meson.build: Make keyutils independent from keyring
[qemu/kevin.git] / target / riscv / vector_internals.h
blob8133111e5f69bd1592a786ed7cddea2f6d8a6493
1 /*
2 * RISC-V Vector Extension Internals
4 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #ifndef TARGET_RISCV_VECTOR_INTERNALS_H
20 #define TARGET_RISCV_VECTOR_INTERNALS_H
22 #include "qemu/osdep.h"
23 #include "qemu/bitops.h"
24 #include "cpu.h"
25 #include "tcg/tcg-gvec-desc.h"
26 #include "internals.h"
28 static inline uint32_t vext_nf(uint32_t desc)
30 return FIELD_EX32(simd_data(desc), VDATA, NF);
34 * Note that vector data is stored in host-endian 64-bit chunks,
35 * so addressing units smaller than that needs a host-endian fixup.
37 #if HOST_BIG_ENDIAN
38 #define H1(x) ((x) ^ 7)
39 #define H1_2(x) ((x) ^ 6)
40 #define H1_4(x) ((x) ^ 4)
41 #define H2(x) ((x) ^ 3)
42 #define H4(x) ((x) ^ 1)
43 #define H8(x) ((x))
44 #else
45 #define H1(x) (x)
46 #define H1_2(x) (x)
47 #define H1_4(x) (x)
48 #define H2(x) (x)
49 #define H4(x) (x)
50 #define H8(x) (x)
51 #endif
54 * Encode LMUL to lmul as following:
55 * LMUL vlmul lmul
56 * 1 000 0
57 * 2 001 1
58 * 4 010 2
59 * 8 011 3
60 * - 100 -
61 * 1/8 101 -3
62 * 1/4 110 -2
63 * 1/2 111 -1
65 static inline int32_t vext_lmul(uint32_t desc)
67 return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3);
70 static inline uint32_t vext_vm(uint32_t desc)
72 return FIELD_EX32(simd_data(desc), VDATA, VM);
75 static inline uint32_t vext_vma(uint32_t desc)
77 return FIELD_EX32(simd_data(desc), VDATA, VMA);
80 static inline uint32_t vext_vta(uint32_t desc)
82 return FIELD_EX32(simd_data(desc), VDATA, VTA);
85 static inline uint32_t vext_vta_all_1s(uint32_t desc)
87 return FIELD_EX32(simd_data(desc), VDATA, VTA_ALL_1S);
91 * Earlier designs (pre-0.9) had a varying number of bits
92 * per mask value (MLEN). In the 0.9 design, MLEN=1.
93 * (Section 4.5)
95 static inline int vext_elem_mask(void *v0, int index)
97 int idx = index / 64;
98 int pos = index % 64;
99 return (((uint64_t *)v0)[idx] >> pos) & 1;
103 * Get number of total elements, including prestart, body and tail elements.
104 * Note that when LMUL < 1, the tail includes the elements past VLMAX that
105 * are held in the same vector register.
107 static inline uint32_t vext_get_total_elems(CPURISCVState *env, uint32_t desc,
108 uint32_t esz)
110 uint32_t vlenb = simd_maxsz(desc);
111 uint32_t sew = 1 << FIELD_EX64(env->vtype, VTYPE, VSEW);
112 int8_t emul = ctzl(esz) - ctzl(sew) + vext_lmul(desc) < 0 ? 0 :
113 ctzl(esz) - ctzl(sew) + vext_lmul(desc);
114 return (vlenb << emul) / esz;
117 /* set agnostic elements to 1s */
118 void vext_set_elems_1s(void *base, uint32_t is_agnostic, uint32_t cnt,
119 uint32_t tot);
121 /* expand macro args before macro */
122 #define RVVCALL(macro, ...) macro(__VA_ARGS__)
124 /* (TD, T2, TX2) */
125 #define OP_UU_B uint8_t, uint8_t, uint8_t
126 #define OP_UU_H uint16_t, uint16_t, uint16_t
127 #define OP_UU_W uint32_t, uint32_t, uint32_t
128 #define OP_UU_D uint64_t, uint64_t, uint64_t
130 /* (TD, T1, T2, TX1, TX2) */
131 #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
132 #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
133 #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
134 #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
136 #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
137 static void do_##NAME(void *vd, void *vs2, int i) \
139 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
140 *((TD *)vd + HD(i)) = OP(s2); \
143 #define GEN_VEXT_V(NAME, ESZ) \
144 void HELPER(NAME)(void *vd, void *v0, void *vs2, \
145 CPURISCVState *env, uint32_t desc) \
147 uint32_t vm = vext_vm(desc); \
148 uint32_t vl = env->vl; \
149 uint32_t total_elems = \
150 vext_get_total_elems(env, desc, ESZ); \
151 uint32_t vta = vext_vta(desc); \
152 uint32_t vma = vext_vma(desc); \
153 uint32_t i; \
155 for (i = env->vstart; i < vl; i++) { \
156 if (!vm && !vext_elem_mask(v0, i)) { \
157 /* set masked-off elements to 1s */ \
158 vext_set_elems_1s(vd, vma, i * ESZ, \
159 (i + 1) * ESZ); \
160 continue; \
162 do_##NAME(vd, vs2, i); \
164 env->vstart = 0; \
165 /* set tail elements to 1s */ \
166 vext_set_elems_1s(vd, vta, vl * ESZ, \
167 total_elems * ESZ); \
170 /* operation of two vector elements */
171 typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
173 #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
174 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
176 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
177 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
178 *((TD *)vd + HD(i)) = OP(s2, s1); \
181 void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
182 CPURISCVState *env, uint32_t desc,
183 opivv2_fn *fn, uint32_t esz);
185 /* generate the helpers for OPIVV */
186 #define GEN_VEXT_VV(NAME, ESZ) \
187 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
188 void *vs2, CPURISCVState *env, \
189 uint32_t desc) \
191 do_vext_vv(vd, v0, vs1, vs2, env, desc, \
192 do_##NAME, ESZ); \
195 typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
198 * (T1)s1 gives the real operator type.
199 * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
201 #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
202 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
204 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
205 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
208 void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
209 CPURISCVState *env, uint32_t desc,
210 opivx2_fn fn, uint32_t esz);
212 /* generate the helpers for OPIVX */
213 #define GEN_VEXT_VX(NAME, ESZ) \
214 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
215 void *vs2, CPURISCVState *env, \
216 uint32_t desc) \
218 do_vext_vx(vd, v0, s1, vs2, env, desc, \
219 do_##NAME, ESZ); \
222 /* Three of the widening shortening macros: */
223 /* (TD, T1, T2, TX1, TX2) */
224 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
225 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
226 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
228 #endif /* TARGET_RISCV_VECTOR_INTERNALS_H */