hw/ppc/spapr.c: cleaning up qdev_get_machine() calls
[qemu/kevin.git] / hw / ppc / spapr.c
blob06a008b43c241cede181f7420cc3b8392e3cebb5
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "qom/cpu.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "qmp-commands.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
103 const char *type_ics,
104 int nr_irqs, Error **errp)
106 Error *local_err = NULL;
107 Object *obj;
109 obj = object_new(type_ics);
110 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
111 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
112 &error_abort);
113 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
114 if (local_err) {
115 goto error;
117 object_property_set_bool(obj, true, "realized", &local_err);
118 if (local_err) {
119 goto error;
122 return ICS_SIMPLE(obj);
124 error:
125 error_propagate(errp, local_err);
126 return NULL;
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
135 return false;
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139 .name = "icp/server",
140 .version_id = 1,
141 .minimum_version_id = 1,
142 .needed = pre_2_10_vmstate_dummy_icp_needed,
143 .fields = (VMStateField[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
163 static inline int xics_max_server_number(void)
165 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
168 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
170 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
171 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
173 if (kvm_enabled()) {
174 if (machine_kernel_irqchip_allowed(machine) &&
175 !xics_kvm_init(spapr, errp)) {
176 spapr->icp_type = TYPE_KVM_ICP;
177 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
179 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
180 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
181 return;
185 if (!spapr->ics) {
186 xics_spapr_init(spapr);
187 spapr->icp_type = TYPE_ICP;
188 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
189 if (!spapr->ics) {
190 return;
194 if (smc->pre_2_10_has_unused_icps) {
195 int i;
197 for (i = 0; i < xics_max_server_number(); i++) {
198 /* Dummy entries get deregistered when real ICPState objects
199 * are registered during CPU core hotplug.
201 pre_2_10_vmstate_register_dummy_icp(i);
206 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
207 int smt_threads)
209 int i, ret = 0;
210 uint32_t servers_prop[smt_threads];
211 uint32_t gservers_prop[smt_threads * 2];
212 int index = spapr_vcpu_id(cpu);
214 if (cpu->compat_pvr) {
215 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
216 if (ret < 0) {
217 return ret;
221 /* Build interrupt servers and gservers properties */
222 for (i = 0; i < smt_threads; i++) {
223 servers_prop[i] = cpu_to_be32(index + i);
224 /* Hack, direct the group queues back to cpu 0 */
225 gservers_prop[i*2] = cpu_to_be32(index + i);
226 gservers_prop[i*2 + 1] = 0;
228 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
229 servers_prop, sizeof(servers_prop));
230 if (ret < 0) {
231 return ret;
233 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
234 gservers_prop, sizeof(gservers_prop));
236 return ret;
239 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
241 int index = spapr_vcpu_id(cpu);
242 uint32_t associativity[] = {cpu_to_be32(0x5),
243 cpu_to_be32(0x0),
244 cpu_to_be32(0x0),
245 cpu_to_be32(0x0),
246 cpu_to_be32(cpu->node_id),
247 cpu_to_be32(index)};
249 /* Advertise NUMA via ibm,associativity */
250 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
251 sizeof(associativity));
254 /* Populate the "ibm,pa-features" property */
255 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
256 bool legacy_guest)
258 uint8_t pa_features_206[] = { 6, 0,
259 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
260 uint8_t pa_features_207[] = { 24, 0,
261 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
262 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
263 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
264 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
265 uint8_t pa_features_300[] = { 66, 0,
266 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
267 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
268 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
269 /* 6: DS207 */
270 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
271 /* 16: Vector */
272 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
273 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
274 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
275 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
276 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
277 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
278 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
279 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
280 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
281 /* 42: PM, 44: PC RA, 46: SC vec'd */
282 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
283 /* 48: SIMD, 50: QP BFP, 52: String */
284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
285 /* 54: DecFP, 56: DecI, 58: SHA */
286 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
287 /* 60: NM atomic, 62: RNG */
288 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
290 uint8_t *pa_features;
291 size_t pa_size;
293 switch (POWERPC_MMU_VER(env->mmu_model)) {
294 case POWERPC_MMU_VER_2_06:
295 pa_features = pa_features_206;
296 pa_size = sizeof(pa_features_206);
297 break;
298 case POWERPC_MMU_VER_2_07:
299 pa_features = pa_features_207;
300 pa_size = sizeof(pa_features_207);
301 break;
302 case POWERPC_MMU_VER_3_00:
303 pa_features = pa_features_300;
304 pa_size = sizeof(pa_features_300);
305 break;
306 default:
307 return;
310 if (env->ci_large_pages) {
312 * Note: we keep CI large pages off by default because a 64K capable
313 * guest provisioned with large pages might otherwise try to map a qemu
314 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
315 * even if that qemu runs on a 4k host.
316 * We dd this bit back here if we are confident this is not an issue
318 pa_features[3] |= 0x20;
320 if (kvmppc_has_cap_htm() && pa_size > 24) {
321 pa_features[24] |= 0x80; /* Transactional memory support */
323 if (legacy_guest && pa_size > 40) {
324 /* Workaround for broken kernels that attempt (guest) radix
325 * mode when they can't handle it, if they see the radix bit set
326 * in pa-features. So hide it from them. */
327 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
330 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
333 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
335 int ret = 0, offset, cpus_offset;
336 CPUState *cs;
337 char cpu_model[32];
338 int smt = kvmppc_smt_threads();
339 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
341 CPU_FOREACH(cs) {
342 PowerPCCPU *cpu = POWERPC_CPU(cs);
343 CPUPPCState *env = &cpu->env;
344 DeviceClass *dc = DEVICE_GET_CLASS(cs);
345 int index = spapr_vcpu_id(cpu);
346 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
348 if ((index % smt) != 0) {
349 continue;
352 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
354 cpus_offset = fdt_path_offset(fdt, "/cpus");
355 if (cpus_offset < 0) {
356 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
357 "cpus");
358 if (cpus_offset < 0) {
359 return cpus_offset;
362 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
363 if (offset < 0) {
364 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
365 if (offset < 0) {
366 return offset;
370 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
371 pft_size_prop, sizeof(pft_size_prop));
372 if (ret < 0) {
373 return ret;
376 if (nb_numa_nodes > 1) {
377 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
378 if (ret < 0) {
379 return ret;
383 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
384 if (ret < 0) {
385 return ret;
388 spapr_populate_pa_features(env, fdt, offset,
389 spapr->cas_legacy_guest_workaround);
391 return ret;
394 static hwaddr spapr_node0_size(MachineState *machine)
396 if (nb_numa_nodes) {
397 int i;
398 for (i = 0; i < nb_numa_nodes; ++i) {
399 if (numa_info[i].node_mem) {
400 return MIN(pow2floor(numa_info[i].node_mem),
401 machine->ram_size);
405 return machine->ram_size;
408 static void add_str(GString *s, const gchar *s1)
410 g_string_append_len(s, s1, strlen(s1) + 1);
413 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
414 hwaddr size)
416 uint32_t associativity[] = {
417 cpu_to_be32(0x4), /* length */
418 cpu_to_be32(0x0), cpu_to_be32(0x0),
419 cpu_to_be32(0x0), cpu_to_be32(nodeid)
421 char mem_name[32];
422 uint64_t mem_reg_property[2];
423 int off;
425 mem_reg_property[0] = cpu_to_be64(start);
426 mem_reg_property[1] = cpu_to_be64(size);
428 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
429 off = fdt_add_subnode(fdt, 0, mem_name);
430 _FDT(off);
431 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
432 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
433 sizeof(mem_reg_property))));
434 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
435 sizeof(associativity))));
436 return off;
439 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
441 MachineState *machine = MACHINE(spapr);
442 hwaddr mem_start, node_size;
443 int i, nb_nodes = nb_numa_nodes;
444 NodeInfo *nodes = numa_info;
445 NodeInfo ramnode;
447 /* No NUMA nodes, assume there is just one node with whole RAM */
448 if (!nb_numa_nodes) {
449 nb_nodes = 1;
450 ramnode.node_mem = machine->ram_size;
451 nodes = &ramnode;
454 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
455 if (!nodes[i].node_mem) {
456 continue;
458 if (mem_start >= machine->ram_size) {
459 node_size = 0;
460 } else {
461 node_size = nodes[i].node_mem;
462 if (node_size > machine->ram_size - mem_start) {
463 node_size = machine->ram_size - mem_start;
466 if (!mem_start) {
467 /* ppc_spapr_init() checks for rma_size <= node0_size already */
468 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
469 mem_start += spapr->rma_size;
470 node_size -= spapr->rma_size;
472 for ( ; node_size; ) {
473 hwaddr sizetmp = pow2floor(node_size);
475 /* mem_start != 0 here */
476 if (ctzl(mem_start) < ctzl(sizetmp)) {
477 sizetmp = 1ULL << ctzl(mem_start);
480 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
481 node_size -= sizetmp;
482 mem_start += sizetmp;
486 return 0;
489 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
490 sPAPRMachineState *spapr)
492 PowerPCCPU *cpu = POWERPC_CPU(cs);
493 CPUPPCState *env = &cpu->env;
494 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
495 int index = spapr_vcpu_id(cpu);
496 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
497 0xffffffff, 0xffffffff};
498 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
499 : SPAPR_TIMEBASE_FREQ;
500 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
501 uint32_t page_sizes_prop[64];
502 size_t page_sizes_prop_size;
503 uint32_t vcpus_per_socket = smp_threads * smp_cores;
504 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
505 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
506 sPAPRDRConnector *drc;
507 int drc_index;
508 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
509 int i;
511 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
512 if (drc) {
513 drc_index = spapr_drc_index(drc);
514 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
517 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
518 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
520 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
521 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
522 env->dcache_line_size)));
523 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
524 env->dcache_line_size)));
525 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
526 env->icache_line_size)));
527 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
528 env->icache_line_size)));
530 if (pcc->l1_dcache_size) {
531 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
532 pcc->l1_dcache_size)));
533 } else {
534 warn_report("Unknown L1 dcache size for cpu");
536 if (pcc->l1_icache_size) {
537 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
538 pcc->l1_icache_size)));
539 } else {
540 warn_report("Unknown L1 icache size for cpu");
543 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
544 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
545 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
546 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
547 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
548 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
550 if (env->spr_cb[SPR_PURR].oea_read) {
551 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
554 if (env->mmu_model & POWERPC_MMU_1TSEG) {
555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
556 segs, sizeof(segs))));
559 /* Advertise VMX/VSX (vector extensions) if available
560 * 0 / no property == no vector extensions
561 * 1 == VMX / Altivec available
562 * 2 == VSX available */
563 if (env->insns_flags & PPC_ALTIVEC) {
564 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
566 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
569 /* Advertise DFP (Decimal Floating Point) if available
570 * 0 / no property == no DFP
571 * 1 == DFP available */
572 if (env->insns_flags2 & PPC2_DFP) {
573 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
576 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
577 sizeof(page_sizes_prop));
578 if (page_sizes_prop_size) {
579 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
580 page_sizes_prop, page_sizes_prop_size)));
583 spapr_populate_pa_features(env, fdt, offset, false);
585 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
586 cs->cpu_index / vcpus_per_socket)));
588 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
589 pft_size_prop, sizeof(pft_size_prop))));
591 if (nb_numa_nodes > 1) {
592 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
595 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
597 if (pcc->radix_page_info) {
598 for (i = 0; i < pcc->radix_page_info->count; i++) {
599 radix_AP_encodings[i] =
600 cpu_to_be32(pcc->radix_page_info->entries[i]);
602 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
603 radix_AP_encodings,
604 pcc->radix_page_info->count *
605 sizeof(radix_AP_encodings[0]))));
609 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
611 CPUState *cs;
612 int cpus_offset;
613 char *nodename;
614 int smt = kvmppc_smt_threads();
616 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
617 _FDT(cpus_offset);
618 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
619 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
622 * We walk the CPUs in reverse order to ensure that CPU DT nodes
623 * created by fdt_add_subnode() end up in the right order in FDT
624 * for the guest kernel the enumerate the CPUs correctly.
626 CPU_FOREACH_REVERSE(cs) {
627 PowerPCCPU *cpu = POWERPC_CPU(cs);
628 int index = spapr_vcpu_id(cpu);
629 DeviceClass *dc = DEVICE_GET_CLASS(cs);
630 int offset;
632 if ((index % smt) != 0) {
633 continue;
636 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
637 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
638 g_free(nodename);
639 _FDT(offset);
640 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
646 * Adds ibm,dynamic-reconfiguration-memory node.
647 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
648 * of this device tree node.
650 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
652 MachineState *machine = MACHINE(spapr);
653 int ret, i, offset;
654 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
655 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
656 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
657 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
658 memory_region_size(&spapr->hotplug_memory.mr)) /
659 lmb_size;
660 uint32_t *int_buf, *cur_index, buf_len;
661 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
664 * Don't create the node if there is no hotpluggable memory
666 if (machine->ram_size == machine->maxram_size) {
667 return 0;
671 * Allocate enough buffer size to fit in ibm,dynamic-memory
672 * or ibm,associativity-lookup-arrays
674 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
675 * sizeof(uint32_t);
676 cur_index = int_buf = g_malloc0(buf_len);
678 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
680 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
681 sizeof(prop_lmb_size));
682 if (ret < 0) {
683 goto out;
686 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
687 if (ret < 0) {
688 goto out;
691 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
692 if (ret < 0) {
693 goto out;
696 /* ibm,dynamic-memory */
697 int_buf[0] = cpu_to_be32(nr_lmbs);
698 cur_index++;
699 for (i = 0; i < nr_lmbs; i++) {
700 uint64_t addr = i * lmb_size;
701 uint32_t *dynamic_memory = cur_index;
703 if (i >= hotplug_lmb_start) {
704 sPAPRDRConnector *drc;
706 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
707 g_assert(drc);
709 dynamic_memory[0] = cpu_to_be32(addr >> 32);
710 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
711 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
712 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
713 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
714 if (memory_region_present(get_system_memory(), addr)) {
715 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
716 } else {
717 dynamic_memory[5] = cpu_to_be32(0);
719 } else {
721 * LMB information for RMA, boot time RAM and gap b/n RAM and
722 * hotplug memory region -- all these are marked as reserved
723 * and as having no valid DRC.
725 dynamic_memory[0] = cpu_to_be32(addr >> 32);
726 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
727 dynamic_memory[2] = cpu_to_be32(0);
728 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
729 dynamic_memory[4] = cpu_to_be32(-1);
730 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
731 SPAPR_LMB_FLAGS_DRC_INVALID);
734 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
736 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
737 if (ret < 0) {
738 goto out;
741 /* ibm,associativity-lookup-arrays */
742 cur_index = int_buf;
743 int_buf[0] = cpu_to_be32(nr_nodes);
744 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
745 cur_index += 2;
746 for (i = 0; i < nr_nodes; i++) {
747 uint32_t associativity[] = {
748 cpu_to_be32(0x0),
749 cpu_to_be32(0x0),
750 cpu_to_be32(0x0),
751 cpu_to_be32(i)
753 memcpy(cur_index, associativity, sizeof(associativity));
754 cur_index += 4;
756 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
757 (cur_index - int_buf) * sizeof(uint32_t));
758 out:
759 g_free(int_buf);
760 return ret;
763 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
764 sPAPROptionVector *ov5_updates)
766 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
767 int ret = 0, offset;
769 /* Generate ibm,dynamic-reconfiguration-memory node if required */
770 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
771 g_assert(smc->dr_lmb_enabled);
772 ret = spapr_populate_drconf_memory(spapr, fdt);
773 if (ret) {
774 goto out;
778 offset = fdt_path_offset(fdt, "/chosen");
779 if (offset < 0) {
780 offset = fdt_add_subnode(fdt, 0, "chosen");
781 if (offset < 0) {
782 return offset;
785 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
786 "ibm,architecture-vec-5");
788 out:
789 return ret;
792 static bool spapr_hotplugged_dev_before_cas(void)
794 Object *drc_container, *obj;
795 ObjectProperty *prop;
796 ObjectPropertyIterator iter;
798 drc_container = container_get(object_get_root(), "/dr-connector");
799 object_property_iter_init(&iter, drc_container);
800 while ((prop = object_property_iter_next(&iter))) {
801 if (!strstart(prop->type, "link<", NULL)) {
802 continue;
804 obj = object_property_get_link(drc_container, prop->name, NULL);
805 if (spapr_drc_needed(obj)) {
806 return true;
809 return false;
812 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
813 target_ulong addr, target_ulong size,
814 sPAPROptionVector *ov5_updates)
816 void *fdt, *fdt_skel;
817 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
819 if (spapr_hotplugged_dev_before_cas()) {
820 return 1;
823 size -= sizeof(hdr);
825 /* Create skeleton */
826 fdt_skel = g_malloc0(size);
827 _FDT((fdt_create(fdt_skel, size)));
828 _FDT((fdt_begin_node(fdt_skel, "")));
829 _FDT((fdt_end_node(fdt_skel)));
830 _FDT((fdt_finish(fdt_skel)));
831 fdt = g_malloc0(size);
832 _FDT((fdt_open_into(fdt_skel, fdt, size)));
833 g_free(fdt_skel);
835 /* Fixup cpu nodes */
836 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
838 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
839 return -1;
842 /* Pack resulting tree */
843 _FDT((fdt_pack(fdt)));
845 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
846 trace_spapr_cas_failed(size);
847 return -1;
850 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
851 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
852 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
853 g_free(fdt);
855 return 0;
858 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
860 int rtas;
861 GString *hypertas = g_string_sized_new(256);
862 GString *qemu_hypertas = g_string_sized_new(256);
863 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
864 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
865 memory_region_size(&spapr->hotplug_memory.mr);
866 uint32_t lrdr_capacity[] = {
867 cpu_to_be32(max_hotplug_addr >> 32),
868 cpu_to_be32(max_hotplug_addr & 0xffffffff),
869 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
870 cpu_to_be32(max_cpus / smp_threads),
873 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
875 /* hypertas */
876 add_str(hypertas, "hcall-pft");
877 add_str(hypertas, "hcall-term");
878 add_str(hypertas, "hcall-dabr");
879 add_str(hypertas, "hcall-interrupt");
880 add_str(hypertas, "hcall-tce");
881 add_str(hypertas, "hcall-vio");
882 add_str(hypertas, "hcall-splpar");
883 add_str(hypertas, "hcall-bulk");
884 add_str(hypertas, "hcall-set-mode");
885 add_str(hypertas, "hcall-sprg0");
886 add_str(hypertas, "hcall-copy");
887 add_str(hypertas, "hcall-debug");
888 add_str(qemu_hypertas, "hcall-memop1");
890 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
891 add_str(hypertas, "hcall-multi-tce");
894 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
895 add_str(hypertas, "hcall-hpt-resize");
898 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
899 hypertas->str, hypertas->len));
900 g_string_free(hypertas, TRUE);
901 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
902 qemu_hypertas->str, qemu_hypertas->len));
903 g_string_free(qemu_hypertas, TRUE);
905 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
906 refpoints, sizeof(refpoints)));
908 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
909 RTAS_ERROR_LOG_MAX));
910 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
911 RTAS_EVENT_SCAN_RATE));
913 if (msi_nonbroken) {
914 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
918 * According to PAPR, rtas ibm,os-term does not guarantee a return
919 * back to the guest cpu.
921 * While an additional ibm,extended-os-term property indicates
922 * that rtas call return will always occur. Set this property.
924 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
926 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
927 lrdr_capacity, sizeof(lrdr_capacity)));
929 spapr_dt_rtas_tokens(fdt, rtas);
932 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
933 * that the guest may request and thus the valid values for bytes 24..26 of
934 * option vector 5: */
935 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
937 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
939 char val[2 * 4] = {
940 23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */
941 24, 0x00, /* Hash/Radix, filled in below. */
942 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
943 26, 0x40, /* Radix options: GTSE == yes. */
946 if (kvm_enabled()) {
947 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
948 val[3] = 0x80; /* OV5_MMU_BOTH */
949 } else if (kvmppc_has_cap_mmu_radix()) {
950 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
951 } else {
952 val[3] = 0x00; /* Hash */
954 } else {
955 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
956 /* V3 MMU supports both hash and radix (with dynamic switching) */
957 val[3] = 0xC0;
958 } else {
959 /* Otherwise we can only do hash */
960 val[3] = 0x00;
963 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
964 val, sizeof(val)));
967 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
969 MachineState *machine = MACHINE(spapr);
970 int chosen;
971 const char *boot_device = machine->boot_order;
972 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
973 size_t cb = 0;
974 char *bootlist = get_boot_devices_list(&cb, true);
976 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
978 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
979 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
980 spapr->initrd_base));
981 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
982 spapr->initrd_base + spapr->initrd_size));
984 if (spapr->kernel_size) {
985 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
986 cpu_to_be64(spapr->kernel_size) };
988 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
989 &kprop, sizeof(kprop)));
990 if (spapr->kernel_le) {
991 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
994 if (boot_menu) {
995 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
997 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
998 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
999 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1001 if (cb && bootlist) {
1002 int i;
1004 for (i = 0; i < cb; i++) {
1005 if (bootlist[i] == '\n') {
1006 bootlist[i] = ' ';
1009 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1012 if (boot_device && strlen(boot_device)) {
1013 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1016 if (!spapr->has_graphics && stdout_path) {
1017 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1020 spapr_dt_ov5_platform_support(fdt, chosen);
1022 g_free(stdout_path);
1023 g_free(bootlist);
1026 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1028 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1029 * KVM to work under pHyp with some guest co-operation */
1030 int hypervisor;
1031 uint8_t hypercall[16];
1033 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1034 /* indicate KVM hypercall interface */
1035 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1036 if (kvmppc_has_cap_fixup_hcalls()) {
1038 * Older KVM versions with older guest kernels were broken
1039 * with the magic page, don't allow the guest to map it.
1041 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1042 sizeof(hypercall))) {
1043 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1044 hypercall, sizeof(hypercall)));
1049 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1050 hwaddr rtas_addr,
1051 hwaddr rtas_size)
1053 MachineState *machine = MACHINE(spapr);
1054 MachineClass *mc = MACHINE_GET_CLASS(machine);
1055 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1056 int ret;
1057 void *fdt;
1058 sPAPRPHBState *phb;
1059 char *buf;
1061 fdt = g_malloc0(FDT_MAX_SIZE);
1062 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1064 /* Root node */
1065 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1066 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1067 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1070 * Add info to guest to indentify which host is it being run on
1071 * and what is the uuid of the guest
1073 if (kvmppc_get_host_model(&buf)) {
1074 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1075 g_free(buf);
1077 if (kvmppc_get_host_serial(&buf)) {
1078 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1079 g_free(buf);
1082 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1084 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1085 if (qemu_uuid_set) {
1086 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1088 g_free(buf);
1090 if (qemu_get_vm_name()) {
1091 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1092 qemu_get_vm_name()));
1095 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1096 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1098 /* /interrupt controller */
1099 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1101 ret = spapr_populate_memory(spapr, fdt);
1102 if (ret < 0) {
1103 error_report("couldn't setup memory nodes in fdt");
1104 exit(1);
1107 /* /vdevice */
1108 spapr_dt_vdevice(spapr->vio_bus, fdt);
1110 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1111 ret = spapr_rng_populate_dt(fdt);
1112 if (ret < 0) {
1113 error_report("could not set up rng device in the fdt");
1114 exit(1);
1118 QLIST_FOREACH(phb, &spapr->phbs, list) {
1119 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1120 if (ret < 0) {
1121 error_report("couldn't setup PCI devices in fdt");
1122 exit(1);
1126 /* cpus */
1127 spapr_populate_cpus_dt_node(fdt, spapr);
1129 if (smc->dr_lmb_enabled) {
1130 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1133 if (mc->has_hotpluggable_cpus) {
1134 int offset = fdt_path_offset(fdt, "/cpus");
1135 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1136 SPAPR_DR_CONNECTOR_TYPE_CPU);
1137 if (ret < 0) {
1138 error_report("Couldn't set up CPU DR device tree properties");
1139 exit(1);
1143 /* /event-sources */
1144 spapr_dt_events(spapr, fdt);
1146 /* /rtas */
1147 spapr_dt_rtas(spapr, fdt);
1149 /* /chosen */
1150 spapr_dt_chosen(spapr, fdt);
1152 /* /hypervisor */
1153 if (kvm_enabled()) {
1154 spapr_dt_hypervisor(spapr, fdt);
1157 /* Build memory reserve map */
1158 if (spapr->kernel_size) {
1159 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1161 if (spapr->initrd_size) {
1162 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1165 /* ibm,client-architecture-support updates */
1166 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1167 if (ret < 0) {
1168 error_report("couldn't setup CAS properties fdt");
1169 exit(1);
1172 return fdt;
1175 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1177 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1180 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1181 PowerPCCPU *cpu)
1183 CPUPPCState *env = &cpu->env;
1185 /* The TCG path should also be holding the BQL at this point */
1186 g_assert(qemu_mutex_iothread_locked());
1188 if (msr_pr) {
1189 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1190 env->gpr[3] = H_PRIVILEGE;
1191 } else {
1192 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1196 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1198 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1200 return spapr->patb_entry;
1203 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1204 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1205 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1206 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1207 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1210 * Get the fd to access the kernel htab, re-opening it if necessary
1212 static int get_htab_fd(sPAPRMachineState *spapr)
1214 if (spapr->htab_fd >= 0) {
1215 return spapr->htab_fd;
1218 spapr->htab_fd = kvmppc_get_htab_fd(false);
1219 if (spapr->htab_fd < 0) {
1220 error_report("Unable to open fd for reading hash table from KVM: %s",
1221 strerror(errno));
1224 return spapr->htab_fd;
1227 void close_htab_fd(sPAPRMachineState *spapr)
1229 if (spapr->htab_fd >= 0) {
1230 close(spapr->htab_fd);
1232 spapr->htab_fd = -1;
1235 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1237 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1239 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1242 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1243 hwaddr ptex, int n)
1245 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1246 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1248 if (!spapr->htab) {
1250 * HTAB is controlled by KVM. Fetch into temporary buffer
1252 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1253 kvmppc_read_hptes(hptes, ptex, n);
1254 return hptes;
1258 * HTAB is controlled by QEMU. Just point to the internally
1259 * accessible PTEG.
1261 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1264 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1265 const ppc_hash_pte64_t *hptes,
1266 hwaddr ptex, int n)
1268 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1270 if (!spapr->htab) {
1271 g_free((void *)hptes);
1274 /* Nothing to do for qemu managed HPT */
1277 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1278 uint64_t pte0, uint64_t pte1)
1280 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1281 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1283 if (!spapr->htab) {
1284 kvmppc_write_hpte(ptex, pte0, pte1);
1285 } else {
1286 stq_p(spapr->htab + offset, pte0);
1287 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1291 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1293 int shift;
1295 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1296 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1297 * that's much more than is needed for Linux guests */
1298 shift = ctz64(pow2ceil(ramsize)) - 7;
1299 shift = MAX(shift, 18); /* Minimum architected size */
1300 shift = MIN(shift, 46); /* Maximum architected size */
1301 return shift;
1304 void spapr_free_hpt(sPAPRMachineState *spapr)
1306 g_free(spapr->htab);
1307 spapr->htab = NULL;
1308 spapr->htab_shift = 0;
1309 close_htab_fd(spapr);
1312 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1313 Error **errp)
1315 long rc;
1317 /* Clean up any HPT info from a previous boot */
1318 spapr_free_hpt(spapr);
1320 rc = kvmppc_reset_htab(shift);
1321 if (rc < 0) {
1322 /* kernel-side HPT needed, but couldn't allocate one */
1323 error_setg_errno(errp, errno,
1324 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1325 shift);
1326 /* This is almost certainly fatal, but if the caller really
1327 * wants to carry on with shift == 0, it's welcome to try */
1328 } else if (rc > 0) {
1329 /* kernel-side HPT allocated */
1330 if (rc != shift) {
1331 error_setg(errp,
1332 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1333 shift, rc);
1336 spapr->htab_shift = shift;
1337 spapr->htab = NULL;
1338 } else {
1339 /* kernel-side HPT not needed, allocate in userspace instead */
1340 size_t size = 1ULL << shift;
1341 int i;
1343 spapr->htab = qemu_memalign(size, size);
1344 if (!spapr->htab) {
1345 error_setg_errno(errp, errno,
1346 "Could not allocate HPT of order %d", shift);
1347 return;
1350 memset(spapr->htab, 0, size);
1351 spapr->htab_shift = shift;
1353 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1354 DIRTY_HPTE(HPTE(spapr->htab, i));
1359 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1361 int hpt_shift;
1363 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1364 || (spapr->cas_reboot
1365 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1366 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1367 } else {
1368 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size);
1370 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1372 if (spapr->vrma_adjust) {
1373 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1374 spapr->htab_shift);
1376 /* We're setting up a hash table, so that means we're not radix */
1377 spapr->patb_entry = 0;
1380 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1382 bool matched = false;
1384 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1385 matched = true;
1388 if (!matched) {
1389 error_report("Device %s is not supported by this machine yet.",
1390 qdev_fw_name(DEVICE(sbdev)));
1391 exit(1);
1395 static void ppc_spapr_reset(void)
1397 MachineState *machine = MACHINE(qdev_get_machine());
1398 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1399 PowerPCCPU *first_ppc_cpu;
1400 uint32_t rtas_limit;
1401 hwaddr rtas_addr, fdt_addr;
1402 void *fdt;
1403 int rc;
1405 /* Check for unknown sysbus devices */
1406 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1408 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1409 /* If using KVM with radix mode available, VCPUs can be started
1410 * without a HPT because KVM will start them in radix mode.
1411 * Set the GR bit in PATB so that we know there is no HPT. */
1412 spapr->patb_entry = PATBE1_GR;
1413 } else {
1414 spapr_setup_hpt_and_vrma(spapr);
1417 qemu_devices_reset();
1418 spapr_clear_pending_events(spapr);
1421 * We place the device tree and RTAS just below either the top of the RMA,
1422 * or just below 2GB, whichever is lowere, so that it can be
1423 * processed with 32-bit real mode code if necessary
1425 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1426 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1427 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1429 /* if this reset wasn't generated by CAS, we should reset our
1430 * negotiated options and start from scratch */
1431 if (!spapr->cas_reboot) {
1432 spapr_ovec_cleanup(spapr->ov5_cas);
1433 spapr->ov5_cas = spapr_ovec_new();
1435 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1438 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1440 spapr_load_rtas(spapr, fdt, rtas_addr);
1442 rc = fdt_pack(fdt);
1444 /* Should only fail if we've built a corrupted tree */
1445 assert(rc == 0);
1447 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1448 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1449 fdt_totalsize(fdt), FDT_MAX_SIZE);
1450 exit(1);
1453 /* Load the fdt */
1454 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1455 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1456 g_free(fdt);
1458 /* Set up the entry state */
1459 first_ppc_cpu = POWERPC_CPU(first_cpu);
1460 first_ppc_cpu->env.gpr[3] = fdt_addr;
1461 first_ppc_cpu->env.gpr[5] = 0;
1462 first_cpu->halted = 0;
1463 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1465 spapr->cas_reboot = false;
1468 static void spapr_create_nvram(sPAPRMachineState *spapr)
1470 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1471 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1473 if (dinfo) {
1474 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1475 &error_fatal);
1478 qdev_init_nofail(dev);
1480 spapr->nvram = (struct sPAPRNVRAM *)dev;
1483 static void spapr_rtc_create(sPAPRMachineState *spapr)
1485 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1486 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1487 &error_fatal);
1488 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1489 &error_fatal);
1490 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1491 "date", &error_fatal);
1494 /* Returns whether we want to use VGA or not */
1495 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1497 switch (vga_interface_type) {
1498 case VGA_NONE:
1499 return false;
1500 case VGA_DEVICE:
1501 return true;
1502 case VGA_STD:
1503 case VGA_VIRTIO:
1504 return pci_vga_init(pci_bus) != NULL;
1505 default:
1506 error_setg(errp,
1507 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1508 return false;
1512 static int spapr_post_load(void *opaque, int version_id)
1514 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1515 int err = 0;
1517 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1518 CPUState *cs;
1519 CPU_FOREACH(cs) {
1520 PowerPCCPU *cpu = POWERPC_CPU(cs);
1521 icp_resend(ICP(cpu->intc));
1525 /* In earlier versions, there was no separate qdev for the PAPR
1526 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1527 * So when migrating from those versions, poke the incoming offset
1528 * value into the RTC device */
1529 if (version_id < 3) {
1530 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1533 if (spapr->patb_entry) {
1534 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1535 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1536 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1538 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1539 if (err) {
1540 error_report("Process table config unsupported by the host");
1541 return -EINVAL;
1545 return err;
1548 static bool version_before_3(void *opaque, int version_id)
1550 return version_id < 3;
1553 static bool spapr_pending_events_needed(void *opaque)
1555 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1556 return !QTAILQ_EMPTY(&spapr->pending_events);
1559 static const VMStateDescription vmstate_spapr_event_entry = {
1560 .name = "spapr_event_log_entry",
1561 .version_id = 1,
1562 .minimum_version_id = 1,
1563 .fields = (VMStateField[]) {
1564 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1565 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1566 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1567 NULL, extended_length),
1568 VMSTATE_END_OF_LIST()
1572 static const VMStateDescription vmstate_spapr_pending_events = {
1573 .name = "spapr_pending_events",
1574 .version_id = 1,
1575 .minimum_version_id = 1,
1576 .needed = spapr_pending_events_needed,
1577 .fields = (VMStateField[]) {
1578 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1579 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1580 VMSTATE_END_OF_LIST()
1584 static bool spapr_ov5_cas_needed(void *opaque)
1586 sPAPRMachineState *spapr = opaque;
1587 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1588 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1589 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1590 bool cas_needed;
1592 /* Prior to the introduction of sPAPROptionVector, we had two option
1593 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1594 * Both of these options encode machine topology into the device-tree
1595 * in such a way that the now-booted OS should still be able to interact
1596 * appropriately with QEMU regardless of what options were actually
1597 * negotiatied on the source side.
1599 * As such, we can avoid migrating the CAS-negotiated options if these
1600 * are the only options available on the current machine/platform.
1601 * Since these are the only options available for pseries-2.7 and
1602 * earlier, this allows us to maintain old->new/new->old migration
1603 * compatibility.
1605 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1606 * via default pseries-2.8 machines and explicit command-line parameters.
1607 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1608 * of the actual CAS-negotiated values to continue working properly. For
1609 * example, availability of memory unplug depends on knowing whether
1610 * OV5_HP_EVT was negotiated via CAS.
1612 * Thus, for any cases where the set of available CAS-negotiatable
1613 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1614 * include the CAS-negotiated options in the migration stream.
1616 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1617 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1619 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1620 * the mask itself since in the future it's possible "legacy" bits may be
1621 * removed via machine options, which could generate a false positive
1622 * that breaks migration.
1624 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1625 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1627 spapr_ovec_cleanup(ov5_mask);
1628 spapr_ovec_cleanup(ov5_legacy);
1629 spapr_ovec_cleanup(ov5_removed);
1631 return cas_needed;
1634 static const VMStateDescription vmstate_spapr_ov5_cas = {
1635 .name = "spapr_option_vector_ov5_cas",
1636 .version_id = 1,
1637 .minimum_version_id = 1,
1638 .needed = spapr_ov5_cas_needed,
1639 .fields = (VMStateField[]) {
1640 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1641 vmstate_spapr_ovec, sPAPROptionVector),
1642 VMSTATE_END_OF_LIST()
1646 static bool spapr_patb_entry_needed(void *opaque)
1648 sPAPRMachineState *spapr = opaque;
1650 return !!spapr->patb_entry;
1653 static const VMStateDescription vmstate_spapr_patb_entry = {
1654 .name = "spapr_patb_entry",
1655 .version_id = 1,
1656 .minimum_version_id = 1,
1657 .needed = spapr_patb_entry_needed,
1658 .fields = (VMStateField[]) {
1659 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1660 VMSTATE_END_OF_LIST()
1664 static const VMStateDescription vmstate_spapr = {
1665 .name = "spapr",
1666 .version_id = 3,
1667 .minimum_version_id = 1,
1668 .post_load = spapr_post_load,
1669 .fields = (VMStateField[]) {
1670 /* used to be @next_irq */
1671 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1673 /* RTC offset */
1674 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1676 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1677 VMSTATE_END_OF_LIST()
1679 .subsections = (const VMStateDescription*[]) {
1680 &vmstate_spapr_ov5_cas,
1681 &vmstate_spapr_patb_entry,
1682 &vmstate_spapr_pending_events,
1683 NULL
1687 static int htab_save_setup(QEMUFile *f, void *opaque)
1689 sPAPRMachineState *spapr = opaque;
1691 /* "Iteration" header */
1692 if (!spapr->htab_shift) {
1693 qemu_put_be32(f, -1);
1694 } else {
1695 qemu_put_be32(f, spapr->htab_shift);
1698 if (spapr->htab) {
1699 spapr->htab_save_index = 0;
1700 spapr->htab_first_pass = true;
1701 } else {
1702 if (spapr->htab_shift) {
1703 assert(kvm_enabled());
1708 return 0;
1711 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1712 int64_t max_ns)
1714 bool has_timeout = max_ns != -1;
1715 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1716 int index = spapr->htab_save_index;
1717 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1719 assert(spapr->htab_first_pass);
1721 do {
1722 int chunkstart;
1724 /* Consume invalid HPTEs */
1725 while ((index < htabslots)
1726 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1727 CLEAN_HPTE(HPTE(spapr->htab, index));
1728 index++;
1731 /* Consume valid HPTEs */
1732 chunkstart = index;
1733 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1734 && HPTE_VALID(HPTE(spapr->htab, index))) {
1735 CLEAN_HPTE(HPTE(spapr->htab, index));
1736 index++;
1739 if (index > chunkstart) {
1740 int n_valid = index - chunkstart;
1742 qemu_put_be32(f, chunkstart);
1743 qemu_put_be16(f, n_valid);
1744 qemu_put_be16(f, 0);
1745 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1746 HASH_PTE_SIZE_64 * n_valid);
1748 if (has_timeout &&
1749 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1750 break;
1753 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1755 if (index >= htabslots) {
1756 assert(index == htabslots);
1757 index = 0;
1758 spapr->htab_first_pass = false;
1760 spapr->htab_save_index = index;
1763 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1764 int64_t max_ns)
1766 bool final = max_ns < 0;
1767 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1768 int examined = 0, sent = 0;
1769 int index = spapr->htab_save_index;
1770 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1772 assert(!spapr->htab_first_pass);
1774 do {
1775 int chunkstart, invalidstart;
1777 /* Consume non-dirty HPTEs */
1778 while ((index < htabslots)
1779 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1780 index++;
1781 examined++;
1784 chunkstart = index;
1785 /* Consume valid dirty HPTEs */
1786 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1787 && HPTE_DIRTY(HPTE(spapr->htab, index))
1788 && HPTE_VALID(HPTE(spapr->htab, index))) {
1789 CLEAN_HPTE(HPTE(spapr->htab, index));
1790 index++;
1791 examined++;
1794 invalidstart = index;
1795 /* Consume invalid dirty HPTEs */
1796 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1797 && HPTE_DIRTY(HPTE(spapr->htab, index))
1798 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1799 CLEAN_HPTE(HPTE(spapr->htab, index));
1800 index++;
1801 examined++;
1804 if (index > chunkstart) {
1805 int n_valid = invalidstart - chunkstart;
1806 int n_invalid = index - invalidstart;
1808 qemu_put_be32(f, chunkstart);
1809 qemu_put_be16(f, n_valid);
1810 qemu_put_be16(f, n_invalid);
1811 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1812 HASH_PTE_SIZE_64 * n_valid);
1813 sent += index - chunkstart;
1815 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1816 break;
1820 if (examined >= htabslots) {
1821 break;
1824 if (index >= htabslots) {
1825 assert(index == htabslots);
1826 index = 0;
1828 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1830 if (index >= htabslots) {
1831 assert(index == htabslots);
1832 index = 0;
1835 spapr->htab_save_index = index;
1837 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1840 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1841 #define MAX_KVM_BUF_SIZE 2048
1843 static int htab_save_iterate(QEMUFile *f, void *opaque)
1845 sPAPRMachineState *spapr = opaque;
1846 int fd;
1847 int rc = 0;
1849 /* Iteration header */
1850 if (!spapr->htab_shift) {
1851 qemu_put_be32(f, -1);
1852 return 1;
1853 } else {
1854 qemu_put_be32(f, 0);
1857 if (!spapr->htab) {
1858 assert(kvm_enabled());
1860 fd = get_htab_fd(spapr);
1861 if (fd < 0) {
1862 return fd;
1865 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1866 if (rc < 0) {
1867 return rc;
1869 } else if (spapr->htab_first_pass) {
1870 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1871 } else {
1872 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1875 /* End marker */
1876 qemu_put_be32(f, 0);
1877 qemu_put_be16(f, 0);
1878 qemu_put_be16(f, 0);
1880 return rc;
1883 static int htab_save_complete(QEMUFile *f, void *opaque)
1885 sPAPRMachineState *spapr = opaque;
1886 int fd;
1888 /* Iteration header */
1889 if (!spapr->htab_shift) {
1890 qemu_put_be32(f, -1);
1891 return 0;
1892 } else {
1893 qemu_put_be32(f, 0);
1896 if (!spapr->htab) {
1897 int rc;
1899 assert(kvm_enabled());
1901 fd = get_htab_fd(spapr);
1902 if (fd < 0) {
1903 return fd;
1906 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1907 if (rc < 0) {
1908 return rc;
1910 } else {
1911 if (spapr->htab_first_pass) {
1912 htab_save_first_pass(f, spapr, -1);
1914 htab_save_later_pass(f, spapr, -1);
1917 /* End marker */
1918 qemu_put_be32(f, 0);
1919 qemu_put_be16(f, 0);
1920 qemu_put_be16(f, 0);
1922 return 0;
1925 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1927 sPAPRMachineState *spapr = opaque;
1928 uint32_t section_hdr;
1929 int fd = -1;
1931 if (version_id < 1 || version_id > 1) {
1932 error_report("htab_load() bad version");
1933 return -EINVAL;
1936 section_hdr = qemu_get_be32(f);
1938 if (section_hdr == -1) {
1939 spapr_free_hpt(spapr);
1940 return 0;
1943 if (section_hdr) {
1944 Error *local_err = NULL;
1946 /* First section gives the htab size */
1947 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1948 if (local_err) {
1949 error_report_err(local_err);
1950 return -EINVAL;
1952 return 0;
1955 if (!spapr->htab) {
1956 assert(kvm_enabled());
1958 fd = kvmppc_get_htab_fd(true);
1959 if (fd < 0) {
1960 error_report("Unable to open fd to restore KVM hash table: %s",
1961 strerror(errno));
1965 while (true) {
1966 uint32_t index;
1967 uint16_t n_valid, n_invalid;
1969 index = qemu_get_be32(f);
1970 n_valid = qemu_get_be16(f);
1971 n_invalid = qemu_get_be16(f);
1973 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1974 /* End of Stream */
1975 break;
1978 if ((index + n_valid + n_invalid) >
1979 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1980 /* Bad index in stream */
1981 error_report(
1982 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1983 index, n_valid, n_invalid, spapr->htab_shift);
1984 return -EINVAL;
1987 if (spapr->htab) {
1988 if (n_valid) {
1989 qemu_get_buffer(f, HPTE(spapr->htab, index),
1990 HASH_PTE_SIZE_64 * n_valid);
1992 if (n_invalid) {
1993 memset(HPTE(spapr->htab, index + n_valid), 0,
1994 HASH_PTE_SIZE_64 * n_invalid);
1996 } else {
1997 int rc;
1999 assert(fd >= 0);
2001 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2002 if (rc < 0) {
2003 return rc;
2008 if (!spapr->htab) {
2009 assert(fd >= 0);
2010 close(fd);
2013 return 0;
2016 static void htab_save_cleanup(void *opaque)
2018 sPAPRMachineState *spapr = opaque;
2020 close_htab_fd(spapr);
2023 static SaveVMHandlers savevm_htab_handlers = {
2024 .save_setup = htab_save_setup,
2025 .save_live_iterate = htab_save_iterate,
2026 .save_live_complete_precopy = htab_save_complete,
2027 .save_cleanup = htab_save_cleanup,
2028 .load_state = htab_load,
2031 static void spapr_boot_set(void *opaque, const char *boot_device,
2032 Error **errp)
2034 MachineState *machine = MACHINE(opaque);
2035 machine->boot_order = g_strdup(boot_device);
2038 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2040 MachineState *machine = MACHINE(spapr);
2041 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2042 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2043 int i;
2045 for (i = 0; i < nr_lmbs; i++) {
2046 uint64_t addr;
2048 addr = i * lmb_size + spapr->hotplug_memory.base;
2049 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2050 addr / lmb_size);
2055 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2056 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2057 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2059 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2061 int i;
2063 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2064 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2065 " is not aligned to %llu MiB",
2066 machine->ram_size,
2067 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2068 return;
2071 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2072 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2073 " is not aligned to %llu MiB",
2074 machine->ram_size,
2075 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2076 return;
2079 for (i = 0; i < nb_numa_nodes; i++) {
2080 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2081 error_setg(errp,
2082 "Node %d memory size 0x%" PRIx64
2083 " is not aligned to %llu MiB",
2084 i, numa_info[i].node_mem,
2085 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2086 return;
2091 /* find cpu slot in machine->possible_cpus by core_id */
2092 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2094 int index = id / smp_threads;
2096 if (index >= ms->possible_cpus->len) {
2097 return NULL;
2099 if (idx) {
2100 *idx = index;
2102 return &ms->possible_cpus->cpus[index];
2105 static void spapr_init_cpus(sPAPRMachineState *spapr)
2107 MachineState *machine = MACHINE(spapr);
2108 MachineClass *mc = MACHINE_GET_CLASS(machine);
2109 char *type = spapr_get_cpu_core_type(machine->cpu_model);
2110 int smt = kvmppc_smt_threads();
2111 const CPUArchIdList *possible_cpus;
2112 int boot_cores_nr = smp_cpus / smp_threads;
2113 int i;
2115 if (!type) {
2116 error_report("Unable to find sPAPR CPU Core definition");
2117 exit(1);
2120 possible_cpus = mc->possible_cpu_arch_ids(machine);
2121 if (mc->has_hotpluggable_cpus) {
2122 if (smp_cpus % smp_threads) {
2123 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2124 smp_cpus, smp_threads);
2125 exit(1);
2127 if (max_cpus % smp_threads) {
2128 error_report("max_cpus (%u) must be multiple of threads (%u)",
2129 max_cpus, smp_threads);
2130 exit(1);
2132 } else {
2133 if (max_cpus != smp_cpus) {
2134 error_report("This machine version does not support CPU hotplug");
2135 exit(1);
2137 boot_cores_nr = possible_cpus->len;
2140 for (i = 0; i < possible_cpus->len; i++) {
2141 int core_id = i * smp_threads;
2143 if (mc->has_hotpluggable_cpus) {
2144 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2145 (core_id / smp_threads) * smt);
2148 if (i < boot_cores_nr) {
2149 Object *core = object_new(type);
2150 int nr_threads = smp_threads;
2152 /* Handle the partially filled core for older machine types */
2153 if ((i + 1) * smp_threads >= smp_cpus) {
2154 nr_threads = smp_cpus - i * smp_threads;
2157 object_property_set_int(core, nr_threads, "nr-threads",
2158 &error_fatal);
2159 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2160 &error_fatal);
2161 object_property_set_bool(core, true, "realized", &error_fatal);
2164 g_free(type);
2167 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2169 Error *local_err = NULL;
2170 bool vsmt_user = !!spapr->vsmt;
2171 int kvm_smt = kvmppc_smt_threads();
2172 int ret;
2174 if (!kvm_enabled() && (smp_threads > 1)) {
2175 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2176 "on a pseries machine");
2177 goto out;
2179 if (!is_power_of_2(smp_threads)) {
2180 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2181 "machine because it must be a power of 2", smp_threads);
2182 goto out;
2185 /* Detemine the VSMT mode to use: */
2186 if (vsmt_user) {
2187 if (spapr->vsmt < smp_threads) {
2188 error_setg(&local_err, "Cannot support VSMT mode %d"
2189 " because it must be >= threads/core (%d)",
2190 spapr->vsmt, smp_threads);
2191 goto out;
2193 /* In this case, spapr->vsmt has been set by the command line */
2194 } else {
2195 /* Choose a VSMT mode that may be higher than necessary but is
2196 * likely to be compatible with hosts that don't have VSMT. */
2197 spapr->vsmt = MAX(kvm_smt, smp_threads);
2200 /* KVM: If necessary, set the SMT mode: */
2201 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2202 ret = kvmppc_set_smt_threads(spapr->vsmt);
2203 if (ret) {
2204 error_setg(&local_err,
2205 "Failed to set KVM's VSMT mode to %d (errno %d)",
2206 spapr->vsmt, ret);
2207 if (!vsmt_user) {
2208 error_append_hint(&local_err, "On PPC, a VM with %d threads/"
2209 "core on a host with %d threads/core requires "
2210 " the use of VSMT mode %d.\n",
2211 smp_threads, kvm_smt, spapr->vsmt);
2213 kvmppc_hint_smt_possible(&local_err);
2214 goto out;
2217 /* else TCG: nothing to do currently */
2218 out:
2219 error_propagate(errp, local_err);
2222 /* pSeries LPAR / sPAPR hardware init */
2223 static void ppc_spapr_init(MachineState *machine)
2225 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2226 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2227 const char *kernel_filename = machine->kernel_filename;
2228 const char *initrd_filename = machine->initrd_filename;
2229 PCIHostState *phb;
2230 int i;
2231 MemoryRegion *sysmem = get_system_memory();
2232 MemoryRegion *ram = g_new(MemoryRegion, 1);
2233 MemoryRegion *rma_region;
2234 void *rma = NULL;
2235 hwaddr rma_alloc_size;
2236 hwaddr node0_size = spapr_node0_size(machine);
2237 long load_limit, fw_size;
2238 char *filename;
2239 Error *resize_hpt_err = NULL;
2241 msi_nonbroken = true;
2243 QLIST_INIT(&spapr->phbs);
2244 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2246 /* Check HPT resizing availability */
2247 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2248 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2250 * If the user explicitly requested a mode we should either
2251 * supply it, or fail completely (which we do below). But if
2252 * it's not set explicitly, we reset our mode to something
2253 * that works
2255 if (resize_hpt_err) {
2256 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2257 error_free(resize_hpt_err);
2258 resize_hpt_err = NULL;
2259 } else {
2260 spapr->resize_hpt = smc->resize_hpt_default;
2264 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2266 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2268 * User requested HPT resize, but this host can't supply it. Bail out
2270 error_report_err(resize_hpt_err);
2271 exit(1);
2274 /* Allocate RMA if necessary */
2275 rma_alloc_size = kvmppc_alloc_rma(&rma);
2277 if (rma_alloc_size == -1) {
2278 error_report("Unable to create RMA");
2279 exit(1);
2282 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2283 spapr->rma_size = rma_alloc_size;
2284 } else {
2285 spapr->rma_size = node0_size;
2287 /* With KVM, we don't actually know whether KVM supports an
2288 * unbounded RMA (PR KVM) or is limited by the hash table size
2289 * (HV KVM using VRMA), so we always assume the latter
2291 * In that case, we also limit the initial allocations for RTAS
2292 * etc... to 256M since we have no way to know what the VRMA size
2293 * is going to be as it depends on the size of the hash table
2294 * isn't determined yet.
2296 if (kvm_enabled()) {
2297 spapr->vrma_adjust = 1;
2298 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2301 /* Actually we don't support unbounded RMA anymore since we
2302 * added proper emulation of HV mode. The max we can get is
2303 * 16G which also happens to be what we configure for PAPR
2304 * mode so make sure we don't do anything bigger than that
2306 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2309 if (spapr->rma_size > node0_size) {
2310 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2311 spapr->rma_size);
2312 exit(1);
2315 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2316 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2318 /* Set up Interrupt Controller before we create the VCPUs */
2319 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2321 /* Set up containers for ibm,client-set-architecture negotiated options */
2322 spapr->ov5 = spapr_ovec_new();
2323 spapr->ov5_cas = spapr_ovec_new();
2325 if (smc->dr_lmb_enabled) {
2326 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2327 spapr_validate_node_memory(machine, &error_fatal);
2330 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2331 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2332 /* KVM and TCG always allow GTSE with radix... */
2333 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2335 /* ... but not with hash (currently). */
2337 /* advertise support for dedicated HP event source to guests */
2338 if (spapr->use_hotplug_event_source) {
2339 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2342 /* advertise support for HPT resizing */
2343 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2344 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2347 /* init CPUs */
2348 if (machine->cpu_model == NULL) {
2349 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2352 spapr_cpu_parse_features(spapr);
2354 spapr_set_vsmt_mode(spapr, &error_fatal);
2356 spapr_init_cpus(spapr);
2358 if (kvm_enabled()) {
2359 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2360 kvmppc_enable_logical_ci_hcalls();
2361 kvmppc_enable_set_mode_hcall();
2363 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2364 kvmppc_enable_clear_ref_mod_hcalls();
2367 /* allocate RAM */
2368 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2369 machine->ram_size);
2370 memory_region_add_subregion(sysmem, 0, ram);
2372 if (rma_alloc_size && rma) {
2373 rma_region = g_new(MemoryRegion, 1);
2374 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2375 rma_alloc_size, rma);
2376 vmstate_register_ram_global(rma_region);
2377 memory_region_add_subregion(sysmem, 0, rma_region);
2380 /* initialize hotplug memory address space */
2381 if (machine->ram_size < machine->maxram_size) {
2382 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2384 * Limit the number of hotpluggable memory slots to half the number
2385 * slots that KVM supports, leaving the other half for PCI and other
2386 * devices. However ensure that number of slots doesn't drop below 32.
2388 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2389 SPAPR_MAX_RAM_SLOTS;
2391 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2392 max_memslots = SPAPR_MAX_RAM_SLOTS;
2394 if (machine->ram_slots > max_memslots) {
2395 error_report("Specified number of memory slots %"
2396 PRIu64" exceeds max supported %d",
2397 machine->ram_slots, max_memslots);
2398 exit(1);
2401 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2402 SPAPR_HOTPLUG_MEM_ALIGN);
2403 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2404 "hotplug-memory", hotplug_mem_size);
2405 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2406 &spapr->hotplug_memory.mr);
2409 if (smc->dr_lmb_enabled) {
2410 spapr_create_lmb_dr_connectors(spapr);
2413 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2414 if (!filename) {
2415 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2416 exit(1);
2418 spapr->rtas_size = get_image_size(filename);
2419 if (spapr->rtas_size < 0) {
2420 error_report("Could not get size of LPAR rtas '%s'", filename);
2421 exit(1);
2423 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2424 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2425 error_report("Could not load LPAR rtas '%s'", filename);
2426 exit(1);
2428 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2429 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2430 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2431 exit(1);
2433 g_free(filename);
2435 /* Set up RTAS event infrastructure */
2436 spapr_events_init(spapr);
2438 /* Set up the RTC RTAS interfaces */
2439 spapr_rtc_create(spapr);
2441 /* Set up VIO bus */
2442 spapr->vio_bus = spapr_vio_bus_init();
2444 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2445 if (serial_hds[i]) {
2446 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2450 /* We always have at least the nvram device on VIO */
2451 spapr_create_nvram(spapr);
2453 /* Set up PCI */
2454 spapr_pci_rtas_init();
2456 phb = spapr_create_phb(spapr, 0);
2458 for (i = 0; i < nb_nics; i++) {
2459 NICInfo *nd = &nd_table[i];
2461 if (!nd->model) {
2462 nd->model = g_strdup("ibmveth");
2465 if (strcmp(nd->model, "ibmveth") == 0) {
2466 spapr_vlan_create(spapr->vio_bus, nd);
2467 } else {
2468 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2472 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2473 spapr_vscsi_create(spapr->vio_bus);
2476 /* Graphics */
2477 if (spapr_vga_init(phb->bus, &error_fatal)) {
2478 spapr->has_graphics = true;
2479 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2482 if (machine->usb) {
2483 if (smc->use_ohci_by_default) {
2484 pci_create_simple(phb->bus, -1, "pci-ohci");
2485 } else {
2486 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2489 if (spapr->has_graphics) {
2490 USBBus *usb_bus = usb_bus_find(-1);
2492 usb_create_simple(usb_bus, "usb-kbd");
2493 usb_create_simple(usb_bus, "usb-mouse");
2497 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2498 error_report(
2499 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2500 MIN_RMA_SLOF);
2501 exit(1);
2504 if (kernel_filename) {
2505 uint64_t lowaddr = 0;
2507 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2508 NULL, NULL, &lowaddr, NULL, 1,
2509 PPC_ELF_MACHINE, 0, 0);
2510 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2511 spapr->kernel_size = load_elf(kernel_filename,
2512 translate_kernel_address, NULL, NULL,
2513 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2514 0, 0);
2515 spapr->kernel_le = spapr->kernel_size > 0;
2517 if (spapr->kernel_size < 0) {
2518 error_report("error loading %s: %s", kernel_filename,
2519 load_elf_strerror(spapr->kernel_size));
2520 exit(1);
2523 /* load initrd */
2524 if (initrd_filename) {
2525 /* Try to locate the initrd in the gap between the kernel
2526 * and the firmware. Add a bit of space just in case
2528 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2529 + 0x1ffff) & ~0xffff;
2530 spapr->initrd_size = load_image_targphys(initrd_filename,
2531 spapr->initrd_base,
2532 load_limit
2533 - spapr->initrd_base);
2534 if (spapr->initrd_size < 0) {
2535 error_report("could not load initial ram disk '%s'",
2536 initrd_filename);
2537 exit(1);
2542 if (bios_name == NULL) {
2543 bios_name = FW_FILE_NAME;
2545 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2546 if (!filename) {
2547 error_report("Could not find LPAR firmware '%s'", bios_name);
2548 exit(1);
2550 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2551 if (fw_size <= 0) {
2552 error_report("Could not load LPAR firmware '%s'", filename);
2553 exit(1);
2555 g_free(filename);
2557 /* FIXME: Should register things through the MachineState's qdev
2558 * interface, this is a legacy from the sPAPREnvironment structure
2559 * which predated MachineState but had a similar function */
2560 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2561 register_savevm_live(NULL, "spapr/htab", -1, 1,
2562 &savevm_htab_handlers, spapr);
2564 qemu_register_boot_set(spapr_boot_set, spapr);
2566 if (kvm_enabled()) {
2567 /* to stop and start vmclock */
2568 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2569 &spapr->tb);
2571 kvmppc_spapr_enable_inkernel_multitce();
2575 static int spapr_kvm_type(const char *vm_type)
2577 if (!vm_type) {
2578 return 0;
2581 if (!strcmp(vm_type, "HV")) {
2582 return 1;
2585 if (!strcmp(vm_type, "PR")) {
2586 return 2;
2589 error_report("Unknown kvm-type specified '%s'", vm_type);
2590 exit(1);
2594 * Implementation of an interface to adjust firmware path
2595 * for the bootindex property handling.
2597 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2598 DeviceState *dev)
2600 #define CAST(type, obj, name) \
2601 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2602 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2603 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2604 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2606 if (d) {
2607 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2608 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2609 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2611 if (spapr) {
2613 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2614 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2615 * in the top 16 bits of the 64-bit LUN
2617 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2618 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2619 (uint64_t)id << 48);
2620 } else if (virtio) {
2622 * We use SRP luns of the form 01000000 | (target << 8) | lun
2623 * in the top 32 bits of the 64-bit LUN
2624 * Note: the quote above is from SLOF and it is wrong,
2625 * the actual binding is:
2626 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2628 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2629 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2630 (uint64_t)id << 32);
2631 } else if (usb) {
2633 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2634 * in the top 32 bits of the 64-bit LUN
2636 unsigned usb_port = atoi(usb->port->path);
2637 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2638 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2639 (uint64_t)id << 32);
2644 * SLOF probes the USB devices, and if it recognizes that the device is a
2645 * storage device, it changes its name to "storage" instead of "usb-host",
2646 * and additionally adds a child node for the SCSI LUN, so the correct
2647 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2649 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2650 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2651 if (usb_host_dev_is_scsi_storage(usbdev)) {
2652 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2656 if (phb) {
2657 /* Replace "pci" with "pci@800000020000000" */
2658 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2661 if (vsc) {
2662 /* Same logic as virtio above */
2663 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2664 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2667 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2668 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2669 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2670 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2673 return NULL;
2676 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2678 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2680 return g_strdup(spapr->kvm_type);
2683 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2685 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2687 g_free(spapr->kvm_type);
2688 spapr->kvm_type = g_strdup(value);
2691 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2693 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2695 return spapr->use_hotplug_event_source;
2698 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2699 Error **errp)
2701 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2703 spapr->use_hotplug_event_source = value;
2706 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2708 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2710 switch (spapr->resize_hpt) {
2711 case SPAPR_RESIZE_HPT_DEFAULT:
2712 return g_strdup("default");
2713 case SPAPR_RESIZE_HPT_DISABLED:
2714 return g_strdup("disabled");
2715 case SPAPR_RESIZE_HPT_ENABLED:
2716 return g_strdup("enabled");
2717 case SPAPR_RESIZE_HPT_REQUIRED:
2718 return g_strdup("required");
2720 g_assert_not_reached();
2723 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2725 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2727 if (strcmp(value, "default") == 0) {
2728 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2729 } else if (strcmp(value, "disabled") == 0) {
2730 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2731 } else if (strcmp(value, "enabled") == 0) {
2732 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2733 } else if (strcmp(value, "required") == 0) {
2734 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2735 } else {
2736 error_setg(errp, "Bad value for \"resize-hpt\" property");
2740 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2741 void *opaque, Error **errp)
2743 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2746 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2747 void *opaque, Error **errp)
2749 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2752 static void spapr_machine_initfn(Object *obj)
2754 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2756 spapr->htab_fd = -1;
2757 spapr->use_hotplug_event_source = true;
2758 object_property_add_str(obj, "kvm-type",
2759 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2760 object_property_set_description(obj, "kvm-type",
2761 "Specifies the KVM virtualization mode (HV, PR)",
2762 NULL);
2763 object_property_add_bool(obj, "modern-hotplug-events",
2764 spapr_get_modern_hotplug_events,
2765 spapr_set_modern_hotplug_events,
2766 NULL);
2767 object_property_set_description(obj, "modern-hotplug-events",
2768 "Use dedicated hotplug event mechanism in"
2769 " place of standard EPOW events when possible"
2770 " (required for memory hot-unplug support)",
2771 NULL);
2773 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2774 "Maximum permitted CPU compatibility mode",
2775 &error_fatal);
2777 object_property_add_str(obj, "resize-hpt",
2778 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2779 object_property_set_description(obj, "resize-hpt",
2780 "Resizing of the Hash Page Table (enabled, disabled, required)",
2781 NULL);
2782 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2783 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2784 object_property_set_description(obj, "vsmt",
2785 "Virtual SMT: KVM behaves as if this were"
2786 " the host's SMT mode", &error_abort);
2789 static void spapr_machine_finalizefn(Object *obj)
2791 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2793 g_free(spapr->kvm_type);
2796 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2798 cpu_synchronize_state(cs);
2799 ppc_cpu_do_system_reset(cs);
2802 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2804 CPUState *cs;
2806 CPU_FOREACH(cs) {
2807 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2811 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2812 uint32_t node, bool dedicated_hp_event_source,
2813 Error **errp)
2815 sPAPRDRConnector *drc;
2816 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2817 int i, fdt_offset, fdt_size;
2818 void *fdt;
2819 uint64_t addr = addr_start;
2820 bool hotplugged = spapr_drc_hotplugged(dev);
2821 Error *local_err = NULL;
2823 for (i = 0; i < nr_lmbs; i++) {
2824 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2825 addr / SPAPR_MEMORY_BLOCK_SIZE);
2826 g_assert(drc);
2828 fdt = create_device_tree(&fdt_size);
2829 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2830 SPAPR_MEMORY_BLOCK_SIZE);
2832 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2833 if (local_err) {
2834 while (addr > addr_start) {
2835 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2836 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2837 addr / SPAPR_MEMORY_BLOCK_SIZE);
2838 spapr_drc_detach(drc);
2840 g_free(fdt);
2841 error_propagate(errp, local_err);
2842 return;
2844 if (!hotplugged) {
2845 spapr_drc_reset(drc);
2847 addr += SPAPR_MEMORY_BLOCK_SIZE;
2849 /* send hotplug notification to the
2850 * guest only in case of hotplugged memory
2852 if (hotplugged) {
2853 if (dedicated_hp_event_source) {
2854 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2855 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2856 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2857 nr_lmbs,
2858 spapr_drc_index(drc));
2859 } else {
2860 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2861 nr_lmbs);
2866 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2867 uint32_t node, Error **errp)
2869 Error *local_err = NULL;
2870 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2871 PCDIMMDevice *dimm = PC_DIMM(dev);
2872 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2873 MemoryRegion *mr;
2874 uint64_t align, size, addr;
2876 mr = ddc->get_memory_region(dimm, &local_err);
2877 if (local_err) {
2878 goto out;
2880 align = memory_region_get_alignment(mr);
2881 size = memory_region_size(mr);
2883 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2884 if (local_err) {
2885 goto out;
2888 addr = object_property_get_uint(OBJECT(dimm),
2889 PC_DIMM_ADDR_PROP, &local_err);
2890 if (local_err) {
2891 goto out_unplug;
2894 spapr_add_lmbs(dev, addr, size, node,
2895 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2896 &local_err);
2897 if (local_err) {
2898 goto out_unplug;
2901 return;
2903 out_unplug:
2904 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2905 out:
2906 error_propagate(errp, local_err);
2909 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2910 Error **errp)
2912 PCDIMMDevice *dimm = PC_DIMM(dev);
2913 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2914 MemoryRegion *mr;
2915 uint64_t size;
2916 char *mem_dev;
2918 mr = ddc->get_memory_region(dimm, errp);
2919 if (!mr) {
2920 return;
2922 size = memory_region_size(mr);
2924 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2925 error_setg(errp, "Hotplugged memory size must be a multiple of "
2926 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2927 return;
2930 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2931 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2932 error_setg(errp, "Memory backend has bad page size. "
2933 "Use 'memory-backend-file' with correct mem-path.");
2934 goto out;
2937 out:
2938 g_free(mem_dev);
2941 struct sPAPRDIMMState {
2942 PCDIMMDevice *dimm;
2943 uint32_t nr_lmbs;
2944 QTAILQ_ENTRY(sPAPRDIMMState) next;
2947 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2948 PCDIMMDevice *dimm)
2950 sPAPRDIMMState *dimm_state = NULL;
2952 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2953 if (dimm_state->dimm == dimm) {
2954 break;
2957 return dimm_state;
2960 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2961 uint32_t nr_lmbs,
2962 PCDIMMDevice *dimm)
2964 sPAPRDIMMState *ds = NULL;
2967 * If this request is for a DIMM whose removal had failed earlier
2968 * (due to guest's refusal to remove the LMBs), we would have this
2969 * dimm already in the pending_dimm_unplugs list. In that
2970 * case don't add again.
2972 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
2973 if (!ds) {
2974 ds = g_malloc0(sizeof(sPAPRDIMMState));
2975 ds->nr_lmbs = nr_lmbs;
2976 ds->dimm = dimm;
2977 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
2979 return ds;
2982 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2983 sPAPRDIMMState *dimm_state)
2985 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2986 g_free(dimm_state);
2989 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2990 PCDIMMDevice *dimm)
2992 sPAPRDRConnector *drc;
2993 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2994 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
2995 uint64_t size = memory_region_size(mr);
2996 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2997 uint32_t avail_lmbs = 0;
2998 uint64_t addr_start, addr;
2999 int i;
3001 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3002 &error_abort);
3004 addr = addr_start;
3005 for (i = 0; i < nr_lmbs; i++) {
3006 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3007 addr / SPAPR_MEMORY_BLOCK_SIZE);
3008 g_assert(drc);
3009 if (drc->dev) {
3010 avail_lmbs++;
3012 addr += SPAPR_MEMORY_BLOCK_SIZE;
3015 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3018 /* Callback to be called during DRC release. */
3019 void spapr_lmb_release(DeviceState *dev)
3021 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3022 PCDIMMDevice *dimm = PC_DIMM(dev);
3023 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3024 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3025 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3027 /* This information will get lost if a migration occurs
3028 * during the unplug process. In this case recover it. */
3029 if (ds == NULL) {
3030 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3031 g_assert(ds);
3032 /* The DRC being examined by the caller at least must be counted */
3033 g_assert(ds->nr_lmbs);
3036 if (--ds->nr_lmbs) {
3037 return;
3040 spapr_pending_dimm_unplugs_remove(spapr, ds);
3043 * Now that all the LMBs have been removed by the guest, call the
3044 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3046 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3047 object_unparent(OBJECT(dev));
3050 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3051 DeviceState *dev, Error **errp)
3053 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3054 Error *local_err = NULL;
3055 PCDIMMDevice *dimm = PC_DIMM(dev);
3056 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3057 MemoryRegion *mr;
3058 uint32_t nr_lmbs;
3059 uint64_t size, addr_start, addr;
3060 int i;
3061 sPAPRDRConnector *drc;
3063 mr = ddc->get_memory_region(dimm, &local_err);
3064 if (local_err) {
3065 goto out;
3067 size = memory_region_size(mr);
3068 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3070 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3071 &local_err);
3072 if (local_err) {
3073 goto out;
3076 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3078 addr = addr_start;
3079 for (i = 0; i < nr_lmbs; i++) {
3080 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3081 addr / SPAPR_MEMORY_BLOCK_SIZE);
3082 g_assert(drc);
3084 spapr_drc_detach(drc);
3085 addr += SPAPR_MEMORY_BLOCK_SIZE;
3088 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3089 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3090 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3091 nr_lmbs, spapr_drc_index(drc));
3092 out:
3093 error_propagate(errp, local_err);
3096 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3097 sPAPRMachineState *spapr)
3099 PowerPCCPU *cpu = POWERPC_CPU(cs);
3100 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3101 int id = spapr_vcpu_id(cpu);
3102 void *fdt;
3103 int offset, fdt_size;
3104 char *nodename;
3106 fdt = create_device_tree(&fdt_size);
3107 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3108 offset = fdt_add_subnode(fdt, 0, nodename);
3110 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3111 g_free(nodename);
3113 *fdt_offset = offset;
3114 return fdt;
3117 /* Callback to be called during DRC release. */
3118 void spapr_core_release(DeviceState *dev)
3120 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3121 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3122 CPUCore *cc = CPU_CORE(dev);
3123 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3125 if (smc->pre_2_10_has_unused_icps) {
3126 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3127 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3128 const char *typename = object_class_get_name(scc->cpu_class);
3129 size_t size = object_type_get_instance_size(typename);
3130 int i;
3132 for (i = 0; i < cc->nr_threads; i++) {
3133 CPUState *cs = CPU(sc->threads + i * size);
3135 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3139 assert(core_slot);
3140 core_slot->cpu = NULL;
3141 object_unparent(OBJECT(dev));
3144 static
3145 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3146 Error **errp)
3148 int index;
3149 sPAPRDRConnector *drc;
3150 CPUCore *cc = CPU_CORE(dev);
3151 int smt = kvmppc_smt_threads();
3153 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3154 error_setg(errp, "Unable to find CPU core with core-id: %d",
3155 cc->core_id);
3156 return;
3158 if (index == 0) {
3159 error_setg(errp, "Boot CPU core may not be unplugged");
3160 return;
3163 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3164 g_assert(drc);
3166 spapr_drc_detach(drc);
3168 spapr_hotplug_req_remove_by_index(drc);
3171 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3172 Error **errp)
3174 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3175 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3176 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3177 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3178 CPUCore *cc = CPU_CORE(dev);
3179 CPUState *cs = CPU(core->threads);
3180 sPAPRDRConnector *drc;
3181 Error *local_err = NULL;
3182 int smt = kvmppc_smt_threads();
3183 CPUArchId *core_slot;
3184 int index;
3185 bool hotplugged = spapr_drc_hotplugged(dev);
3187 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3188 if (!core_slot) {
3189 error_setg(errp, "Unable to find CPU core with core-id: %d",
3190 cc->core_id);
3191 return;
3193 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3195 g_assert(drc || !mc->has_hotpluggable_cpus);
3197 if (drc) {
3198 void *fdt;
3199 int fdt_offset;
3201 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3203 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3204 if (local_err) {
3205 g_free(fdt);
3206 error_propagate(errp, local_err);
3207 return;
3210 if (hotplugged) {
3212 * Send hotplug notification interrupt to the guest only
3213 * in case of hotplugged CPUs.
3215 spapr_hotplug_req_add_by_index(drc);
3216 } else {
3217 spapr_drc_reset(drc);
3221 core_slot->cpu = OBJECT(dev);
3223 if (smc->pre_2_10_has_unused_icps) {
3224 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3225 const char *typename = object_class_get_name(scc->cpu_class);
3226 size_t size = object_type_get_instance_size(typename);
3227 int i;
3229 for (i = 0; i < cc->nr_threads; i++) {
3230 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3231 void *obj = sc->threads + i * size;
3233 cs = CPU(obj);
3234 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3239 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3240 Error **errp)
3242 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3243 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3244 Error *local_err = NULL;
3245 CPUCore *cc = CPU_CORE(dev);
3246 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
3247 const char *type = object_get_typename(OBJECT(dev));
3248 CPUArchId *core_slot;
3249 int index;
3251 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3252 error_setg(&local_err, "CPU hotplug not supported for this machine");
3253 goto out;
3256 if (strcmp(base_core_type, type)) {
3257 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3258 goto out;
3261 if (cc->core_id % smp_threads) {
3262 error_setg(&local_err, "invalid core id %d", cc->core_id);
3263 goto out;
3267 * In general we should have homogeneous threads-per-core, but old
3268 * (pre hotplug support) machine types allow the last core to have
3269 * reduced threads as a compatibility hack for when we allowed
3270 * total vcpus not a multiple of threads-per-core.
3272 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3273 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3274 cc->nr_threads, smp_threads);
3275 goto out;
3278 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3279 if (!core_slot) {
3280 error_setg(&local_err, "core id %d out of range", cc->core_id);
3281 goto out;
3284 if (core_slot->cpu) {
3285 error_setg(&local_err, "core %d already populated", cc->core_id);
3286 goto out;
3289 numa_cpu_pre_plug(core_slot, dev, &local_err);
3291 out:
3292 g_free(base_core_type);
3293 error_propagate(errp, local_err);
3296 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3297 DeviceState *dev, Error **errp)
3299 MachineState *ms = MACHINE(hotplug_dev);
3300 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3302 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3303 int node;
3305 if (!smc->dr_lmb_enabled) {
3306 error_setg(errp, "Memory hotplug not supported for this machine");
3307 return;
3309 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3310 if (*errp) {
3311 return;
3313 if (node < 0 || node >= MAX_NODES) {
3314 error_setg(errp, "Invaild node %d", node);
3315 return;
3319 * Currently PowerPC kernel doesn't allow hot-adding memory to
3320 * memory-less node, but instead will silently add the memory
3321 * to the first node that has some memory. This causes two
3322 * unexpected behaviours for the user.
3324 * - Memory gets hotplugged to a different node than what the user
3325 * specified.
3326 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3327 * to memory-less node, a reboot will set things accordingly
3328 * and the previously hotplugged memory now ends in the right node.
3329 * This appears as if some memory moved from one node to another.
3331 * So until kernel starts supporting memory hotplug to memory-less
3332 * nodes, just prevent such attempts upfront in QEMU.
3334 if (nb_numa_nodes && !numa_info[node].node_mem) {
3335 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3336 node);
3337 return;
3340 spapr_memory_plug(hotplug_dev, dev, node, errp);
3341 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3342 spapr_core_plug(hotplug_dev, dev, errp);
3346 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3347 DeviceState *dev, Error **errp)
3349 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3350 MachineClass *mc = MACHINE_GET_CLASS(sms);
3352 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3353 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3354 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3355 } else {
3356 /* NOTE: this means there is a window after guest reset, prior to
3357 * CAS negotiation, where unplug requests will fail due to the
3358 * capability not being detected yet. This is a bit different than
3359 * the case with PCI unplug, where the events will be queued and
3360 * eventually handled by the guest after boot
3362 error_setg(errp, "Memory hot unplug not supported for this guest");
3364 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3365 if (!mc->has_hotpluggable_cpus) {
3366 error_setg(errp, "CPU hot unplug not supported on this machine");
3367 return;
3369 spapr_core_unplug_request(hotplug_dev, dev, errp);
3373 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3374 DeviceState *dev, Error **errp)
3376 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3377 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3378 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3379 spapr_core_pre_plug(hotplug_dev, dev, errp);
3383 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3384 DeviceState *dev)
3386 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3387 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3388 return HOTPLUG_HANDLER(machine);
3390 return NULL;
3393 static CpuInstanceProperties
3394 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3396 CPUArchId *core_slot;
3397 MachineClass *mc = MACHINE_GET_CLASS(machine);
3399 /* make sure possible_cpu are intialized */
3400 mc->possible_cpu_arch_ids(machine);
3401 /* get CPU core slot containing thread that matches cpu_index */
3402 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3403 assert(core_slot);
3404 return core_slot->props;
3407 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3409 int i;
3410 int spapr_max_cores = max_cpus / smp_threads;
3411 MachineClass *mc = MACHINE_GET_CLASS(machine);
3413 if (!mc->has_hotpluggable_cpus) {
3414 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3416 if (machine->possible_cpus) {
3417 assert(machine->possible_cpus->len == spapr_max_cores);
3418 return machine->possible_cpus;
3421 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3422 sizeof(CPUArchId) * spapr_max_cores);
3423 machine->possible_cpus->len = spapr_max_cores;
3424 for (i = 0; i < machine->possible_cpus->len; i++) {
3425 int core_id = i * smp_threads;
3427 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3428 machine->possible_cpus->cpus[i].arch_id = core_id;
3429 machine->possible_cpus->cpus[i].props.has_core_id = true;
3430 machine->possible_cpus->cpus[i].props.core_id = core_id;
3432 /* default distribution of CPUs over NUMA nodes */
3433 if (nb_numa_nodes) {
3434 /* preset values but do not enable them i.e. 'has_node_id = false',
3435 * numa init code will enable them later if manual mapping wasn't
3436 * present on CLI */
3437 machine->possible_cpus->cpus[i].props.node_id =
3438 core_id / smp_threads / smp_cores % nb_numa_nodes;
3441 return machine->possible_cpus;
3444 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3445 uint64_t *buid, hwaddr *pio,
3446 hwaddr *mmio32, hwaddr *mmio64,
3447 unsigned n_dma, uint32_t *liobns, Error **errp)
3450 * New-style PHB window placement.
3452 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3453 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3454 * windows.
3456 * Some guest kernels can't work with MMIO windows above 1<<46
3457 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3459 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3460 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3461 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3462 * 1TiB 64-bit MMIO windows for each PHB.
3464 const uint64_t base_buid = 0x800000020000000ULL;
3465 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3466 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3467 int i;
3469 /* Sanity check natural alignments */
3470 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3471 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3472 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3473 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3474 /* Sanity check bounds */
3475 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3476 SPAPR_PCI_MEM32_WIN_SIZE);
3477 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3478 SPAPR_PCI_MEM64_WIN_SIZE);
3480 if (index >= SPAPR_MAX_PHBS) {
3481 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3482 SPAPR_MAX_PHBS - 1);
3483 return;
3486 *buid = base_buid + index;
3487 for (i = 0; i < n_dma; ++i) {
3488 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3491 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3492 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3493 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3496 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3498 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3500 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3503 static void spapr_ics_resend(XICSFabric *dev)
3505 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3507 ics_resend(spapr->ics);
3510 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3512 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3514 return cpu ? ICP(cpu->intc) : NULL;
3517 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3518 Monitor *mon)
3520 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3521 CPUState *cs;
3523 CPU_FOREACH(cs) {
3524 PowerPCCPU *cpu = POWERPC_CPU(cs);
3526 icp_pic_print_info(ICP(cpu->intc), mon);
3529 ics_pic_print_info(spapr->ics, mon);
3532 int spapr_vcpu_id(PowerPCCPU *cpu)
3534 CPUState *cs = CPU(cpu);
3536 if (kvm_enabled()) {
3537 return kvm_arch_vcpu_id(cs);
3538 } else {
3539 return cs->cpu_index;
3543 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3545 CPUState *cs;
3547 CPU_FOREACH(cs) {
3548 PowerPCCPU *cpu = POWERPC_CPU(cs);
3550 if (spapr_vcpu_id(cpu) == vcpu_id) {
3551 return cpu;
3555 return NULL;
3558 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3560 MachineClass *mc = MACHINE_CLASS(oc);
3561 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3562 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3563 NMIClass *nc = NMI_CLASS(oc);
3564 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3565 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3566 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3567 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3569 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3572 * We set up the default / latest behaviour here. The class_init
3573 * functions for the specific versioned machine types can override
3574 * these details for backwards compatibility
3576 mc->init = ppc_spapr_init;
3577 mc->reset = ppc_spapr_reset;
3578 mc->block_default_type = IF_SCSI;
3579 mc->max_cpus = 1024;
3580 mc->no_parallel = 1;
3581 mc->default_boot_order = "";
3582 mc->default_ram_size = 512 * M_BYTE;
3583 mc->kvm_type = spapr_kvm_type;
3584 mc->has_dynamic_sysbus = true;
3585 mc->pci_allow_0_address = true;
3586 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3587 hc->pre_plug = spapr_machine_device_pre_plug;
3588 hc->plug = spapr_machine_device_plug;
3589 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3590 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3591 hc->unplug_request = spapr_machine_device_unplug_request;
3593 smc->dr_lmb_enabled = true;
3594 smc->tcg_default_cpu = "POWER8";
3595 mc->has_hotpluggable_cpus = true;
3596 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3597 fwc->get_dev_path = spapr_get_fw_dev_path;
3598 nc->nmi_monitor_handler = spapr_nmi;
3599 smc->phb_placement = spapr_phb_placement;
3600 vhc->hypercall = emulate_spapr_hypercall;
3601 vhc->hpt_mask = spapr_hpt_mask;
3602 vhc->map_hptes = spapr_map_hptes;
3603 vhc->unmap_hptes = spapr_unmap_hptes;
3604 vhc->store_hpte = spapr_store_hpte;
3605 vhc->get_patbe = spapr_get_patbe;
3606 xic->ics_get = spapr_ics_get;
3607 xic->ics_resend = spapr_ics_resend;
3608 xic->icp_get = spapr_icp_get;
3609 ispc->print_info = spapr_pic_print_info;
3610 /* Force NUMA node memory size to be a multiple of
3611 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3612 * in which LMBs are represented and hot-added
3614 mc->numa_mem_align_shift = 28;
3617 static const TypeInfo spapr_machine_info = {
3618 .name = TYPE_SPAPR_MACHINE,
3619 .parent = TYPE_MACHINE,
3620 .abstract = true,
3621 .instance_size = sizeof(sPAPRMachineState),
3622 .instance_init = spapr_machine_initfn,
3623 .instance_finalize = spapr_machine_finalizefn,
3624 .class_size = sizeof(sPAPRMachineClass),
3625 .class_init = spapr_machine_class_init,
3626 .interfaces = (InterfaceInfo[]) {
3627 { TYPE_FW_PATH_PROVIDER },
3628 { TYPE_NMI },
3629 { TYPE_HOTPLUG_HANDLER },
3630 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3631 { TYPE_XICS_FABRIC },
3632 { TYPE_INTERRUPT_STATS_PROVIDER },
3637 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3638 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3639 void *data) \
3641 MachineClass *mc = MACHINE_CLASS(oc); \
3642 spapr_machine_##suffix##_class_options(mc); \
3643 if (latest) { \
3644 mc->alias = "pseries"; \
3645 mc->is_default = 1; \
3648 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3650 MachineState *machine = MACHINE(obj); \
3651 spapr_machine_##suffix##_instance_options(machine); \
3653 static const TypeInfo spapr_machine_##suffix##_info = { \
3654 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3655 .parent = TYPE_SPAPR_MACHINE, \
3656 .class_init = spapr_machine_##suffix##_class_init, \
3657 .instance_init = spapr_machine_##suffix##_instance_init, \
3658 }; \
3659 static void spapr_machine_register_##suffix(void) \
3661 type_register(&spapr_machine_##suffix##_info); \
3663 type_init(spapr_machine_register_##suffix)
3666 * pseries-2.11
3668 static void spapr_machine_2_11_instance_options(MachineState *machine)
3672 static void spapr_machine_2_11_class_options(MachineClass *mc)
3674 /* Defaults for the latest behaviour inherited from the base class */
3677 DEFINE_SPAPR_MACHINE(2_11, "2.11", true);
3680 * pseries-2.10
3682 #define SPAPR_COMPAT_2_10 \
3683 HW_COMPAT_2_10 \
3685 static void spapr_machine_2_10_instance_options(MachineState *machine)
3689 static void spapr_machine_2_10_class_options(MachineClass *mc)
3691 spapr_machine_2_11_class_options(mc);
3692 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3695 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3698 * pseries-2.9
3700 #define SPAPR_COMPAT_2_9 \
3701 HW_COMPAT_2_9 \
3703 .driver = TYPE_POWERPC_CPU, \
3704 .property = "pre-2.10-migration", \
3705 .value = "on", \
3706 }, \
3708 static void spapr_machine_2_9_instance_options(MachineState *machine)
3710 spapr_machine_2_10_instance_options(machine);
3713 static void spapr_machine_2_9_class_options(MachineClass *mc)
3715 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3717 spapr_machine_2_10_class_options(mc);
3718 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3719 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3720 smc->pre_2_10_has_unused_icps = true;
3721 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3724 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3727 * pseries-2.8
3729 #define SPAPR_COMPAT_2_8 \
3730 HW_COMPAT_2_8 \
3732 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3733 .property = "pcie-extended-configuration-space", \
3734 .value = "off", \
3737 static void spapr_machine_2_8_instance_options(MachineState *machine)
3739 spapr_machine_2_9_instance_options(machine);
3742 static void spapr_machine_2_8_class_options(MachineClass *mc)
3744 spapr_machine_2_9_class_options(mc);
3745 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3746 mc->numa_mem_align_shift = 23;
3749 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3752 * pseries-2.7
3754 #define SPAPR_COMPAT_2_7 \
3755 HW_COMPAT_2_7 \
3757 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3758 .property = "mem_win_size", \
3759 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3760 }, \
3762 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3763 .property = "mem64_win_size", \
3764 .value = "0", \
3765 }, \
3767 .driver = TYPE_POWERPC_CPU, \
3768 .property = "pre-2.8-migration", \
3769 .value = "on", \
3770 }, \
3772 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3773 .property = "pre-2.8-migration", \
3774 .value = "on", \
3777 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3778 uint64_t *buid, hwaddr *pio,
3779 hwaddr *mmio32, hwaddr *mmio64,
3780 unsigned n_dma, uint32_t *liobns, Error **errp)
3782 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3783 const uint64_t base_buid = 0x800000020000000ULL;
3784 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3785 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3786 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3787 const uint32_t max_index = 255;
3788 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3790 uint64_t ram_top = MACHINE(spapr)->ram_size;
3791 hwaddr phb0_base, phb_base;
3792 int i;
3794 /* Do we have hotpluggable memory? */
3795 if (MACHINE(spapr)->maxram_size > ram_top) {
3796 /* Can't just use maxram_size, because there may be an
3797 * alignment gap between normal and hotpluggable memory
3798 * regions */
3799 ram_top = spapr->hotplug_memory.base +
3800 memory_region_size(&spapr->hotplug_memory.mr);
3803 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3805 if (index > max_index) {
3806 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3807 max_index);
3808 return;
3811 *buid = base_buid + index;
3812 for (i = 0; i < n_dma; ++i) {
3813 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3816 phb_base = phb0_base + index * phb_spacing;
3817 *pio = phb_base + pio_offset;
3818 *mmio32 = phb_base + mmio_offset;
3820 * We don't set the 64-bit MMIO window, relying on the PHB's
3821 * fallback behaviour of automatically splitting a large "32-bit"
3822 * window into contiguous 32-bit and 64-bit windows
3826 static void spapr_machine_2_7_instance_options(MachineState *machine)
3828 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3830 spapr_machine_2_8_instance_options(machine);
3831 spapr->use_hotplug_event_source = false;
3834 static void spapr_machine_2_7_class_options(MachineClass *mc)
3836 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3838 spapr_machine_2_8_class_options(mc);
3839 smc->tcg_default_cpu = "POWER7";
3840 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3841 smc->phb_placement = phb_placement_2_7;
3844 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3847 * pseries-2.6
3849 #define SPAPR_COMPAT_2_6 \
3850 HW_COMPAT_2_6 \
3852 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3853 .property = "ddw",\
3854 .value = stringify(off),\
3857 static void spapr_machine_2_6_instance_options(MachineState *machine)
3859 spapr_machine_2_7_instance_options(machine);
3862 static void spapr_machine_2_6_class_options(MachineClass *mc)
3864 spapr_machine_2_7_class_options(mc);
3865 mc->has_hotpluggable_cpus = false;
3866 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3869 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3872 * pseries-2.5
3874 #define SPAPR_COMPAT_2_5 \
3875 HW_COMPAT_2_5 \
3877 .driver = "spapr-vlan", \
3878 .property = "use-rx-buffer-pools", \
3879 .value = "off", \
3882 static void spapr_machine_2_5_instance_options(MachineState *machine)
3884 spapr_machine_2_6_instance_options(machine);
3887 static void spapr_machine_2_5_class_options(MachineClass *mc)
3889 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3891 spapr_machine_2_6_class_options(mc);
3892 smc->use_ohci_by_default = true;
3893 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3896 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3899 * pseries-2.4
3901 #define SPAPR_COMPAT_2_4 \
3902 HW_COMPAT_2_4
3904 static void spapr_machine_2_4_instance_options(MachineState *machine)
3906 spapr_machine_2_5_instance_options(machine);
3909 static void spapr_machine_2_4_class_options(MachineClass *mc)
3911 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3913 spapr_machine_2_5_class_options(mc);
3914 smc->dr_lmb_enabled = false;
3915 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3918 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3921 * pseries-2.3
3923 #define SPAPR_COMPAT_2_3 \
3924 HW_COMPAT_2_3 \
3926 .driver = "spapr-pci-host-bridge",\
3927 .property = "dynamic-reconfiguration",\
3928 .value = "off",\
3931 static void spapr_machine_2_3_instance_options(MachineState *machine)
3933 spapr_machine_2_4_instance_options(machine);
3936 static void spapr_machine_2_3_class_options(MachineClass *mc)
3938 spapr_machine_2_4_class_options(mc);
3939 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3941 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3944 * pseries-2.2
3947 #define SPAPR_COMPAT_2_2 \
3948 HW_COMPAT_2_2 \
3950 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3951 .property = "mem_win_size",\
3952 .value = "0x20000000",\
3955 static void spapr_machine_2_2_instance_options(MachineState *machine)
3957 spapr_machine_2_3_instance_options(machine);
3958 machine->suppress_vmdesc = true;
3961 static void spapr_machine_2_2_class_options(MachineClass *mc)
3963 spapr_machine_2_3_class_options(mc);
3964 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3966 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3969 * pseries-2.1
3971 #define SPAPR_COMPAT_2_1 \
3972 HW_COMPAT_2_1
3974 static void spapr_machine_2_1_instance_options(MachineState *machine)
3976 spapr_machine_2_2_instance_options(machine);
3979 static void spapr_machine_2_1_class_options(MachineClass *mc)
3981 spapr_machine_2_2_class_options(mc);
3982 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3984 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3986 static void spapr_machine_register_types(void)
3988 type_register_static(&spapr_machine_info);
3991 type_init(spapr_machine_register_types)