2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
34 #include "hw/fw-path-provider.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
71 #include "hw/intc/intc.h"
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "qmp-commands.h"
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 static ICSState
*spapr_ics_create(sPAPRMachineState
*spapr
,
103 const char *type_ics
,
104 int nr_irqs
, Error
**errp
)
106 Error
*local_err
= NULL
;
109 obj
= object_new(type_ics
);
110 object_property_add_child(OBJECT(spapr
), "ics", obj
, &error_abort
);
111 object_property_add_const_link(obj
, ICS_PROP_XICS
, OBJECT(spapr
),
113 object_property_set_int(obj
, nr_irqs
, "nr-irqs", &local_err
);
117 object_property_set_bool(obj
, true, "realized", &local_err
);
122 return ICS_SIMPLE(obj
);
125 error_propagate(errp
, local_err
);
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
139 .name
= "icp/server",
141 .minimum_version_id
= 1,
142 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
143 .fields
= (VMStateField
[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i
)
153 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
154 (void *)(uintptr_t) i
);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
159 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
160 (void *)(uintptr_t) i
);
163 static inline int xics_max_server_number(void)
165 return DIV_ROUND_UP(max_cpus
* kvmppc_smt_threads(), smp_threads
);
168 static void xics_system_init(MachineState
*machine
, int nr_irqs
, Error
**errp
)
170 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
171 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
174 if (machine_kernel_irqchip_allowed(machine
) &&
175 !xics_kvm_init(spapr
, errp
)) {
176 spapr
->icp_type
= TYPE_KVM_ICP
;
177 spapr
->ics
= spapr_ics_create(spapr
, TYPE_ICS_KVM
, nr_irqs
, errp
);
179 if (machine_kernel_irqchip_required(machine
) && !spapr
->ics
) {
180 error_prepend(errp
, "kernel_irqchip requested but unavailable: ");
186 xics_spapr_init(spapr
);
187 spapr
->icp_type
= TYPE_ICP
;
188 spapr
->ics
= spapr_ics_create(spapr
, TYPE_ICS_SIMPLE
, nr_irqs
, errp
);
194 if (smc
->pre_2_10_has_unused_icps
) {
197 for (i
= 0; i
< xics_max_server_number(); i
++) {
198 /* Dummy entries get deregistered when real ICPState objects
199 * are registered during CPU core hotplug.
201 pre_2_10_vmstate_register_dummy_icp(i
);
206 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
210 uint32_t servers_prop
[smt_threads
];
211 uint32_t gservers_prop
[smt_threads
* 2];
212 int index
= spapr_vcpu_id(cpu
);
214 if (cpu
->compat_pvr
) {
215 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
221 /* Build interrupt servers and gservers properties */
222 for (i
= 0; i
< smt_threads
; i
++) {
223 servers_prop
[i
] = cpu_to_be32(index
+ i
);
224 /* Hack, direct the group queues back to cpu 0 */
225 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
226 gservers_prop
[i
*2 + 1] = 0;
228 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
229 servers_prop
, sizeof(servers_prop
));
233 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
234 gservers_prop
, sizeof(gservers_prop
));
239 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
)
241 int index
= spapr_vcpu_id(cpu
);
242 uint32_t associativity
[] = {cpu_to_be32(0x5),
246 cpu_to_be32(cpu
->node_id
),
249 /* Advertise NUMA via ibm,associativity */
250 return fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
251 sizeof(associativity
));
254 /* Populate the "ibm,pa-features" property */
255 static void spapr_populate_pa_features(CPUPPCState
*env
, void *fdt
, int offset
,
258 uint8_t pa_features_206
[] = { 6, 0,
259 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
260 uint8_t pa_features_207
[] = { 24, 0,
261 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
262 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
263 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
264 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
265 uint8_t pa_features_300
[] = { 66, 0,
266 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
267 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
268 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
270 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
272 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
273 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
274 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
275 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
276 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
277 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
278 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
279 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
280 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
281 /* 42: PM, 44: PC RA, 46: SC vec'd */
282 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
283 /* 48: SIMD, 50: QP BFP, 52: String */
284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
285 /* 54: DecFP, 56: DecI, 58: SHA */
286 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
287 /* 60: NM atomic, 62: RNG */
288 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
290 uint8_t *pa_features
;
293 switch (POWERPC_MMU_VER(env
->mmu_model
)) {
294 case POWERPC_MMU_VER_2_06
:
295 pa_features
= pa_features_206
;
296 pa_size
= sizeof(pa_features_206
);
298 case POWERPC_MMU_VER_2_07
:
299 pa_features
= pa_features_207
;
300 pa_size
= sizeof(pa_features_207
);
302 case POWERPC_MMU_VER_3_00
:
303 pa_features
= pa_features_300
;
304 pa_size
= sizeof(pa_features_300
);
310 if (env
->ci_large_pages
) {
312 * Note: we keep CI large pages off by default because a 64K capable
313 * guest provisioned with large pages might otherwise try to map a qemu
314 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
315 * even if that qemu runs on a 4k host.
316 * We dd this bit back here if we are confident this is not an issue
318 pa_features
[3] |= 0x20;
320 if (kvmppc_has_cap_htm() && pa_size
> 24) {
321 pa_features
[24] |= 0x80; /* Transactional memory support */
323 if (legacy_guest
&& pa_size
> 40) {
324 /* Workaround for broken kernels that attempt (guest) radix
325 * mode when they can't handle it, if they see the radix bit set
326 * in pa-features. So hide it from them. */
327 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
330 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
333 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
335 int ret
= 0, offset
, cpus_offset
;
338 int smt
= kvmppc_smt_threads();
339 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
342 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
343 CPUPPCState
*env
= &cpu
->env
;
344 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
345 int index
= spapr_vcpu_id(cpu
);
346 int compat_smt
= MIN(smp_threads
, ppc_compat_max_threads(cpu
));
348 if ((index
% smt
) != 0) {
352 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
354 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
355 if (cpus_offset
< 0) {
356 cpus_offset
= fdt_add_subnode(fdt
, fdt_path_offset(fdt
, "/"),
358 if (cpus_offset
< 0) {
362 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
364 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
370 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
371 pft_size_prop
, sizeof(pft_size_prop
));
376 if (nb_numa_nodes
> 1) {
377 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
);
383 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
);
388 spapr_populate_pa_features(env
, fdt
, offset
,
389 spapr
->cas_legacy_guest_workaround
);
394 static hwaddr
spapr_node0_size(MachineState
*machine
)
398 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
399 if (numa_info
[i
].node_mem
) {
400 return MIN(pow2floor(numa_info
[i
].node_mem
),
405 return machine
->ram_size
;
408 static void add_str(GString
*s
, const gchar
*s1
)
410 g_string_append_len(s
, s1
, strlen(s1
) + 1);
413 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
416 uint32_t associativity
[] = {
417 cpu_to_be32(0x4), /* length */
418 cpu_to_be32(0x0), cpu_to_be32(0x0),
419 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
422 uint64_t mem_reg_property
[2];
425 mem_reg_property
[0] = cpu_to_be64(start
);
426 mem_reg_property
[1] = cpu_to_be64(size
);
428 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
429 off
= fdt_add_subnode(fdt
, 0, mem_name
);
431 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
432 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
433 sizeof(mem_reg_property
))));
434 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
435 sizeof(associativity
))));
439 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
441 MachineState
*machine
= MACHINE(spapr
);
442 hwaddr mem_start
, node_size
;
443 int i
, nb_nodes
= nb_numa_nodes
;
444 NodeInfo
*nodes
= numa_info
;
447 /* No NUMA nodes, assume there is just one node with whole RAM */
448 if (!nb_numa_nodes
) {
450 ramnode
.node_mem
= machine
->ram_size
;
454 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
455 if (!nodes
[i
].node_mem
) {
458 if (mem_start
>= machine
->ram_size
) {
461 node_size
= nodes
[i
].node_mem
;
462 if (node_size
> machine
->ram_size
- mem_start
) {
463 node_size
= machine
->ram_size
- mem_start
;
467 /* ppc_spapr_init() checks for rma_size <= node0_size already */
468 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
469 mem_start
+= spapr
->rma_size
;
470 node_size
-= spapr
->rma_size
;
472 for ( ; node_size
; ) {
473 hwaddr sizetmp
= pow2floor(node_size
);
475 /* mem_start != 0 here */
476 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
477 sizetmp
= 1ULL << ctzl(mem_start
);
480 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
481 node_size
-= sizetmp
;
482 mem_start
+= sizetmp
;
489 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
490 sPAPRMachineState
*spapr
)
492 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
493 CPUPPCState
*env
= &cpu
->env
;
494 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
495 int index
= spapr_vcpu_id(cpu
);
496 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
497 0xffffffff, 0xffffffff};
498 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
499 : SPAPR_TIMEBASE_FREQ
;
500 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
501 uint32_t page_sizes_prop
[64];
502 size_t page_sizes_prop_size
;
503 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
504 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
505 int compat_smt
= MIN(smp_threads
, ppc_compat_max_threads(cpu
));
506 sPAPRDRConnector
*drc
;
508 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
511 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
513 drc_index
= spapr_drc_index(drc
);
514 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
517 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
518 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
520 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
521 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
522 env
->dcache_line_size
)));
523 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
524 env
->dcache_line_size
)));
525 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
526 env
->icache_line_size
)));
527 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
528 env
->icache_line_size
)));
530 if (pcc
->l1_dcache_size
) {
531 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
532 pcc
->l1_dcache_size
)));
534 warn_report("Unknown L1 dcache size for cpu");
536 if (pcc
->l1_icache_size
) {
537 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
538 pcc
->l1_icache_size
)));
540 warn_report("Unknown L1 icache size for cpu");
543 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
544 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
545 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", env
->slb_nr
)));
546 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", env
->slb_nr
)));
547 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
548 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
550 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
551 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
554 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
555 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
556 segs
, sizeof(segs
))));
559 /* Advertise VMX/VSX (vector extensions) if available
560 * 0 / no property == no vector extensions
561 * 1 == VMX / Altivec available
562 * 2 == VSX available */
563 if (env
->insns_flags
& PPC_ALTIVEC
) {
564 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
566 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", vmx
)));
569 /* Advertise DFP (Decimal Floating Point) if available
570 * 0 / no property == no DFP
571 * 1 == DFP available */
572 if (env
->insns_flags2
& PPC2_DFP
) {
573 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
576 page_sizes_prop_size
= ppc_create_page_sizes_prop(env
, page_sizes_prop
,
577 sizeof(page_sizes_prop
));
578 if (page_sizes_prop_size
) {
579 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
580 page_sizes_prop
, page_sizes_prop_size
)));
583 spapr_populate_pa_features(env
, fdt
, offset
, false);
585 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
586 cs
->cpu_index
/ vcpus_per_socket
)));
588 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
589 pft_size_prop
, sizeof(pft_size_prop
))));
591 if (nb_numa_nodes
> 1) {
592 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
));
595 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
597 if (pcc
->radix_page_info
) {
598 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
599 radix_AP_encodings
[i
] =
600 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
602 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
604 pcc
->radix_page_info
->count
*
605 sizeof(radix_AP_encodings
[0]))));
609 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
614 int smt
= kvmppc_smt_threads();
616 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
618 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
619 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
622 * We walk the CPUs in reverse order to ensure that CPU DT nodes
623 * created by fdt_add_subnode() end up in the right order in FDT
624 * for the guest kernel the enumerate the CPUs correctly.
626 CPU_FOREACH_REVERSE(cs
) {
627 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
628 int index
= spapr_vcpu_id(cpu
);
629 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
632 if ((index
% smt
) != 0) {
636 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
637 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
640 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
646 * Adds ibm,dynamic-reconfiguration-memory node.
647 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
648 * of this device tree node.
650 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
652 MachineState
*machine
= MACHINE(spapr
);
654 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
655 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
656 uint32_t hotplug_lmb_start
= spapr
->hotplug_memory
.base
/ lmb_size
;
657 uint32_t nr_lmbs
= (spapr
->hotplug_memory
.base
+
658 memory_region_size(&spapr
->hotplug_memory
.mr
)) /
660 uint32_t *int_buf
, *cur_index
, buf_len
;
661 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
664 * Don't create the node if there is no hotpluggable memory
666 if (machine
->ram_size
== machine
->maxram_size
) {
671 * Allocate enough buffer size to fit in ibm,dynamic-memory
672 * or ibm,associativity-lookup-arrays
674 buf_len
= MAX(nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1, nr_nodes
* 4 + 2)
676 cur_index
= int_buf
= g_malloc0(buf_len
);
678 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
680 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
681 sizeof(prop_lmb_size
));
686 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
691 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
696 /* ibm,dynamic-memory */
697 int_buf
[0] = cpu_to_be32(nr_lmbs
);
699 for (i
= 0; i
< nr_lmbs
; i
++) {
700 uint64_t addr
= i
* lmb_size
;
701 uint32_t *dynamic_memory
= cur_index
;
703 if (i
>= hotplug_lmb_start
) {
704 sPAPRDRConnector
*drc
;
706 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
709 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
710 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
711 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
712 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
713 dynamic_memory
[4] = cpu_to_be32(numa_get_node(addr
, NULL
));
714 if (memory_region_present(get_system_memory(), addr
)) {
715 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
717 dynamic_memory
[5] = cpu_to_be32(0);
721 * LMB information for RMA, boot time RAM and gap b/n RAM and
722 * hotplug memory region -- all these are marked as reserved
723 * and as having no valid DRC.
725 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
726 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
727 dynamic_memory
[2] = cpu_to_be32(0);
728 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
729 dynamic_memory
[4] = cpu_to_be32(-1);
730 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
731 SPAPR_LMB_FLAGS_DRC_INVALID
);
734 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
736 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
741 /* ibm,associativity-lookup-arrays */
743 int_buf
[0] = cpu_to_be32(nr_nodes
);
744 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
746 for (i
= 0; i
< nr_nodes
; i
++) {
747 uint32_t associativity
[] = {
753 memcpy(cur_index
, associativity
, sizeof(associativity
));
756 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
757 (cur_index
- int_buf
) * sizeof(uint32_t));
763 static int spapr_dt_cas_updates(sPAPRMachineState
*spapr
, void *fdt
,
764 sPAPROptionVector
*ov5_updates
)
766 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
769 /* Generate ibm,dynamic-reconfiguration-memory node if required */
770 if (spapr_ovec_test(ov5_updates
, OV5_DRCONF_MEMORY
)) {
771 g_assert(smc
->dr_lmb_enabled
);
772 ret
= spapr_populate_drconf_memory(spapr
, fdt
);
778 offset
= fdt_path_offset(fdt
, "/chosen");
780 offset
= fdt_add_subnode(fdt
, 0, "chosen");
785 ret
= spapr_ovec_populate_dt(fdt
, offset
, spapr
->ov5_cas
,
786 "ibm,architecture-vec-5");
792 static bool spapr_hotplugged_dev_before_cas(void)
794 Object
*drc_container
, *obj
;
795 ObjectProperty
*prop
;
796 ObjectPropertyIterator iter
;
798 drc_container
= container_get(object_get_root(), "/dr-connector");
799 object_property_iter_init(&iter
, drc_container
);
800 while ((prop
= object_property_iter_next(&iter
))) {
801 if (!strstart(prop
->type
, "link<", NULL
)) {
804 obj
= object_property_get_link(drc_container
, prop
->name
, NULL
);
805 if (spapr_drc_needed(obj
)) {
812 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
813 target_ulong addr
, target_ulong size
,
814 sPAPROptionVector
*ov5_updates
)
816 void *fdt
, *fdt_skel
;
817 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
819 if (spapr_hotplugged_dev_before_cas()) {
825 /* Create skeleton */
826 fdt_skel
= g_malloc0(size
);
827 _FDT((fdt_create(fdt_skel
, size
)));
828 _FDT((fdt_begin_node(fdt_skel
, "")));
829 _FDT((fdt_end_node(fdt_skel
)));
830 _FDT((fdt_finish(fdt_skel
)));
831 fdt
= g_malloc0(size
);
832 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
835 /* Fixup cpu nodes */
836 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
838 if (spapr_dt_cas_updates(spapr
, fdt
, ov5_updates
)) {
842 /* Pack resulting tree */
843 _FDT((fdt_pack(fdt
)));
845 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
846 trace_spapr_cas_failed(size
);
850 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
851 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
852 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
858 static void spapr_dt_rtas(sPAPRMachineState
*spapr
, void *fdt
)
861 GString
*hypertas
= g_string_sized_new(256);
862 GString
*qemu_hypertas
= g_string_sized_new(256);
863 uint32_t refpoints
[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
864 uint64_t max_hotplug_addr
= spapr
->hotplug_memory
.base
+
865 memory_region_size(&spapr
->hotplug_memory
.mr
);
866 uint32_t lrdr_capacity
[] = {
867 cpu_to_be32(max_hotplug_addr
>> 32),
868 cpu_to_be32(max_hotplug_addr
& 0xffffffff),
869 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
870 cpu_to_be32(max_cpus
/ smp_threads
),
873 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
876 add_str(hypertas
, "hcall-pft");
877 add_str(hypertas
, "hcall-term");
878 add_str(hypertas
, "hcall-dabr");
879 add_str(hypertas
, "hcall-interrupt");
880 add_str(hypertas
, "hcall-tce");
881 add_str(hypertas
, "hcall-vio");
882 add_str(hypertas
, "hcall-splpar");
883 add_str(hypertas
, "hcall-bulk");
884 add_str(hypertas
, "hcall-set-mode");
885 add_str(hypertas
, "hcall-sprg0");
886 add_str(hypertas
, "hcall-copy");
887 add_str(hypertas
, "hcall-debug");
888 add_str(qemu_hypertas
, "hcall-memop1");
890 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
891 add_str(hypertas
, "hcall-multi-tce");
894 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
895 add_str(hypertas
, "hcall-hpt-resize");
898 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
899 hypertas
->str
, hypertas
->len
));
900 g_string_free(hypertas
, TRUE
);
901 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
902 qemu_hypertas
->str
, qemu_hypertas
->len
));
903 g_string_free(qemu_hypertas
, TRUE
);
905 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
906 refpoints
, sizeof(refpoints
)));
908 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
909 RTAS_ERROR_LOG_MAX
));
910 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
911 RTAS_EVENT_SCAN_RATE
));
914 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
918 * According to PAPR, rtas ibm,os-term does not guarantee a return
919 * back to the guest cpu.
921 * While an additional ibm,extended-os-term property indicates
922 * that rtas call return will always occur. Set this property.
924 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
926 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
927 lrdr_capacity
, sizeof(lrdr_capacity
)));
929 spapr_dt_rtas_tokens(fdt
, rtas
);
932 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
933 * that the guest may request and thus the valid values for bytes 24..26 of
934 * option vector 5: */
935 static void spapr_dt_ov5_platform_support(void *fdt
, int chosen
)
937 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
940 23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */
941 24, 0x00, /* Hash/Radix, filled in below. */
942 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
943 26, 0x40, /* Radix options: GTSE == yes. */
947 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
948 val
[3] = 0x80; /* OV5_MMU_BOTH */
949 } else if (kvmppc_has_cap_mmu_radix()) {
950 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
952 val
[3] = 0x00; /* Hash */
955 if (first_ppc_cpu
->env
.mmu_model
& POWERPC_MMU_V3
) {
956 /* V3 MMU supports both hash and radix (with dynamic switching) */
959 /* Otherwise we can only do hash */
963 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
967 static void spapr_dt_chosen(sPAPRMachineState
*spapr
, void *fdt
)
969 MachineState
*machine
= MACHINE(spapr
);
971 const char *boot_device
= machine
->boot_order
;
972 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
974 char *bootlist
= get_boot_devices_list(&cb
, true);
976 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
978 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs", machine
->kernel_cmdline
));
979 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
980 spapr
->initrd_base
));
981 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
982 spapr
->initrd_base
+ spapr
->initrd_size
));
984 if (spapr
->kernel_size
) {
985 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
986 cpu_to_be64(spapr
->kernel_size
) };
988 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
989 &kprop
, sizeof(kprop
)));
990 if (spapr
->kernel_le
) {
991 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
995 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
997 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
998 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
999 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1001 if (cb
&& bootlist
) {
1004 for (i
= 0; i
< cb
; i
++) {
1005 if (bootlist
[i
] == '\n') {
1009 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1012 if (boot_device
&& strlen(boot_device
)) {
1013 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1016 if (!spapr
->has_graphics
&& stdout_path
) {
1017 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1020 spapr_dt_ov5_platform_support(fdt
, chosen
);
1022 g_free(stdout_path
);
1026 static void spapr_dt_hypervisor(sPAPRMachineState
*spapr
, void *fdt
)
1028 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1029 * KVM to work under pHyp with some guest co-operation */
1031 uint8_t hypercall
[16];
1033 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1034 /* indicate KVM hypercall interface */
1035 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1036 if (kvmppc_has_cap_fixup_hcalls()) {
1038 * Older KVM versions with older guest kernels were broken
1039 * with the magic page, don't allow the guest to map it.
1041 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1042 sizeof(hypercall
))) {
1043 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1044 hypercall
, sizeof(hypercall
)));
1049 static void *spapr_build_fdt(sPAPRMachineState
*spapr
,
1053 MachineState
*machine
= MACHINE(spapr
);
1054 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1055 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1061 fdt
= g_malloc0(FDT_MAX_SIZE
);
1062 _FDT((fdt_create_empty_tree(fdt
, FDT_MAX_SIZE
)));
1065 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1066 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1067 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1070 * Add info to guest to indentify which host is it being run on
1071 * and what is the uuid of the guest
1073 if (kvmppc_get_host_model(&buf
)) {
1074 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1077 if (kvmppc_get_host_serial(&buf
)) {
1078 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1082 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1084 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1085 if (qemu_uuid_set
) {
1086 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1090 if (qemu_get_vm_name()) {
1091 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1092 qemu_get_vm_name()));
1095 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1096 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1098 /* /interrupt controller */
1099 spapr_dt_xics(xics_max_server_number(), fdt
, PHANDLE_XICP
);
1101 ret
= spapr_populate_memory(spapr
, fdt
);
1103 error_report("couldn't setup memory nodes in fdt");
1108 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1110 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1111 ret
= spapr_rng_populate_dt(fdt
);
1113 error_report("could not set up rng device in the fdt");
1118 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1119 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
1121 error_report("couldn't setup PCI devices in fdt");
1127 spapr_populate_cpus_dt_node(fdt
, spapr
);
1129 if (smc
->dr_lmb_enabled
) {
1130 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1133 if (mc
->has_hotpluggable_cpus
) {
1134 int offset
= fdt_path_offset(fdt
, "/cpus");
1135 ret
= spapr_drc_populate_dt(fdt
, offset
, NULL
,
1136 SPAPR_DR_CONNECTOR_TYPE_CPU
);
1138 error_report("Couldn't set up CPU DR device tree properties");
1143 /* /event-sources */
1144 spapr_dt_events(spapr
, fdt
);
1147 spapr_dt_rtas(spapr
, fdt
);
1150 spapr_dt_chosen(spapr
, fdt
);
1153 if (kvm_enabled()) {
1154 spapr_dt_hypervisor(spapr
, fdt
);
1157 /* Build memory reserve map */
1158 if (spapr
->kernel_size
) {
1159 _FDT((fdt_add_mem_rsv(fdt
, KERNEL_LOAD_ADDR
, spapr
->kernel_size
)));
1161 if (spapr
->initrd_size
) {
1162 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
, spapr
->initrd_size
)));
1165 /* ibm,client-architecture-support updates */
1166 ret
= spapr_dt_cas_updates(spapr
, fdt
, spapr
->ov5_cas
);
1168 error_report("couldn't setup CAS properties fdt");
1175 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1177 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1180 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1183 CPUPPCState
*env
= &cpu
->env
;
1185 /* The TCG path should also be holding the BQL at this point */
1186 g_assert(qemu_mutex_iothread_locked());
1189 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1190 env
->gpr
[3] = H_PRIVILEGE
;
1192 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1196 static uint64_t spapr_get_patbe(PPCVirtualHypervisor
*vhyp
)
1198 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1200 return spapr
->patb_entry
;
1203 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1204 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1205 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1206 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1207 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1210 * Get the fd to access the kernel htab, re-opening it if necessary
1212 static int get_htab_fd(sPAPRMachineState
*spapr
)
1214 if (spapr
->htab_fd
>= 0) {
1215 return spapr
->htab_fd
;
1218 spapr
->htab_fd
= kvmppc_get_htab_fd(false);
1219 if (spapr
->htab_fd
< 0) {
1220 error_report("Unable to open fd for reading hash table from KVM: %s",
1224 return spapr
->htab_fd
;
1227 void close_htab_fd(sPAPRMachineState
*spapr
)
1229 if (spapr
->htab_fd
>= 0) {
1230 close(spapr
->htab_fd
);
1232 spapr
->htab_fd
= -1;
1235 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1237 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1239 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1242 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1245 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1246 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1250 * HTAB is controlled by KVM. Fetch into temporary buffer
1252 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1253 kvmppc_read_hptes(hptes
, ptex
, n
);
1258 * HTAB is controlled by QEMU. Just point to the internally
1261 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1264 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1265 const ppc_hash_pte64_t
*hptes
,
1268 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1271 g_free((void *)hptes
);
1274 /* Nothing to do for qemu managed HPT */
1277 static void spapr_store_hpte(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1278 uint64_t pte0
, uint64_t pte1
)
1280 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1281 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1284 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1286 stq_p(spapr
->htab
+ offset
, pte0
);
1287 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1291 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1295 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1296 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1297 * that's much more than is needed for Linux guests */
1298 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1299 shift
= MAX(shift
, 18); /* Minimum architected size */
1300 shift
= MIN(shift
, 46); /* Maximum architected size */
1304 void spapr_free_hpt(sPAPRMachineState
*spapr
)
1306 g_free(spapr
->htab
);
1308 spapr
->htab_shift
= 0;
1309 close_htab_fd(spapr
);
1312 void spapr_reallocate_hpt(sPAPRMachineState
*spapr
, int shift
,
1317 /* Clean up any HPT info from a previous boot */
1318 spapr_free_hpt(spapr
);
1320 rc
= kvmppc_reset_htab(shift
);
1322 /* kernel-side HPT needed, but couldn't allocate one */
1323 error_setg_errno(errp
, errno
,
1324 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1326 /* This is almost certainly fatal, but if the caller really
1327 * wants to carry on with shift == 0, it's welcome to try */
1328 } else if (rc
> 0) {
1329 /* kernel-side HPT allocated */
1332 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1336 spapr
->htab_shift
= shift
;
1339 /* kernel-side HPT not needed, allocate in userspace instead */
1340 size_t size
= 1ULL << shift
;
1343 spapr
->htab
= qemu_memalign(size
, size
);
1345 error_setg_errno(errp
, errno
,
1346 "Could not allocate HPT of order %d", shift
);
1350 memset(spapr
->htab
, 0, size
);
1351 spapr
->htab_shift
= shift
;
1353 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1354 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1359 void spapr_setup_hpt_and_vrma(sPAPRMachineState
*spapr
)
1363 if ((spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
)
1364 || (spapr
->cas_reboot
1365 && !spapr_ovec_test(spapr
->ov5_cas
, OV5_HPT_RESIZE
))) {
1366 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1368 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->ram_size
);
1370 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1372 if (spapr
->vrma_adjust
) {
1373 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(MACHINE(spapr
)),
1376 /* We're setting up a hash table, so that means we're not radix */
1377 spapr
->patb_entry
= 0;
1380 static void find_unknown_sysbus_device(SysBusDevice
*sbdev
, void *opaque
)
1382 bool matched
= false;
1384 if (object_dynamic_cast(OBJECT(sbdev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
1389 error_report("Device %s is not supported by this machine yet.",
1390 qdev_fw_name(DEVICE(sbdev
)));
1395 static void ppc_spapr_reset(void)
1397 MachineState
*machine
= MACHINE(qdev_get_machine());
1398 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1399 PowerPCCPU
*first_ppc_cpu
;
1400 uint32_t rtas_limit
;
1401 hwaddr rtas_addr
, fdt_addr
;
1405 /* Check for unknown sysbus devices */
1406 foreach_dynamic_sysbus_device(find_unknown_sysbus_device
, NULL
);
1408 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1409 /* If using KVM with radix mode available, VCPUs can be started
1410 * without a HPT because KVM will start them in radix mode.
1411 * Set the GR bit in PATB so that we know there is no HPT. */
1412 spapr
->patb_entry
= PATBE1_GR
;
1414 spapr_setup_hpt_and_vrma(spapr
);
1417 qemu_devices_reset();
1418 spapr_clear_pending_events(spapr
);
1421 * We place the device tree and RTAS just below either the top of the RMA,
1422 * or just below 2GB, whichever is lowere, so that it can be
1423 * processed with 32-bit real mode code if necessary
1425 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1426 rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1427 fdt_addr
= rtas_addr
- FDT_MAX_SIZE
;
1429 /* if this reset wasn't generated by CAS, we should reset our
1430 * negotiated options and start from scratch */
1431 if (!spapr
->cas_reboot
) {
1432 spapr_ovec_cleanup(spapr
->ov5_cas
);
1433 spapr
->ov5_cas
= spapr_ovec_new();
1435 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1438 fdt
= spapr_build_fdt(spapr
, rtas_addr
, spapr
->rtas_size
);
1440 spapr_load_rtas(spapr
, fdt
, rtas_addr
);
1444 /* Should only fail if we've built a corrupted tree */
1447 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
1448 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1449 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
1454 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1455 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1458 /* Set up the entry state */
1459 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1460 first_ppc_cpu
->env
.gpr
[3] = fdt_addr
;
1461 first_ppc_cpu
->env
.gpr
[5] = 0;
1462 first_cpu
->halted
= 0;
1463 first_ppc_cpu
->env
.nip
= SPAPR_ENTRY_POINT
;
1465 spapr
->cas_reboot
= false;
1468 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1470 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1471 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1474 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1478 qdev_init_nofail(dev
);
1480 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1483 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1485 object_initialize(&spapr
->rtc
, sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
);
1486 object_property_add_child(OBJECT(spapr
), "rtc", OBJECT(&spapr
->rtc
),
1488 object_property_set_bool(OBJECT(&spapr
->rtc
), true, "realized",
1490 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1491 "date", &error_fatal
);
1494 /* Returns whether we want to use VGA or not */
1495 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1497 switch (vga_interface_type
) {
1504 return pci_vga_init(pci_bus
) != NULL
;
1507 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1512 static int spapr_post_load(void *opaque
, int version_id
)
1514 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1517 if (!object_dynamic_cast(OBJECT(spapr
->ics
), TYPE_ICS_KVM
)) {
1520 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1521 icp_resend(ICP(cpu
->intc
));
1525 /* In earlier versions, there was no separate qdev for the PAPR
1526 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1527 * So when migrating from those versions, poke the incoming offset
1528 * value into the RTC device */
1529 if (version_id
< 3) {
1530 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1533 if (spapr
->patb_entry
) {
1534 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1535 bool radix
= !!(spapr
->patb_entry
& PATBE1_GR
);
1536 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1538 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1540 error_report("Process table config unsupported by the host");
1548 static bool version_before_3(void *opaque
, int version_id
)
1550 return version_id
< 3;
1553 static bool spapr_pending_events_needed(void *opaque
)
1555 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1556 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1559 static const VMStateDescription vmstate_spapr_event_entry
= {
1560 .name
= "spapr_event_log_entry",
1562 .minimum_version_id
= 1,
1563 .fields
= (VMStateField
[]) {
1564 VMSTATE_UINT32(summary
, sPAPREventLogEntry
),
1565 VMSTATE_UINT32(extended_length
, sPAPREventLogEntry
),
1566 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, sPAPREventLogEntry
, 0,
1567 NULL
, extended_length
),
1568 VMSTATE_END_OF_LIST()
1572 static const VMStateDescription vmstate_spapr_pending_events
= {
1573 .name
= "spapr_pending_events",
1575 .minimum_version_id
= 1,
1576 .needed
= spapr_pending_events_needed
,
1577 .fields
= (VMStateField
[]) {
1578 VMSTATE_QTAILQ_V(pending_events
, sPAPRMachineState
, 1,
1579 vmstate_spapr_event_entry
, sPAPREventLogEntry
, next
),
1580 VMSTATE_END_OF_LIST()
1584 static bool spapr_ov5_cas_needed(void *opaque
)
1586 sPAPRMachineState
*spapr
= opaque
;
1587 sPAPROptionVector
*ov5_mask
= spapr_ovec_new();
1588 sPAPROptionVector
*ov5_legacy
= spapr_ovec_new();
1589 sPAPROptionVector
*ov5_removed
= spapr_ovec_new();
1592 /* Prior to the introduction of sPAPROptionVector, we had two option
1593 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1594 * Both of these options encode machine topology into the device-tree
1595 * in such a way that the now-booted OS should still be able to interact
1596 * appropriately with QEMU regardless of what options were actually
1597 * negotiatied on the source side.
1599 * As such, we can avoid migrating the CAS-negotiated options if these
1600 * are the only options available on the current machine/platform.
1601 * Since these are the only options available for pseries-2.7 and
1602 * earlier, this allows us to maintain old->new/new->old migration
1605 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1606 * via default pseries-2.8 machines and explicit command-line parameters.
1607 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1608 * of the actual CAS-negotiated values to continue working properly. For
1609 * example, availability of memory unplug depends on knowing whether
1610 * OV5_HP_EVT was negotiated via CAS.
1612 * Thus, for any cases where the set of available CAS-negotiatable
1613 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1614 * include the CAS-negotiated options in the migration stream.
1616 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1617 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1619 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1620 * the mask itself since in the future it's possible "legacy" bits may be
1621 * removed via machine options, which could generate a false positive
1622 * that breaks migration.
1624 spapr_ovec_intersect(ov5_legacy
, spapr
->ov5
, ov5_mask
);
1625 cas_needed
= spapr_ovec_diff(ov5_removed
, spapr
->ov5
, ov5_legacy
);
1627 spapr_ovec_cleanup(ov5_mask
);
1628 spapr_ovec_cleanup(ov5_legacy
);
1629 spapr_ovec_cleanup(ov5_removed
);
1634 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1635 .name
= "spapr_option_vector_ov5_cas",
1637 .minimum_version_id
= 1,
1638 .needed
= spapr_ov5_cas_needed
,
1639 .fields
= (VMStateField
[]) {
1640 VMSTATE_STRUCT_POINTER_V(ov5_cas
, sPAPRMachineState
, 1,
1641 vmstate_spapr_ovec
, sPAPROptionVector
),
1642 VMSTATE_END_OF_LIST()
1646 static bool spapr_patb_entry_needed(void *opaque
)
1648 sPAPRMachineState
*spapr
= opaque
;
1650 return !!spapr
->patb_entry
;
1653 static const VMStateDescription vmstate_spapr_patb_entry
= {
1654 .name
= "spapr_patb_entry",
1656 .minimum_version_id
= 1,
1657 .needed
= spapr_patb_entry_needed
,
1658 .fields
= (VMStateField
[]) {
1659 VMSTATE_UINT64(patb_entry
, sPAPRMachineState
),
1660 VMSTATE_END_OF_LIST()
1664 static const VMStateDescription vmstate_spapr
= {
1667 .minimum_version_id
= 1,
1668 .post_load
= spapr_post_load
,
1669 .fields
= (VMStateField
[]) {
1670 /* used to be @next_irq */
1671 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1674 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1676 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1677 VMSTATE_END_OF_LIST()
1679 .subsections
= (const VMStateDescription
*[]) {
1680 &vmstate_spapr_ov5_cas
,
1681 &vmstate_spapr_patb_entry
,
1682 &vmstate_spapr_pending_events
,
1687 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1689 sPAPRMachineState
*spapr
= opaque
;
1691 /* "Iteration" header */
1692 if (!spapr
->htab_shift
) {
1693 qemu_put_be32(f
, -1);
1695 qemu_put_be32(f
, spapr
->htab_shift
);
1699 spapr
->htab_save_index
= 0;
1700 spapr
->htab_first_pass
= true;
1702 if (spapr
->htab_shift
) {
1703 assert(kvm_enabled());
1711 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1714 bool has_timeout
= max_ns
!= -1;
1715 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1716 int index
= spapr
->htab_save_index
;
1717 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1719 assert(spapr
->htab_first_pass
);
1724 /* Consume invalid HPTEs */
1725 while ((index
< htabslots
)
1726 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1727 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1731 /* Consume valid HPTEs */
1733 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1734 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1735 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1739 if (index
> chunkstart
) {
1740 int n_valid
= index
- chunkstart
;
1742 qemu_put_be32(f
, chunkstart
);
1743 qemu_put_be16(f
, n_valid
);
1744 qemu_put_be16(f
, 0);
1745 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1746 HASH_PTE_SIZE_64
* n_valid
);
1749 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1753 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
1755 if (index
>= htabslots
) {
1756 assert(index
== htabslots
);
1758 spapr
->htab_first_pass
= false;
1760 spapr
->htab_save_index
= index
;
1763 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1766 bool final
= max_ns
< 0;
1767 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1768 int examined
= 0, sent
= 0;
1769 int index
= spapr
->htab_save_index
;
1770 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1772 assert(!spapr
->htab_first_pass
);
1775 int chunkstart
, invalidstart
;
1777 /* Consume non-dirty HPTEs */
1778 while ((index
< htabslots
)
1779 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
1785 /* Consume valid dirty HPTEs */
1786 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1787 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1788 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1789 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1794 invalidstart
= index
;
1795 /* Consume invalid dirty HPTEs */
1796 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
1797 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1798 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1799 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1804 if (index
> chunkstart
) {
1805 int n_valid
= invalidstart
- chunkstart
;
1806 int n_invalid
= index
- invalidstart
;
1808 qemu_put_be32(f
, chunkstart
);
1809 qemu_put_be16(f
, n_valid
);
1810 qemu_put_be16(f
, n_invalid
);
1811 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1812 HASH_PTE_SIZE_64
* n_valid
);
1813 sent
+= index
- chunkstart
;
1815 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1820 if (examined
>= htabslots
) {
1824 if (index
>= htabslots
) {
1825 assert(index
== htabslots
);
1828 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
1830 if (index
>= htabslots
) {
1831 assert(index
== htabslots
);
1835 spapr
->htab_save_index
= index
;
1837 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
1840 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1841 #define MAX_KVM_BUF_SIZE 2048
1843 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
1845 sPAPRMachineState
*spapr
= opaque
;
1849 /* Iteration header */
1850 if (!spapr
->htab_shift
) {
1851 qemu_put_be32(f
, -1);
1854 qemu_put_be32(f
, 0);
1858 assert(kvm_enabled());
1860 fd
= get_htab_fd(spapr
);
1865 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
1869 } else if (spapr
->htab_first_pass
) {
1870 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
1872 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
1876 qemu_put_be32(f
, 0);
1877 qemu_put_be16(f
, 0);
1878 qemu_put_be16(f
, 0);
1883 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
1885 sPAPRMachineState
*spapr
= opaque
;
1888 /* Iteration header */
1889 if (!spapr
->htab_shift
) {
1890 qemu_put_be32(f
, -1);
1893 qemu_put_be32(f
, 0);
1899 assert(kvm_enabled());
1901 fd
= get_htab_fd(spapr
);
1906 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
1911 if (spapr
->htab_first_pass
) {
1912 htab_save_first_pass(f
, spapr
, -1);
1914 htab_save_later_pass(f
, spapr
, -1);
1918 qemu_put_be32(f
, 0);
1919 qemu_put_be16(f
, 0);
1920 qemu_put_be16(f
, 0);
1925 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
1927 sPAPRMachineState
*spapr
= opaque
;
1928 uint32_t section_hdr
;
1931 if (version_id
< 1 || version_id
> 1) {
1932 error_report("htab_load() bad version");
1936 section_hdr
= qemu_get_be32(f
);
1938 if (section_hdr
== -1) {
1939 spapr_free_hpt(spapr
);
1944 Error
*local_err
= NULL
;
1946 /* First section gives the htab size */
1947 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
1949 error_report_err(local_err
);
1956 assert(kvm_enabled());
1958 fd
= kvmppc_get_htab_fd(true);
1960 error_report("Unable to open fd to restore KVM hash table: %s",
1967 uint16_t n_valid
, n_invalid
;
1969 index
= qemu_get_be32(f
);
1970 n_valid
= qemu_get_be16(f
);
1971 n_invalid
= qemu_get_be16(f
);
1973 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
1978 if ((index
+ n_valid
+ n_invalid
) >
1979 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
1980 /* Bad index in stream */
1982 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1983 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
1989 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
1990 HASH_PTE_SIZE_64
* n_valid
);
1993 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
1994 HASH_PTE_SIZE_64
* n_invalid
);
2001 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
2016 static void htab_save_cleanup(void *opaque
)
2018 sPAPRMachineState
*spapr
= opaque
;
2020 close_htab_fd(spapr
);
2023 static SaveVMHandlers savevm_htab_handlers
= {
2024 .save_setup
= htab_save_setup
,
2025 .save_live_iterate
= htab_save_iterate
,
2026 .save_live_complete_precopy
= htab_save_complete
,
2027 .save_cleanup
= htab_save_cleanup
,
2028 .load_state
= htab_load
,
2031 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2034 MachineState
*machine
= MACHINE(opaque
);
2035 machine
->boot_order
= g_strdup(boot_device
);
2038 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
2040 MachineState
*machine
= MACHINE(spapr
);
2041 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2042 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2045 for (i
= 0; i
< nr_lmbs
; i
++) {
2048 addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;
2049 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2055 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2056 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2057 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2059 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2063 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2064 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2065 " is not aligned to %llu MiB",
2067 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2071 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2072 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2073 " is not aligned to %llu MiB",
2075 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2079 for (i
= 0; i
< nb_numa_nodes
; i
++) {
2080 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2082 "Node %d memory size 0x%" PRIx64
2083 " is not aligned to %llu MiB",
2084 i
, numa_info
[i
].node_mem
,
2085 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2091 /* find cpu slot in machine->possible_cpus by core_id */
2092 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2094 int index
= id
/ smp_threads
;
2096 if (index
>= ms
->possible_cpus
->len
) {
2102 return &ms
->possible_cpus
->cpus
[index
];
2105 static void spapr_init_cpus(sPAPRMachineState
*spapr
)
2107 MachineState
*machine
= MACHINE(spapr
);
2108 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2109 char *type
= spapr_get_cpu_core_type(machine
->cpu_model
);
2110 int smt
= kvmppc_smt_threads();
2111 const CPUArchIdList
*possible_cpus
;
2112 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2116 error_report("Unable to find sPAPR CPU Core definition");
2120 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2121 if (mc
->has_hotpluggable_cpus
) {
2122 if (smp_cpus
% smp_threads
) {
2123 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2124 smp_cpus
, smp_threads
);
2127 if (max_cpus
% smp_threads
) {
2128 error_report("max_cpus (%u) must be multiple of threads (%u)",
2129 max_cpus
, smp_threads
);
2133 if (max_cpus
!= smp_cpus
) {
2134 error_report("This machine version does not support CPU hotplug");
2137 boot_cores_nr
= possible_cpus
->len
;
2140 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2141 int core_id
= i
* smp_threads
;
2143 if (mc
->has_hotpluggable_cpus
) {
2144 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2145 (core_id
/ smp_threads
) * smt
);
2148 if (i
< boot_cores_nr
) {
2149 Object
*core
= object_new(type
);
2150 int nr_threads
= smp_threads
;
2152 /* Handle the partially filled core for older machine types */
2153 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2154 nr_threads
= smp_cpus
- i
* smp_threads
;
2157 object_property_set_int(core
, nr_threads
, "nr-threads",
2159 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
2161 object_property_set_bool(core
, true, "realized", &error_fatal
);
2167 static void spapr_set_vsmt_mode(sPAPRMachineState
*spapr
, Error
**errp
)
2169 Error
*local_err
= NULL
;
2170 bool vsmt_user
= !!spapr
->vsmt
;
2171 int kvm_smt
= kvmppc_smt_threads();
2174 if (!kvm_enabled() && (smp_threads
> 1)) {
2175 error_setg(&local_err
, "TCG cannot support more than 1 thread/core "
2176 "on a pseries machine");
2179 if (!is_power_of_2(smp_threads
)) {
2180 error_setg(&local_err
, "Cannot support %d threads/core on a pseries "
2181 "machine because it must be a power of 2", smp_threads
);
2185 /* Detemine the VSMT mode to use: */
2187 if (spapr
->vsmt
< smp_threads
) {
2188 error_setg(&local_err
, "Cannot support VSMT mode %d"
2189 " because it must be >= threads/core (%d)",
2190 spapr
->vsmt
, smp_threads
);
2193 /* In this case, spapr->vsmt has been set by the command line */
2195 /* Choose a VSMT mode that may be higher than necessary but is
2196 * likely to be compatible with hosts that don't have VSMT. */
2197 spapr
->vsmt
= MAX(kvm_smt
, smp_threads
);
2200 /* KVM: If necessary, set the SMT mode: */
2201 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2202 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2204 error_setg(&local_err
,
2205 "Failed to set KVM's VSMT mode to %d (errno %d)",
2208 error_append_hint(&local_err
, "On PPC, a VM with %d threads/"
2209 "core on a host with %d threads/core requires "
2210 " the use of VSMT mode %d.\n",
2211 smp_threads
, kvm_smt
, spapr
->vsmt
);
2213 kvmppc_hint_smt_possible(&local_err
);
2217 /* else TCG: nothing to do currently */
2219 error_propagate(errp
, local_err
);
2222 /* pSeries LPAR / sPAPR hardware init */
2223 static void ppc_spapr_init(MachineState
*machine
)
2225 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
2226 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2227 const char *kernel_filename
= machine
->kernel_filename
;
2228 const char *initrd_filename
= machine
->initrd_filename
;
2231 MemoryRegion
*sysmem
= get_system_memory();
2232 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
2233 MemoryRegion
*rma_region
;
2235 hwaddr rma_alloc_size
;
2236 hwaddr node0_size
= spapr_node0_size(machine
);
2237 long load_limit
, fw_size
;
2239 Error
*resize_hpt_err
= NULL
;
2241 msi_nonbroken
= true;
2243 QLIST_INIT(&spapr
->phbs
);
2244 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2246 /* Check HPT resizing availability */
2247 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2248 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2250 * If the user explicitly requested a mode we should either
2251 * supply it, or fail completely (which we do below). But if
2252 * it's not set explicitly, we reset our mode to something
2255 if (resize_hpt_err
) {
2256 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2257 error_free(resize_hpt_err
);
2258 resize_hpt_err
= NULL
;
2260 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2264 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2266 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2268 * User requested HPT resize, but this host can't supply it. Bail out
2270 error_report_err(resize_hpt_err
);
2274 /* Allocate RMA if necessary */
2275 rma_alloc_size
= kvmppc_alloc_rma(&rma
);
2277 if (rma_alloc_size
== -1) {
2278 error_report("Unable to create RMA");
2282 if (rma_alloc_size
&& (rma_alloc_size
< node0_size
)) {
2283 spapr
->rma_size
= rma_alloc_size
;
2285 spapr
->rma_size
= node0_size
;
2287 /* With KVM, we don't actually know whether KVM supports an
2288 * unbounded RMA (PR KVM) or is limited by the hash table size
2289 * (HV KVM using VRMA), so we always assume the latter
2291 * In that case, we also limit the initial allocations for RTAS
2292 * etc... to 256M since we have no way to know what the VRMA size
2293 * is going to be as it depends on the size of the hash table
2294 * isn't determined yet.
2296 if (kvm_enabled()) {
2297 spapr
->vrma_adjust
= 1;
2298 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
2301 /* Actually we don't support unbounded RMA anymore since we
2302 * added proper emulation of HV mode. The max we can get is
2303 * 16G which also happens to be what we configure for PAPR
2304 * mode so make sure we don't do anything bigger than that
2306 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x400000000ull
);
2309 if (spapr
->rma_size
> node0_size
) {
2310 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
2315 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2316 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2318 /* Set up Interrupt Controller before we create the VCPUs */
2319 xics_system_init(machine
, XICS_IRQS_SPAPR
, &error_fatal
);
2321 /* Set up containers for ibm,client-set-architecture negotiated options */
2322 spapr
->ov5
= spapr_ovec_new();
2323 spapr
->ov5_cas
= spapr_ovec_new();
2325 if (smc
->dr_lmb_enabled
) {
2326 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2327 spapr_validate_node_memory(machine
, &error_fatal
);
2330 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2331 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2332 /* KVM and TCG always allow GTSE with radix... */
2333 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2335 /* ... but not with hash (currently). */
2337 /* advertise support for dedicated HP event source to guests */
2338 if (spapr
->use_hotplug_event_source
) {
2339 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2342 /* advertise support for HPT resizing */
2343 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2344 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2348 if (machine
->cpu_model
== NULL
) {
2349 machine
->cpu_model
= kvm_enabled() ? "host" : smc
->tcg_default_cpu
;
2352 spapr_cpu_parse_features(spapr
);
2354 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2356 spapr_init_cpus(spapr
);
2358 if (kvm_enabled()) {
2359 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2360 kvmppc_enable_logical_ci_hcalls();
2361 kvmppc_enable_set_mode_hcall();
2363 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2364 kvmppc_enable_clear_ref_mod_hcalls();
2368 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
2370 memory_region_add_subregion(sysmem
, 0, ram
);
2372 if (rma_alloc_size
&& rma
) {
2373 rma_region
= g_new(MemoryRegion
, 1);
2374 memory_region_init_ram_ptr(rma_region
, NULL
, "ppc_spapr.rma",
2375 rma_alloc_size
, rma
);
2376 vmstate_register_ram_global(rma_region
);
2377 memory_region_add_subregion(sysmem
, 0, rma_region
);
2380 /* initialize hotplug memory address space */
2381 if (machine
->ram_size
< machine
->maxram_size
) {
2382 ram_addr_t hotplug_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2384 * Limit the number of hotpluggable memory slots to half the number
2385 * slots that KVM supports, leaving the other half for PCI and other
2386 * devices. However ensure that number of slots doesn't drop below 32.
2388 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2389 SPAPR_MAX_RAM_SLOTS
;
2391 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2392 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2394 if (machine
->ram_slots
> max_memslots
) {
2395 error_report("Specified number of memory slots %"
2396 PRIu64
" exceeds max supported %d",
2397 machine
->ram_slots
, max_memslots
);
2401 spapr
->hotplug_memory
.base
= ROUND_UP(machine
->ram_size
,
2402 SPAPR_HOTPLUG_MEM_ALIGN
);
2403 memory_region_init(&spapr
->hotplug_memory
.mr
, OBJECT(spapr
),
2404 "hotplug-memory", hotplug_mem_size
);
2405 memory_region_add_subregion(sysmem
, spapr
->hotplug_memory
.base
,
2406 &spapr
->hotplug_memory
.mr
);
2409 if (smc
->dr_lmb_enabled
) {
2410 spapr_create_lmb_dr_connectors(spapr
);
2413 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
2415 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2418 spapr
->rtas_size
= get_image_size(filename
);
2419 if (spapr
->rtas_size
< 0) {
2420 error_report("Could not get size of LPAR rtas '%s'", filename
);
2423 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
2424 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
2425 error_report("Could not load LPAR rtas '%s'", filename
);
2428 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
2429 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2430 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
2435 /* Set up RTAS event infrastructure */
2436 spapr_events_init(spapr
);
2438 /* Set up the RTC RTAS interfaces */
2439 spapr_rtc_create(spapr
);
2441 /* Set up VIO bus */
2442 spapr
->vio_bus
= spapr_vio_bus_init();
2444 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
2445 if (serial_hds
[i
]) {
2446 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
2450 /* We always have at least the nvram device on VIO */
2451 spapr_create_nvram(spapr
);
2454 spapr_pci_rtas_init();
2456 phb
= spapr_create_phb(spapr
, 0);
2458 for (i
= 0; i
< nb_nics
; i
++) {
2459 NICInfo
*nd
= &nd_table
[i
];
2462 nd
->model
= g_strdup("ibmveth");
2465 if (strcmp(nd
->model
, "ibmveth") == 0) {
2466 spapr_vlan_create(spapr
->vio_bus
, nd
);
2468 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2472 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2473 spapr_vscsi_create(spapr
->vio_bus
);
2477 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2478 spapr
->has_graphics
= true;
2479 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2483 if (smc
->use_ohci_by_default
) {
2484 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2486 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2489 if (spapr
->has_graphics
) {
2490 USBBus
*usb_bus
= usb_bus_find(-1);
2492 usb_create_simple(usb_bus
, "usb-kbd");
2493 usb_create_simple(usb_bus
, "usb-mouse");
2497 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
2499 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2504 if (kernel_filename
) {
2505 uint64_t lowaddr
= 0;
2507 spapr
->kernel_size
= load_elf(kernel_filename
, translate_kernel_address
,
2508 NULL
, NULL
, &lowaddr
, NULL
, 1,
2509 PPC_ELF_MACHINE
, 0, 0);
2510 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2511 spapr
->kernel_size
= load_elf(kernel_filename
,
2512 translate_kernel_address
, NULL
, NULL
,
2513 &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
2515 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2517 if (spapr
->kernel_size
< 0) {
2518 error_report("error loading %s: %s", kernel_filename
,
2519 load_elf_strerror(spapr
->kernel_size
));
2524 if (initrd_filename
) {
2525 /* Try to locate the initrd in the gap between the kernel
2526 * and the firmware. Add a bit of space just in case
2528 spapr
->initrd_base
= (KERNEL_LOAD_ADDR
+ spapr
->kernel_size
2529 + 0x1ffff) & ~0xffff;
2530 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2533 - spapr
->initrd_base
);
2534 if (spapr
->initrd_size
< 0) {
2535 error_report("could not load initial ram disk '%s'",
2542 if (bios_name
== NULL
) {
2543 bios_name
= FW_FILE_NAME
;
2545 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2547 error_report("Could not find LPAR firmware '%s'", bios_name
);
2550 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2552 error_report("Could not load LPAR firmware '%s'", filename
);
2557 /* FIXME: Should register things through the MachineState's qdev
2558 * interface, this is a legacy from the sPAPREnvironment structure
2559 * which predated MachineState but had a similar function */
2560 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2561 register_savevm_live(NULL
, "spapr/htab", -1, 1,
2562 &savevm_htab_handlers
, spapr
);
2564 qemu_register_boot_set(spapr_boot_set
, spapr
);
2566 if (kvm_enabled()) {
2567 /* to stop and start vmclock */
2568 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
2571 kvmppc_spapr_enable_inkernel_multitce();
2575 static int spapr_kvm_type(const char *vm_type
)
2581 if (!strcmp(vm_type
, "HV")) {
2585 if (!strcmp(vm_type
, "PR")) {
2589 error_report("Unknown kvm-type specified '%s'", vm_type
);
2594 * Implementation of an interface to adjust firmware path
2595 * for the bootindex property handling.
2597 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2600 #define CAST(type, obj, name) \
2601 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2602 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2603 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2604 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
2607 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2608 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2609 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2613 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2614 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2615 * in the top 16 bits of the 64-bit LUN
2617 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2618 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2619 (uint64_t)id
<< 48);
2620 } else if (virtio
) {
2622 * We use SRP luns of the form 01000000 | (target << 8) | lun
2623 * in the top 32 bits of the 64-bit LUN
2624 * Note: the quote above is from SLOF and it is wrong,
2625 * the actual binding is:
2626 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2628 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2629 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2630 (uint64_t)id
<< 32);
2633 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2634 * in the top 32 bits of the 64-bit LUN
2636 unsigned usb_port
= atoi(usb
->port
->path
);
2637 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2638 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2639 (uint64_t)id
<< 32);
2644 * SLOF probes the USB devices, and if it recognizes that the device is a
2645 * storage device, it changes its name to "storage" instead of "usb-host",
2646 * and additionally adds a child node for the SCSI LUN, so the correct
2647 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2649 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
2650 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
2651 if (usb_host_dev_is_scsi_storage(usbdev
)) {
2652 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
2657 /* Replace "pci" with "pci@800000020000000" */
2658 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2662 /* Same logic as virtio above */
2663 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
2664 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
2667 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
2668 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2669 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
2670 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
2676 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2678 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2680 return g_strdup(spapr
->kvm_type
);
2683 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2685 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2687 g_free(spapr
->kvm_type
);
2688 spapr
->kvm_type
= g_strdup(value
);
2691 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
2693 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2695 return spapr
->use_hotplug_event_source
;
2698 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
2701 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2703 spapr
->use_hotplug_event_source
= value
;
2706 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
2708 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2710 switch (spapr
->resize_hpt
) {
2711 case SPAPR_RESIZE_HPT_DEFAULT
:
2712 return g_strdup("default");
2713 case SPAPR_RESIZE_HPT_DISABLED
:
2714 return g_strdup("disabled");
2715 case SPAPR_RESIZE_HPT_ENABLED
:
2716 return g_strdup("enabled");
2717 case SPAPR_RESIZE_HPT_REQUIRED
:
2718 return g_strdup("required");
2720 g_assert_not_reached();
2723 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
2725 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2727 if (strcmp(value
, "default") == 0) {
2728 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
2729 } else if (strcmp(value
, "disabled") == 0) {
2730 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2731 } else if (strcmp(value
, "enabled") == 0) {
2732 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
2733 } else if (strcmp(value
, "required") == 0) {
2734 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
2736 error_setg(errp
, "Bad value for \"resize-hpt\" property");
2740 static void spapr_get_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
2741 void *opaque
, Error
**errp
)
2743 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
2746 static void spapr_set_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
2747 void *opaque
, Error
**errp
)
2749 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
2752 static void spapr_machine_initfn(Object
*obj
)
2754 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2756 spapr
->htab_fd
= -1;
2757 spapr
->use_hotplug_event_source
= true;
2758 object_property_add_str(obj
, "kvm-type",
2759 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
2760 object_property_set_description(obj
, "kvm-type",
2761 "Specifies the KVM virtualization mode (HV, PR)",
2763 object_property_add_bool(obj
, "modern-hotplug-events",
2764 spapr_get_modern_hotplug_events
,
2765 spapr_set_modern_hotplug_events
,
2767 object_property_set_description(obj
, "modern-hotplug-events",
2768 "Use dedicated hotplug event mechanism in"
2769 " place of standard EPOW events when possible"
2770 " (required for memory hot-unplug support)",
2773 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
2774 "Maximum permitted CPU compatibility mode",
2777 object_property_add_str(obj
, "resize-hpt",
2778 spapr_get_resize_hpt
, spapr_set_resize_hpt
, NULL
);
2779 object_property_set_description(obj
, "resize-hpt",
2780 "Resizing of the Hash Page Table (enabled, disabled, required)",
2782 object_property_add(obj
, "vsmt", "uint32", spapr_get_vsmt
,
2783 spapr_set_vsmt
, NULL
, &spapr
->vsmt
, &error_abort
);
2784 object_property_set_description(obj
, "vsmt",
2785 "Virtual SMT: KVM behaves as if this were"
2786 " the host's SMT mode", &error_abort
);
2789 static void spapr_machine_finalizefn(Object
*obj
)
2791 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2793 g_free(spapr
->kvm_type
);
2796 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
2798 cpu_synchronize_state(cs
);
2799 ppc_cpu_do_system_reset(cs
);
2802 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
2807 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
2811 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
2812 uint32_t node
, bool dedicated_hp_event_source
,
2815 sPAPRDRConnector
*drc
;
2816 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
2817 int i
, fdt_offset
, fdt_size
;
2819 uint64_t addr
= addr_start
;
2820 bool hotplugged
= spapr_drc_hotplugged(dev
);
2821 Error
*local_err
= NULL
;
2823 for (i
= 0; i
< nr_lmbs
; i
++) {
2824 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
2825 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
2828 fdt
= create_device_tree(&fdt_size
);
2829 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
2830 SPAPR_MEMORY_BLOCK_SIZE
);
2832 spapr_drc_attach(drc
, dev
, fdt
, fdt_offset
, &local_err
);
2834 while (addr
> addr_start
) {
2835 addr
-= SPAPR_MEMORY_BLOCK_SIZE
;
2836 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
2837 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
2838 spapr_drc_detach(drc
);
2841 error_propagate(errp
, local_err
);
2845 spapr_drc_reset(drc
);
2847 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2849 /* send hotplug notification to the
2850 * guest only in case of hotplugged memory
2853 if (dedicated_hp_event_source
) {
2854 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
2855 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
2856 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2858 spapr_drc_index(drc
));
2860 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2866 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2867 uint32_t node
, Error
**errp
)
2869 Error
*local_err
= NULL
;
2870 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2871 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2872 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2874 uint64_t align
, size
, addr
;
2876 mr
= ddc
->get_memory_region(dimm
, &local_err
);
2880 align
= memory_region_get_alignment(mr
);
2881 size
= memory_region_size(mr
);
2883 pc_dimm_memory_plug(dev
, &ms
->hotplug_memory
, mr
, align
, &local_err
);
2888 addr
= object_property_get_uint(OBJECT(dimm
),
2889 PC_DIMM_ADDR_PROP
, &local_err
);
2894 spapr_add_lmbs(dev
, addr
, size
, node
,
2895 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
2904 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2906 error_propagate(errp
, local_err
);
2909 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2912 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2913 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2918 mr
= ddc
->get_memory_region(dimm
, errp
);
2922 size
= memory_region_size(mr
);
2924 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2925 error_setg(errp
, "Hotplugged memory size must be a multiple of "
2926 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2930 mem_dev
= object_property_get_str(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
, NULL
);
2931 if (mem_dev
&& !kvmppc_is_mem_backend_page_size_ok(mem_dev
)) {
2932 error_setg(errp
, "Memory backend has bad page size. "
2933 "Use 'memory-backend-file' with correct mem-path.");
2941 struct sPAPRDIMMState
{
2944 QTAILQ_ENTRY(sPAPRDIMMState
) next
;
2947 static sPAPRDIMMState
*spapr_pending_dimm_unplugs_find(sPAPRMachineState
*s
,
2950 sPAPRDIMMState
*dimm_state
= NULL
;
2952 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
2953 if (dimm_state
->dimm
== dimm
) {
2960 static sPAPRDIMMState
*spapr_pending_dimm_unplugs_add(sPAPRMachineState
*spapr
,
2964 sPAPRDIMMState
*ds
= NULL
;
2967 * If this request is for a DIMM whose removal had failed earlier
2968 * (due to guest's refusal to remove the LMBs), we would have this
2969 * dimm already in the pending_dimm_unplugs list. In that
2970 * case don't add again.
2972 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
2974 ds
= g_malloc0(sizeof(sPAPRDIMMState
));
2975 ds
->nr_lmbs
= nr_lmbs
;
2977 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
2982 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState
*spapr
,
2983 sPAPRDIMMState
*dimm_state
)
2985 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
2989 static sPAPRDIMMState
*spapr_recover_pending_dimm_state(sPAPRMachineState
*ms
,
2992 sPAPRDRConnector
*drc
;
2993 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2994 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
, &error_abort
);
2995 uint64_t size
= memory_region_size(mr
);
2996 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
2997 uint32_t avail_lmbs
= 0;
2998 uint64_t addr_start
, addr
;
3001 addr_start
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3005 for (i
= 0; i
< nr_lmbs
; i
++) {
3006 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3007 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3012 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3015 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3018 /* Callback to be called during DRC release. */
3019 void spapr_lmb_release(DeviceState
*dev
)
3021 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_hotplug_handler(dev
));
3022 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3023 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3024 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
, &error_abort
);
3025 sPAPRDIMMState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3027 /* This information will get lost if a migration occurs
3028 * during the unplug process. In this case recover it. */
3030 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3032 /* The DRC being examined by the caller at least must be counted */
3033 g_assert(ds
->nr_lmbs
);
3036 if (--ds
->nr_lmbs
) {
3040 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3043 * Now that all the LMBs have been removed by the guest, call the
3044 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3046 pc_dimm_memory_unplug(dev
, &spapr
->hotplug_memory
, mr
);
3047 object_unparent(OBJECT(dev
));
3050 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3051 DeviceState
*dev
, Error
**errp
)
3053 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3054 Error
*local_err
= NULL
;
3055 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3056 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3059 uint64_t size
, addr_start
, addr
;
3061 sPAPRDRConnector
*drc
;
3063 mr
= ddc
->get_memory_region(dimm
, &local_err
);
3067 size
= memory_region_size(mr
);
3068 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3070 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3076 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3079 for (i
= 0; i
< nr_lmbs
; i
++) {
3080 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3081 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3084 spapr_drc_detach(drc
);
3085 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3088 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3089 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3090 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3091 nr_lmbs
, spapr_drc_index(drc
));
3093 error_propagate(errp
, local_err
);
3096 static void *spapr_populate_hotplug_cpu_dt(CPUState
*cs
, int *fdt_offset
,
3097 sPAPRMachineState
*spapr
)
3099 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3100 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3101 int id
= spapr_vcpu_id(cpu
);
3103 int offset
, fdt_size
;
3106 fdt
= create_device_tree(&fdt_size
);
3107 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3108 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3110 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
3113 *fdt_offset
= offset
;
3117 /* Callback to be called during DRC release. */
3118 void spapr_core_release(DeviceState
*dev
)
3120 MachineState
*ms
= MACHINE(qdev_get_hotplug_handler(dev
));
3121 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3122 CPUCore
*cc
= CPU_CORE(dev
);
3123 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3125 if (smc
->pre_2_10_has_unused_icps
) {
3126 sPAPRCPUCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3127 sPAPRCPUCoreClass
*scc
= SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc
));
3128 const char *typename
= object_class_get_name(scc
->cpu_class
);
3129 size_t size
= object_type_get_instance_size(typename
);
3132 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3133 CPUState
*cs
= CPU(sc
->threads
+ i
* size
);
3135 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3140 core_slot
->cpu
= NULL
;
3141 object_unparent(OBJECT(dev
));
3145 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3149 sPAPRDRConnector
*drc
;
3150 CPUCore
*cc
= CPU_CORE(dev
);
3151 int smt
= kvmppc_smt_threads();
3153 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3154 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3159 error_setg(errp
, "Boot CPU core may not be unplugged");
3163 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
* smt
);
3166 spapr_drc_detach(drc
);
3168 spapr_hotplug_req_remove_by_index(drc
);
3171 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3174 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3175 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3176 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3177 sPAPRCPUCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3178 CPUCore
*cc
= CPU_CORE(dev
);
3179 CPUState
*cs
= CPU(core
->threads
);
3180 sPAPRDRConnector
*drc
;
3181 Error
*local_err
= NULL
;
3182 int smt
= kvmppc_smt_threads();
3183 CPUArchId
*core_slot
;
3185 bool hotplugged
= spapr_drc_hotplugged(dev
);
3187 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3189 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3193 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
* smt
);
3195 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3201 fdt
= spapr_populate_hotplug_cpu_dt(cs
, &fdt_offset
, spapr
);
3203 spapr_drc_attach(drc
, dev
, fdt
, fdt_offset
, &local_err
);
3206 error_propagate(errp
, local_err
);
3212 * Send hotplug notification interrupt to the guest only
3213 * in case of hotplugged CPUs.
3215 spapr_hotplug_req_add_by_index(drc
);
3217 spapr_drc_reset(drc
);
3221 core_slot
->cpu
= OBJECT(dev
);
3223 if (smc
->pre_2_10_has_unused_icps
) {
3224 sPAPRCPUCoreClass
*scc
= SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc
));
3225 const char *typename
= object_class_get_name(scc
->cpu_class
);
3226 size_t size
= object_type_get_instance_size(typename
);
3229 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3230 sPAPRCPUCore
*sc
= SPAPR_CPU_CORE(dev
);
3231 void *obj
= sc
->threads
+ i
* size
;
3234 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3239 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3242 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3243 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3244 Error
*local_err
= NULL
;
3245 CPUCore
*cc
= CPU_CORE(dev
);
3246 char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_model
);
3247 const char *type
= object_get_typename(OBJECT(dev
));
3248 CPUArchId
*core_slot
;
3251 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3252 error_setg(&local_err
, "CPU hotplug not supported for this machine");
3256 if (strcmp(base_core_type
, type
)) {
3257 error_setg(&local_err
, "CPU core type should be %s", base_core_type
);
3261 if (cc
->core_id
% smp_threads
) {
3262 error_setg(&local_err
, "invalid core id %d", cc
->core_id
);
3267 * In general we should have homogeneous threads-per-core, but old
3268 * (pre hotplug support) machine types allow the last core to have
3269 * reduced threads as a compatibility hack for when we allowed
3270 * total vcpus not a multiple of threads-per-core.
3272 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3273 error_setg(&local_err
, "invalid nr-threads %d, must be %d",
3274 cc
->nr_threads
, smp_threads
);
3278 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3280 error_setg(&local_err
, "core id %d out of range", cc
->core_id
);
3284 if (core_slot
->cpu
) {
3285 error_setg(&local_err
, "core %d already populated", cc
->core_id
);
3289 numa_cpu_pre_plug(core_slot
, dev
, &local_err
);
3292 g_free(base_core_type
);
3293 error_propagate(errp
, local_err
);
3296 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
3297 DeviceState
*dev
, Error
**errp
)
3299 MachineState
*ms
= MACHINE(hotplug_dev
);
3300 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3302 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3305 if (!smc
->dr_lmb_enabled
) {
3306 error_setg(errp
, "Memory hotplug not supported for this machine");
3309 node
= object_property_get_uint(OBJECT(dev
), PC_DIMM_NODE_PROP
, errp
);
3313 if (node
< 0 || node
>= MAX_NODES
) {
3314 error_setg(errp
, "Invaild node %d", node
);
3319 * Currently PowerPC kernel doesn't allow hot-adding memory to
3320 * memory-less node, but instead will silently add the memory
3321 * to the first node that has some memory. This causes two
3322 * unexpected behaviours for the user.
3324 * - Memory gets hotplugged to a different node than what the user
3326 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3327 * to memory-less node, a reboot will set things accordingly
3328 * and the previously hotplugged memory now ends in the right node.
3329 * This appears as if some memory moved from one node to another.
3331 * So until kernel starts supporting memory hotplug to memory-less
3332 * nodes, just prevent such attempts upfront in QEMU.
3334 if (nb_numa_nodes
&& !numa_info
[node
].node_mem
) {
3335 error_setg(errp
, "Can't hotplug memory to memory-less node %d",
3340 spapr_memory_plug(hotplug_dev
, dev
, node
, errp
);
3341 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3342 spapr_core_plug(hotplug_dev
, dev
, errp
);
3346 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
3347 DeviceState
*dev
, Error
**errp
)
3349 sPAPRMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3350 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
3352 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3353 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
3354 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
3356 /* NOTE: this means there is a window after guest reset, prior to
3357 * CAS negotiation, where unplug requests will fail due to the
3358 * capability not being detected yet. This is a bit different than
3359 * the case with PCI unplug, where the events will be queued and
3360 * eventually handled by the guest after boot
3362 error_setg(errp
, "Memory hot unplug not supported for this guest");
3364 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3365 if (!mc
->has_hotpluggable_cpus
) {
3366 error_setg(errp
, "CPU hot unplug not supported on this machine");
3369 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
3373 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
3374 DeviceState
*dev
, Error
**errp
)
3376 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3377 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
3378 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3379 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
3383 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
3386 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
3387 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3388 return HOTPLUG_HANDLER(machine
);
3393 static CpuInstanceProperties
3394 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
3396 CPUArchId
*core_slot
;
3397 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
3399 /* make sure possible_cpu are intialized */
3400 mc
->possible_cpu_arch_ids(machine
);
3401 /* get CPU core slot containing thread that matches cpu_index */
3402 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
3404 return core_slot
->props
;
3407 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
3410 int spapr_max_cores
= max_cpus
/ smp_threads
;
3411 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
3413 if (!mc
->has_hotpluggable_cpus
) {
3414 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
3416 if (machine
->possible_cpus
) {
3417 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
3418 return machine
->possible_cpus
;
3421 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
3422 sizeof(CPUArchId
) * spapr_max_cores
);
3423 machine
->possible_cpus
->len
= spapr_max_cores
;
3424 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
3425 int core_id
= i
* smp_threads
;
3427 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
3428 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
3429 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
3430 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
3432 /* default distribution of CPUs over NUMA nodes */
3433 if (nb_numa_nodes
) {
3434 /* preset values but do not enable them i.e. 'has_node_id = false',
3435 * numa init code will enable them later if manual mapping wasn't
3437 machine
->possible_cpus
->cpus
[i
].props
.node_id
=
3438 core_id
/ smp_threads
/ smp_cores
% nb_numa_nodes
;
3441 return machine
->possible_cpus
;
3444 static void spapr_phb_placement(sPAPRMachineState
*spapr
, uint32_t index
,
3445 uint64_t *buid
, hwaddr
*pio
,
3446 hwaddr
*mmio32
, hwaddr
*mmio64
,
3447 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
3450 * New-style PHB window placement.
3452 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3453 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3456 * Some guest kernels can't work with MMIO windows above 1<<46
3457 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3459 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3460 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3461 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3462 * 1TiB 64-bit MMIO windows for each PHB.
3464 const uint64_t base_buid
= 0x800000020000000ULL
;
3465 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3466 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3469 /* Sanity check natural alignments */
3470 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
3471 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
3472 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
3473 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
3474 /* Sanity check bounds */
3475 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
3476 SPAPR_PCI_MEM32_WIN_SIZE
);
3477 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
3478 SPAPR_PCI_MEM64_WIN_SIZE
);
3480 if (index
>= SPAPR_MAX_PHBS
) {
3481 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
3482 SPAPR_MAX_PHBS
- 1);
3486 *buid
= base_buid
+ index
;
3487 for (i
= 0; i
< n_dma
; ++i
) {
3488 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3491 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
3492 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
3493 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
3496 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
3498 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3500 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
3503 static void spapr_ics_resend(XICSFabric
*dev
)
3505 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3507 ics_resend(spapr
->ics
);
3510 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
3512 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
3514 return cpu
? ICP(cpu
->intc
) : NULL
;
3517 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
3520 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3524 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3526 icp_pic_print_info(ICP(cpu
->intc
), mon
);
3529 ics_pic_print_info(spapr
->ics
, mon
);
3532 int spapr_vcpu_id(PowerPCCPU
*cpu
)
3534 CPUState
*cs
= CPU(cpu
);
3536 if (kvm_enabled()) {
3537 return kvm_arch_vcpu_id(cs
);
3539 return cs
->cpu_index
;
3543 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
3548 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3550 if (spapr_vcpu_id(cpu
) == vcpu_id
) {
3558 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
3560 MachineClass
*mc
= MACHINE_CLASS(oc
);
3561 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
3562 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
3563 NMIClass
*nc
= NMI_CLASS(oc
);
3564 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
3565 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
3566 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
3567 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
3569 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
3572 * We set up the default / latest behaviour here. The class_init
3573 * functions for the specific versioned machine types can override
3574 * these details for backwards compatibility
3576 mc
->init
= ppc_spapr_init
;
3577 mc
->reset
= ppc_spapr_reset
;
3578 mc
->block_default_type
= IF_SCSI
;
3579 mc
->max_cpus
= 1024;
3580 mc
->no_parallel
= 1;
3581 mc
->default_boot_order
= "";
3582 mc
->default_ram_size
= 512 * M_BYTE
;
3583 mc
->kvm_type
= spapr_kvm_type
;
3584 mc
->has_dynamic_sysbus
= true;
3585 mc
->pci_allow_0_address
= true;
3586 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
3587 hc
->pre_plug
= spapr_machine_device_pre_plug
;
3588 hc
->plug
= spapr_machine_device_plug
;
3589 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
3590 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
3591 hc
->unplug_request
= spapr_machine_device_unplug_request
;
3593 smc
->dr_lmb_enabled
= true;
3594 smc
->tcg_default_cpu
= "POWER8";
3595 mc
->has_hotpluggable_cpus
= true;
3596 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
3597 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
3598 nc
->nmi_monitor_handler
= spapr_nmi
;
3599 smc
->phb_placement
= spapr_phb_placement
;
3600 vhc
->hypercall
= emulate_spapr_hypercall
;
3601 vhc
->hpt_mask
= spapr_hpt_mask
;
3602 vhc
->map_hptes
= spapr_map_hptes
;
3603 vhc
->unmap_hptes
= spapr_unmap_hptes
;
3604 vhc
->store_hpte
= spapr_store_hpte
;
3605 vhc
->get_patbe
= spapr_get_patbe
;
3606 xic
->ics_get
= spapr_ics_get
;
3607 xic
->ics_resend
= spapr_ics_resend
;
3608 xic
->icp_get
= spapr_icp_get
;
3609 ispc
->print_info
= spapr_pic_print_info
;
3610 /* Force NUMA node memory size to be a multiple of
3611 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3612 * in which LMBs are represented and hot-added
3614 mc
->numa_mem_align_shift
= 28;
3617 static const TypeInfo spapr_machine_info
= {
3618 .name
= TYPE_SPAPR_MACHINE
,
3619 .parent
= TYPE_MACHINE
,
3621 .instance_size
= sizeof(sPAPRMachineState
),
3622 .instance_init
= spapr_machine_initfn
,
3623 .instance_finalize
= spapr_machine_finalizefn
,
3624 .class_size
= sizeof(sPAPRMachineClass
),
3625 .class_init
= spapr_machine_class_init
,
3626 .interfaces
= (InterfaceInfo
[]) {
3627 { TYPE_FW_PATH_PROVIDER
},
3629 { TYPE_HOTPLUG_HANDLER
},
3630 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
3631 { TYPE_XICS_FABRIC
},
3632 { TYPE_INTERRUPT_STATS_PROVIDER
},
3637 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3638 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3641 MachineClass *mc = MACHINE_CLASS(oc); \
3642 spapr_machine_##suffix##_class_options(mc); \
3644 mc->alias = "pseries"; \
3645 mc->is_default = 1; \
3648 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3650 MachineState *machine = MACHINE(obj); \
3651 spapr_machine_##suffix##_instance_options(machine); \
3653 static const TypeInfo spapr_machine_##suffix##_info = { \
3654 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3655 .parent = TYPE_SPAPR_MACHINE, \
3656 .class_init = spapr_machine_##suffix##_class_init, \
3657 .instance_init = spapr_machine_##suffix##_instance_init, \
3659 static void spapr_machine_register_##suffix(void) \
3661 type_register(&spapr_machine_##suffix##_info); \
3663 type_init(spapr_machine_register_##suffix)
3668 static void spapr_machine_2_11_instance_options(MachineState
*machine
)
3672 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
3674 /* Defaults for the latest behaviour inherited from the base class */
3677 DEFINE_SPAPR_MACHINE(2_11
, "2.11", true);
3682 #define SPAPR_COMPAT_2_10 \
3685 static void spapr_machine_2_10_instance_options(MachineState *machine)
3689 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
3691 spapr_machine_2_11_class_options(mc
);
3692 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_10
);
3695 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
3700 #define SPAPR_COMPAT_2_9 \
3703 .driver = TYPE_POWERPC_CPU, \
3704 .property = "pre-2.10-migration", \
3708 static void spapr_machine_2_9_instance_options(MachineState *machine)
3710 spapr_machine_2_10_instance_options(machine
);
3713 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
3715 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3717 spapr_machine_2_10_class_options(mc
);
3718 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_9
);
3719 mc
->numa_auto_assign_ram
= numa_legacy_auto_assign_ram
;
3720 smc
->pre_2_10_has_unused_icps
= true;
3721 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
3724 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
3729 #define SPAPR_COMPAT_2_8 \
3732 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3733 .property = "pcie-extended-configuration-space", \
3737 static void spapr_machine_2_8_instance_options(MachineState
*machine
)
3739 spapr_machine_2_9_instance_options(machine
);
3742 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
3744 spapr_machine_2_9_class_options(mc
);
3745 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_8
);
3746 mc
->numa_mem_align_shift
= 23;
3749 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
3754 #define SPAPR_COMPAT_2_7 \
3757 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3758 .property = "mem_win_size", \
3759 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3762 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3763 .property = "mem64_win_size", \
3767 .driver = TYPE_POWERPC_CPU, \
3768 .property = "pre-2.8-migration", \
3772 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3773 .property = "pre-2.8-migration", \
3777 static void phb_placement_2_7(sPAPRMachineState
*spapr
, uint32_t index
,
3778 uint64_t *buid
, hwaddr
*pio
,
3779 hwaddr
*mmio32
, hwaddr
*mmio64
,
3780 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
3782 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3783 const uint64_t base_buid
= 0x800000020000000ULL
;
3784 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
3785 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
3786 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
3787 const uint32_t max_index
= 255;
3788 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
3790 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
3791 hwaddr phb0_base
, phb_base
;
3794 /* Do we have hotpluggable memory? */
3795 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
3796 /* Can't just use maxram_size, because there may be an
3797 * alignment gap between normal and hotpluggable memory
3799 ram_top
= spapr
->hotplug_memory
.base
+
3800 memory_region_size(&spapr
->hotplug_memory
.mr
);
3803 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
3805 if (index
> max_index
) {
3806 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
3811 *buid
= base_buid
+ index
;
3812 for (i
= 0; i
< n_dma
; ++i
) {
3813 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3816 phb_base
= phb0_base
+ index
* phb_spacing
;
3817 *pio
= phb_base
+ pio_offset
;
3818 *mmio32
= phb_base
+ mmio_offset
;
3820 * We don't set the 64-bit MMIO window, relying on the PHB's
3821 * fallback behaviour of automatically splitting a large "32-bit"
3822 * window into contiguous 32-bit and 64-bit windows
3826 static void spapr_machine_2_7_instance_options(MachineState
*machine
)
3828 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
3830 spapr_machine_2_8_instance_options(machine
);
3831 spapr
->use_hotplug_event_source
= false;
3834 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
3836 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3838 spapr_machine_2_8_class_options(mc
);
3839 smc
->tcg_default_cpu
= "POWER7";
3840 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_7
);
3841 smc
->phb_placement
= phb_placement_2_7
;
3844 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
3849 #define SPAPR_COMPAT_2_6 \
3852 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3854 .value = stringify(off),\
3857 static void spapr_machine_2_6_instance_options(MachineState
*machine
)
3859 spapr_machine_2_7_instance_options(machine
);
3862 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
3864 spapr_machine_2_7_class_options(mc
);
3865 mc
->has_hotpluggable_cpus
= false;
3866 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_6
);
3869 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
3874 #define SPAPR_COMPAT_2_5 \
3877 .driver = "spapr-vlan", \
3878 .property = "use-rx-buffer-pools", \
3882 static void spapr_machine_2_5_instance_options(MachineState
*machine
)
3884 spapr_machine_2_6_instance_options(machine
);
3887 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
3889 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3891 spapr_machine_2_6_class_options(mc
);
3892 smc
->use_ohci_by_default
= true;
3893 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_5
);
3896 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
3901 #define SPAPR_COMPAT_2_4 \
3904 static void spapr_machine_2_4_instance_options(MachineState
*machine
)
3906 spapr_machine_2_5_instance_options(machine
);
3909 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
3911 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3913 spapr_machine_2_5_class_options(mc
);
3914 smc
->dr_lmb_enabled
= false;
3915 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_4
);
3918 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
3923 #define SPAPR_COMPAT_2_3 \
3926 .driver = "spapr-pci-host-bridge",\
3927 .property = "dynamic-reconfiguration",\
3931 static void spapr_machine_2_3_instance_options(MachineState
*machine
)
3933 spapr_machine_2_4_instance_options(machine
);
3936 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
3938 spapr_machine_2_4_class_options(mc
);
3939 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_3
);
3941 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
3947 #define SPAPR_COMPAT_2_2 \
3950 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3951 .property = "mem_win_size",\
3952 .value = "0x20000000",\
3955 static void spapr_machine_2_2_instance_options(MachineState
*machine
)
3957 spapr_machine_2_3_instance_options(machine
);
3958 machine
->suppress_vmdesc
= true;
3961 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
3963 spapr_machine_2_3_class_options(mc
);
3964 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_2
);
3966 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
3971 #define SPAPR_COMPAT_2_1 \
3974 static void spapr_machine_2_1_instance_options(MachineState
*machine
)
3976 spapr_machine_2_2_instance_options(machine
);
3979 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
3981 spapr_machine_2_2_class_options(mc
);
3982 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_1
);
3984 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
3986 static void spapr_machine_register_types(void)
3988 type_register_static(&spapr_machine_info
);
3991 type_init(spapr_machine_register_types
)