2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 #include "qemu/osdep.h"
19 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include "qapi/error.h"
24 #include "hw/qdev-properties.h"
25 #include "fpu/softfloat-helpers.h"
27 #include "exec/gdbstub.h"
29 static void hexagon_v67_cpu_init(Object
*obj
) { }
30 static void hexagon_v68_cpu_init(Object
*obj
) { }
31 static void hexagon_v69_cpu_init(Object
*obj
) { }
32 static void hexagon_v71_cpu_init(Object
*obj
) { }
33 static void hexagon_v73_cpu_init(Object
*obj
) { }
35 static void hexagon_cpu_list_entry(gpointer data
, gpointer user_data
)
37 ObjectClass
*oc
= data
;
38 char *name
= g_strdup(object_class_get_name(oc
));
39 if (g_str_has_suffix(name
, HEXAGON_CPU_TYPE_SUFFIX
)) {
40 name
[strlen(name
) - strlen(HEXAGON_CPU_TYPE_SUFFIX
)] = '\0';
42 qemu_printf(" %s\n", name
);
46 void hexagon_cpu_list(void)
49 list
= object_class_get_list_sorted(TYPE_HEXAGON_CPU
, false);
50 qemu_printf("Available CPUs:\n");
51 g_slist_foreach(list
, hexagon_cpu_list_entry
, NULL
);
55 static ObjectClass
*hexagon_cpu_class_by_name(const char *cpu_model
)
61 cpuname
= g_strsplit(cpu_model
, ",", 1);
62 typename
= g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname
[0]);
63 oc
= object_class_by_name(typename
);
66 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_HEXAGON_CPU
) ||
67 object_class_is_abstract(oc
)) {
73 static Property hexagon_lldb_compat_property
=
74 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU
, lldb_compat
, false);
75 static Property hexagon_lldb_stack_adjust_property
=
76 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU
, lldb_stack_adjust
,
77 0, qdev_prop_uint32
, target_ulong
);
78 static Property hexagon_short_circuit_property
=
79 DEFINE_PROP_BOOL("short-circuit", HexagonCPU
, short_circuit
, true);
81 const char * const hexagon_regnames
[TOTAL_PER_THREAD_REGS
] = {
82 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
83 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
84 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
85 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
86 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1",
87 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15",
88 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "hvx_cnt", "c23",
89 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31",
93 * One of the main debugging techniques is to use "-d cpu" and compare against
94 * LLDB output when single stepping. However, the target and qemu put the
95 * stacks at different locations. This is used to compensate so the diff is
98 static target_ulong
adjust_stack_ptrs(CPUHexagonState
*env
, target_ulong addr
)
100 HexagonCPU
*cpu
= env_archcpu(env
);
101 target_ulong stack_adjust
= cpu
->lldb_stack_adjust
;
102 target_ulong stack_start
= env
->stack_start
;
103 target_ulong stack_size
= 0x10000;
105 if (stack_adjust
== 0) {
109 if (stack_start
+ 0x1000 >= addr
&& addr
>= (stack_start
- stack_size
)) {
110 return addr
- stack_adjust
;
115 /* HEX_REG_P3_0_ALIASED (aka C4) is an alias for the predicate registers */
116 static target_ulong
read_p3_0(CPUHexagonState
*env
)
118 int32_t control_reg
= 0;
120 for (i
= NUM_PREGS
- 1; i
>= 0; i
--) {
122 control_reg
|= env
->pred
[i
] & 0xff;
127 static void print_reg(FILE *f
, CPUHexagonState
*env
, int regnum
)
131 if (regnum
== HEX_REG_P3_0_ALIASED
) {
132 value
= read_p3_0(env
);
134 value
= regnum
< 32 ? adjust_stack_ptrs(env
, env
->gpr
[regnum
])
138 qemu_fprintf(f
, " %s = 0x" TARGET_FMT_lx
"\n",
139 hexagon_regnames
[regnum
], value
);
142 static void print_vreg(FILE *f
, CPUHexagonState
*env
, int regnum
,
146 bool nonzero_found
= false;
147 for (int i
= 0; i
< MAX_VEC_SIZE_BYTES
; i
++) {
148 if (env
->VRegs
[regnum
].ub
[i
] != 0) {
149 nonzero_found
= true;
153 if (!nonzero_found
) {
158 qemu_fprintf(f
, " v%d = ( ", regnum
);
159 qemu_fprintf(f
, "0x%02x", env
->VRegs
[regnum
].ub
[MAX_VEC_SIZE_BYTES
- 1]);
160 for (int i
= MAX_VEC_SIZE_BYTES
- 2; i
>= 0; i
--) {
161 qemu_fprintf(f
, ", 0x%02x", env
->VRegs
[regnum
].ub
[i
]);
163 qemu_fprintf(f
, " )\n");
166 void hexagon_debug_vreg(CPUHexagonState
*env
, int regnum
)
168 print_vreg(stdout
, env
, regnum
, false);
171 static void print_qreg(FILE *f
, CPUHexagonState
*env
, int regnum
,
175 bool nonzero_found
= false;
176 for (int i
= 0; i
< MAX_VEC_SIZE_BYTES
/ 8; i
++) {
177 if (env
->QRegs
[regnum
].ub
[i
] != 0) {
178 nonzero_found
= true;
182 if (!nonzero_found
) {
187 qemu_fprintf(f
, " q%d = ( ", regnum
);
188 qemu_fprintf(f
, "0x%02x",
189 env
->QRegs
[regnum
].ub
[MAX_VEC_SIZE_BYTES
/ 8 - 1]);
190 for (int i
= MAX_VEC_SIZE_BYTES
/ 8 - 2; i
>= 0; i
--) {
191 qemu_fprintf(f
, ", 0x%02x", env
->QRegs
[regnum
].ub
[i
]);
193 qemu_fprintf(f
, " )\n");
196 void hexagon_debug_qreg(CPUHexagonState
*env
, int regnum
)
198 print_qreg(stdout
, env
, regnum
, false);
201 static void hexagon_dump(CPUHexagonState
*env
, FILE *f
, int flags
)
203 HexagonCPU
*cpu
= env_archcpu(env
);
205 if (cpu
->lldb_compat
) {
207 * When comparing with LLDB, it doesn't step through single-cycle
208 * hardware loops the same way. So, we just skip them here
210 if (env
->gpr
[HEX_REG_PC
] == env
->last_pc_dumped
) {
213 env
->last_pc_dumped
= env
->gpr
[HEX_REG_PC
];
216 qemu_fprintf(f
, "General Purpose Registers = {\n");
217 for (int i
= 0; i
< 32; i
++) {
218 print_reg(f
, env
, i
);
220 print_reg(f
, env
, HEX_REG_SA0
);
221 print_reg(f
, env
, HEX_REG_LC0
);
222 print_reg(f
, env
, HEX_REG_SA1
);
223 print_reg(f
, env
, HEX_REG_LC1
);
224 print_reg(f
, env
, HEX_REG_M0
);
225 print_reg(f
, env
, HEX_REG_M1
);
226 print_reg(f
, env
, HEX_REG_USR
);
227 print_reg(f
, env
, HEX_REG_P3_0_ALIASED
);
228 print_reg(f
, env
, HEX_REG_GP
);
229 print_reg(f
, env
, HEX_REG_UGP
);
230 print_reg(f
, env
, HEX_REG_PC
);
231 #ifdef CONFIG_USER_ONLY
233 * Not modelled in user mode, print junk to minimize the diff's
236 qemu_fprintf(f
, " cause = 0x000000db\n");
237 qemu_fprintf(f
, " badva = 0x00000000\n");
238 qemu_fprintf(f
, " cs0 = 0x00000000\n");
239 qemu_fprintf(f
, " cs1 = 0x00000000\n");
241 print_reg(f
, env
, HEX_REG_CAUSE
);
242 print_reg(f
, env
, HEX_REG_BADVA
);
243 print_reg(f
, env
, HEX_REG_CS0
);
244 print_reg(f
, env
, HEX_REG_CS1
);
246 qemu_fprintf(f
, "}\n");
248 if (flags
& CPU_DUMP_FPU
) {
249 qemu_fprintf(f
, "Vector Registers = {\n");
250 for (int i
= 0; i
< NUM_VREGS
; i
++) {
251 print_vreg(f
, env
, i
, true);
253 for (int i
= 0; i
< NUM_QREGS
; i
++) {
254 print_qreg(f
, env
, i
, true);
256 qemu_fprintf(f
, "}\n");
260 static void hexagon_dump_state(CPUState
*cs
, FILE *f
, int flags
)
262 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
263 CPUHexagonState
*env
= &cpu
->env
;
265 hexagon_dump(env
, f
, flags
);
268 void hexagon_debug(CPUHexagonState
*env
)
270 hexagon_dump(env
, stdout
, CPU_DUMP_FPU
);
273 static void hexagon_cpu_set_pc(CPUState
*cs
, vaddr value
)
275 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
276 CPUHexagonState
*env
= &cpu
->env
;
277 env
->gpr
[HEX_REG_PC
] = value
;
280 static vaddr
hexagon_cpu_get_pc(CPUState
*cs
)
282 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
283 CPUHexagonState
*env
= &cpu
->env
;
284 return env
->gpr
[HEX_REG_PC
];
287 static void hexagon_cpu_synchronize_from_tb(CPUState
*cs
,
288 const TranslationBlock
*tb
)
290 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
291 CPUHexagonState
*env
= &cpu
->env
;
292 tcg_debug_assert(!(cs
->tcg_cflags
& CF_PCREL
));
293 env
->gpr
[HEX_REG_PC
] = tb
->pc
;
296 static bool hexagon_cpu_has_work(CPUState
*cs
)
301 static void hexagon_restore_state_to_opc(CPUState
*cs
,
302 const TranslationBlock
*tb
,
303 const uint64_t *data
)
305 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
306 CPUHexagonState
*env
= &cpu
->env
;
308 env
->gpr
[HEX_REG_PC
] = data
[0];
311 static void hexagon_cpu_reset_hold(Object
*obj
)
313 CPUState
*cs
= CPU(obj
);
314 HexagonCPU
*cpu
= HEXAGON_CPU(cs
);
315 HexagonCPUClass
*mcc
= HEXAGON_CPU_GET_CLASS(cpu
);
316 CPUHexagonState
*env
= &cpu
->env
;
318 if (mcc
->parent_phases
.hold
) {
319 mcc
->parent_phases
.hold(obj
);
322 set_default_nan_mode(1, &env
->fp_status
);
323 set_float_detect_tininess(float_tininess_before_rounding
, &env
->fp_status
);
326 static void hexagon_cpu_disas_set_info(CPUState
*s
, disassemble_info
*info
)
328 info
->print_insn
= print_insn_hexagon
;
331 static void hexagon_cpu_realize(DeviceState
*dev
, Error
**errp
)
333 CPUState
*cs
= CPU(dev
);
334 HexagonCPUClass
*mcc
= HEXAGON_CPU_GET_CLASS(dev
);
335 Error
*local_err
= NULL
;
337 cpu_exec_realizefn(cs
, &local_err
);
338 if (local_err
!= NULL
) {
339 error_propagate(errp
, local_err
);
343 gdb_register_coprocessor(cs
, hexagon_hvx_gdb_read_register
,
344 hexagon_hvx_gdb_write_register
,
345 NUM_VREGS
+ NUM_QREGS
,
346 "hexagon-hvx.xml", 0);
351 mcc
->parent_realize(dev
, errp
);
354 static void hexagon_cpu_init(Object
*obj
)
356 HexagonCPU
*cpu
= HEXAGON_CPU(obj
);
358 cpu_set_cpustate_pointers(cpu
);
359 qdev_property_add_static(DEVICE(obj
), &hexagon_lldb_compat_property
);
360 qdev_property_add_static(DEVICE(obj
), &hexagon_lldb_stack_adjust_property
);
361 qdev_property_add_static(DEVICE(obj
), &hexagon_short_circuit_property
);
364 #include "hw/core/tcg-cpu-ops.h"
366 static const struct TCGCPUOps hexagon_tcg_ops
= {
367 .initialize
= hexagon_translate_init
,
368 .synchronize_from_tb
= hexagon_cpu_synchronize_from_tb
,
369 .restore_state_to_opc
= hexagon_restore_state_to_opc
,
372 static void hexagon_cpu_class_init(ObjectClass
*c
, void *data
)
374 HexagonCPUClass
*mcc
= HEXAGON_CPU_CLASS(c
);
375 CPUClass
*cc
= CPU_CLASS(c
);
376 DeviceClass
*dc
= DEVICE_CLASS(c
);
377 ResettableClass
*rc
= RESETTABLE_CLASS(c
);
379 device_class_set_parent_realize(dc
, hexagon_cpu_realize
,
380 &mcc
->parent_realize
);
382 resettable_class_set_parent_phases(rc
, NULL
, hexagon_cpu_reset_hold
, NULL
,
383 &mcc
->parent_phases
);
385 cc
->class_by_name
= hexagon_cpu_class_by_name
;
386 cc
->has_work
= hexagon_cpu_has_work
;
387 cc
->dump_state
= hexagon_dump_state
;
388 cc
->set_pc
= hexagon_cpu_set_pc
;
389 cc
->get_pc
= hexagon_cpu_get_pc
;
390 cc
->gdb_read_register
= hexagon_gdb_read_register
;
391 cc
->gdb_write_register
= hexagon_gdb_write_register
;
392 cc
->gdb_num_core_regs
= TOTAL_PER_THREAD_REGS
;
393 cc
->gdb_stop_before_watchpoint
= true;
394 cc
->gdb_core_xml_file
= "hexagon-core.xml";
395 cc
->disas_set_info
= hexagon_cpu_disas_set_info
;
396 cc
->tcg_ops
= &hexagon_tcg_ops
;
399 #define DEFINE_CPU(type_name, initfn) \
402 .parent = TYPE_HEXAGON_CPU, \
403 .instance_init = initfn \
406 static const TypeInfo hexagon_cpu_type_infos
[] = {
408 .name
= TYPE_HEXAGON_CPU
,
410 .instance_size
= sizeof(HexagonCPU
),
411 .instance_init
= hexagon_cpu_init
,
413 .class_size
= sizeof(HexagonCPUClass
),
414 .class_init
= hexagon_cpu_class_init
,
416 DEFINE_CPU(TYPE_HEXAGON_CPU_V67
, hexagon_v67_cpu_init
),
417 DEFINE_CPU(TYPE_HEXAGON_CPU_V68
, hexagon_v68_cpu_init
),
418 DEFINE_CPU(TYPE_HEXAGON_CPU_V69
, hexagon_v69_cpu_init
),
419 DEFINE_CPU(TYPE_HEXAGON_CPU_V71
, hexagon_v71_cpu_init
),
420 DEFINE_CPU(TYPE_HEXAGON_CPU_V73
, hexagon_v73_cpu_init
),
423 DEFINE_TYPES(hexagon_cpu_type_infos
)