4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
11 { 'include': 'common.json' }
12 { 'include': 'machine-common.json' }
17 # The comprehensive enumeration of QEMU system emulation ("softmmu")
18 # targets. Run "./configure --help" in the project root directory,
19 # and look for the \*-softmmu targets near the "--target-list" option.
20 # The individual target constants are not documented here, for the
27 # Notes: The resulting QMP strings can be appended to the
28 # "qemu-system-" prefix to produce the corresponding QEMU
29 # executable name. This is true even for "qemu-system-x86_64".
33 { 'enum' : 'SysEmuTarget',
34 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
35 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
36 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
37 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
38 'sh4eb', 'sparc', 'sparc64', 'tricore',
39 'x86_64', 'xtensa', 'xtensaeb' ] }
44 # An enumeration of cpu states that can be assumed by a virtual S390
49 { 'enum': 'CpuS390State',
50 'prefix': 'S390_CPU_STATE',
51 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
56 # Additional information about a virtual S390 CPU
58 # @cpu-state: the virtual CPU's state
60 # @dedicated: the virtual CPU's dedication (since 8.2)
62 # @entitlement: the virtual CPU's entitlement (since 8.2)
66 { 'struct': 'CpuInfoS390',
67 'data': { 'cpu-state': 'CpuS390State',
69 '*entitlement': 'CpuS390Entitlement' } }
74 # Information about a virtual CPU
76 # @cpu-index: index of the virtual CPU
78 # @qom-path: path to the CPU object in the QOM tree
80 # @thread-id: ID of the underlying host thread
82 # @props: properties associated with a virtual CPU, e.g. the socket id
84 # @target: the QEMU system emulation target, which determines which
85 # additional fields will be listed (since 3.0)
89 { 'union' : 'CpuInfoFast',
90 'base' : { 'cpu-index' : 'int',
93 '*props' : 'CpuInstanceProperties',
94 'target' : 'SysEmuTarget' },
95 'discriminator' : 'target',
96 'data' : { 's390x' : 'CpuInfoS390' } }
101 # Returns information about all virtual CPUs.
103 # Returns: list of @CpuInfoFast
109 # -> { "execute": "query-cpus-fast" }
112 # "thread-id": 25627,
118 # "qom-path": "/machine/unattached/device[0]",
123 # "thread-id": 25628,
129 # "qom-path": "/machine/unattached/device[2]",
136 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
141 # Information describing a machine.
143 # @name: the name of the machine
145 # @alias: an alias for the machine name
147 # @is-default: whether the machine is default
149 # @cpu-max: maximum number of CPUs supported by the machine type
152 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
154 # @numa-mem-supported: true if '-numa node,mem' option is supported by
155 # the machine type and false otherwise (since 4.1)
157 # @deprecated: if true, the machine type is deprecated and may be
158 # removed in future versions of QEMU according to the QEMU
159 # deprecation policy (since 4.1)
161 # @default-cpu-type: default CPU model typename if none is requested
162 # via the -cpu argument. (since 4.2)
164 # @default-ram-id: the default ID of initial RAM memory backend (since
167 # @acpi: machine type supports ACPI (since 8.0)
171 { 'struct': 'MachineInfo',
172 'data': { 'name': 'str', '*alias': 'str',
173 '*is-default': 'bool', 'cpu-max': 'int',
174 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
175 'deprecated': 'bool', '*default-cpu-type': 'str',
176 '*default-ram-id': 'str', 'acpi': 'bool' } }
181 # Return a list of supported machines
183 # Returns: a list of MachineInfo
187 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
190 # @CurrentMachineParams:
192 # Information describing the running machine parameters.
194 # @wakeup-suspend-support: true if the machine supports wake up from
199 { 'struct': 'CurrentMachineParams',
200 'data': { 'wakeup-suspend-support': 'bool'} }
203 # @query-current-machine:
205 # Return information on the current virtual machine.
207 # Returns: CurrentMachineParams
211 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
216 # Information describing the QEMU target.
218 # @arch: the target architecture
222 { 'struct': 'TargetInfo',
223 'data': { 'arch': 'SysEmuTarget' } }
228 # Return information about the target for this QEMU
230 # Returns: TargetInfo
234 { 'command': 'query-target', 'returns': 'TargetInfo' }
239 # Guest UUID information (Universally Unique Identifier).
241 # @UUID: the UUID of the guest
245 # Notes: If no UUID was specified for the guest, a null UUID is
248 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
253 # Query the guest UUID information.
255 # Returns: The @UuidInfo for the guest
261 # -> { "execute": "query-uuid" }
262 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
264 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
271 # @guid: the globally unique identifier
275 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
278 # @query-vm-generation-id:
280 # Show Virtual Machine Generation ID
284 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
289 # Performs a hard reset of a guest.
295 # -> { "execute": "system_reset" }
296 # <- { "return": {} }
298 { 'command': 'system_reset' }
303 # Requests that a guest perform a powerdown operation.
307 # Notes: A guest may or may not respond to this command. This command
308 # returning does not indicate that a guest has accepted the
309 # request or that it has shut down. Many guests will respond to
310 # this command by prompting the user in some way.
314 # -> { "execute": "system_powerdown" }
315 # <- { "return": {} }
317 { 'command': 'system_powerdown' }
322 # Wake up guest from suspend. If the guest has wake-up from suspend
323 # support enabled (wakeup-suspend-support flag from
324 # query-current-machine), wake-up guest from suspend if the guest is
325 # in SUSPENDED state. Return an error otherwise.
329 # Note: prior to 4.0, this command does nothing in case the guest
334 # -> { "execute": "system_wakeup" }
335 # <- { "return": {} }
337 { 'command': 'system_wakeup' }
342 # Policy for handling lost ticks in timer devices. Ticks end up
343 # getting lost when, for example, the guest is paused.
345 # @discard: throw away the missed ticks and continue with future
346 # injection normally. The guest OS will see the timer jump ahead
347 # by a potentially quite significant amount all at once, as if the
348 # intervening chunk of time had simply not existed; needless to
349 # say, such a sudden jump can easily confuse a guest OS which is
350 # not specifically prepared to deal with it. Assuming the guest
351 # OS can deal correctly with the time jump, the time in the guest
352 # and in the host should now match.
354 # @delay: continue to deliver ticks at the normal rate. The guest OS
355 # will not notice anything is amiss, as from its point of view
356 # time will have continued to flow normally. The time in the
357 # guest should now be behind the time in the host by exactly the
358 # amount of time during which ticks have been missed.
360 # @slew: deliver ticks at a higher rate to catch up with the missed
361 # ticks. The guest OS will not notice anything is amiss, as from
362 # its point of view time will have continued to flow normally.
363 # Once the timer has managed to catch up with all the missing
364 # ticks, the time in the guest and in the host should match.
368 { 'enum': 'LostTickPolicy',
369 'data': ['discard', 'delay', 'slew' ] }
374 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
375 # all CPUs (ppc64). The command fails when the guest doesn't support
380 # Note: prior to 2.1, this command was only supported for x86 and s390
385 # -> { "execute": "inject-nmi" }
386 # <- { "return": {} }
388 { 'command': 'inject-nmi' }
393 # Information about support for KVM acceleration
395 # @enabled: true if KVM acceleration is active
397 # @present: true if KVM acceleration is built into this executable
401 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
406 # Returns information about KVM acceleration
414 # -> { "execute": "query-kvm" }
415 # <- { "return": { "enabled": true, "present": true } }
417 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
422 # @node: NUMA nodes configuration
424 # @dist: NUMA distance configuration (since 2.10)
426 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
428 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
430 # @hmat-cache: memory side cache information (Since: 5.0)
434 { 'enum': 'NumaOptionsType',
435 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
440 # A discriminated record of NUMA options. (for OptsVisitor)
442 # @type: NUMA option type
446 { 'union': 'NumaOptions',
447 'base': { 'type': 'NumaOptionsType' },
448 'discriminator': 'type',
450 'node': 'NumaNodeOptions',
451 'dist': 'NumaDistOptions',
452 'cpu': 'NumaCpuOptions',
453 'hmat-lb': 'NumaHmatLBOptions',
454 'hmat-cache': 'NumaHmatCacheOptions' }}
459 # Create a guest NUMA node. (for OptsVisitor)
461 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
463 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
466 # @mem: memory size of this node; mutually exclusive with @memdev.
467 # Equally divide total memory among nodes if both @mem and @memdev
470 # @memdev: memory backend object. If specified for one node, it must
471 # be specified for all nodes.
473 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
474 # to the nodeid which has the memory controller responsible for
475 # this NUMA node. This field provides additional information as
476 # to the initiator node that is closest (as in directly attached)
477 # to this node, and therefore has the best performance (since 5.0)
481 { 'struct': 'NumaNodeOptions',
487 '*initiator': 'uint16' }}
492 # Set the distance between 2 NUMA nodes.
494 # @src: source NUMA node.
496 # @dst: destination NUMA node.
498 # @val: NUMA distance from source node to destination node. When a
499 # node is unreachable from another node, set the distance between
504 { 'struct': 'NumaDistOptions',
511 # @CXLFixedMemoryWindowOptions:
513 # Create a CXL Fixed Memory Window
515 # @size: Size of the Fixed Memory Window in bytes. Must be a multiple
518 # @interleave-granularity: Number of contiguous bytes for which
519 # accesses will go to a given interleave target. Accepted values
520 # [256, 512, 1k, 2k, 4k, 8k, 16k]
522 # @targets: Target root bridge IDs from -device ...,id=<ID> for each
527 { 'struct': 'CXLFixedMemoryWindowOptions',
530 '*interleave-granularity': 'size',
531 'targets': ['str'] }}
536 # List of CXL Fixed Memory Windows.
538 # @cxl-fmw: List of CXLFixedMemoryWindowOptions
542 { 'struct' : 'CXLFMWProperties',
543 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
549 # A X86 32-bit register
553 { 'enum': 'X86CPURegister32',
554 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
557 # @X86CPUFeatureWordInfo:
559 # Information about a X86 CPU feature word
561 # @cpuid-input-eax: Input EAX value for CPUID instruction for that
564 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
567 # @cpuid-register: Output register containing the feature bits
569 # @features: value of output register, containing the feature bits
573 { 'struct': 'X86CPUFeatureWordInfo',
574 'data': { 'cpuid-input-eax': 'int',
575 '*cpuid-input-ecx': 'int',
576 'cpuid-register': 'X86CPURegister32',
577 'features': 'int' } }
582 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
587 { 'struct': 'DummyForceArrays',
588 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
593 # Option "-numa cpu" overrides default cpu to node mapping. It
594 # accepts the same set of cpu properties as returned by
595 # query-hotpluggable-cpus[].props, where node-id could be used to
596 # override default node mapping.
600 { 'struct': 'NumaCpuOptions',
601 'base': 'CpuInstanceProperties',
605 # @HmatLBMemoryHierarchy:
607 # The memory hierarchy in the System Locality Latency and Bandwidth
608 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
610 # For more information about @HmatLBMemoryHierarchy, see chapter
611 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
613 # @memory: the structure represents the memory performance
615 # @first-level: first level of memory side cache
617 # @second-level: second level of memory side cache
619 # @third-level: third level of memory side cache
623 { 'enum': 'HmatLBMemoryHierarchy',
624 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
629 # Data type in the System Locality Latency and Bandwidth Information
630 # Structure of HMAT (Heterogeneous Memory Attribute Table)
632 # For more information about @HmatLBDataType, see chapter 5.2.27.4:
633 # Table 5-146: Field "Data Type" of ACPI 6.3 spec.
635 # @access-latency: access latency (nanoseconds)
637 # @read-latency: read latency (nanoseconds)
639 # @write-latency: write latency (nanoseconds)
641 # @access-bandwidth: access bandwidth (Bytes per second)
643 # @read-bandwidth: read bandwidth (Bytes per second)
645 # @write-bandwidth: write bandwidth (Bytes per second)
649 { 'enum': 'HmatLBDataType',
650 'data': [ 'access-latency', 'read-latency', 'write-latency',
651 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
654 # @NumaHmatLBOptions:
656 # Set the system locality latency and bandwidth information between
657 # Initiator and Target proximity Domains.
659 # For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
660 # Table 5-146 of ACPI 6.3 spec.
662 # @initiator: the Initiator Proximity Domain.
664 # @target: the Target Proximity Domain.
666 # @hierarchy: the Memory Hierarchy. Indicates the performance of
667 # memory or side cache.
669 # @data-type: presents the type of data, access/read/write latency or
672 # @latency: the value of latency from @initiator to @target proximity
673 # domain, the latency unit is "ns(nanosecond)".
675 # @bandwidth: the value of bandwidth between @initiator and @target
676 # proximity domain, the bandwidth unit is "Bytes per second".
680 { 'struct': 'NumaHmatLBOptions',
682 'initiator': 'uint16',
684 'hierarchy': 'HmatLBMemoryHierarchy',
685 'data-type': 'HmatLBDataType',
686 '*latency': 'uint64',
687 '*bandwidth': 'size' }}
690 # @HmatCacheAssociativity:
692 # Cache associativity in the Memory Side Cache Information Structure
695 # For more information of @HmatCacheAssociativity, see chapter
696 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
698 # @none: None (no memory side cache in this proximity domain, or cache
699 # associativity unknown)
701 # @direct: Direct Mapped
703 # @complex: Complex Cache Indexing (implementation specific)
707 { 'enum': 'HmatCacheAssociativity',
708 'data': [ 'none', 'direct', 'complex' ] }
711 # @HmatCacheWritePolicy:
713 # Cache write policy in the Memory Side Cache Information Structure of
716 # For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
717 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
719 # @none: None (no memory side cache in this proximity domain, or cache
720 # write policy unknown)
722 # @write-back: Write Back (WB)
724 # @write-through: Write Through (WT)
728 { 'enum': 'HmatCacheWritePolicy',
729 'data': [ 'none', 'write-back', 'write-through' ] }
732 # @NumaHmatCacheOptions:
734 # Set the memory side cache information for a given memory domain.
736 # For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
737 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
739 # @node-id: the memory proximity domain to which the memory belongs.
741 # @size: the size of memory side cache in bytes.
743 # @level: the cache level described in this structure.
745 # @associativity: the cache associativity,
746 # none/direct-mapped/complex(complex cache indexing).
748 # @policy: the write policy, none/write-back/write-through.
750 # @line: the cache Line size in bytes.
754 { 'struct': 'NumaHmatCacheOptions',
759 'associativity': 'HmatCacheAssociativity',
760 'policy': 'HmatCacheWritePolicy',
766 # Save a portion of guest memory to a file.
768 # @val: the virtual address of the guest to start from
770 # @size: the size of memory region to save
772 # @filename: the file to save the memory to as binary data
774 # @cpu-index: the index of the virtual CPU to use for translating the
775 # virtual address (defaults to CPU 0)
779 # Notes: Errors were not reliably returned until 1.1
783 # -> { "execute": "memsave",
784 # "arguments": { "val": 10,
786 # "filename": "/tmp/virtual-mem-dump" } }
787 # <- { "return": {} }
789 { 'command': 'memsave',
790 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
795 # Save a portion of guest physical memory to a file.
797 # @val: the physical address of the guest to start from
799 # @size: the size of memory region to save
801 # @filename: the file to save the memory to as binary data
805 # Notes: Errors were not reliably returned until 1.1
809 # -> { "execute": "pmemsave",
810 # "arguments": { "val": 10,
812 # "filename": "/tmp/physical-mem-dump" } }
813 # <- { "return": {} }
815 { 'command': 'pmemsave',
816 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
821 # Information about memory backend
823 # @id: backend's ID if backend has 'id' property (since 2.9)
825 # @size: memory backend size
827 # @merge: whether memory merge support is enabled
829 # @dump: whether memory backend's memory is included in a core dump
831 # @prealloc: whether memory was preallocated
833 # @share: whether memory is private to QEMU or shared (since 6.1)
835 # @reserve: whether swap space (or huge pages) was reserved if
836 # applicable. This corresponds to the user configuration and not
837 # the actual behavior implemented in the OS to perform the
838 # reservation. For example, Linux will never reserve swap space
839 # for shared file mappings. (since 6.1)
841 # @host-nodes: host nodes for its memory policy
843 # @policy: memory policy of memory backend
847 { 'struct': 'Memdev',
856 'host-nodes': ['uint16'],
857 'policy': 'HostMemPolicy' }}
862 # Returns information for all memory backends.
864 # Returns: a list of @Memdev.
870 # -> { "execute": "query-memdev" }
879 # "host-nodes": [0, 1],
888 # "host-nodes": [2, 3],
889 # "policy": "preferred"
894 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
897 # @CpuInstanceProperties:
899 # List of properties to be used for hotplugging a CPU instance, it
900 # should be passed by management with device_add command when a CPU is
903 # Which members are optional and which mandatory depends on the
904 # architecture and board.
906 # For s390x see :ref:`cpu-topology-s390x`.
908 # The ids other than the node-id specify the position of the CPU
909 # within the CPU topology (as defined by the machine property "smp",
910 # thus see also type @SMPConfiguration)
912 # @node-id: NUMA node ID the CPU belongs to
914 # @drawer-id: drawer number within CPU topology the CPU belongs to
917 # @book-id: book number within parent container the CPU belongs to
920 # @socket-id: socket number within parent container the CPU belongs to
922 # @die-id: die number within the parent container the CPU belongs to
925 # @cluster-id: cluster number within the parent container the CPU
926 # belongs to (since 7.1)
928 # @core-id: core number within the parent container the CPU
931 # @thread-id: thread number within the core the CPU belongs to
933 # Note: management should be prepared to pass through additional
934 # properties with device_add.
938 { 'struct': 'CpuInstanceProperties',
939 # Keep these in sync with the properties device_add accepts
940 'data': { '*node-id': 'int',
945 '*cluster-id': 'int',
954 # @type: CPU object type for usage with device_add command
956 # @props: list of properties to be used for hotplugging CPU
958 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU
961 # @qom-path: link to existing CPU object if CPU is present or omitted
962 # if CPU is not present.
966 { 'struct': 'HotpluggableCPU',
967 'data': { 'type': 'str',
968 'vcpus-count': 'int',
969 'props': 'CpuInstanceProperties',
975 # @query-hotpluggable-cpus:
977 # TODO: Better documentation; currently there is none.
979 # Returns: a list of HotpluggableCPU objects.
985 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu
988 # -> { "execute": "query-hotpluggable-cpus" }
990 # { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
991 # "vcpus-count": 1 },
992 # { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
993 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
996 # For pc machine type started with -smp 1,maxcpus=2:
998 # -> { "execute": "query-hotpluggable-cpus" }
1001 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1002 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1005 # "qom-path": "/machine/unattached/device[0]",
1006 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1007 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1011 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu
1012 # qemu (Since: 2.11):
1014 # -> { "execute": "query-hotpluggable-cpus" }
1017 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1018 # "props": { "core-id": 1 }
1021 # "qom-path": "/machine/unattached/device[0]",
1022 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1023 # "props": { "core-id": 0 }
1027 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1028 'allow-preconfig': true }
1033 # Runtime equivalent of '-numa' CLI option, available at preconfigure
1034 # stage to configure numa mapping before initializing machine.
1038 { 'command': 'set-numa-node', 'boxed': true,
1039 'data': 'NumaOptions',
1040 'allow-preconfig': true
1046 # Request the balloon driver to change its balloon size.
1048 # @value: the target logical size of the VM in bytes. We can deduce
1049 # the size of the balloon using this formula:
1051 # logical_vm_size = vm_ram_size - balloon_size
1053 # From it we have: balloon_size = vm_ram_size - @value
1056 # - If the balloon driver is enabled but not functional because
1057 # the KVM kernel module cannot support it, KVMMissingCap
1058 # - If no balloon device is present, DeviceNotActive
1060 # Notes: This command just issues a request to the guest. When it
1061 # returns, the balloon size may not have changed. A guest can
1062 # change the balloon size independent of this command.
1068 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1069 # <- { "return": {} }
1071 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1073 { 'command': 'balloon', 'data': {'value': 'int'} }
1078 # Information about the guest balloon device.
1080 # @actual: the logical size of the VM in bytes Formula used:
1081 # logical_vm_size = vm_ram_size - balloon_size
1085 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1090 # Return information about the balloon device.
1096 # - If the balloon driver is enabled but not functional because
1097 # the KVM kernel module cannot support it, KVMMissingCap
1098 # - If no balloon device is present, DeviceNotActive
1104 # -> { "execute": "query-balloon" }
1106 # "actual": 1073741824
1110 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1115 # Emitted when the guest changes the actual BALLOON level. This value
1116 # is equivalent to the @actual field return by the 'query-balloon'
1119 # @actual: the logical size of the VM in bytes Formula used:
1120 # logical_vm_size = vm_ram_size - balloon_size
1122 # Note: this event is rate-limited.
1128 # <- { "event": "BALLOON_CHANGE",
1129 # "data": { "actual": 944766976 },
1130 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1132 { 'event': 'BALLOON_CHANGE',
1133 'data': { 'actual': 'int' } }
1138 # hv-balloon guest-provided memory status information.
1140 # @committed: the amount of memory in use inside the guest plus the
1141 # amount of the memory unusable inside the guest (ballooned out,
1144 # @available: the amount of the memory inside the guest available for
1145 # new allocations ("free")
1149 { 'struct': 'HvBalloonInfo',
1150 'data': { 'committed': 'size', 'available': 'size' } }
1153 # @query-hv-balloon-status-report:
1155 # Returns the hv-balloon driver data contained in the last received "STATUS"
1156 # message from the guest.
1162 # - If no hv-balloon device is present, guest memory status
1163 # reporting is not enabled or no guest memory status report
1164 # received yet, GenericError
1170 # -> { "execute": "query-hv-balloon-status-report" }
1172 # "committed": 816640000,
1173 # "available": 3333054464
1177 { 'command': 'query-hv-balloon-status-report', 'returns': 'HvBalloonInfo' }
1180 # @HV_BALLOON_STATUS_REPORT:
1182 # Emitted when the hv-balloon driver receives a "STATUS" message from
1185 # Note: this event is rate-limited.
1191 # <- { "event": "HV_BALLOON_STATUS_REPORT",
1192 # "data": { "committed": 816640000, "available": 3333054464 },
1193 # "timestamp": { "seconds": 1600295492, "microseconds": 661044 } }
1196 { 'event': 'HV_BALLOON_STATUS_REPORT',
1197 'data': 'HvBalloonInfo' }
1202 # Actual memory information in bytes.
1204 # @base-memory: size of "base" memory specified with command line
1207 # @plugged-memory: size of memory that can be hot-unplugged. This
1208 # field is omitted if target doesn't support memory hotplug (i.e.
1209 # CONFIG_MEM_DEVICE not defined at build time).
1213 { 'struct': 'MemoryInfo',
1214 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1217 # @query-memory-size-summary:
1219 # Return the amount of initially allocated and present hotpluggable
1220 # (if enabled) memory in bytes.
1224 # -> { "execute": "query-memory-size-summary" }
1225 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1229 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1232 # @PCDIMMDeviceInfo:
1234 # PCDIMMDevice state information
1238 # @addr: physical address, where device is mapped
1240 # @size: size of memory that the device provides
1242 # @slot: slot number at which device is plugged in
1244 # @node: NUMA node number where device is plugged in
1246 # @memdev: memory backend linked with device
1248 # @hotplugged: true if device was hotplugged
1250 # @hotpluggable: true if device if could be added/removed while
1251 # machine is running
1255 { 'struct': 'PCDIMMDeviceInfo',
1256 'data': { '*id': 'str',
1262 'hotplugged': 'bool',
1263 'hotpluggable': 'bool'
1268 # @VirtioPMEMDeviceInfo:
1270 # VirtioPMEM state information
1274 # @memaddr: physical address in memory, where device is mapped
1276 # @size: size of memory that the device provides
1278 # @memdev: memory backend linked with device
1282 { 'struct': 'VirtioPMEMDeviceInfo',
1283 'data': { '*id': 'str',
1291 # @VirtioMEMDeviceInfo:
1293 # VirtioMEMDevice state information
1297 # @memaddr: physical address in memory, where device is mapped
1299 # @requested-size: the user requested size of the device
1301 # @size: the (current) size of memory that the device provides
1303 # @max-size: the maximum size of memory that the device can provide
1305 # @block-size: the block size of memory that the device provides
1307 # @node: NUMA node number where device is assigned to
1309 # @memdev: memory backend linked with the region
1313 { 'struct': 'VirtioMEMDeviceInfo',
1314 'data': { '*id': 'str',
1316 'requested-size': 'size',
1319 'block-size': 'size',
1326 # @SgxEPCDeviceInfo:
1328 # Sgx EPC state information
1332 # @memaddr: physical address in memory, where device is mapped
1334 # @size: size of memory that the device provides
1336 # @memdev: memory backend linked with device
1338 # @node: the numa node (Since: 7.0)
1342 { 'struct': 'SgxEPCDeviceInfo',
1343 'data': { '*id': 'str',
1352 # @HvBalloonDeviceInfo:
1354 # hv-balloon provided memory state information
1358 # @memaddr: physical address in memory, where device is mapped
1360 # @max-size: the maximum size of memory that the device can provide
1362 # @memdev: memory backend linked with device
1366 { 'struct': 'HvBalloonDeviceInfo',
1367 'data': { '*id': 'str',
1375 # @MemoryDeviceInfoKind:
1377 # @nvdimm: since 2.12
1379 # @virtio-pmem: since 4.1
1381 # @virtio-mem: since 5.1
1383 # @sgx-epc: since 6.2.
1385 # @hv-balloon: since 8.2.
1389 { 'enum': 'MemoryDeviceInfoKind',
1390 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc',
1394 # @PCDIMMDeviceInfoWrapper:
1396 # @data: PCDIMMDevice state information
1400 { 'struct': 'PCDIMMDeviceInfoWrapper',
1401 'data': { 'data': 'PCDIMMDeviceInfo' } }
1404 # @VirtioPMEMDeviceInfoWrapper:
1406 # @data: VirtioPMEM state information
1410 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
1411 'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1414 # @VirtioMEMDeviceInfoWrapper:
1416 # @data: VirtioMEMDevice state information
1420 { 'struct': 'VirtioMEMDeviceInfoWrapper',
1421 'data': { 'data': 'VirtioMEMDeviceInfo' } }
1424 # @SgxEPCDeviceInfoWrapper:
1426 # @data: Sgx EPC state information
1430 { 'struct': 'SgxEPCDeviceInfoWrapper',
1431 'data': { 'data': 'SgxEPCDeviceInfo' } }
1434 # @HvBalloonDeviceInfoWrapper:
1436 # @data: hv-balloon provided memory state information
1440 { 'struct': 'HvBalloonDeviceInfoWrapper',
1441 'data': { 'data': 'HvBalloonDeviceInfo' } }
1444 # @MemoryDeviceInfo:
1446 # Union containing information about a memory device
1448 # @type: memory device type
1452 { 'union': 'MemoryDeviceInfo',
1453 'base': { 'type': 'MemoryDeviceInfoKind' },
1454 'discriminator': 'type',
1455 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1456 'nvdimm': 'PCDIMMDeviceInfoWrapper',
1457 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1458 'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1459 'sgx-epc': 'SgxEPCDeviceInfoWrapper',
1460 'hv-balloon': 'HvBalloonDeviceInfoWrapper'
1467 # Sgx EPC cmdline information
1469 # @memdev: memory backend linked with device
1471 # @node: the numa node (Since: 7.0)
1475 { 'struct': 'SgxEPC',
1476 'data': { 'memdev': 'str',
1482 # @SgxEPCProperties:
1484 # SGX properties of machine types.
1486 # @sgx-epc: list of ids of memory-backend-epc objects.
1490 { 'struct': 'SgxEPCProperties',
1491 'data': { 'sgx-epc': ['SgxEPC'] }
1495 # @query-memory-devices:
1497 # Lists available memory devices and their state
1503 # -> { "execute": "query-memory-devices" }
1504 # <- { "return": [ { "data":
1505 # { "addr": 5368709120,
1506 # "hotpluggable": true,
1507 # "hotplugged": true,
1509 # "memdev": "/objects/memX",
1511 # "size": 1073741824,
1516 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1519 # @MEMORY_DEVICE_SIZE_CHANGE:
1521 # Emitted when the size of a memory device changes. Only emitted for
1522 # memory devices that can actually change the size (e.g., virtio-mem
1523 # due to guest action).
1527 # @size: the new size of memory that the device provides
1529 # @qom-path: path to the device object in the QOM tree (since 6.2)
1531 # Note: this event is rate-limited.
1537 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1538 # "data": { "id": "vm0", "size": 1073741824,
1539 # "qom-path": "/machine/unattached/device[2]" },
1540 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1542 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1543 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1546 # @MEM_UNPLUG_ERROR:
1548 # Emitted when memory hot unplug error occurs.
1550 # @device: device name
1552 # @msg: Informative message
1556 # @deprecated: This event is deprecated. Use
1557 # @DEVICE_UNPLUG_GUEST_ERROR instead.
1563 # <- { "event": "MEM_UNPLUG_ERROR",
1564 # "data": { "device": "dimm1",
1565 # "msg": "acpi: device unplug for unsupported device"
1567 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1569 { 'event': 'MEM_UNPLUG_ERROR',
1570 'data': { 'device': 'str', 'msg': 'str' },
1571 'features': ['deprecated'] }
1574 # @BootConfiguration:
1576 # Schema for virtual machine boot configuration.
1578 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1580 # @once: Boot order to apply on first boot
1582 # @menu: Whether to show a boot menu
1584 # @splash: The name of the file to be passed to the firmware as logo
1585 # picture, if @menu is true.
1587 # @splash-time: How long to show the logo picture, in milliseconds
1589 # @reboot-timeout: Timeout before guest reboots after boot fails
1591 # @strict: Whether to attempt booting from devices not included in the
1596 { 'struct': 'BootConfiguration', 'data': {
1601 '*splash-time': 'int',
1602 '*reboot-timeout': 'int',
1603 '*strict': 'bool' } }
1606 # @SMPConfiguration:
1608 # Schema for CPU topology configuration. A missing value lets QEMU
1609 # figure out a suitable value based on the ones that are provided.
1611 # The members other than @cpus and @maxcpus define a topology of
1614 # The ordering from highest/coarsest to lowest/finest is:
1615 # @drawers, @books, @sockets, @dies, @clusters, @cores, @threads.
1617 # Different architectures support different subsets of topology
1620 # For example, s390x does not have clusters and dies, and the socket
1621 # is the parent container of cores.
1623 # @cpus: number of virtual CPUs in the virtual machine
1625 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1628 # @drawers: number of drawers in the CPU topology (since 8.2)
1630 # @books: number of books in the CPU topology (since 8.2)
1632 # @sockets: number of sockets per parent container
1634 # @dies: number of dies per parent container
1636 # @clusters: number of clusters per parent container (since 7.0)
1638 # @cores: number of cores per parent container
1640 # @threads: number of threads per core
1644 { 'struct': 'SMPConfiguration', 'data': {
1653 '*maxcpus': 'int' } }
1658 # Query interrupt statistics
1662 # @unstable: This command is meant for debugging.
1664 # Returns: interrupt statistics
1668 { 'command': 'x-query-irq',
1669 'returns': 'HumanReadableText',
1670 'features': [ 'unstable' ] }
1675 # Query TCG compiler statistics
1679 # @unstable: This command is meant for debugging.
1681 # Returns: TCG compiler statistics
1685 { 'command': 'x-query-jit',
1686 'returns': 'HumanReadableText',
1688 'features': [ 'unstable' ] }
1693 # Query NUMA topology information
1697 # @unstable: This command is meant for debugging.
1699 # Returns: topology information
1703 { 'command': 'x-query-numa',
1704 'returns': 'HumanReadableText',
1705 'features': [ 'unstable' ] }
1710 # Query TCG opcode counters
1714 # @unstable: This command is meant for debugging.
1716 # Returns: TCG opcode counters
1720 { 'command': 'x-query-opcount',
1721 'returns': 'HumanReadableText',
1723 'features': [ 'unstable' ] }
1726 # @x-query-ramblock:
1728 # Query system ramblock information
1732 # @unstable: This command is meant for debugging.
1734 # Returns: system ramblock information
1738 { 'command': 'x-query-ramblock',
1739 'returns': 'HumanReadableText',
1740 'features': [ 'unstable' ] }
1749 # @unstable: This command is meant for debugging.
1751 # Returns: RDMA state
1755 { 'command': 'x-query-rdma',
1756 'returns': 'HumanReadableText',
1757 'features': [ 'unstable' ] }
1762 # Query information on the registered ROMS
1766 # @unstable: This command is meant for debugging.
1768 # Returns: registered ROMs
1772 { 'command': 'x-query-roms',
1773 'returns': 'HumanReadableText',
1774 'features': [ 'unstable' ] }
1779 # Query information on the USB devices
1783 # @unstable: This command is meant for debugging.
1785 # Returns: USB device information
1789 { 'command': 'x-query-usb',
1790 'returns': 'HumanReadableText',
1791 'features': [ 'unstable' ] }
1794 # @SmbiosEntryPointType:
1796 # @32: SMBIOS version 2.1 (32-bit) Entry Point
1798 # @64: SMBIOS version 3.0 (64-bit) Entry Point
1802 { 'enum': 'SmbiosEntryPointType',
1803 'data': [ '32', '64' ] }
1806 # @MemorySizeConfiguration:
1808 # Schema for memory size configuration.
1810 # @size: memory size in bytes
1812 # @max-size: maximum hotpluggable memory size in bytes
1814 # @slots: number of available memory slots for hotplug
1818 { 'struct': 'MemorySizeConfiguration', 'data': {
1820 '*max-size': 'size',
1821 '*slots': 'uint64' } }
1826 # Save the FDT in dtb format.
1828 # @filename: name of the dtb file to be created
1834 # -> { "execute": "dumpdtb" }
1835 # "arguments": { "filename": "fdt.dtb" } }
1836 # <- { "return": {} }
1838 { 'command': 'dumpdtb',
1839 'data': { 'filename': 'str' },
1840 'if': 'CONFIG_FDT' }