i386/xen: handle VCPUOP_register_vcpu_info
[qemu/kevin.git] / hw / ppc / ppc.c
blob4e816c68c759b2d8a4c52afc6018b822e13e4d37
1 /*
2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/irq.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
31 #include "qemu/log.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
36 #include "kvm_ppc.h"
37 #include "migration/vmstate.h"
38 #include "trace.h"
40 static void cpu_ppc_tb_stop (CPUPPCState *env);
41 static void cpu_ppc_tb_start (CPUPPCState *env);
43 void ppc_set_irq(PowerPCCPU *cpu, int irq, int level)
45 CPUPPCState *env = &cpu->env;
46 unsigned int old_pending;
48 /* We may already have the BQL if coming from the reset path */
49 QEMU_IOTHREAD_LOCK_GUARD();
51 old_pending = env->pending_interrupts;
53 if (level) {
54 env->pending_interrupts |= irq;
55 } else {
56 env->pending_interrupts &= ~irq;
59 if (old_pending != env->pending_interrupts) {
60 ppc_maybe_interrupt(env);
61 kvmppc_set_interrupt(cpu, irq, level);
64 trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts,
65 CPU(cpu)->interrupt_request);
68 /* PowerPC 6xx / 7xx internal IRQ controller */
69 static void ppc6xx_set_irq(void *opaque, int pin, int level)
71 PowerPCCPU *cpu = opaque;
72 CPUPPCState *env = &cpu->env;
73 int cur_level;
75 trace_ppc_irq_set(env, pin, level);
77 cur_level = (env->irq_input_state >> pin) & 1;
78 /* Don't generate spurious events */
79 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
80 CPUState *cs = CPU(cpu);
82 switch (pin) {
83 case PPC6xx_INPUT_TBEN:
84 /* Level sensitive - active high */
85 trace_ppc_irq_set_state("time base", level);
86 if (level) {
87 cpu_ppc_tb_start(env);
88 } else {
89 cpu_ppc_tb_stop(env);
91 break;
92 case PPC6xx_INPUT_INT:
93 /* Level sensitive - active high */
94 trace_ppc_irq_set_state("external IRQ", level);
95 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
96 break;
97 case PPC6xx_INPUT_SMI:
98 /* Level sensitive - active high */
99 trace_ppc_irq_set_state("SMI IRQ", level);
100 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
101 break;
102 case PPC6xx_INPUT_MCP:
103 /* Negative edge sensitive */
104 /* XXX: TODO: actual reaction may depends on HID0 status
105 * 603/604/740/750: check HID0[EMCP]
107 if (cur_level == 1 && level == 0) {
108 trace_ppc_irq_set_state("machine check", 1);
109 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
111 break;
112 case PPC6xx_INPUT_CKSTP_IN:
113 /* Level sensitive - active low */
114 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
115 /* XXX: Note that the only way to restart the CPU is to reset it */
116 if (level) {
117 trace_ppc_irq_cpu("stop");
118 cs->halted = 1;
120 break;
121 case PPC6xx_INPUT_HRESET:
122 /* Level sensitive - active low */
123 if (level) {
124 trace_ppc_irq_reset("CPU");
125 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
127 break;
128 case PPC6xx_INPUT_SRESET:
129 trace_ppc_irq_set_state("RESET IRQ", level);
130 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
131 break;
132 default:
133 g_assert_not_reached();
135 if (level)
136 env->irq_input_state |= 1 << pin;
137 else
138 env->irq_input_state &= ~(1 << pin);
142 void ppc6xx_irq_init(PowerPCCPU *cpu)
144 qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB);
147 #if defined(TARGET_PPC64)
148 /* PowerPC 970 internal IRQ controller */
149 static void ppc970_set_irq(void *opaque, int pin, int level)
151 PowerPCCPU *cpu = opaque;
152 CPUPPCState *env = &cpu->env;
153 int cur_level;
155 trace_ppc_irq_set(env, pin, level);
157 cur_level = (env->irq_input_state >> pin) & 1;
158 /* Don't generate spurious events */
159 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
160 CPUState *cs = CPU(cpu);
162 switch (pin) {
163 case PPC970_INPUT_INT:
164 /* Level sensitive - active high */
165 trace_ppc_irq_set_state("external IRQ", level);
166 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
167 break;
168 case PPC970_INPUT_THINT:
169 /* Level sensitive - active high */
170 trace_ppc_irq_set_state("SMI IRQ", level);
171 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
172 break;
173 case PPC970_INPUT_MCP:
174 /* Negative edge sensitive */
175 /* XXX: TODO: actual reaction may depends on HID0 status
176 * 603/604/740/750: check HID0[EMCP]
178 if (cur_level == 1 && level == 0) {
179 trace_ppc_irq_set_state("machine check", 1);
180 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
182 break;
183 case PPC970_INPUT_CKSTP:
184 /* Level sensitive - active low */
185 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
186 if (level) {
187 trace_ppc_irq_cpu("stop");
188 cs->halted = 1;
189 } else {
190 trace_ppc_irq_cpu("restart");
191 cs->halted = 0;
192 qemu_cpu_kick(cs);
194 break;
195 case PPC970_INPUT_HRESET:
196 /* Level sensitive - active low */
197 if (level) {
198 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
200 break;
201 case PPC970_INPUT_SRESET:
202 trace_ppc_irq_set_state("RESET IRQ", level);
203 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
204 break;
205 case PPC970_INPUT_TBEN:
206 trace_ppc_irq_set_state("TBEN IRQ", level);
207 /* XXX: TODO */
208 break;
209 default:
210 g_assert_not_reached();
212 if (level)
213 env->irq_input_state |= 1 << pin;
214 else
215 env->irq_input_state &= ~(1 << pin);
219 void ppc970_irq_init(PowerPCCPU *cpu)
221 qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB);
224 /* POWER7 internal IRQ controller */
225 static void power7_set_irq(void *opaque, int pin, int level)
227 PowerPCCPU *cpu = opaque;
229 trace_ppc_irq_set(&cpu->env, pin, level);
231 switch (pin) {
232 case POWER7_INPUT_INT:
233 /* Level sensitive - active high */
234 trace_ppc_irq_set_state("external IRQ", level);
235 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
236 break;
237 default:
238 g_assert_not_reached();
242 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
244 qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB);
247 /* POWER9 internal IRQ controller */
248 static void power9_set_irq(void *opaque, int pin, int level)
250 PowerPCCPU *cpu = opaque;
252 trace_ppc_irq_set(&cpu->env, pin, level);
254 switch (pin) {
255 case POWER9_INPUT_INT:
256 /* Level sensitive - active high */
257 trace_ppc_irq_set_state("external IRQ", level);
258 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
259 break;
260 case POWER9_INPUT_HINT:
261 /* Level sensitive - active high */
262 trace_ppc_irq_set_state("HV external IRQ", level);
263 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
264 break;
265 default:
266 g_assert_not_reached();
267 return;
271 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
273 qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB);
275 #endif /* defined(TARGET_PPC64) */
277 void ppc40x_core_reset(PowerPCCPU *cpu)
279 CPUPPCState *env = &cpu->env;
280 target_ulong dbsr;
282 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
283 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
284 dbsr = env->spr[SPR_40x_DBSR];
285 dbsr &= ~0x00000300;
286 dbsr |= 0x00000100;
287 env->spr[SPR_40x_DBSR] = dbsr;
290 void ppc40x_chip_reset(PowerPCCPU *cpu)
292 CPUPPCState *env = &cpu->env;
293 target_ulong dbsr;
295 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
296 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
297 /* XXX: TODO reset all internal peripherals */
298 dbsr = env->spr[SPR_40x_DBSR];
299 dbsr &= ~0x00000300;
300 dbsr |= 0x00000200;
301 env->spr[SPR_40x_DBSR] = dbsr;
304 void ppc40x_system_reset(PowerPCCPU *cpu)
306 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
307 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
310 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
312 PowerPCCPU *cpu = env_archcpu(env);
314 qemu_mutex_lock_iothread();
316 switch ((val >> 28) & 0x3) {
317 case 0x0:
318 /* No action */
319 break;
320 case 0x1:
321 /* Core reset */
322 ppc40x_core_reset(cpu);
323 break;
324 case 0x2:
325 /* Chip reset */
326 ppc40x_chip_reset(cpu);
327 break;
328 case 0x3:
329 /* System reset */
330 ppc40x_system_reset(cpu);
331 break;
334 qemu_mutex_unlock_iothread();
337 /* PowerPC 40x internal IRQ controller */
338 static void ppc40x_set_irq(void *opaque, int pin, int level)
340 PowerPCCPU *cpu = opaque;
341 CPUPPCState *env = &cpu->env;
342 int cur_level;
344 trace_ppc_irq_set(env, pin, level);
346 cur_level = (env->irq_input_state >> pin) & 1;
347 /* Don't generate spurious events */
348 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
349 CPUState *cs = CPU(cpu);
351 switch (pin) {
352 case PPC40x_INPUT_RESET_SYS:
353 if (level) {
354 trace_ppc_irq_reset("system");
355 ppc40x_system_reset(cpu);
357 break;
358 case PPC40x_INPUT_RESET_CHIP:
359 if (level) {
360 trace_ppc_irq_reset("chip");
361 ppc40x_chip_reset(cpu);
363 break;
364 case PPC40x_INPUT_RESET_CORE:
365 /* XXX: TODO: update DBSR[MRR] */
366 if (level) {
367 trace_ppc_irq_reset("core");
368 ppc40x_core_reset(cpu);
370 break;
371 case PPC40x_INPUT_CINT:
372 /* Level sensitive - active high */
373 trace_ppc_irq_set_state("critical IRQ", level);
374 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
375 break;
376 case PPC40x_INPUT_INT:
377 /* Level sensitive - active high */
378 trace_ppc_irq_set_state("external IRQ", level);
379 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
380 break;
381 case PPC40x_INPUT_HALT:
382 /* Level sensitive - active low */
383 if (level) {
384 trace_ppc_irq_cpu("stop");
385 cs->halted = 1;
386 } else {
387 trace_ppc_irq_cpu("restart");
388 cs->halted = 0;
389 qemu_cpu_kick(cs);
391 break;
392 case PPC40x_INPUT_DEBUG:
393 /* Level sensitive - active high */
394 trace_ppc_irq_set_state("debug pin", level);
395 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
396 break;
397 default:
398 g_assert_not_reached();
400 if (level)
401 env->irq_input_state |= 1 << pin;
402 else
403 env->irq_input_state &= ~(1 << pin);
407 void ppc40x_irq_init(PowerPCCPU *cpu)
409 qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB);
412 /* PowerPC E500 internal IRQ controller */
413 static void ppce500_set_irq(void *opaque, int pin, int level)
415 PowerPCCPU *cpu = opaque;
416 CPUPPCState *env = &cpu->env;
417 int cur_level;
419 trace_ppc_irq_set(env, pin, level);
421 cur_level = (env->irq_input_state >> pin) & 1;
422 /* Don't generate spurious events */
423 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
424 switch (pin) {
425 case PPCE500_INPUT_MCK:
426 if (level) {
427 trace_ppc_irq_reset("system");
428 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
430 break;
431 case PPCE500_INPUT_RESET_CORE:
432 if (level) {
433 trace_ppc_irq_reset("core");
434 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
436 break;
437 case PPCE500_INPUT_CINT:
438 /* Level sensitive - active high */
439 trace_ppc_irq_set_state("critical IRQ", level);
440 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
441 break;
442 case PPCE500_INPUT_INT:
443 /* Level sensitive - active high */
444 trace_ppc_irq_set_state("core IRQ", level);
445 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
446 break;
447 case PPCE500_INPUT_DEBUG:
448 /* Level sensitive - active high */
449 trace_ppc_irq_set_state("debug pin", level);
450 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
451 break;
452 default:
453 g_assert_not_reached();
455 if (level)
456 env->irq_input_state |= 1 << pin;
457 else
458 env->irq_input_state &= ~(1 << pin);
462 void ppce500_irq_init(PowerPCCPU *cpu)
464 qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB);
467 /* Enable or Disable the E500 EPR capability */
468 void ppce500_set_mpic_proxy(bool enabled)
470 CPUState *cs;
472 CPU_FOREACH(cs) {
473 PowerPCCPU *cpu = POWERPC_CPU(cs);
475 cpu->env.mpic_proxy = enabled;
476 if (kvm_enabled()) {
477 kvmppc_set_mpic_proxy(cpu, enabled);
482 /*****************************************************************************/
483 /* PowerPC time base and decrementer emulation */
485 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
487 /* TB time in tb periods */
488 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
491 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
493 ppc_tb_t *tb_env = env->tb_env;
494 uint64_t tb;
496 if (kvm_enabled()) {
497 return env->spr[SPR_TBL];
500 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
501 trace_ppc_tb_load(tb);
503 return tb;
506 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
508 ppc_tb_t *tb_env = env->tb_env;
509 uint64_t tb;
511 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
512 trace_ppc_tb_load(tb);
514 return tb >> 32;
517 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
519 if (kvm_enabled()) {
520 return env->spr[SPR_TBU];
523 return _cpu_ppc_load_tbu(env);
526 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
527 int64_t *tb_offsetp, uint64_t value)
529 *tb_offsetp = value -
530 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
532 trace_ppc_tb_store(value, *tb_offsetp);
535 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
537 ppc_tb_t *tb_env = env->tb_env;
538 uint64_t tb;
540 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
541 tb &= 0xFFFFFFFF00000000ULL;
542 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
543 &tb_env->tb_offset, tb | (uint64_t)value);
546 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
548 ppc_tb_t *tb_env = env->tb_env;
549 uint64_t tb;
551 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
552 tb &= 0x00000000FFFFFFFFULL;
553 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
554 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
557 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
559 _cpu_ppc_store_tbu(env, value);
562 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
564 ppc_tb_t *tb_env = env->tb_env;
565 uint64_t tb;
567 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
568 trace_ppc_tb_load(tb);
570 return tb;
573 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
575 ppc_tb_t *tb_env = env->tb_env;
576 uint64_t tb;
578 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
579 trace_ppc_tb_load(tb);
581 return tb >> 32;
584 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
586 ppc_tb_t *tb_env = env->tb_env;
587 uint64_t tb;
589 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
590 tb &= 0xFFFFFFFF00000000ULL;
591 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
592 &tb_env->atb_offset, tb | (uint64_t)value);
595 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
597 ppc_tb_t *tb_env = env->tb_env;
598 uint64_t tb;
600 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
601 tb &= 0x00000000FFFFFFFFULL;
602 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
603 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
606 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
608 ppc_tb_t *tb_env = env->tb_env;
610 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
611 tb_env->vtb_offset);
614 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
616 ppc_tb_t *tb_env = env->tb_env;
618 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
619 &tb_env->vtb_offset, value);
622 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
624 ppc_tb_t *tb_env = env->tb_env;
625 uint64_t tb;
627 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
628 tb_env->tb_offset);
629 tb &= 0xFFFFFFUL;
630 tb |= (value & ~0xFFFFFFUL);
631 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
632 &tb_env->tb_offset, tb);
635 static void cpu_ppc_tb_stop (CPUPPCState *env)
637 ppc_tb_t *tb_env = env->tb_env;
638 uint64_t tb, atb, vmclk;
640 /* If the time base is already frozen, do nothing */
641 if (tb_env->tb_freq != 0) {
642 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
643 /* Get the time base */
644 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
645 /* Get the alternate time base */
646 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
647 /* Store the time base value (ie compute the current offset) */
648 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
649 /* Store the alternate time base value (compute the current offset) */
650 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
651 /* Set the time base frequency to zero */
652 tb_env->tb_freq = 0;
653 /* Now, the time bases are frozen to tb_offset / atb_offset value */
657 static void cpu_ppc_tb_start (CPUPPCState *env)
659 ppc_tb_t *tb_env = env->tb_env;
660 uint64_t tb, atb, vmclk;
662 /* If the time base is not frozen, do nothing */
663 if (tb_env->tb_freq == 0) {
664 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
665 /* Get the time base from tb_offset */
666 tb = tb_env->tb_offset;
667 /* Get the alternate time base from atb_offset */
668 atb = tb_env->atb_offset;
669 /* Restore the tb frequency from the decrementer frequency */
670 tb_env->tb_freq = tb_env->decr_freq;
671 /* Store the time base value */
672 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
673 /* Store the alternate time base value */
674 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
678 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
680 ppc_tb_t *tb_env = env->tb_env;
681 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
682 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
685 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
687 ppc_tb_t *tb_env = env->tb_env;
688 int64_t decr, diff;
690 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
691 if (diff >= 0) {
692 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
693 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
694 decr = 0;
695 } else {
696 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
698 trace_ppc_decr_load(decr);
700 return decr;
703 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
705 ppc_tb_t *tb_env = env->tb_env;
706 uint64_t decr;
708 if (kvm_enabled()) {
709 return env->spr[SPR_DECR];
712 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
715 * If large decrementer is enabled then the decrementer is signed extened
716 * to 64 bits, otherwise it is a 32 bit value.
718 if (env->spr[SPR_LPCR] & LPCR_LD) {
719 return decr;
721 return (uint32_t) decr;
724 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
726 PowerPCCPU *cpu = env_archcpu(env);
727 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
728 ppc_tb_t *tb_env = env->tb_env;
729 uint64_t hdecr;
731 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
734 * If we have a large decrementer (POWER9 or later) then hdecr is sign
735 * extended to 64 bits, otherwise it is 32 bits.
737 if (pcc->lrg_decr_bits > 32) {
738 return hdecr;
740 return (uint32_t) hdecr;
743 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
745 ppc_tb_t *tb_env = env->tb_env;
747 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
748 tb_env->purr_offset);
751 /* When decrementer expires,
752 * all we need to do is generate or queue a CPU exception
754 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
756 /* Raise it */
757 trace_ppc_decr_excp("raise");
758 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
761 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
763 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
766 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
768 CPUPPCState *env = &cpu->env;
770 /* Raise it */
771 trace_ppc_decr_excp("raise HV");
773 /* The architecture specifies that we don't deliver HDEC
774 * interrupts in a PM state. Not only they don't cause a
775 * wakeup but they also get effectively discarded.
777 if (!env->resume_as_sreset) {
778 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
782 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
784 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
787 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
788 QEMUTimer *timer,
789 void (*raise_excp)(void *),
790 void (*lower_excp)(PowerPCCPU *),
791 target_ulong decr, target_ulong value,
792 int nr_bits)
794 CPUPPCState *env = &cpu->env;
795 ppc_tb_t *tb_env = env->tb_env;
796 uint64_t now, next;
797 int64_t signed_value;
798 int64_t signed_decr;
800 /* Truncate value to decr_width and sign extend for simplicity */
801 signed_value = sextract64(value, 0, nr_bits);
802 signed_decr = sextract64(decr, 0, nr_bits);
804 trace_ppc_decr_store(nr_bits, decr, value);
806 if (kvm_enabled()) {
807 /* KVM handles decrementer exceptions, we don't need our own timer */
808 return;
812 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
813 * interrupt.
815 * If we get a really small DEC value, we can assume that by the time we
816 * handled it we should inject an interrupt already.
818 * On MSB level based DEC implementations the MSB always means the interrupt
819 * is pending, so raise it on those.
821 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
822 * an edge interrupt, so raise it here too.
824 if ((value < 3) ||
825 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
826 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
827 && signed_decr >= 0)) {
828 (*raise_excp)(cpu);
829 return;
832 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
833 if (signed_value >= 0 && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
834 (*lower_excp)(cpu);
837 /* Calculate the next timer event */
838 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
839 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
840 *nextp = next;
842 /* Adjust timer */
843 timer_mod(timer, next);
846 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
847 target_ulong value, int nr_bits)
849 ppc_tb_t *tb_env = cpu->env.tb_env;
851 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
852 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
853 value, nr_bits);
856 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
858 PowerPCCPU *cpu = env_archcpu(env);
859 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
860 int nr_bits = 32;
862 if (env->spr[SPR_LPCR] & LPCR_LD) {
863 nr_bits = pcc->lrg_decr_bits;
866 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
869 static void cpu_ppc_decr_cb(void *opaque)
871 PowerPCCPU *cpu = opaque;
873 cpu_ppc_decr_excp(cpu);
876 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
877 target_ulong value, int nr_bits)
879 ppc_tb_t *tb_env = cpu->env.tb_env;
881 if (tb_env->hdecr_timer != NULL) {
882 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
883 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
884 hdecr, value, nr_bits);
888 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
890 PowerPCCPU *cpu = env_archcpu(env);
891 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
893 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
894 pcc->lrg_decr_bits);
897 static void cpu_ppc_hdecr_cb(void *opaque)
899 PowerPCCPU *cpu = opaque;
901 cpu_ppc_hdecr_excp(cpu);
904 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
906 ppc_tb_t *tb_env = env->tb_env;
908 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
909 &tb_env->purr_offset, value);
912 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
914 CPUPPCState *env = opaque;
915 PowerPCCPU *cpu = env_archcpu(env);
916 ppc_tb_t *tb_env = env->tb_env;
918 tb_env->tb_freq = freq;
919 tb_env->decr_freq = freq;
920 /* There is a bug in Linux 2.4 kernels:
921 * if a decrementer exception is pending when it enables msr_ee at startup,
922 * it's not ready to handle it...
924 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
925 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
926 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
929 static void timebase_save(PPCTimebase *tb)
931 uint64_t ticks = cpu_get_host_ticks();
932 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
934 if (!first_ppc_cpu->env.tb_env) {
935 error_report("No timebase object");
936 return;
939 /* not used anymore, we keep it for compatibility */
940 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
942 * tb_offset is only expected to be changed by QEMU so
943 * there is no need to update it from KVM here
945 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
947 tb->runstate_paused =
948 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
951 static void timebase_load(PPCTimebase *tb)
953 CPUState *cpu;
954 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
955 int64_t tb_off_adj, tb_off;
956 unsigned long freq;
958 if (!first_ppc_cpu->env.tb_env) {
959 error_report("No timebase object");
960 return;
963 freq = first_ppc_cpu->env.tb_env->tb_freq;
965 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
967 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
968 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
969 (tb_off_adj - tb_off) / freq);
971 /* Set new offset to all CPUs */
972 CPU_FOREACH(cpu) {
973 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
974 pcpu->env.tb_env->tb_offset = tb_off_adj;
975 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
979 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
980 RunState state)
982 PPCTimebase *tb = opaque;
984 if (running) {
985 timebase_load(tb);
986 } else {
987 timebase_save(tb);
992 * When migrating a running guest, read the clock just
993 * before migration, so that the guest clock counts
994 * during the events between:
996 * * vm_stop()
998 * * pre_save()
1000 * This reduces clock difference on migration from 5s
1001 * to 0.1s (when max_downtime == 5s), because sending the
1002 * final pages of memory (which happens between vm_stop()
1003 * and pre_save()) takes max_downtime.
1005 static int timebase_pre_save(void *opaque)
1007 PPCTimebase *tb = opaque;
1009 /* guest_timebase won't be overridden in case of paused guest or savevm */
1010 if (!tb->runstate_paused) {
1011 timebase_save(tb);
1014 return 0;
1017 const VMStateDescription vmstate_ppc_timebase = {
1018 .name = "timebase",
1019 .version_id = 1,
1020 .minimum_version_id = 1,
1021 .pre_save = timebase_pre_save,
1022 .fields = (VMStateField []) {
1023 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1024 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1025 VMSTATE_END_OF_LIST()
1029 /* Set up (once) timebase frequency (in Hz) */
1030 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1032 PowerPCCPU *cpu = env_archcpu(env);
1033 ppc_tb_t *tb_env;
1035 tb_env = g_new0(ppc_tb_t, 1);
1036 env->tb_env = tb_env;
1037 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1038 if (is_book3s_arch2x(env)) {
1039 /* All Book3S 64bit CPUs implement level based DEC logic */
1040 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1042 /* Create new timer */
1043 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1044 if (env->has_hv_mode && !cpu->vhyp) {
1045 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1046 cpu);
1047 } else {
1048 tb_env->hdecr_timer = NULL;
1050 cpu_ppc_set_tb_clk(env, freq);
1052 return &cpu_ppc_set_tb_clk;
1055 void cpu_ppc_tb_free(CPUPPCState *env)
1057 timer_free(env->tb_env->decr_timer);
1058 timer_free(env->tb_env->hdecr_timer);
1059 g_free(env->tb_env);
1062 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1063 void cpu_ppc_hdecr_init(CPUPPCState *env)
1065 PowerPCCPU *cpu = env_archcpu(env);
1067 assert(env->tb_env->hdecr_timer == NULL);
1069 env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
1070 &cpu_ppc_hdecr_cb, cpu);
1073 void cpu_ppc_hdecr_exit(CPUPPCState *env)
1075 PowerPCCPU *cpu = env_archcpu(env);
1077 timer_free(env->tb_env->hdecr_timer);
1078 env->tb_env->hdecr_timer = NULL;
1080 cpu_ppc_hdecr_lower(cpu);
1083 /*****************************************************************************/
1084 /* PowerPC 40x timers */
1086 /* PIT, FIT & WDT */
1087 typedef struct ppc40x_timer_t ppc40x_timer_t;
1088 struct ppc40x_timer_t {
1089 uint64_t pit_reload; /* PIT auto-reload value */
1090 uint64_t fit_next; /* Tick for next FIT interrupt */
1091 QEMUTimer *fit_timer;
1092 uint64_t wdt_next; /* Tick for next WDT interrupt */
1093 QEMUTimer *wdt_timer;
1095 /* 405 have the PIT, 440 have a DECR. */
1096 unsigned int decr_excp;
1099 /* Fixed interval timer */
1100 static void cpu_4xx_fit_cb (void *opaque)
1102 PowerPCCPU *cpu = opaque;
1103 CPUPPCState *env = &cpu->env;
1104 ppc_tb_t *tb_env;
1105 ppc40x_timer_t *ppc40x_timer;
1106 uint64_t now, next;
1108 tb_env = env->tb_env;
1109 ppc40x_timer = tb_env->opaque;
1110 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1111 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1112 case 0:
1113 next = 1 << 9;
1114 break;
1115 case 1:
1116 next = 1 << 13;
1117 break;
1118 case 2:
1119 next = 1 << 17;
1120 break;
1121 case 3:
1122 next = 1 << 21;
1123 break;
1124 default:
1125 /* Cannot occur, but makes gcc happy */
1126 return;
1128 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1129 if (next == now)
1130 next++;
1131 timer_mod(ppc40x_timer->fit_timer, next);
1132 env->spr[SPR_40x_TSR] |= 1 << 26;
1133 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1134 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1136 trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1137 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1140 /* Programmable interval timer */
1141 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1143 ppc40x_timer_t *ppc40x_timer;
1144 uint64_t now, next;
1146 ppc40x_timer = tb_env->opaque;
1147 if (ppc40x_timer->pit_reload <= 1 ||
1148 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1149 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1150 /* Stop PIT */
1151 trace_ppc4xx_pit_stop();
1152 timer_del(tb_env->decr_timer);
1153 } else {
1154 trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1155 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1156 next = now + muldiv64(ppc40x_timer->pit_reload,
1157 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1158 if (is_excp)
1159 next += tb_env->decr_next - now;
1160 if (next == now)
1161 next++;
1162 timer_mod(tb_env->decr_timer, next);
1163 tb_env->decr_next = next;
1167 static void cpu_4xx_pit_cb (void *opaque)
1169 PowerPCCPU *cpu = opaque;
1170 CPUPPCState *env = &cpu->env;
1171 ppc_tb_t *tb_env;
1172 ppc40x_timer_t *ppc40x_timer;
1174 tb_env = env->tb_env;
1175 ppc40x_timer = tb_env->opaque;
1176 env->spr[SPR_40x_TSR] |= 1 << 27;
1177 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1178 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1180 start_stop_pit(env, tb_env, 1);
1181 trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1182 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1183 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1184 ppc40x_timer->pit_reload);
1187 /* Watchdog timer */
1188 static void cpu_4xx_wdt_cb (void *opaque)
1190 PowerPCCPU *cpu = opaque;
1191 CPUPPCState *env = &cpu->env;
1192 ppc_tb_t *tb_env;
1193 ppc40x_timer_t *ppc40x_timer;
1194 uint64_t now, next;
1196 tb_env = env->tb_env;
1197 ppc40x_timer = tb_env->opaque;
1198 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1199 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1200 case 0:
1201 next = 1 << 17;
1202 break;
1203 case 1:
1204 next = 1 << 21;
1205 break;
1206 case 2:
1207 next = 1 << 25;
1208 break;
1209 case 3:
1210 next = 1 << 29;
1211 break;
1212 default:
1213 /* Cannot occur, but makes gcc happy */
1214 return;
1216 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1217 if (next == now)
1218 next++;
1219 trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1220 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1221 case 0x0:
1222 case 0x1:
1223 timer_mod(ppc40x_timer->wdt_timer, next);
1224 ppc40x_timer->wdt_next = next;
1225 env->spr[SPR_40x_TSR] |= 1U << 31;
1226 break;
1227 case 0x2:
1228 timer_mod(ppc40x_timer->wdt_timer, next);
1229 ppc40x_timer->wdt_next = next;
1230 env->spr[SPR_40x_TSR] |= 1 << 30;
1231 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1232 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1234 break;
1235 case 0x3:
1236 env->spr[SPR_40x_TSR] &= ~0x30000000;
1237 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1238 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1239 case 0x0:
1240 /* No reset */
1241 break;
1242 case 0x1: /* Core reset */
1243 ppc40x_core_reset(cpu);
1244 break;
1245 case 0x2: /* Chip reset */
1246 ppc40x_chip_reset(cpu);
1247 break;
1248 case 0x3: /* System reset */
1249 ppc40x_system_reset(cpu);
1250 break;
1255 void store_40x_pit (CPUPPCState *env, target_ulong val)
1257 ppc_tb_t *tb_env;
1258 ppc40x_timer_t *ppc40x_timer;
1260 tb_env = env->tb_env;
1261 ppc40x_timer = tb_env->opaque;
1262 trace_ppc40x_store_pit(val);
1263 ppc40x_timer->pit_reload = val;
1264 start_stop_pit(env, tb_env, 0);
1267 target_ulong load_40x_pit (CPUPPCState *env)
1269 return cpu_ppc_load_decr(env);
1272 void store_40x_tsr(CPUPPCState *env, target_ulong val)
1274 PowerPCCPU *cpu = env_archcpu(env);
1276 trace_ppc40x_store_tcr(val);
1278 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1279 if (val & 0x80000000) {
1280 ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0);
1284 void store_40x_tcr(CPUPPCState *env, target_ulong val)
1286 PowerPCCPU *cpu = env_archcpu(env);
1287 ppc_tb_t *tb_env;
1289 trace_ppc40x_store_tsr(val);
1291 tb_env = env->tb_env;
1292 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1293 start_stop_pit(env, tb_env, 1);
1294 cpu_4xx_wdt_cb(cpu);
1297 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1299 CPUPPCState *env = opaque;
1300 ppc_tb_t *tb_env = env->tb_env;
1302 trace_ppc40x_set_tb_clk(freq);
1303 tb_env->tb_freq = freq;
1304 tb_env->decr_freq = freq;
1305 /* XXX: we should also update all timers */
1308 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1309 unsigned int decr_excp)
1311 ppc_tb_t *tb_env;
1312 ppc40x_timer_t *ppc40x_timer;
1313 PowerPCCPU *cpu = env_archcpu(env);
1315 trace_ppc40x_timers_init(freq);
1317 tb_env = g_new0(ppc_tb_t, 1);
1318 ppc40x_timer = g_new0(ppc40x_timer_t, 1);
1320 env->tb_env = tb_env;
1321 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1322 tb_env->tb_freq = freq;
1323 tb_env->decr_freq = freq;
1324 tb_env->opaque = ppc40x_timer;
1326 /* We use decr timer for PIT */
1327 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu);
1328 ppc40x_timer->fit_timer =
1329 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu);
1330 ppc40x_timer->wdt_timer =
1331 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu);
1332 ppc40x_timer->decr_excp = decr_excp;
1334 return &ppc_40x_set_tb_clk;
1337 /*****************************************************************************/
1338 /* Embedded PowerPC Device Control Registers */
1339 typedef struct ppc_dcrn_t ppc_dcrn_t;
1340 struct ppc_dcrn_t {
1341 dcr_read_cb dcr_read;
1342 dcr_write_cb dcr_write;
1343 void *opaque;
1346 /* XXX: on 460, DCR addresses are 32 bits wide,
1347 * using DCRIPR to get the 22 upper bits of the DCR address
1349 #define DCRN_NB 1024
1350 struct ppc_dcr_t {
1351 ppc_dcrn_t dcrn[DCRN_NB];
1352 int (*read_error)(int dcrn);
1353 int (*write_error)(int dcrn);
1356 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1358 ppc_dcrn_t *dcr;
1360 if (dcrn < 0 || dcrn >= DCRN_NB)
1361 goto error;
1362 dcr = &dcr_env->dcrn[dcrn];
1363 if (dcr->dcr_read == NULL)
1364 goto error;
1365 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1366 trace_ppc_dcr_read(dcrn, *valp);
1368 return 0;
1370 error:
1371 if (dcr_env->read_error != NULL)
1372 return (*dcr_env->read_error)(dcrn);
1374 return -1;
1377 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1379 ppc_dcrn_t *dcr;
1381 if (dcrn < 0 || dcrn >= DCRN_NB)
1382 goto error;
1383 dcr = &dcr_env->dcrn[dcrn];
1384 if (dcr->dcr_write == NULL)
1385 goto error;
1386 trace_ppc_dcr_write(dcrn, val);
1387 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1389 return 0;
1391 error:
1392 if (dcr_env->write_error != NULL)
1393 return (*dcr_env->write_error)(dcrn);
1395 return -1;
1398 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1399 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1401 ppc_dcr_t *dcr_env;
1402 ppc_dcrn_t *dcr;
1404 dcr_env = env->dcr_env;
1405 if (dcr_env == NULL)
1406 return -1;
1407 if (dcrn < 0 || dcrn >= DCRN_NB)
1408 return -1;
1409 dcr = &dcr_env->dcrn[dcrn];
1410 if (dcr->opaque != NULL ||
1411 dcr->dcr_read != NULL ||
1412 dcr->dcr_write != NULL)
1413 return -1;
1414 dcr->opaque = opaque;
1415 dcr->dcr_read = dcr_read;
1416 dcr->dcr_write = dcr_write;
1418 return 0;
1421 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1422 int (*write_error)(int dcrn))
1424 ppc_dcr_t *dcr_env;
1426 dcr_env = g_new0(ppc_dcr_t, 1);
1427 dcr_env->read_error = read_error;
1428 dcr_env->write_error = write_error;
1429 env->dcr_env = dcr_env;
1431 return 0;
1434 /*****************************************************************************/
1436 int ppc_cpu_pir(PowerPCCPU *cpu)
1438 CPUPPCState *env = &cpu->env;
1439 return env->spr_cb[SPR_PIR].default_value;
1442 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1444 CPUState *cs;
1446 CPU_FOREACH(cs) {
1447 PowerPCCPU *cpu = POWERPC_CPU(cs);
1449 if (ppc_cpu_pir(cpu) == pir) {
1450 return cpu;
1454 return NULL;
1457 void ppc_irq_reset(PowerPCCPU *cpu)
1459 CPUPPCState *env = &cpu->env;
1461 env->irq_input_state = 0;
1462 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);