meson.build: Make keyutils independent from keyring
[qemu/kevin.git] / target / hexagon / cpu.c
blobf1559362894da4477e3fe4fe136d0520633b6fb2
1 /*
2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 #include "qemu/osdep.h"
19 #include "qemu/qemu-print.h"
20 #include "cpu.h"
21 #include "internal.h"
22 #include "exec/exec-all.h"
23 #include "qapi/error.h"
24 #include "hw/qdev-properties.h"
25 #include "fpu/softfloat-helpers.h"
26 #include "tcg/tcg.h"
27 #include "exec/gdbstub.h"
29 static void hexagon_v67_cpu_init(Object *obj) { }
30 static void hexagon_v68_cpu_init(Object *obj) { }
31 static void hexagon_v69_cpu_init(Object *obj) { }
32 static void hexagon_v71_cpu_init(Object *obj) { }
33 static void hexagon_v73_cpu_init(Object *obj) { }
35 static void hexagon_cpu_list_entry(gpointer data, gpointer user_data)
37 ObjectClass *oc = data;
38 char *name = g_strdup(object_class_get_name(oc));
39 if (g_str_has_suffix(name, HEXAGON_CPU_TYPE_SUFFIX)) {
40 name[strlen(name) - strlen(HEXAGON_CPU_TYPE_SUFFIX)] = '\0';
42 qemu_printf(" %s\n", name);
43 g_free(name);
46 void hexagon_cpu_list(void)
48 GSList *list;
49 list = object_class_get_list_sorted(TYPE_HEXAGON_CPU, false);
50 qemu_printf("Available CPUs:\n");
51 g_slist_foreach(list, hexagon_cpu_list_entry, NULL);
52 g_slist_free(list);
55 static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model)
57 ObjectClass *oc;
58 char *typename;
59 char **cpuname;
61 cpuname = g_strsplit(cpu_model, ",", 1);
62 typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]);
63 oc = object_class_by_name(typename);
64 g_strfreev(cpuname);
65 g_free(typename);
66 if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) ||
67 object_class_is_abstract(oc)) {
68 return NULL;
70 return oc;
73 static Property hexagon_lldb_compat_property =
74 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false);
75 static Property hexagon_lldb_stack_adjust_property =
76 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust,
77 0, qdev_prop_uint32, target_ulong);
78 static Property hexagon_short_circuit_property =
79 DEFINE_PROP_BOOL("short-circuit", HexagonCPU, short_circuit, true);
81 const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = {
82 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
83 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
84 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
85 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
86 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1",
87 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15",
88 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "hvx_cnt", "c23",
89 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31",
93 * One of the main debugging techniques is to use "-d cpu" and compare against
94 * LLDB output when single stepping. However, the target and qemu put the
95 * stacks at different locations. This is used to compensate so the diff is
96 * cleaner.
98 static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr)
100 HexagonCPU *cpu = env_archcpu(env);
101 target_ulong stack_adjust = cpu->lldb_stack_adjust;
102 target_ulong stack_start = env->stack_start;
103 target_ulong stack_size = 0x10000;
105 if (stack_adjust == 0) {
106 return addr;
109 if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) {
110 return addr - stack_adjust;
112 return addr;
115 /* HEX_REG_P3_0_ALIASED (aka C4) is an alias for the predicate registers */
116 static target_ulong read_p3_0(CPUHexagonState *env)
118 int32_t control_reg = 0;
119 int i;
120 for (i = NUM_PREGS - 1; i >= 0; i--) {
121 control_reg <<= 8;
122 control_reg |= env->pred[i] & 0xff;
124 return control_reg;
127 static void print_reg(FILE *f, CPUHexagonState *env, int regnum)
129 target_ulong value;
131 if (regnum == HEX_REG_P3_0_ALIASED) {
132 value = read_p3_0(env);
133 } else {
134 value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum])
135 : env->gpr[regnum];
138 qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n",
139 hexagon_regnames[regnum], value);
142 static void print_vreg(FILE *f, CPUHexagonState *env, int regnum,
143 bool skip_if_zero)
145 if (skip_if_zero) {
146 bool nonzero_found = false;
147 for (int i = 0; i < MAX_VEC_SIZE_BYTES; i++) {
148 if (env->VRegs[regnum].ub[i] != 0) {
149 nonzero_found = true;
150 break;
153 if (!nonzero_found) {
154 return;
158 qemu_fprintf(f, " v%d = ( ", regnum);
159 qemu_fprintf(f, "0x%02x", env->VRegs[regnum].ub[MAX_VEC_SIZE_BYTES - 1]);
160 for (int i = MAX_VEC_SIZE_BYTES - 2; i >= 0; i--) {
161 qemu_fprintf(f, ", 0x%02x", env->VRegs[regnum].ub[i]);
163 qemu_fprintf(f, " )\n");
166 void hexagon_debug_vreg(CPUHexagonState *env, int regnum)
168 print_vreg(stdout, env, regnum, false);
171 static void print_qreg(FILE *f, CPUHexagonState *env, int regnum,
172 bool skip_if_zero)
174 if (skip_if_zero) {
175 bool nonzero_found = false;
176 for (int i = 0; i < MAX_VEC_SIZE_BYTES / 8; i++) {
177 if (env->QRegs[regnum].ub[i] != 0) {
178 nonzero_found = true;
179 break;
182 if (!nonzero_found) {
183 return;
187 qemu_fprintf(f, " q%d = ( ", regnum);
188 qemu_fprintf(f, "0x%02x",
189 env->QRegs[regnum].ub[MAX_VEC_SIZE_BYTES / 8 - 1]);
190 for (int i = MAX_VEC_SIZE_BYTES / 8 - 2; i >= 0; i--) {
191 qemu_fprintf(f, ", 0x%02x", env->QRegs[regnum].ub[i]);
193 qemu_fprintf(f, " )\n");
196 void hexagon_debug_qreg(CPUHexagonState *env, int regnum)
198 print_qreg(stdout, env, regnum, false);
201 static void hexagon_dump(CPUHexagonState *env, FILE *f, int flags)
203 HexagonCPU *cpu = env_archcpu(env);
205 if (cpu->lldb_compat) {
207 * When comparing with LLDB, it doesn't step through single-cycle
208 * hardware loops the same way. So, we just skip them here
210 if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) {
211 return;
213 env->last_pc_dumped = env->gpr[HEX_REG_PC];
216 qemu_fprintf(f, "General Purpose Registers = {\n");
217 for (int i = 0; i < 32; i++) {
218 print_reg(f, env, i);
220 print_reg(f, env, HEX_REG_SA0);
221 print_reg(f, env, HEX_REG_LC0);
222 print_reg(f, env, HEX_REG_SA1);
223 print_reg(f, env, HEX_REG_LC1);
224 print_reg(f, env, HEX_REG_M0);
225 print_reg(f, env, HEX_REG_M1);
226 print_reg(f, env, HEX_REG_USR);
227 print_reg(f, env, HEX_REG_P3_0_ALIASED);
228 print_reg(f, env, HEX_REG_GP);
229 print_reg(f, env, HEX_REG_UGP);
230 print_reg(f, env, HEX_REG_PC);
231 #ifdef CONFIG_USER_ONLY
233 * Not modelled in user mode, print junk to minimize the diff's
234 * with LLDB output
236 qemu_fprintf(f, " cause = 0x000000db\n");
237 qemu_fprintf(f, " badva = 0x00000000\n");
238 qemu_fprintf(f, " cs0 = 0x00000000\n");
239 qemu_fprintf(f, " cs1 = 0x00000000\n");
240 #else
241 print_reg(f, env, HEX_REG_CAUSE);
242 print_reg(f, env, HEX_REG_BADVA);
243 print_reg(f, env, HEX_REG_CS0);
244 print_reg(f, env, HEX_REG_CS1);
245 #endif
246 qemu_fprintf(f, "}\n");
248 if (flags & CPU_DUMP_FPU) {
249 qemu_fprintf(f, "Vector Registers = {\n");
250 for (int i = 0; i < NUM_VREGS; i++) {
251 print_vreg(f, env, i, true);
253 for (int i = 0; i < NUM_QREGS; i++) {
254 print_qreg(f, env, i, true);
256 qemu_fprintf(f, "}\n");
260 static void hexagon_dump_state(CPUState *cs, FILE *f, int flags)
262 HexagonCPU *cpu = HEXAGON_CPU(cs);
263 CPUHexagonState *env = &cpu->env;
265 hexagon_dump(env, f, flags);
268 void hexagon_debug(CPUHexagonState *env)
270 hexagon_dump(env, stdout, CPU_DUMP_FPU);
273 static void hexagon_cpu_set_pc(CPUState *cs, vaddr value)
275 HexagonCPU *cpu = HEXAGON_CPU(cs);
276 CPUHexagonState *env = &cpu->env;
277 env->gpr[HEX_REG_PC] = value;
280 static vaddr hexagon_cpu_get_pc(CPUState *cs)
282 HexagonCPU *cpu = HEXAGON_CPU(cs);
283 CPUHexagonState *env = &cpu->env;
284 return env->gpr[HEX_REG_PC];
287 static void hexagon_cpu_synchronize_from_tb(CPUState *cs,
288 const TranslationBlock *tb)
290 HexagonCPU *cpu = HEXAGON_CPU(cs);
291 CPUHexagonState *env = &cpu->env;
292 tcg_debug_assert(!(cs->tcg_cflags & CF_PCREL));
293 env->gpr[HEX_REG_PC] = tb->pc;
296 static bool hexagon_cpu_has_work(CPUState *cs)
298 return true;
301 static void hexagon_restore_state_to_opc(CPUState *cs,
302 const TranslationBlock *tb,
303 const uint64_t *data)
305 HexagonCPU *cpu = HEXAGON_CPU(cs);
306 CPUHexagonState *env = &cpu->env;
308 env->gpr[HEX_REG_PC] = data[0];
311 static void hexagon_cpu_reset_hold(Object *obj)
313 CPUState *cs = CPU(obj);
314 HexagonCPU *cpu = HEXAGON_CPU(cs);
315 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu);
316 CPUHexagonState *env = &cpu->env;
318 if (mcc->parent_phases.hold) {
319 mcc->parent_phases.hold(obj);
322 set_default_nan_mode(1, &env->fp_status);
323 set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status);
326 static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info)
328 info->print_insn = print_insn_hexagon;
331 static void hexagon_cpu_realize(DeviceState *dev, Error **errp)
333 CPUState *cs = CPU(dev);
334 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev);
335 Error *local_err = NULL;
337 cpu_exec_realizefn(cs, &local_err);
338 if (local_err != NULL) {
339 error_propagate(errp, local_err);
340 return;
343 gdb_register_coprocessor(cs, hexagon_hvx_gdb_read_register,
344 hexagon_hvx_gdb_write_register,
345 NUM_VREGS + NUM_QREGS,
346 "hexagon-hvx.xml", 0);
348 qemu_init_vcpu(cs);
349 cpu_reset(cs);
351 mcc->parent_realize(dev, errp);
354 static void hexagon_cpu_init(Object *obj)
356 HexagonCPU *cpu = HEXAGON_CPU(obj);
358 cpu_set_cpustate_pointers(cpu);
359 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property);
360 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property);
361 qdev_property_add_static(DEVICE(obj), &hexagon_short_circuit_property);
364 #include "hw/core/tcg-cpu-ops.h"
366 static const struct TCGCPUOps hexagon_tcg_ops = {
367 .initialize = hexagon_translate_init,
368 .synchronize_from_tb = hexagon_cpu_synchronize_from_tb,
369 .restore_state_to_opc = hexagon_restore_state_to_opc,
372 static void hexagon_cpu_class_init(ObjectClass *c, void *data)
374 HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c);
375 CPUClass *cc = CPU_CLASS(c);
376 DeviceClass *dc = DEVICE_CLASS(c);
377 ResettableClass *rc = RESETTABLE_CLASS(c);
379 device_class_set_parent_realize(dc, hexagon_cpu_realize,
380 &mcc->parent_realize);
382 resettable_class_set_parent_phases(rc, NULL, hexagon_cpu_reset_hold, NULL,
383 &mcc->parent_phases);
385 cc->class_by_name = hexagon_cpu_class_by_name;
386 cc->has_work = hexagon_cpu_has_work;
387 cc->dump_state = hexagon_dump_state;
388 cc->set_pc = hexagon_cpu_set_pc;
389 cc->get_pc = hexagon_cpu_get_pc;
390 cc->gdb_read_register = hexagon_gdb_read_register;
391 cc->gdb_write_register = hexagon_gdb_write_register;
392 cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS;
393 cc->gdb_stop_before_watchpoint = true;
394 cc->gdb_core_xml_file = "hexagon-core.xml";
395 cc->disas_set_info = hexagon_cpu_disas_set_info;
396 cc->tcg_ops = &hexagon_tcg_ops;
399 #define DEFINE_CPU(type_name, initfn) \
401 .name = type_name, \
402 .parent = TYPE_HEXAGON_CPU, \
403 .instance_init = initfn \
406 static const TypeInfo hexagon_cpu_type_infos[] = {
408 .name = TYPE_HEXAGON_CPU,
409 .parent = TYPE_CPU,
410 .instance_size = sizeof(HexagonCPU),
411 .instance_init = hexagon_cpu_init,
412 .abstract = true,
413 .class_size = sizeof(HexagonCPUClass),
414 .class_init = hexagon_cpu_class_init,
416 DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init),
417 DEFINE_CPU(TYPE_HEXAGON_CPU_V68, hexagon_v68_cpu_init),
418 DEFINE_CPU(TYPE_HEXAGON_CPU_V69, hexagon_v69_cpu_init),
419 DEFINE_CPU(TYPE_HEXAGON_CPU_V71, hexagon_v71_cpu_init),
420 DEFINE_CPU(TYPE_HEXAGON_CPU_V73, hexagon_v73_cpu_init),
423 DEFINE_TYPES(hexagon_cpu_type_infos)