blk, nvt_idx);
4506 return count;
4509 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4511 return cpu->vcpu_id;
4514 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4516 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4517 MachineState *ms = MACHINE(spapr);
4518 int vcpu_id;
4520 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4522 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4523 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4524 error_append_hint(errp, "Adjust the number of cpus to %d "
4525 "or try to raise the number of threads per core\n",
4526 vcpu_id * ms->smp.threads / spapr->vsmt);
4527 return false;
4530 cpu->vcpu_id = vcpu_id;
4531 return true;
4534 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4536 CPUState *cs;
4538 CPU_FOREACH(cs) {
4539 PowerPCCPU *cpu = POWERPC_CPU(cs);
4541 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4542 return cpu;
4546 return NULL;
4549 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4551 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4553 return spapr_cpu->in_nested;
4556 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4558 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4560 /* These are only called by TCG, KVM maintains dispatch state */
4562 spapr_cpu->prod = false;
4563 if (spapr_cpu->vpa_addr) {
4564 CPUState *cs = CPU(cpu);
4565 uint32_t dispatch;
4567 dispatch = ldl_be_phys(cs->as,
4568 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4569 dispatch++;
4570 if ((dispatch & 1) != 0) {
4571 qemu_log_mask(LOG_GUEST_ERROR,
4572 "VPA: incorrect dispatch counter value for "
4573 "dispatched partition %u, correcting.\n", dispatch);
4574 dispatch++;
4576 stl_be_phys(cs->as,
4577 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4581 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4583 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4585 if (spapr_cpu->vpa_addr) {
4586 CPUState *cs = CPU(cpu);
4587 uint32_t dispatch;
4589 dispatch = ldl_be_phys(cs->as,
4590 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4591 dispatch++;
4592 if ((dispatch & 1) != 1) {
4593 qemu_log_mask(LOG_GUEST_ERROR,
4594 "VPA: incorrect dispatch counter value for "
4595 "preempted partition %u, correcting.\n", dispatch);
4596 dispatch++;
4598 stl_be_phys(cs->as,
4599 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4603 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4605 MachineClass *mc = MACHINE_CLASS(oc);
4606 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4607 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4608 NMIClass *nc = NMI_CLASS(oc);
4609 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4610 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4611 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4612 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4613 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4614 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4616 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4617 mc->ignore_boot_device_suffixes = true;
4620 * We set up the default / latest behaviour here. The class_init
4621 * functions for the specific versioned machine types can override
4622 * these details for backwards compatibility
4624 mc->init = spapr_machine_init;
4625 mc->reset = spapr_machine_reset;
4626 mc->block_default_type = IF_SCSI;
4629 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4630 * should be limited by the host capability instead of hardcoded.
4631 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4632 * guests are welcome to have as many CPUs as the host are capable
4633 * of emulate.
4635 mc->max_cpus = INT32_MAX;
4637 mc->no_parallel = 1;
4638 mc->default_boot_order = "";
4639 mc->default_ram_size = 512 * MiB;
4640 mc->default_ram_id = "ppc_spapr.ram";
4641 mc->default_display = "std";
4642 mc->kvm_type = spapr_kvm_type;
4643 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4644 mc->pci_allow_0_address = true;
4645 assert(!mc->get_hotplug_handler);
4646 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4647 hc->pre_plug = spapr_machine_device_pre_plug;
4648 hc->plug = spapr_machine_device_plug;
4649 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4650 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4651 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4652 hc->unplug_request = spapr_machine_device_unplug_request;
4653 hc->unplug = spapr_machine_device_unplug;
4655 smc->dr_lmb_enabled = true;
4656 smc->update_dt_enabled = true;
4657 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4658 mc->has_hotpluggable_cpus = true;
4659 mc->nvdimm_supported = true;
4660 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4661 fwc->get_dev_path = spapr_get_fw_dev_path;
4662 nc->nmi_monitor_handler = spapr_nmi;
4663 smc->phb_placement = spapr_phb_placement;
4664 vhc->cpu_in_nested = spapr_cpu_in_nested;
4665 vhc->deliver_hv_excp = spapr_exit_nested;
4666 vhc->hypercall = emulate_spapr_hypercall;
4667 vhc->hpt_mask = spapr_hpt_mask;
4668 vhc->map_hptes = spapr_map_hptes;
4669 vhc->unmap_hptes = spapr_unmap_hptes;
4670 vhc->hpte_set_c = spapr_hpte_set_c;
4671 vhc->hpte_set_r = spapr_hpte_set_r;
4672 vhc->get_pate = spapr_get_pate;
4673 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4674 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4675 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4676 xic->ics_get = spapr_ics_get;
4677 xic->ics_resend = spapr_ics_resend;
4678 xic->icp_get = spapr_icp_get;
4679 ispc->print_info = spapr_pic_print_info;
4680 /* Force NUMA node memory size to be a multiple of
4681 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4682 * in which LMBs are represented and hot-added
4684 mc->numa_mem_align_shift = 28;
4685 mc->auto_enable_numa = true;
4687 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4688 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4689 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4690 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4691 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4692 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4693 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4694 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4695 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4696 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4697 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4698 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4701 * This cap specifies whether the AIL 3 mode for
4702 * H_SET_RESOURCE is supported. The default is modified
4703 * by default_caps_with_cpu().
4705 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4706 spapr_caps_add_properties(smc);
4707 smc->irq = &spapr_irq_dual;
4708 smc->dr_phb_enabled = true;
4709 smc->linux_pci_probe = true;
4710 smc->smp_threads_vsmt = true;
4711 smc->nr_xirqs = SPAPR_NR_XIRQS;
4712 xfc->match_nvt = spapr_match_nvt;
4713 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4714 vmc->quiesce = spapr_vof_quiesce;
4715 vmc->setprop = spapr_vof_setprop;
4718 static const TypeInfo spapr_machine_info = {
4719 .name = TYPE_SPAPR_MACHINE,
4720 .parent = TYPE_MACHINE,
4721 .abstract = true,
4722 .instance_size = sizeof(SpaprMachineState),
4723 .instance_init = spapr_instance_init,
4724 .instance_finalize = spapr_machine_finalizefn,
4725 .class_size = sizeof(SpaprMachineClass),
4726 .class_init = spapr_machine_class_init,
4727 .interfaces = (InterfaceInfo[]) {
4728 { TYPE_FW_PATH_PROVIDER },
4729 { TYPE_NMI },
4730 { TYPE_HOTPLUG_HANDLER },
4731 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4732 { TYPE_XICS_FABRIC },
4733 { TYPE_INTERRUPT_STATS_PROVIDER },
4734 { TYPE_XIVE_FABRIC },
4735 { TYPE_VOF_MACHINE_IF },
4740 static void spapr_machine_latest_class_options(MachineClass *mc)
4742 mc->alias = "pseries";
4743 mc->is_default = true;
4746 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4747 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4748 void *data) \
4750 MachineClass *mc = MACHINE_CLASS(oc); \
4751 spapr_machine_##suffix##_class_options(mc); \
4752 if (latest) { \
4753 spapr_machine_latest_class_options(mc); \
4756 static const TypeInfo spapr_machine_##suffix##_info = { \
4757 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4758 .parent = TYPE_SPAPR_MACHINE, \
4759 .class_init = spapr_machine_##suffix##_class_init, \
4760 }; \
4761 static void spapr_machine_register_##suffix(void) \
4763 type_register(&spapr_machine_##suffix##_info); \
4765 type_init(spapr_machine_register_##suffix)
4768 * pseries-8.2
4770 static void spapr_machine_8_2_class_options(MachineClass *mc)
4772 /* Defaults for the latest behaviour inherited from the base class */
4775 DEFINE_SPAPR_MACHINE(8_2, "8.2", true);
4778 * pseries-8.1
4780 static void spapr_machine_8_1_class_options(MachineClass *mc)
4782 spapr_machine_8_2_class_options(mc);
4783 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4786 DEFINE_SPAPR_MACHINE(8_1, "8.1", false);
4789 * pseries-8.0
4791 static void spapr_machine_8_0_class_options(MachineClass *mc)
4793 spapr_machine_8_1_class_options(mc);
4794 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4797 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4800 * pseries-7.2
4802 static void spapr_machine_7_2_class_options(MachineClass *mc)
4804 spapr_machine_8_0_class_options(mc);
4805 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4808 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4811 * pseries-7.1
4813 static void spapr_machine_7_1_class_options(MachineClass *mc)
4815 spapr_machine_7_2_class_options(mc);
4816 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4819 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4822 * pseries-7.0
4824 static void spapr_machine_7_0_class_options(MachineClass *mc)
4826 spapr_machine_7_1_class_options(mc);
4827 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4830 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4833 * pseries-6.2
4835 static void spapr_machine_6_2_class_options(MachineClass *mc)
4837 spapr_machine_7_0_class_options(mc);
4838 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4841 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4844 * pseries-6.1
4846 static void spapr_machine_6_1_class_options(MachineClass *mc)
4848 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4850 spapr_machine_6_2_class_options(mc);
4851 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4852 smc->pre_6_2_numa_affinity = true;
4853 mc->smp_props.prefer_sockets = true;
4856 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4859 * pseries-6.0
4861 static void spapr_machine_6_0_class_options(MachineClass *mc)
4863 spapr_machine_6_1_class_options(mc);
4864 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4867 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4870 * pseries-5.2
4872 static void spapr_machine_5_2_class_options(MachineClass *mc)
4874 spapr_machine_6_0_class_options(mc);
4875 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4878 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4881 * pseries-5.1
4883 static void spapr_machine_5_1_class_options(MachineClass *mc)
4885 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4887 spapr_machine_5_2_class_options(mc);
4888 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4889 smc->pre_5_2_numa_associativity = true;
4892 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4895 * pseries-5.0
4897 static void spapr_machine_5_0_class_options(MachineClass *mc)
4899 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4900 static GlobalProperty compat[] = {
4901 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4904 spapr_machine_5_1_class_options(mc);
4905 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4906 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4907 mc->numa_mem_supported = true;
4908 smc->pre_5_1_assoc_refpoints = true;
4911 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4914 * pseries-4.2
4916 static void spapr_machine_4_2_class_options(MachineClass *mc)
4918 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4920 spapr_machine_5_0_class_options(mc);
4921 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4922 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4923 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4924 smc->rma_limit = 16 * GiB;
4925 mc->nvdimm_supported = false;
4928 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4931 * pseries-4.1
4933 static void spapr_machine_4_1_class_options(MachineClass *mc)
4935 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4936 static GlobalProperty compat[] = {
4937 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4938 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4941 spapr_machine_4_2_class_options(mc);
4942 smc->linux_pci_probe = false;
4943 smc->smp_threads_vsmt = false;
4944 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4945 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4948 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4951 * pseries-4.0
4953 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4954 uint64_t *buid, hwaddr *pio,
4955 hwaddr *mmio32, hwaddr *mmio64,
4956 unsigned n_dma, uint32_t *liobns, Error **errp)
4958 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4959 liobns, errp)) {
4960 return false;
4962 return true;
4964 static void spapr_machine_4_0_class_options(MachineClass *mc)
4966 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4968 spapr_machine_4_1_class_options(mc);
4969 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4970 smc->phb_placement = phb_placement_4_0;
4971 smc->irq = &spapr_irq_xics;
4972 smc->pre_4_1_migration = true;
4975 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4978 * pseries-3.1
4980 static void spapr_machine_3_1_class_options(MachineClass *mc)
4982 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4984 spapr_machine_4_0_class_options(mc);
4985 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4987 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4988 smc->update_dt_enabled = false;
4989 smc->dr_phb_enabled = false;
4990 smc->broken_host_serial_model = true;
4991 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4992 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4993 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4994 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4997 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
5000 * pseries-3.0
5003 static void spapr_machine_3_0_class_options(MachineClass *mc)
5005 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5007 spapr_machine_3_1_class_options(mc);
5008 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5010 smc->legacy_irq_allocation = true;
5011 smc->nr_xirqs = 0x400;
5012 smc->irq = &spapr_irq_xics_legacy;
5015 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
5018 * pseries-2.12
5020 static void spapr_machine_2_12_class_options(MachineClass *mc)
5022 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5023 static GlobalProperty compat[] = {
5024 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5025 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5028 spapr_machine_3_0_class_options(mc);
5029 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5030 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5032 /* We depend on kvm_enabled() to choose a default value for the
5033 * hpt-max-page-size capability. Of course we can't do it here
5034 * because this is too early and the HW accelerator isn't initialized
5035 * yet. Postpone this to machine init (see default_caps_with_cpu()).
5037 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5040 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5042 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5044 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5046 spapr_machine_2_12_class_options(mc);
5047 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5048 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5049 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5052 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5055 * pseries-2.11
5058 static void spapr_machine_2_11_class_options(MachineClass *mc)
5060 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5062 spapr_machine_2_12_class_options(mc);
5063 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5064 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5067 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5070 * pseries-2.10
5073 static void spapr_machine_2_10_class_options(MachineClass *mc)
5075 spapr_machine_2_11_class_options(mc);
5076 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5079 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5082 * pseries-2.9
5085 static void spapr_machine_2_9_class_options(MachineClass *mc)
5087 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5088 static GlobalProperty compat[] = {
5089 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5092 spapr_machine_2_10_class_options(mc);
5093 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5094 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5095 smc->pre_2_10_has_unused_icps = true;
5096 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5099 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5102 * pseries-2.8
5105 static void spapr_machine_2_8_class_options(MachineClass *mc)
5107 static GlobalProperty compat[] = {
5108 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5111 spapr_machine_2_9_class_options(mc);
5112 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5113 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5114 mc->numa_mem_align_shift = 23;
5117 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5120 * pseries-2.7
5123 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5124 uint64_t *buid, hwaddr *pio,
5125 hwaddr *mmio32, hwaddr *mmio64,
5126 unsigned n_dma, uint32_t *liobns, Error **errp)
5128 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5129 const uint64_t base_buid = 0x800000020000000ULL;
5130 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5131 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5132 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5133 const uint32_t max_index = 255;
5134 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5136 uint64_t ram_top = MACHINE(spapr)->ram_size;
5137 hwaddr phb0_base, phb_base;
5138 int i;
5140 /* Do we have device memory? */
5141 if (MACHINE(spapr)->device_memory) {
5142 /* Can't just use maxram_size, because there may be an
5143 * alignment gap between normal and device memory regions
5145 ram_top = MACHINE(spapr)->device_memory->base +
5146 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5149 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5151 if (index > max_index) {
5152 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5153 max_index);
5154 return false;
5157 *buid = base_buid + index;
5158 for (i = 0; i < n_dma; ++i) {
5159 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5162 phb_base = phb0_base + index * phb_spacing;
5163 *pio = phb_base + pio_offset;
5164 *mmio32 = phb_base + mmio_offset;
5166 * We don't set the 64-bit MMIO window, relying on the PHB's
5167 * fallback behaviour of automatically splitting a large "32-bit"
5168 * window into contiguous 32-bit and 64-bit windows
5171 return true;
5174 static void spapr_machine_2_7_class_options(MachineClass *mc)
5176 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5177 static GlobalProperty compat[] = {
5178 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5179 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5180 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5181 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5184 spapr_machine_2_8_class_options(mc);
5185 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5186 mc->default_machine_opts = "modern-hotplug-events=off";
5187 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5188 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5189 smc->phb_placement = phb_placement_2_7;
5192 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5195 * pseries-2.6
5198 static void spapr_machine_2_6_class_options(MachineClass *mc)
5200 static GlobalProperty compat[] = {
5201 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5204 spapr_machine_2_7_class_options(mc);
5205 mc->has_hotpluggable_cpus = false;
5206 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5207 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5210 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5213 * pseries-2.5
5216 static void spapr_machine_2_5_class_options(MachineClass *mc)
5218 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5219 static GlobalProperty compat[] = {
5220 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5223 spapr_machine_2_6_class_options(mc);
5224 smc->use_ohci_by_default = true;
5225 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5226 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5229 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5232 * pseries-2.4
5235 static void spapr_machine_2_4_class_options(MachineClass *mc)
5237 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5239 spapr_machine_2_5_class_options(mc);
5240 smc->dr_lmb_enabled = false;
5241 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5244 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5247 * pseries-2.3
5250 static void spapr_machine_2_3_class_options(MachineClass *mc)
5252 static GlobalProperty compat[] = {
5253 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5255 spapr_machine_2_4_class_options(mc);
5256 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5257 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5259 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5262 * pseries-2.2
5265 static void spapr_machine_2_2_class_options(MachineClass *mc)
5267 static GlobalProperty compat[] = {
5268 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5271 spapr_machine_2_3_class_options(mc);
5272 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5273 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5274 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5276 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5279 * pseries-2.1
5282 static void spapr_machine_2_1_class_options(MachineClass *mc)
5284 spapr_machine_2_2_class_options(mc);
5285 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5287 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5289 static void spapr_machine_register_types(void)
5291 type_register_static(&spapr_machine_info);
5294 type_init(spapr_machine_register_types)