target-ppc: Eliminate kvmppc_kern_htab global
[qemu/kevin.git] / block / sheepdog.c
bloba6e98a5a72e7b61caad273ea92bc7852b3417e70
1 /*
2 * Copyright (C) 2009-2010 Nippon Telegraph and Telephone Corporation.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License version
6 * 2 as published by the Free Software Foundation.
8 * You should have received a copy of the GNU General Public License
9 * along with this program. If not, see <http://www.gnu.org/licenses/>.
11 * Contributions after 2012-01-13 are licensed under the terms of the
12 * GNU GPL, version 2 or (at your option) any later version.
15 #include "qemu/osdep.h"
16 #include "qemu-common.h"
17 #include "qemu/uri.h"
18 #include "qemu/error-report.h"
19 #include "qemu/sockets.h"
20 #include "block/block_int.h"
21 #include "sysemu/block-backend.h"
22 #include "qemu/bitops.h"
24 #define SD_PROTO_VER 0x01
26 #define SD_DEFAULT_ADDR "localhost"
27 #define SD_DEFAULT_PORT 7000
29 #define SD_OP_CREATE_AND_WRITE_OBJ 0x01
30 #define SD_OP_READ_OBJ 0x02
31 #define SD_OP_WRITE_OBJ 0x03
32 /* 0x04 is used internally by Sheepdog */
34 #define SD_OP_NEW_VDI 0x11
35 #define SD_OP_LOCK_VDI 0x12
36 #define SD_OP_RELEASE_VDI 0x13
37 #define SD_OP_GET_VDI_INFO 0x14
38 #define SD_OP_READ_VDIS 0x15
39 #define SD_OP_FLUSH_VDI 0x16
40 #define SD_OP_DEL_VDI 0x17
41 #define SD_OP_GET_CLUSTER_DEFAULT 0x18
43 #define SD_FLAG_CMD_WRITE 0x01
44 #define SD_FLAG_CMD_COW 0x02
45 #define SD_FLAG_CMD_CACHE 0x04 /* Writeback mode for cache */
46 #define SD_FLAG_CMD_DIRECT 0x08 /* Don't use cache */
48 #define SD_RES_SUCCESS 0x00 /* Success */
49 #define SD_RES_UNKNOWN 0x01 /* Unknown error */
50 #define SD_RES_NO_OBJ 0x02 /* No object found */
51 #define SD_RES_EIO 0x03 /* I/O error */
52 #define SD_RES_VDI_EXIST 0x04 /* Vdi exists already */
53 #define SD_RES_INVALID_PARMS 0x05 /* Invalid parameters */
54 #define SD_RES_SYSTEM_ERROR 0x06 /* System error */
55 #define SD_RES_VDI_LOCKED 0x07 /* Vdi is locked */
56 #define SD_RES_NO_VDI 0x08 /* No vdi found */
57 #define SD_RES_NO_BASE_VDI 0x09 /* No base vdi found */
58 #define SD_RES_VDI_READ 0x0A /* Cannot read requested vdi */
59 #define SD_RES_VDI_WRITE 0x0B /* Cannot write requested vdi */
60 #define SD_RES_BASE_VDI_READ 0x0C /* Cannot read base vdi */
61 #define SD_RES_BASE_VDI_WRITE 0x0D /* Cannot write base vdi */
62 #define SD_RES_NO_TAG 0x0E /* Requested tag is not found */
63 #define SD_RES_STARTUP 0x0F /* Sheepdog is on starting up */
64 #define SD_RES_VDI_NOT_LOCKED 0x10 /* Vdi is not locked */
65 #define SD_RES_SHUTDOWN 0x11 /* Sheepdog is shutting down */
66 #define SD_RES_NO_MEM 0x12 /* Cannot allocate memory */
67 #define SD_RES_FULL_VDI 0x13 /* we already have the maximum vdis */
68 #define SD_RES_VER_MISMATCH 0x14 /* Protocol version mismatch */
69 #define SD_RES_NO_SPACE 0x15 /* Server has no room for new objects */
70 #define SD_RES_WAIT_FOR_FORMAT 0x16 /* Waiting for a format operation */
71 #define SD_RES_WAIT_FOR_JOIN 0x17 /* Waiting for other nodes joining */
72 #define SD_RES_JOIN_FAILED 0x18 /* Target node had failed to join sheepdog */
73 #define SD_RES_HALT 0x19 /* Sheepdog is stopped serving IO request */
74 #define SD_RES_READONLY 0x1A /* Object is read-only */
77 * Object ID rules
79 * 0 - 19 (20 bits): data object space
80 * 20 - 31 (12 bits): reserved data object space
81 * 32 - 55 (24 bits): vdi object space
82 * 56 - 59 ( 4 bits): reserved vdi object space
83 * 60 - 63 ( 4 bits): object type identifier space
86 #define VDI_SPACE_SHIFT 32
87 #define VDI_BIT (UINT64_C(1) << 63)
88 #define VMSTATE_BIT (UINT64_C(1) << 62)
89 #define MAX_DATA_OBJS (UINT64_C(1) << 20)
90 #define MAX_CHILDREN 1024
91 #define SD_MAX_VDI_LEN 256
92 #define SD_MAX_VDI_TAG_LEN 256
93 #define SD_NR_VDIS (1U << 24)
94 #define SD_DATA_OBJ_SIZE (UINT64_C(1) << 22)
95 #define SD_MAX_VDI_SIZE (SD_DATA_OBJ_SIZE * MAX_DATA_OBJS)
96 #define SD_DEFAULT_BLOCK_SIZE_SHIFT 22
98 * For erasure coding, we use at most SD_EC_MAX_STRIP for data strips and
99 * (SD_EC_MAX_STRIP - 1) for parity strips
101 * SD_MAX_COPIES is sum of number of data strips and parity strips.
103 #define SD_EC_MAX_STRIP 16
104 #define SD_MAX_COPIES (SD_EC_MAX_STRIP * 2 - 1)
106 #define SD_INODE_SIZE (sizeof(SheepdogInode))
107 #define CURRENT_VDI_ID 0
109 #define LOCK_TYPE_NORMAL 0
110 #define LOCK_TYPE_SHARED 1 /* for iSCSI multipath */
112 typedef struct SheepdogReq {
113 uint8_t proto_ver;
114 uint8_t opcode;
115 uint16_t flags;
116 uint32_t epoch;
117 uint32_t id;
118 uint32_t data_length;
119 uint32_t opcode_specific[8];
120 } SheepdogReq;
122 typedef struct SheepdogRsp {
123 uint8_t proto_ver;
124 uint8_t opcode;
125 uint16_t flags;
126 uint32_t epoch;
127 uint32_t id;
128 uint32_t data_length;
129 uint32_t result;
130 uint32_t opcode_specific[7];
131 } SheepdogRsp;
133 typedef struct SheepdogObjReq {
134 uint8_t proto_ver;
135 uint8_t opcode;
136 uint16_t flags;
137 uint32_t epoch;
138 uint32_t id;
139 uint32_t data_length;
140 uint64_t oid;
141 uint64_t cow_oid;
142 uint8_t copies;
143 uint8_t copy_policy;
144 uint8_t reserved[6];
145 uint64_t offset;
146 } SheepdogObjReq;
148 typedef struct SheepdogObjRsp {
149 uint8_t proto_ver;
150 uint8_t opcode;
151 uint16_t flags;
152 uint32_t epoch;
153 uint32_t id;
154 uint32_t data_length;
155 uint32_t result;
156 uint8_t copies;
157 uint8_t copy_policy;
158 uint8_t reserved[2];
159 uint32_t pad[6];
160 } SheepdogObjRsp;
162 typedef struct SheepdogVdiReq {
163 uint8_t proto_ver;
164 uint8_t opcode;
165 uint16_t flags;
166 uint32_t epoch;
167 uint32_t id;
168 uint32_t data_length;
169 uint64_t vdi_size;
170 uint32_t base_vdi_id;
171 uint8_t copies;
172 uint8_t copy_policy;
173 uint8_t store_policy;
174 uint8_t block_size_shift;
175 uint32_t snapid;
176 uint32_t type;
177 uint32_t pad[2];
178 } SheepdogVdiReq;
180 typedef struct SheepdogVdiRsp {
181 uint8_t proto_ver;
182 uint8_t opcode;
183 uint16_t flags;
184 uint32_t epoch;
185 uint32_t id;
186 uint32_t data_length;
187 uint32_t result;
188 uint32_t rsvd;
189 uint32_t vdi_id;
190 uint32_t pad[5];
191 } SheepdogVdiRsp;
193 typedef struct SheepdogClusterRsp {
194 uint8_t proto_ver;
195 uint8_t opcode;
196 uint16_t flags;
197 uint32_t epoch;
198 uint32_t id;
199 uint32_t data_length;
200 uint32_t result;
201 uint8_t nr_copies;
202 uint8_t copy_policy;
203 uint8_t block_size_shift;
204 uint8_t __pad1;
205 uint32_t __pad2[6];
206 } SheepdogClusterRsp;
208 typedef struct SheepdogInode {
209 char name[SD_MAX_VDI_LEN];
210 char tag[SD_MAX_VDI_TAG_LEN];
211 uint64_t ctime;
212 uint64_t snap_ctime;
213 uint64_t vm_clock_nsec;
214 uint64_t vdi_size;
215 uint64_t vm_state_size;
216 uint16_t copy_policy;
217 uint8_t nr_copies;
218 uint8_t block_size_shift;
219 uint32_t snap_id;
220 uint32_t vdi_id;
221 uint32_t parent_vdi_id;
222 uint32_t child_vdi_id[MAX_CHILDREN];
223 uint32_t data_vdi_id[MAX_DATA_OBJS];
224 } SheepdogInode;
226 #define SD_INODE_HEADER_SIZE offsetof(SheepdogInode, data_vdi_id)
229 * 64 bit FNV-1a non-zero initial basis
231 #define FNV1A_64_INIT ((uint64_t)0xcbf29ce484222325ULL)
234 * 64 bit Fowler/Noll/Vo FNV-1a hash code
236 static inline uint64_t fnv_64a_buf(void *buf, size_t len, uint64_t hval)
238 unsigned char *bp = buf;
239 unsigned char *be = bp + len;
240 while (bp < be) {
241 hval ^= (uint64_t) *bp++;
242 hval += (hval << 1) + (hval << 4) + (hval << 5) +
243 (hval << 7) + (hval << 8) + (hval << 40);
245 return hval;
248 static inline bool is_data_obj_writable(SheepdogInode *inode, unsigned int idx)
250 return inode->vdi_id == inode->data_vdi_id[idx];
253 static inline bool is_data_obj(uint64_t oid)
255 return !(VDI_BIT & oid);
258 static inline uint64_t data_oid_to_idx(uint64_t oid)
260 return oid & (MAX_DATA_OBJS - 1);
263 static inline uint32_t oid_to_vid(uint64_t oid)
265 return (oid & ~VDI_BIT) >> VDI_SPACE_SHIFT;
268 static inline uint64_t vid_to_vdi_oid(uint32_t vid)
270 return VDI_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT);
273 static inline uint64_t vid_to_vmstate_oid(uint32_t vid, uint32_t idx)
275 return VMSTATE_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
278 static inline uint64_t vid_to_data_oid(uint32_t vid, uint32_t idx)
280 return ((uint64_t)vid << VDI_SPACE_SHIFT) | idx;
283 static inline bool is_snapshot(struct SheepdogInode *inode)
285 return !!inode->snap_ctime;
288 static inline size_t count_data_objs(const struct SheepdogInode *inode)
290 return DIV_ROUND_UP(inode->vdi_size,
291 (1UL << inode->block_size_shift));
294 #undef DPRINTF
295 #ifdef DEBUG_SDOG
296 #define DPRINTF(fmt, args...) \
297 do { \
298 fprintf(stdout, "%s %d: " fmt, __func__, __LINE__, ##args); \
299 } while (0)
300 #else
301 #define DPRINTF(fmt, args...)
302 #endif
304 typedef struct SheepdogAIOCB SheepdogAIOCB;
306 typedef struct AIOReq {
307 SheepdogAIOCB *aiocb;
308 unsigned int iov_offset;
310 uint64_t oid;
311 uint64_t base_oid;
312 uint64_t offset;
313 unsigned int data_len;
314 uint8_t flags;
315 uint32_t id;
316 bool create;
318 QLIST_ENTRY(AIOReq) aio_siblings;
319 } AIOReq;
321 enum AIOCBState {
322 AIOCB_WRITE_UDATA,
323 AIOCB_READ_UDATA,
324 AIOCB_FLUSH_CACHE,
325 AIOCB_DISCARD_OBJ,
328 #define AIOCBOverlapping(x, y) \
329 (!(x->max_affect_data_idx < y->min_affect_data_idx \
330 || y->max_affect_data_idx < x->min_affect_data_idx))
332 struct SheepdogAIOCB {
333 BlockAIOCB common;
335 QEMUIOVector *qiov;
337 int64_t sector_num;
338 int nb_sectors;
340 int ret;
341 enum AIOCBState aiocb_type;
343 Coroutine *coroutine;
344 void (*aio_done_func)(SheepdogAIOCB *);
346 bool cancelable;
347 int nr_pending;
349 uint32_t min_affect_data_idx;
350 uint32_t max_affect_data_idx;
353 * The difference between affect_data_idx and dirty_data_idx:
354 * affect_data_idx represents range of index of all request types.
355 * dirty_data_idx represents range of index updated by COW requests.
356 * dirty_data_idx is used for updating an inode object.
358 uint32_t min_dirty_data_idx;
359 uint32_t max_dirty_data_idx;
361 QLIST_ENTRY(SheepdogAIOCB) aiocb_siblings;
364 typedef struct BDRVSheepdogState {
365 BlockDriverState *bs;
366 AioContext *aio_context;
368 SheepdogInode inode;
370 char name[SD_MAX_VDI_LEN];
371 bool is_snapshot;
372 uint32_t cache_flags;
373 bool discard_supported;
375 char *host_spec;
376 bool is_unix;
377 int fd;
379 CoMutex lock;
380 Coroutine *co_send;
381 Coroutine *co_recv;
383 uint32_t aioreq_seq_num;
385 /* Every aio request must be linked to either of these queues. */
386 QLIST_HEAD(inflight_aio_head, AIOReq) inflight_aio_head;
387 QLIST_HEAD(failed_aio_head, AIOReq) failed_aio_head;
389 CoQueue overlapping_queue;
390 QLIST_HEAD(inflight_aiocb_head, SheepdogAIOCB) inflight_aiocb_head;
391 } BDRVSheepdogState;
393 typedef struct BDRVSheepdogReopenState {
394 int fd;
395 int cache_flags;
396 } BDRVSheepdogReopenState;
398 static const char * sd_strerror(int err)
400 int i;
402 static const struct {
403 int err;
404 const char *desc;
405 } errors[] = {
406 {SD_RES_SUCCESS, "Success"},
407 {SD_RES_UNKNOWN, "Unknown error"},
408 {SD_RES_NO_OBJ, "No object found"},
409 {SD_RES_EIO, "I/O error"},
410 {SD_RES_VDI_EXIST, "VDI exists already"},
411 {SD_RES_INVALID_PARMS, "Invalid parameters"},
412 {SD_RES_SYSTEM_ERROR, "System error"},
413 {SD_RES_VDI_LOCKED, "VDI is already locked"},
414 {SD_RES_NO_VDI, "No vdi found"},
415 {SD_RES_NO_BASE_VDI, "No base VDI found"},
416 {SD_RES_VDI_READ, "Failed read the requested VDI"},
417 {SD_RES_VDI_WRITE, "Failed to write the requested VDI"},
418 {SD_RES_BASE_VDI_READ, "Failed to read the base VDI"},
419 {SD_RES_BASE_VDI_WRITE, "Failed to write the base VDI"},
420 {SD_RES_NO_TAG, "Failed to find the requested tag"},
421 {SD_RES_STARTUP, "The system is still booting"},
422 {SD_RES_VDI_NOT_LOCKED, "VDI isn't locked"},
423 {SD_RES_SHUTDOWN, "The system is shutting down"},
424 {SD_RES_NO_MEM, "Out of memory on the server"},
425 {SD_RES_FULL_VDI, "We already have the maximum vdis"},
426 {SD_RES_VER_MISMATCH, "Protocol version mismatch"},
427 {SD_RES_NO_SPACE, "Server has no space for new objects"},
428 {SD_RES_WAIT_FOR_FORMAT, "Sheepdog is waiting for a format operation"},
429 {SD_RES_WAIT_FOR_JOIN, "Sheepdog is waiting for other nodes joining"},
430 {SD_RES_JOIN_FAILED, "Target node had failed to join sheepdog"},
431 {SD_RES_HALT, "Sheepdog is stopped serving IO request"},
432 {SD_RES_READONLY, "Object is read-only"},
435 for (i = 0; i < ARRAY_SIZE(errors); ++i) {
436 if (errors[i].err == err) {
437 return errors[i].desc;
441 return "Invalid error code";
445 * Sheepdog I/O handling:
447 * 1. In sd_co_rw_vector, we send the I/O requests to the server and
448 * link the requests to the inflight_list in the
449 * BDRVSheepdogState. The function exits without waiting for
450 * receiving the response.
452 * 2. We receive the response in aio_read_response, the fd handler to
453 * the sheepdog connection. If metadata update is needed, we send
454 * the write request to the vdi object in sd_write_done, the write
455 * completion function. We switch back to sd_co_readv/writev after
456 * all the requests belonging to the AIOCB are finished.
459 static inline AIOReq *alloc_aio_req(BDRVSheepdogState *s, SheepdogAIOCB *acb,
460 uint64_t oid, unsigned int data_len,
461 uint64_t offset, uint8_t flags, bool create,
462 uint64_t base_oid, unsigned int iov_offset)
464 AIOReq *aio_req;
466 aio_req = g_malloc(sizeof(*aio_req));
467 aio_req->aiocb = acb;
468 aio_req->iov_offset = iov_offset;
469 aio_req->oid = oid;
470 aio_req->base_oid = base_oid;
471 aio_req->offset = offset;
472 aio_req->data_len = data_len;
473 aio_req->flags = flags;
474 aio_req->id = s->aioreq_seq_num++;
475 aio_req->create = create;
477 acb->nr_pending++;
478 return aio_req;
481 static inline void free_aio_req(BDRVSheepdogState *s, AIOReq *aio_req)
483 SheepdogAIOCB *acb = aio_req->aiocb;
485 acb->cancelable = false;
486 QLIST_REMOVE(aio_req, aio_siblings);
487 g_free(aio_req);
489 acb->nr_pending--;
492 static void coroutine_fn sd_finish_aiocb(SheepdogAIOCB *acb)
494 qemu_coroutine_enter(acb->coroutine, NULL);
495 qemu_aio_unref(acb);
499 * Check whether the specified acb can be canceled
501 * We can cancel aio when any request belonging to the acb is:
502 * - Not processed by the sheepdog server.
503 * - Not linked to the inflight queue.
505 static bool sd_acb_cancelable(const SheepdogAIOCB *acb)
507 BDRVSheepdogState *s = acb->common.bs->opaque;
508 AIOReq *aioreq;
510 if (!acb->cancelable) {
511 return false;
514 QLIST_FOREACH(aioreq, &s->inflight_aio_head, aio_siblings) {
515 if (aioreq->aiocb == acb) {
516 return false;
520 return true;
523 static void sd_aio_cancel(BlockAIOCB *blockacb)
525 SheepdogAIOCB *acb = (SheepdogAIOCB *)blockacb;
526 BDRVSheepdogState *s = acb->common.bs->opaque;
527 AIOReq *aioreq, *next;
529 if (sd_acb_cancelable(acb)) {
530 /* Remove outstanding requests from failed queue. */
531 QLIST_FOREACH_SAFE(aioreq, &s->failed_aio_head, aio_siblings,
532 next) {
533 if (aioreq->aiocb == acb) {
534 free_aio_req(s, aioreq);
538 assert(acb->nr_pending == 0);
539 if (acb->common.cb) {
540 acb->common.cb(acb->common.opaque, -ECANCELED);
542 sd_finish_aiocb(acb);
546 static const AIOCBInfo sd_aiocb_info = {
547 .aiocb_size = sizeof(SheepdogAIOCB),
548 .cancel_async = sd_aio_cancel,
551 static SheepdogAIOCB *sd_aio_setup(BlockDriverState *bs, QEMUIOVector *qiov,
552 int64_t sector_num, int nb_sectors)
554 SheepdogAIOCB *acb;
555 uint32_t object_size;
556 BDRVSheepdogState *s = bs->opaque;
558 object_size = (UINT32_C(1) << s->inode.block_size_shift);
560 acb = qemu_aio_get(&sd_aiocb_info, bs, NULL, NULL);
562 acb->qiov = qiov;
564 acb->sector_num = sector_num;
565 acb->nb_sectors = nb_sectors;
567 acb->aio_done_func = NULL;
568 acb->cancelable = true;
569 acb->coroutine = qemu_coroutine_self();
570 acb->ret = 0;
571 acb->nr_pending = 0;
573 acb->min_affect_data_idx = acb->sector_num * BDRV_SECTOR_SIZE / object_size;
574 acb->max_affect_data_idx = (acb->sector_num * BDRV_SECTOR_SIZE +
575 acb->nb_sectors * BDRV_SECTOR_SIZE) / object_size;
577 acb->min_dirty_data_idx = UINT32_MAX;
578 acb->max_dirty_data_idx = 0;
580 return acb;
583 /* Return -EIO in case of error, file descriptor on success */
584 static int connect_to_sdog(BDRVSheepdogState *s, Error **errp)
586 int fd;
588 if (s->is_unix) {
589 fd = unix_connect(s->host_spec, errp);
590 } else {
591 fd = inet_connect(s->host_spec, errp);
593 if (fd >= 0) {
594 int ret = socket_set_nodelay(fd);
595 if (ret < 0) {
596 error_report("%s", strerror(errno));
601 if (fd >= 0) {
602 qemu_set_nonblock(fd);
603 } else {
604 fd = -EIO;
607 return fd;
610 /* Return 0 on success and -errno in case of error */
611 static coroutine_fn int send_co_req(int sockfd, SheepdogReq *hdr, void *data,
612 unsigned int *wlen)
614 int ret;
616 ret = qemu_co_send(sockfd, hdr, sizeof(*hdr));
617 if (ret != sizeof(*hdr)) {
618 error_report("failed to send a req, %s", strerror(errno));
619 return -errno;
622 ret = qemu_co_send(sockfd, data, *wlen);
623 if (ret != *wlen) {
624 error_report("failed to send a req, %s", strerror(errno));
625 return -errno;
628 return ret;
631 static void restart_co_req(void *opaque)
633 Coroutine *co = opaque;
635 qemu_coroutine_enter(co, NULL);
638 typedef struct SheepdogReqCo {
639 int sockfd;
640 AioContext *aio_context;
641 SheepdogReq *hdr;
642 void *data;
643 unsigned int *wlen;
644 unsigned int *rlen;
645 int ret;
646 bool finished;
647 } SheepdogReqCo;
649 static coroutine_fn void do_co_req(void *opaque)
651 int ret;
652 Coroutine *co;
653 SheepdogReqCo *srco = opaque;
654 int sockfd = srco->sockfd;
655 SheepdogReq *hdr = srco->hdr;
656 void *data = srco->data;
657 unsigned int *wlen = srco->wlen;
658 unsigned int *rlen = srco->rlen;
660 co = qemu_coroutine_self();
661 aio_set_fd_handler(srco->aio_context, sockfd, false,
662 NULL, restart_co_req, co);
664 ret = send_co_req(sockfd, hdr, data, wlen);
665 if (ret < 0) {
666 goto out;
669 aio_set_fd_handler(srco->aio_context, sockfd, false,
670 restart_co_req, NULL, co);
672 ret = qemu_co_recv(sockfd, hdr, sizeof(*hdr));
673 if (ret != sizeof(*hdr)) {
674 error_report("failed to get a rsp, %s", strerror(errno));
675 ret = -errno;
676 goto out;
679 if (*rlen > hdr->data_length) {
680 *rlen = hdr->data_length;
683 if (*rlen) {
684 ret = qemu_co_recv(sockfd, data, *rlen);
685 if (ret != *rlen) {
686 error_report("failed to get the data, %s", strerror(errno));
687 ret = -errno;
688 goto out;
691 ret = 0;
692 out:
693 /* there is at most one request for this sockfd, so it is safe to
694 * set each handler to NULL. */
695 aio_set_fd_handler(srco->aio_context, sockfd, false,
696 NULL, NULL, NULL);
698 srco->ret = ret;
699 srco->finished = true;
703 * Send the request to the sheep in a synchronous manner.
705 * Return 0 on success, -errno in case of error.
707 static int do_req(int sockfd, AioContext *aio_context, SheepdogReq *hdr,
708 void *data, unsigned int *wlen, unsigned int *rlen)
710 Coroutine *co;
711 SheepdogReqCo srco = {
712 .sockfd = sockfd,
713 .aio_context = aio_context,
714 .hdr = hdr,
715 .data = data,
716 .wlen = wlen,
717 .rlen = rlen,
718 .ret = 0,
719 .finished = false,
722 if (qemu_in_coroutine()) {
723 do_co_req(&srco);
724 } else {
725 co = qemu_coroutine_create(do_co_req);
726 qemu_coroutine_enter(co, &srco);
727 while (!srco.finished) {
728 aio_poll(aio_context, true);
732 return srco.ret;
735 static void coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
736 struct iovec *iov, int niov,
737 enum AIOCBState aiocb_type);
738 static void coroutine_fn resend_aioreq(BDRVSheepdogState *s, AIOReq *aio_req);
739 static int reload_inode(BDRVSheepdogState *s, uint32_t snapid, const char *tag);
740 static int get_sheep_fd(BDRVSheepdogState *s, Error **errp);
741 static void co_write_request(void *opaque);
743 static coroutine_fn void reconnect_to_sdog(void *opaque)
745 BDRVSheepdogState *s = opaque;
746 AIOReq *aio_req, *next;
748 aio_set_fd_handler(s->aio_context, s->fd, false, NULL,
749 NULL, NULL);
750 close(s->fd);
751 s->fd = -1;
753 /* Wait for outstanding write requests to be completed. */
754 while (s->co_send != NULL) {
755 co_write_request(opaque);
758 /* Try to reconnect the sheepdog server every one second. */
759 while (s->fd < 0) {
760 Error *local_err = NULL;
761 s->fd = get_sheep_fd(s, &local_err);
762 if (s->fd < 0) {
763 DPRINTF("Wait for connection to be established\n");
764 error_report_err(local_err);
765 co_aio_sleep_ns(bdrv_get_aio_context(s->bs), QEMU_CLOCK_REALTIME,
766 1000000000ULL);
771 * Now we have to resend all the request in the inflight queue. However,
772 * resend_aioreq() can yield and newly created requests can be added to the
773 * inflight queue before the coroutine is resumed. To avoid mixing them, we
774 * have to move all the inflight requests to the failed queue before
775 * resend_aioreq() is called.
777 QLIST_FOREACH_SAFE(aio_req, &s->inflight_aio_head, aio_siblings, next) {
778 QLIST_REMOVE(aio_req, aio_siblings);
779 QLIST_INSERT_HEAD(&s->failed_aio_head, aio_req, aio_siblings);
782 /* Resend all the failed aio requests. */
783 while (!QLIST_EMPTY(&s->failed_aio_head)) {
784 aio_req = QLIST_FIRST(&s->failed_aio_head);
785 QLIST_REMOVE(aio_req, aio_siblings);
786 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
787 resend_aioreq(s, aio_req);
792 * Receive responses of the I/O requests.
794 * This function is registered as a fd handler, and called from the
795 * main loop when s->fd is ready for reading responses.
797 static void coroutine_fn aio_read_response(void *opaque)
799 SheepdogObjRsp rsp;
800 BDRVSheepdogState *s = opaque;
801 int fd = s->fd;
802 int ret;
803 AIOReq *aio_req = NULL;
804 SheepdogAIOCB *acb;
805 uint64_t idx;
807 /* read a header */
808 ret = qemu_co_recv(fd, &rsp, sizeof(rsp));
809 if (ret != sizeof(rsp)) {
810 error_report("failed to get the header, %s", strerror(errno));
811 goto err;
814 /* find the right aio_req from the inflight aio list */
815 QLIST_FOREACH(aio_req, &s->inflight_aio_head, aio_siblings) {
816 if (aio_req->id == rsp.id) {
817 break;
820 if (!aio_req) {
821 error_report("cannot find aio_req %x", rsp.id);
822 goto err;
825 acb = aio_req->aiocb;
827 switch (acb->aiocb_type) {
828 case AIOCB_WRITE_UDATA:
829 /* this coroutine context is no longer suitable for co_recv
830 * because we may send data to update vdi objects */
831 s->co_recv = NULL;
832 if (!is_data_obj(aio_req->oid)) {
833 break;
835 idx = data_oid_to_idx(aio_req->oid);
837 if (aio_req->create) {
839 * If the object is newly created one, we need to update
840 * the vdi object (metadata object). min_dirty_data_idx
841 * and max_dirty_data_idx are changed to include updated
842 * index between them.
844 if (rsp.result == SD_RES_SUCCESS) {
845 s->inode.data_vdi_id[idx] = s->inode.vdi_id;
846 acb->max_dirty_data_idx = MAX(idx, acb->max_dirty_data_idx);
847 acb->min_dirty_data_idx = MIN(idx, acb->min_dirty_data_idx);
850 break;
851 case AIOCB_READ_UDATA:
852 ret = qemu_co_recvv(fd, acb->qiov->iov, acb->qiov->niov,
853 aio_req->iov_offset, rsp.data_length);
854 if (ret != rsp.data_length) {
855 error_report("failed to get the data, %s", strerror(errno));
856 goto err;
858 break;
859 case AIOCB_FLUSH_CACHE:
860 if (rsp.result == SD_RES_INVALID_PARMS) {
861 DPRINTF("disable cache since the server doesn't support it\n");
862 s->cache_flags = SD_FLAG_CMD_DIRECT;
863 rsp.result = SD_RES_SUCCESS;
865 break;
866 case AIOCB_DISCARD_OBJ:
867 switch (rsp.result) {
868 case SD_RES_INVALID_PARMS:
869 error_report("sheep(%s) doesn't support discard command",
870 s->host_spec);
871 rsp.result = SD_RES_SUCCESS;
872 s->discard_supported = false;
873 break;
874 default:
875 break;
879 switch (rsp.result) {
880 case SD_RES_SUCCESS:
881 break;
882 case SD_RES_READONLY:
883 if (s->inode.vdi_id == oid_to_vid(aio_req->oid)) {
884 ret = reload_inode(s, 0, "");
885 if (ret < 0) {
886 goto err;
889 if (is_data_obj(aio_req->oid)) {
890 aio_req->oid = vid_to_data_oid(s->inode.vdi_id,
891 data_oid_to_idx(aio_req->oid));
892 } else {
893 aio_req->oid = vid_to_vdi_oid(s->inode.vdi_id);
895 resend_aioreq(s, aio_req);
896 goto out;
897 default:
898 acb->ret = -EIO;
899 error_report("%s", sd_strerror(rsp.result));
900 break;
903 free_aio_req(s, aio_req);
904 if (!acb->nr_pending) {
906 * We've finished all requests which belong to the AIOCB, so
907 * we can switch back to sd_co_readv/writev now.
909 acb->aio_done_func(acb);
911 out:
912 s->co_recv = NULL;
913 return;
914 err:
915 s->co_recv = NULL;
916 reconnect_to_sdog(opaque);
919 static void co_read_response(void *opaque)
921 BDRVSheepdogState *s = opaque;
923 if (!s->co_recv) {
924 s->co_recv = qemu_coroutine_create(aio_read_response);
927 qemu_coroutine_enter(s->co_recv, opaque);
930 static void co_write_request(void *opaque)
932 BDRVSheepdogState *s = opaque;
934 qemu_coroutine_enter(s->co_send, NULL);
938 * Return a socket descriptor to read/write objects.
940 * We cannot use this descriptor for other operations because
941 * the block driver may be on waiting response from the server.
943 static int get_sheep_fd(BDRVSheepdogState *s, Error **errp)
945 int fd;
947 fd = connect_to_sdog(s, errp);
948 if (fd < 0) {
949 return fd;
952 aio_set_fd_handler(s->aio_context, fd, false,
953 co_read_response, NULL, s);
954 return fd;
957 static int sd_parse_uri(BDRVSheepdogState *s, const char *filename,
958 char *vdi, uint32_t *snapid, char *tag)
960 URI *uri;
961 QueryParams *qp = NULL;
962 int ret = 0;
964 uri = uri_parse(filename);
965 if (!uri) {
966 return -EINVAL;
969 /* transport */
970 if (!strcmp(uri->scheme, "sheepdog")) {
971 s->is_unix = false;
972 } else if (!strcmp(uri->scheme, "sheepdog+tcp")) {
973 s->is_unix = false;
974 } else if (!strcmp(uri->scheme, "sheepdog+unix")) {
975 s->is_unix = true;
976 } else {
977 ret = -EINVAL;
978 goto out;
981 if (uri->path == NULL || !strcmp(uri->path, "/")) {
982 ret = -EINVAL;
983 goto out;
985 pstrcpy(vdi, SD_MAX_VDI_LEN, uri->path + 1);
987 qp = query_params_parse(uri->query);
988 if (qp->n > 1 || (s->is_unix && !qp->n) || (!s->is_unix && qp->n)) {
989 ret = -EINVAL;
990 goto out;
993 if (s->is_unix) {
994 /* sheepdog+unix:///vdiname?socket=path */
995 if (uri->server || uri->port || strcmp(qp->p[0].name, "socket")) {
996 ret = -EINVAL;
997 goto out;
999 s->host_spec = g_strdup(qp->p[0].value);
1000 } else {
1001 /* sheepdog[+tcp]://[host:port]/vdiname */
1002 s->host_spec = g_strdup_printf("%s:%d", uri->server ?: SD_DEFAULT_ADDR,
1003 uri->port ?: SD_DEFAULT_PORT);
1006 /* snapshot tag */
1007 if (uri->fragment) {
1008 *snapid = strtoul(uri->fragment, NULL, 10);
1009 if (*snapid == 0) {
1010 pstrcpy(tag, SD_MAX_VDI_TAG_LEN, uri->fragment);
1012 } else {
1013 *snapid = CURRENT_VDI_ID; /* search current vdi */
1016 out:
1017 if (qp) {
1018 query_params_free(qp);
1020 uri_free(uri);
1021 return ret;
1025 * Parse a filename (old syntax)
1027 * filename must be one of the following formats:
1028 * 1. [vdiname]
1029 * 2. [vdiname]:[snapid]
1030 * 3. [vdiname]:[tag]
1031 * 4. [hostname]:[port]:[vdiname]
1032 * 5. [hostname]:[port]:[vdiname]:[snapid]
1033 * 6. [hostname]:[port]:[vdiname]:[tag]
1035 * You can boot from the snapshot images by specifying `snapid` or
1036 * `tag'.
1038 * You can run VMs outside the Sheepdog cluster by specifying
1039 * `hostname' and `port' (experimental).
1041 static int parse_vdiname(BDRVSheepdogState *s, const char *filename,
1042 char *vdi, uint32_t *snapid, char *tag)
1044 char *p, *q, *uri;
1045 const char *host_spec, *vdi_spec;
1046 int nr_sep, ret;
1048 strstart(filename, "sheepdog:", (const char **)&filename);
1049 p = q = g_strdup(filename);
1051 /* count the number of separators */
1052 nr_sep = 0;
1053 while (*p) {
1054 if (*p == ':') {
1055 nr_sep++;
1057 p++;
1059 p = q;
1061 /* use the first two tokens as host_spec. */
1062 if (nr_sep >= 2) {
1063 host_spec = p;
1064 p = strchr(p, ':');
1065 p++;
1066 p = strchr(p, ':');
1067 *p++ = '\0';
1068 } else {
1069 host_spec = "";
1072 vdi_spec = p;
1074 p = strchr(vdi_spec, ':');
1075 if (p) {
1076 *p++ = '#';
1079 uri = g_strdup_printf("sheepdog://%s/%s", host_spec, vdi_spec);
1081 ret = sd_parse_uri(s, uri, vdi, snapid, tag);
1083 g_free(q);
1084 g_free(uri);
1086 return ret;
1089 static int find_vdi_name(BDRVSheepdogState *s, const char *filename,
1090 uint32_t snapid, const char *tag, uint32_t *vid,
1091 bool lock, Error **errp)
1093 int ret, fd;
1094 SheepdogVdiReq hdr;
1095 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1096 unsigned int wlen, rlen = 0;
1097 char buf[SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN];
1099 fd = connect_to_sdog(s, errp);
1100 if (fd < 0) {
1101 return fd;
1104 /* This pair of strncpy calls ensures that the buffer is zero-filled,
1105 * which is desirable since we'll soon be sending those bytes, and
1106 * don't want the send_req to read uninitialized data.
1108 strncpy(buf, filename, SD_MAX_VDI_LEN);
1109 strncpy(buf + SD_MAX_VDI_LEN, tag, SD_MAX_VDI_TAG_LEN);
1111 memset(&hdr, 0, sizeof(hdr));
1112 if (lock) {
1113 hdr.opcode = SD_OP_LOCK_VDI;
1114 hdr.type = LOCK_TYPE_NORMAL;
1115 } else {
1116 hdr.opcode = SD_OP_GET_VDI_INFO;
1118 wlen = SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN;
1119 hdr.proto_ver = SD_PROTO_VER;
1120 hdr.data_length = wlen;
1121 hdr.snapid = snapid;
1122 hdr.flags = SD_FLAG_CMD_WRITE;
1124 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1125 if (ret) {
1126 error_setg_errno(errp, -ret, "cannot get vdi info");
1127 goto out;
1130 if (rsp->result != SD_RES_SUCCESS) {
1131 error_setg(errp, "cannot get vdi info, %s, %s %" PRIu32 " %s",
1132 sd_strerror(rsp->result), filename, snapid, tag);
1133 if (rsp->result == SD_RES_NO_VDI) {
1134 ret = -ENOENT;
1135 } else if (rsp->result == SD_RES_VDI_LOCKED) {
1136 ret = -EBUSY;
1137 } else {
1138 ret = -EIO;
1140 goto out;
1142 *vid = rsp->vdi_id;
1144 ret = 0;
1145 out:
1146 closesocket(fd);
1147 return ret;
1150 static void coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req,
1151 struct iovec *iov, int niov,
1152 enum AIOCBState aiocb_type)
1154 int nr_copies = s->inode.nr_copies;
1155 SheepdogObjReq hdr;
1156 unsigned int wlen = 0;
1157 int ret;
1158 uint64_t oid = aio_req->oid;
1159 unsigned int datalen = aio_req->data_len;
1160 uint64_t offset = aio_req->offset;
1161 uint8_t flags = aio_req->flags;
1162 uint64_t old_oid = aio_req->base_oid;
1163 bool create = aio_req->create;
1165 if (!nr_copies) {
1166 error_report("bug");
1169 memset(&hdr, 0, sizeof(hdr));
1171 switch (aiocb_type) {
1172 case AIOCB_FLUSH_CACHE:
1173 hdr.opcode = SD_OP_FLUSH_VDI;
1174 break;
1175 case AIOCB_READ_UDATA:
1176 hdr.opcode = SD_OP_READ_OBJ;
1177 hdr.flags = flags;
1178 break;
1179 case AIOCB_WRITE_UDATA:
1180 if (create) {
1181 hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
1182 } else {
1183 hdr.opcode = SD_OP_WRITE_OBJ;
1185 wlen = datalen;
1186 hdr.flags = SD_FLAG_CMD_WRITE | flags;
1187 break;
1188 case AIOCB_DISCARD_OBJ:
1189 hdr.opcode = SD_OP_WRITE_OBJ;
1190 hdr.flags = SD_FLAG_CMD_WRITE | flags;
1191 s->inode.data_vdi_id[data_oid_to_idx(oid)] = 0;
1192 offset = offsetof(SheepdogInode,
1193 data_vdi_id[data_oid_to_idx(oid)]);
1194 oid = vid_to_vdi_oid(s->inode.vdi_id);
1195 wlen = datalen = sizeof(uint32_t);
1196 break;
1199 if (s->cache_flags) {
1200 hdr.flags |= s->cache_flags;
1203 hdr.oid = oid;
1204 hdr.cow_oid = old_oid;
1205 hdr.copies = s->inode.nr_copies;
1207 hdr.data_length = datalen;
1208 hdr.offset = offset;
1210 hdr.id = aio_req->id;
1212 qemu_co_mutex_lock(&s->lock);
1213 s->co_send = qemu_coroutine_self();
1214 aio_set_fd_handler(s->aio_context, s->fd, false,
1215 co_read_response, co_write_request, s);
1216 socket_set_cork(s->fd, 1);
1218 /* send a header */
1219 ret = qemu_co_send(s->fd, &hdr, sizeof(hdr));
1220 if (ret != sizeof(hdr)) {
1221 error_report("failed to send a req, %s", strerror(errno));
1222 goto out;
1225 if (wlen) {
1226 ret = qemu_co_sendv(s->fd, iov, niov, aio_req->iov_offset, wlen);
1227 if (ret != wlen) {
1228 error_report("failed to send a data, %s", strerror(errno));
1231 out:
1232 socket_set_cork(s->fd, 0);
1233 aio_set_fd_handler(s->aio_context, s->fd, false,
1234 co_read_response, NULL, s);
1235 s->co_send = NULL;
1236 qemu_co_mutex_unlock(&s->lock);
1239 static int read_write_object(int fd, AioContext *aio_context, char *buf,
1240 uint64_t oid, uint8_t copies,
1241 unsigned int datalen, uint64_t offset,
1242 bool write, bool create, uint32_t cache_flags)
1244 SheepdogObjReq hdr;
1245 SheepdogObjRsp *rsp = (SheepdogObjRsp *)&hdr;
1246 unsigned int wlen, rlen;
1247 int ret;
1249 memset(&hdr, 0, sizeof(hdr));
1251 if (write) {
1252 wlen = datalen;
1253 rlen = 0;
1254 hdr.flags = SD_FLAG_CMD_WRITE;
1255 if (create) {
1256 hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ;
1257 } else {
1258 hdr.opcode = SD_OP_WRITE_OBJ;
1260 } else {
1261 wlen = 0;
1262 rlen = datalen;
1263 hdr.opcode = SD_OP_READ_OBJ;
1266 hdr.flags |= cache_flags;
1268 hdr.oid = oid;
1269 hdr.data_length = datalen;
1270 hdr.offset = offset;
1271 hdr.copies = copies;
1273 ret = do_req(fd, aio_context, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1274 if (ret) {
1275 error_report("failed to send a request to the sheep");
1276 return ret;
1279 switch (rsp->result) {
1280 case SD_RES_SUCCESS:
1281 return 0;
1282 default:
1283 error_report("%s", sd_strerror(rsp->result));
1284 return -EIO;
1288 static int read_object(int fd, AioContext *aio_context, char *buf,
1289 uint64_t oid, uint8_t copies,
1290 unsigned int datalen, uint64_t offset,
1291 uint32_t cache_flags)
1293 return read_write_object(fd, aio_context, buf, oid, copies,
1294 datalen, offset, false,
1295 false, cache_flags);
1298 static int write_object(int fd, AioContext *aio_context, char *buf,
1299 uint64_t oid, uint8_t copies,
1300 unsigned int datalen, uint64_t offset, bool create,
1301 uint32_t cache_flags)
1303 return read_write_object(fd, aio_context, buf, oid, copies,
1304 datalen, offset, true,
1305 create, cache_flags);
1308 /* update inode with the latest state */
1309 static int reload_inode(BDRVSheepdogState *s, uint32_t snapid, const char *tag)
1311 Error *local_err = NULL;
1312 SheepdogInode *inode;
1313 int ret = 0, fd;
1314 uint32_t vid = 0;
1316 fd = connect_to_sdog(s, &local_err);
1317 if (fd < 0) {
1318 error_report_err(local_err);
1319 return -EIO;
1322 inode = g_malloc(SD_INODE_HEADER_SIZE);
1324 ret = find_vdi_name(s, s->name, snapid, tag, &vid, false, &local_err);
1325 if (ret) {
1326 error_report_err(local_err);
1327 goto out;
1330 ret = read_object(fd, s->aio_context, (char *)inode, vid_to_vdi_oid(vid),
1331 s->inode.nr_copies, SD_INODE_HEADER_SIZE, 0,
1332 s->cache_flags);
1333 if (ret < 0) {
1334 goto out;
1337 if (inode->vdi_id != s->inode.vdi_id) {
1338 memcpy(&s->inode, inode, SD_INODE_HEADER_SIZE);
1341 out:
1342 g_free(inode);
1343 closesocket(fd);
1345 return ret;
1348 static void coroutine_fn resend_aioreq(BDRVSheepdogState *s, AIOReq *aio_req)
1350 SheepdogAIOCB *acb = aio_req->aiocb;
1352 aio_req->create = false;
1354 /* check whether this request becomes a CoW one */
1355 if (acb->aiocb_type == AIOCB_WRITE_UDATA && is_data_obj(aio_req->oid)) {
1356 int idx = data_oid_to_idx(aio_req->oid);
1358 if (is_data_obj_writable(&s->inode, idx)) {
1359 goto out;
1362 if (s->inode.data_vdi_id[idx]) {
1363 aio_req->base_oid = vid_to_data_oid(s->inode.data_vdi_id[idx], idx);
1364 aio_req->flags |= SD_FLAG_CMD_COW;
1366 aio_req->create = true;
1368 out:
1369 if (is_data_obj(aio_req->oid)) {
1370 add_aio_request(s, aio_req, acb->qiov->iov, acb->qiov->niov,
1371 acb->aiocb_type);
1372 } else {
1373 struct iovec iov;
1374 iov.iov_base = &s->inode;
1375 iov.iov_len = sizeof(s->inode);
1376 add_aio_request(s, aio_req, &iov, 1, AIOCB_WRITE_UDATA);
1380 static void sd_detach_aio_context(BlockDriverState *bs)
1382 BDRVSheepdogState *s = bs->opaque;
1384 aio_set_fd_handler(s->aio_context, s->fd, false, NULL,
1385 NULL, NULL);
1388 static void sd_attach_aio_context(BlockDriverState *bs,
1389 AioContext *new_context)
1391 BDRVSheepdogState *s = bs->opaque;
1393 s->aio_context = new_context;
1394 aio_set_fd_handler(new_context, s->fd, false,
1395 co_read_response, NULL, s);
1398 /* TODO Convert to fine grained options */
1399 static QemuOptsList runtime_opts = {
1400 .name = "sheepdog",
1401 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
1402 .desc = {
1404 .name = "filename",
1405 .type = QEMU_OPT_STRING,
1406 .help = "URL to the sheepdog image",
1408 { /* end of list */ }
1412 static int sd_open(BlockDriverState *bs, QDict *options, int flags,
1413 Error **errp)
1415 int ret, fd;
1416 uint32_t vid = 0;
1417 BDRVSheepdogState *s = bs->opaque;
1418 char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN];
1419 uint32_t snapid;
1420 char *buf = NULL;
1421 QemuOpts *opts;
1422 Error *local_err = NULL;
1423 const char *filename;
1425 s->bs = bs;
1426 s->aio_context = bdrv_get_aio_context(bs);
1428 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
1429 qemu_opts_absorb_qdict(opts, options, &local_err);
1430 if (local_err) {
1431 error_propagate(errp, local_err);
1432 ret = -EINVAL;
1433 goto out;
1436 filename = qemu_opt_get(opts, "filename");
1438 QLIST_INIT(&s->inflight_aio_head);
1439 QLIST_INIT(&s->failed_aio_head);
1440 QLIST_INIT(&s->inflight_aiocb_head);
1441 s->fd = -1;
1443 memset(vdi, 0, sizeof(vdi));
1444 memset(tag, 0, sizeof(tag));
1446 if (strstr(filename, "://")) {
1447 ret = sd_parse_uri(s, filename, vdi, &snapid, tag);
1448 } else {
1449 ret = parse_vdiname(s, filename, vdi, &snapid, tag);
1451 if (ret < 0) {
1452 error_setg(errp, "Can't parse filename");
1453 goto out;
1455 s->fd = get_sheep_fd(s, errp);
1456 if (s->fd < 0) {
1457 ret = s->fd;
1458 goto out;
1461 ret = find_vdi_name(s, vdi, snapid, tag, &vid, true, errp);
1462 if (ret) {
1463 goto out;
1467 * QEMU block layer emulates writethrough cache as 'writeback + flush', so
1468 * we always set SD_FLAG_CMD_CACHE (writeback cache) as default.
1470 s->cache_flags = SD_FLAG_CMD_CACHE;
1471 if (flags & BDRV_O_NOCACHE) {
1472 s->cache_flags = SD_FLAG_CMD_DIRECT;
1474 s->discard_supported = true;
1476 if (snapid || tag[0] != '\0') {
1477 DPRINTF("%" PRIx32 " snapshot inode was open.\n", vid);
1478 s->is_snapshot = true;
1481 fd = connect_to_sdog(s, errp);
1482 if (fd < 0) {
1483 ret = fd;
1484 goto out;
1487 buf = g_malloc(SD_INODE_SIZE);
1488 ret = read_object(fd, s->aio_context, buf, vid_to_vdi_oid(vid),
1489 0, SD_INODE_SIZE, 0, s->cache_flags);
1491 closesocket(fd);
1493 if (ret) {
1494 error_setg(errp, "Can't read snapshot inode");
1495 goto out;
1498 memcpy(&s->inode, buf, sizeof(s->inode));
1500 bs->total_sectors = s->inode.vdi_size / BDRV_SECTOR_SIZE;
1501 pstrcpy(s->name, sizeof(s->name), vdi);
1502 qemu_co_mutex_init(&s->lock);
1503 qemu_co_queue_init(&s->overlapping_queue);
1504 qemu_opts_del(opts);
1505 g_free(buf);
1506 return 0;
1507 out:
1508 aio_set_fd_handler(bdrv_get_aio_context(bs), s->fd,
1509 false, NULL, NULL, NULL);
1510 if (s->fd >= 0) {
1511 closesocket(s->fd);
1513 qemu_opts_del(opts);
1514 g_free(buf);
1515 return ret;
1518 static int sd_reopen_prepare(BDRVReopenState *state, BlockReopenQueue *queue,
1519 Error **errp)
1521 BDRVSheepdogState *s = state->bs->opaque;
1522 BDRVSheepdogReopenState *re_s;
1523 int ret = 0;
1525 re_s = state->opaque = g_new0(BDRVSheepdogReopenState, 1);
1527 re_s->cache_flags = SD_FLAG_CMD_CACHE;
1528 if (state->flags & BDRV_O_NOCACHE) {
1529 re_s->cache_flags = SD_FLAG_CMD_DIRECT;
1532 re_s->fd = get_sheep_fd(s, errp);
1533 if (re_s->fd < 0) {
1534 ret = re_s->fd;
1535 return ret;
1538 return ret;
1541 static void sd_reopen_commit(BDRVReopenState *state)
1543 BDRVSheepdogReopenState *re_s = state->opaque;
1544 BDRVSheepdogState *s = state->bs->opaque;
1546 if (s->fd) {
1547 aio_set_fd_handler(s->aio_context, s->fd, false,
1548 NULL, NULL, NULL);
1549 closesocket(s->fd);
1552 s->fd = re_s->fd;
1553 s->cache_flags = re_s->cache_flags;
1555 g_free(state->opaque);
1556 state->opaque = NULL;
1558 return;
1561 static void sd_reopen_abort(BDRVReopenState *state)
1563 BDRVSheepdogReopenState *re_s = state->opaque;
1564 BDRVSheepdogState *s = state->bs->opaque;
1566 if (re_s == NULL) {
1567 return;
1570 if (re_s->fd) {
1571 aio_set_fd_handler(s->aio_context, re_s->fd, false,
1572 NULL, NULL, NULL);
1573 closesocket(re_s->fd);
1576 g_free(state->opaque);
1577 state->opaque = NULL;
1579 return;
1582 static int do_sd_create(BDRVSheepdogState *s, uint32_t *vdi_id, int snapshot,
1583 Error **errp)
1585 SheepdogVdiReq hdr;
1586 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1587 int fd, ret;
1588 unsigned int wlen, rlen = 0;
1589 char buf[SD_MAX_VDI_LEN];
1591 fd = connect_to_sdog(s, errp);
1592 if (fd < 0) {
1593 return fd;
1596 /* FIXME: would it be better to fail (e.g., return -EIO) when filename
1597 * does not fit in buf? For now, just truncate and avoid buffer overrun.
1599 memset(buf, 0, sizeof(buf));
1600 pstrcpy(buf, sizeof(buf), s->name);
1602 memset(&hdr, 0, sizeof(hdr));
1603 hdr.opcode = SD_OP_NEW_VDI;
1604 hdr.base_vdi_id = s->inode.vdi_id;
1606 wlen = SD_MAX_VDI_LEN;
1608 hdr.flags = SD_FLAG_CMD_WRITE;
1609 hdr.snapid = snapshot;
1611 hdr.data_length = wlen;
1612 hdr.vdi_size = s->inode.vdi_size;
1613 hdr.copy_policy = s->inode.copy_policy;
1614 hdr.copies = s->inode.nr_copies;
1615 hdr.block_size_shift = s->inode.block_size_shift;
1617 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr, buf, &wlen, &rlen);
1619 closesocket(fd);
1621 if (ret) {
1622 error_setg_errno(errp, -ret, "create failed");
1623 return ret;
1626 if (rsp->result != SD_RES_SUCCESS) {
1627 error_setg(errp, "%s, %s", sd_strerror(rsp->result), s->inode.name);
1628 return -EIO;
1631 if (vdi_id) {
1632 *vdi_id = rsp->vdi_id;
1635 return 0;
1638 static int sd_prealloc(const char *filename, Error **errp)
1640 BlockBackend *blk = NULL;
1641 BDRVSheepdogState *base = NULL;
1642 unsigned long buf_size;
1643 uint32_t idx, max_idx;
1644 uint32_t object_size;
1645 int64_t vdi_size;
1646 void *buf = NULL;
1647 int ret;
1649 blk = blk_new_open("image-prealloc", filename, NULL, NULL,
1650 BDRV_O_RDWR | BDRV_O_CACHE_WB | BDRV_O_PROTOCOL,
1651 errp);
1652 if (blk == NULL) {
1653 ret = -EIO;
1654 goto out_with_err_set;
1657 blk_set_allow_write_beyond_eof(blk, true);
1659 vdi_size = blk_getlength(blk);
1660 if (vdi_size < 0) {
1661 ret = vdi_size;
1662 goto out;
1665 base = blk_bs(blk)->opaque;
1666 object_size = (UINT32_C(1) << base->inode.block_size_shift);
1667 buf_size = MIN(object_size, SD_DATA_OBJ_SIZE);
1668 buf = g_malloc0(buf_size);
1670 max_idx = DIV_ROUND_UP(vdi_size, buf_size);
1672 for (idx = 0; idx < max_idx; idx++) {
1674 * The created image can be a cloned image, so we need to read
1675 * a data from the source image.
1677 ret = blk_pread(blk, idx * buf_size, buf, buf_size);
1678 if (ret < 0) {
1679 goto out;
1681 ret = blk_pwrite(blk, idx * buf_size, buf, buf_size);
1682 if (ret < 0) {
1683 goto out;
1687 ret = 0;
1688 out:
1689 if (ret < 0) {
1690 error_setg_errno(errp, -ret, "Can't pre-allocate");
1692 out_with_err_set:
1693 if (blk) {
1694 blk_unref(blk);
1696 g_free(buf);
1698 return ret;
1702 * Sheepdog support two kinds of redundancy, full replication and erasure
1703 * coding.
1705 * # create a fully replicated vdi with x copies
1706 * -o redundancy=x (1 <= x <= SD_MAX_COPIES)
1708 * # create a erasure coded vdi with x data strips and y parity strips
1709 * -o redundancy=x:y (x must be one of {2,4,8,16} and 1 <= y < SD_EC_MAX_STRIP)
1711 static int parse_redundancy(BDRVSheepdogState *s, const char *opt)
1713 struct SheepdogInode *inode = &s->inode;
1714 const char *n1, *n2;
1715 long copy, parity;
1716 char p[10];
1718 pstrcpy(p, sizeof(p), opt);
1719 n1 = strtok(p, ":");
1720 n2 = strtok(NULL, ":");
1722 if (!n1) {
1723 return -EINVAL;
1726 copy = strtol(n1, NULL, 10);
1727 if (copy > SD_MAX_COPIES || copy < 1) {
1728 return -EINVAL;
1730 if (!n2) {
1731 inode->copy_policy = 0;
1732 inode->nr_copies = copy;
1733 return 0;
1736 if (copy != 2 && copy != 4 && copy != 8 && copy != 16) {
1737 return -EINVAL;
1740 parity = strtol(n2, NULL, 10);
1741 if (parity >= SD_EC_MAX_STRIP || parity < 1) {
1742 return -EINVAL;
1746 * 4 bits for parity and 4 bits for data.
1747 * We have to compress upper data bits because it can't represent 16
1749 inode->copy_policy = ((copy / 2) << 4) + parity;
1750 inode->nr_copies = copy + parity;
1752 return 0;
1755 static int parse_block_size_shift(BDRVSheepdogState *s, QemuOpts *opt)
1757 struct SheepdogInode *inode = &s->inode;
1758 uint64_t object_size;
1759 int obj_order;
1761 object_size = qemu_opt_get_size_del(opt, BLOCK_OPT_OBJECT_SIZE, 0);
1762 if (object_size) {
1763 if ((object_size - 1) & object_size) { /* not a power of 2? */
1764 return -EINVAL;
1766 obj_order = ctz32(object_size);
1767 if (obj_order < 20 || obj_order > 31) {
1768 return -EINVAL;
1770 inode->block_size_shift = (uint8_t)obj_order;
1773 return 0;
1776 static int sd_create(const char *filename, QemuOpts *opts,
1777 Error **errp)
1779 int ret = 0;
1780 uint32_t vid = 0;
1781 char *backing_file = NULL;
1782 char *buf = NULL;
1783 BDRVSheepdogState *s;
1784 char tag[SD_MAX_VDI_TAG_LEN];
1785 uint32_t snapid;
1786 uint64_t max_vdi_size;
1787 bool prealloc = false;
1789 s = g_new0(BDRVSheepdogState, 1);
1791 memset(tag, 0, sizeof(tag));
1792 if (strstr(filename, "://")) {
1793 ret = sd_parse_uri(s, filename, s->name, &snapid, tag);
1794 } else {
1795 ret = parse_vdiname(s, filename, s->name, &snapid, tag);
1797 if (ret < 0) {
1798 error_setg(errp, "Can't parse filename");
1799 goto out;
1802 s->inode.vdi_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
1803 BDRV_SECTOR_SIZE);
1804 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
1805 buf = qemu_opt_get_del(opts, BLOCK_OPT_PREALLOC);
1806 if (!buf || !strcmp(buf, "off")) {
1807 prealloc = false;
1808 } else if (!strcmp(buf, "full")) {
1809 prealloc = true;
1810 } else {
1811 error_setg(errp, "Invalid preallocation mode: '%s'", buf);
1812 ret = -EINVAL;
1813 goto out;
1816 g_free(buf);
1817 buf = qemu_opt_get_del(opts, BLOCK_OPT_REDUNDANCY);
1818 if (buf) {
1819 ret = parse_redundancy(s, buf);
1820 if (ret < 0) {
1821 error_setg(errp, "Invalid redundancy mode: '%s'", buf);
1822 goto out;
1825 ret = parse_block_size_shift(s, opts);
1826 if (ret < 0) {
1827 error_setg(errp, "Invalid object_size."
1828 " obect_size needs to be power of 2"
1829 " and be limited from 2^20 to 2^31");
1830 goto out;
1833 if (backing_file) {
1834 BlockBackend *blk;
1835 BDRVSheepdogState *base;
1836 BlockDriver *drv;
1838 /* Currently, only Sheepdog backing image is supported. */
1839 drv = bdrv_find_protocol(backing_file, true, NULL);
1840 if (!drv || strcmp(drv->protocol_name, "sheepdog") != 0) {
1841 error_setg(errp, "backing_file must be a sheepdog image");
1842 ret = -EINVAL;
1843 goto out;
1846 blk = blk_new_open("backing", backing_file, NULL, NULL,
1847 BDRV_O_PROTOCOL | BDRV_O_CACHE_WB, errp);
1848 if (blk == NULL) {
1849 ret = -EIO;
1850 goto out;
1853 base = blk_bs(blk)->opaque;
1855 if (!is_snapshot(&base->inode)) {
1856 error_setg(errp, "cannot clone from a non snapshot vdi");
1857 blk_unref(blk);
1858 ret = -EINVAL;
1859 goto out;
1861 s->inode.vdi_id = base->inode.vdi_id;
1862 blk_unref(blk);
1865 s->aio_context = qemu_get_aio_context();
1867 /* if block_size_shift is not specified, get cluster default value */
1868 if (s->inode.block_size_shift == 0) {
1869 SheepdogVdiReq hdr;
1870 SheepdogClusterRsp *rsp = (SheepdogClusterRsp *)&hdr;
1871 Error *local_err = NULL;
1872 int fd;
1873 unsigned int wlen = 0, rlen = 0;
1875 fd = connect_to_sdog(s, &local_err);
1876 if (fd < 0) {
1877 error_report_err(local_err);
1878 ret = -EIO;
1879 goto out;
1882 memset(&hdr, 0, sizeof(hdr));
1883 hdr.opcode = SD_OP_GET_CLUSTER_DEFAULT;
1884 hdr.proto_ver = SD_PROTO_VER;
1886 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr,
1887 NULL, &wlen, &rlen);
1888 closesocket(fd);
1889 if (ret) {
1890 error_setg_errno(errp, -ret, "failed to get cluster default");
1891 goto out;
1893 if (rsp->result == SD_RES_SUCCESS) {
1894 s->inode.block_size_shift = rsp->block_size_shift;
1895 } else {
1896 s->inode.block_size_shift = SD_DEFAULT_BLOCK_SIZE_SHIFT;
1900 max_vdi_size = (UINT64_C(1) << s->inode.block_size_shift) * MAX_DATA_OBJS;
1902 if (s->inode.vdi_size > max_vdi_size) {
1903 error_setg(errp, "An image is too large."
1904 " The maximum image size is %"PRIu64 "GB",
1905 max_vdi_size / 1024 / 1024 / 1024);
1906 ret = -EINVAL;
1907 goto out;
1910 ret = do_sd_create(s, &vid, 0, errp);
1911 if (ret) {
1912 goto out;
1915 if (prealloc) {
1916 ret = sd_prealloc(filename, errp);
1918 out:
1919 g_free(backing_file);
1920 g_free(buf);
1921 g_free(s);
1922 return ret;
1925 static void sd_close(BlockDriverState *bs)
1927 Error *local_err = NULL;
1928 BDRVSheepdogState *s = bs->opaque;
1929 SheepdogVdiReq hdr;
1930 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
1931 unsigned int wlen, rlen = 0;
1932 int fd, ret;
1934 DPRINTF("%s\n", s->name);
1936 fd = connect_to_sdog(s, &local_err);
1937 if (fd < 0) {
1938 error_report_err(local_err);
1939 return;
1942 memset(&hdr, 0, sizeof(hdr));
1944 hdr.opcode = SD_OP_RELEASE_VDI;
1945 hdr.type = LOCK_TYPE_NORMAL;
1946 hdr.base_vdi_id = s->inode.vdi_id;
1947 wlen = strlen(s->name) + 1;
1948 hdr.data_length = wlen;
1949 hdr.flags = SD_FLAG_CMD_WRITE;
1951 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr,
1952 s->name, &wlen, &rlen);
1954 closesocket(fd);
1956 if (!ret && rsp->result != SD_RES_SUCCESS &&
1957 rsp->result != SD_RES_VDI_NOT_LOCKED) {
1958 error_report("%s, %s", sd_strerror(rsp->result), s->name);
1961 aio_set_fd_handler(bdrv_get_aio_context(bs), s->fd,
1962 false, NULL, NULL, NULL);
1963 closesocket(s->fd);
1964 g_free(s->host_spec);
1967 static int64_t sd_getlength(BlockDriverState *bs)
1969 BDRVSheepdogState *s = bs->opaque;
1971 return s->inode.vdi_size;
1974 static int sd_truncate(BlockDriverState *bs, int64_t offset)
1976 Error *local_err = NULL;
1977 BDRVSheepdogState *s = bs->opaque;
1978 int ret, fd;
1979 unsigned int datalen;
1980 uint64_t max_vdi_size;
1982 max_vdi_size = (UINT64_C(1) << s->inode.block_size_shift) * MAX_DATA_OBJS;
1983 if (offset < s->inode.vdi_size) {
1984 error_report("shrinking is not supported");
1985 return -EINVAL;
1986 } else if (offset > max_vdi_size) {
1987 error_report("too big image size");
1988 return -EINVAL;
1991 fd = connect_to_sdog(s, &local_err);
1992 if (fd < 0) {
1993 error_report_err(local_err);
1994 return fd;
1997 /* we don't need to update entire object */
1998 datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id);
1999 s->inode.vdi_size = offset;
2000 ret = write_object(fd, s->aio_context, (char *)&s->inode,
2001 vid_to_vdi_oid(s->inode.vdi_id), s->inode.nr_copies,
2002 datalen, 0, false, s->cache_flags);
2003 close(fd);
2005 if (ret < 0) {
2006 error_report("failed to update an inode.");
2009 return ret;
2013 * This function is called after writing data objects. If we need to
2014 * update metadata, this sends a write request to the vdi object.
2015 * Otherwise, this switches back to sd_co_readv/writev.
2017 static void coroutine_fn sd_write_done(SheepdogAIOCB *acb)
2019 BDRVSheepdogState *s = acb->common.bs->opaque;
2020 struct iovec iov;
2021 AIOReq *aio_req;
2022 uint32_t offset, data_len, mn, mx;
2024 mn = acb->min_dirty_data_idx;
2025 mx = acb->max_dirty_data_idx;
2026 if (mn <= mx) {
2027 /* we need to update the vdi object. */
2028 offset = sizeof(s->inode) - sizeof(s->inode.data_vdi_id) +
2029 mn * sizeof(s->inode.data_vdi_id[0]);
2030 data_len = (mx - mn + 1) * sizeof(s->inode.data_vdi_id[0]);
2032 acb->min_dirty_data_idx = UINT32_MAX;
2033 acb->max_dirty_data_idx = 0;
2035 iov.iov_base = &s->inode;
2036 iov.iov_len = sizeof(s->inode);
2037 aio_req = alloc_aio_req(s, acb, vid_to_vdi_oid(s->inode.vdi_id),
2038 data_len, offset, 0, false, 0, offset);
2039 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
2040 add_aio_request(s, aio_req, &iov, 1, AIOCB_WRITE_UDATA);
2042 acb->aio_done_func = sd_finish_aiocb;
2043 acb->aiocb_type = AIOCB_WRITE_UDATA;
2044 return;
2047 sd_finish_aiocb(acb);
2050 /* Delete current working VDI on the snapshot chain */
2051 static bool sd_delete(BDRVSheepdogState *s)
2053 Error *local_err = NULL;
2054 unsigned int wlen = SD_MAX_VDI_LEN, rlen = 0;
2055 SheepdogVdiReq hdr = {
2056 .opcode = SD_OP_DEL_VDI,
2057 .base_vdi_id = s->inode.vdi_id,
2058 .data_length = wlen,
2059 .flags = SD_FLAG_CMD_WRITE,
2061 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
2062 int fd, ret;
2064 fd = connect_to_sdog(s, &local_err);
2065 if (fd < 0) {
2066 error_report_err(local_err);
2067 return false;
2070 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr,
2071 s->name, &wlen, &rlen);
2072 closesocket(fd);
2073 if (ret) {
2074 return false;
2076 switch (rsp->result) {
2077 case SD_RES_NO_VDI:
2078 error_report("%s was already deleted", s->name);
2079 /* fall through */
2080 case SD_RES_SUCCESS:
2081 break;
2082 default:
2083 error_report("%s, %s", sd_strerror(rsp->result), s->name);
2084 return false;
2087 return true;
2091 * Create a writable VDI from a snapshot
2093 static int sd_create_branch(BDRVSheepdogState *s)
2095 Error *local_err = NULL;
2096 int ret, fd;
2097 uint32_t vid;
2098 char *buf;
2099 bool deleted;
2101 DPRINTF("%" PRIx32 " is snapshot.\n", s->inode.vdi_id);
2103 buf = g_malloc(SD_INODE_SIZE);
2106 * Even If deletion fails, we will just create extra snapshot based on
2107 * the working VDI which was supposed to be deleted. So no need to
2108 * false bail out.
2110 deleted = sd_delete(s);
2111 ret = do_sd_create(s, &vid, !deleted, &local_err);
2112 if (ret) {
2113 error_report_err(local_err);
2114 goto out;
2117 DPRINTF("%" PRIx32 " is created.\n", vid);
2119 fd = connect_to_sdog(s, &local_err);
2120 if (fd < 0) {
2121 error_report_err(local_err);
2122 ret = fd;
2123 goto out;
2126 ret = read_object(fd, s->aio_context, buf, vid_to_vdi_oid(vid),
2127 s->inode.nr_copies, SD_INODE_SIZE, 0, s->cache_flags);
2129 closesocket(fd);
2131 if (ret < 0) {
2132 goto out;
2135 memcpy(&s->inode, buf, sizeof(s->inode));
2137 s->is_snapshot = false;
2138 ret = 0;
2139 DPRINTF("%" PRIx32 " was newly created.\n", s->inode.vdi_id);
2141 out:
2142 g_free(buf);
2144 return ret;
2148 * Send I/O requests to the server.
2150 * This function sends requests to the server, links the requests to
2151 * the inflight_list in BDRVSheepdogState, and exits without
2152 * waiting the response. The responses are received in the
2153 * `aio_read_response' function which is called from the main loop as
2154 * a fd handler.
2156 * Returns 1 when we need to wait a response, 0 when there is no sent
2157 * request and -errno in error cases.
2159 static int coroutine_fn sd_co_rw_vector(void *p)
2161 SheepdogAIOCB *acb = p;
2162 int ret = 0;
2163 unsigned long len, done = 0, total = acb->nb_sectors * BDRV_SECTOR_SIZE;
2164 unsigned long idx;
2165 uint32_t object_size;
2166 uint64_t oid;
2167 uint64_t offset;
2168 BDRVSheepdogState *s = acb->common.bs->opaque;
2169 SheepdogInode *inode = &s->inode;
2170 AIOReq *aio_req;
2172 if (acb->aiocb_type == AIOCB_WRITE_UDATA && s->is_snapshot) {
2174 * In the case we open the snapshot VDI, Sheepdog creates the
2175 * writable VDI when we do a write operation first.
2177 ret = sd_create_branch(s);
2178 if (ret) {
2179 acb->ret = -EIO;
2180 goto out;
2184 object_size = (UINT32_C(1) << inode->block_size_shift);
2185 idx = acb->sector_num * BDRV_SECTOR_SIZE / object_size;
2186 offset = (acb->sector_num * BDRV_SECTOR_SIZE) % object_size;
2189 * Make sure we don't free the aiocb before we are done with all requests.
2190 * This additional reference is dropped at the end of this function.
2192 acb->nr_pending++;
2194 while (done != total) {
2195 uint8_t flags = 0;
2196 uint64_t old_oid = 0;
2197 bool create = false;
2199 oid = vid_to_data_oid(inode->data_vdi_id[idx], idx);
2201 len = MIN(total - done, object_size - offset);
2203 switch (acb->aiocb_type) {
2204 case AIOCB_READ_UDATA:
2205 if (!inode->data_vdi_id[idx]) {
2206 qemu_iovec_memset(acb->qiov, done, 0, len);
2207 goto done;
2209 break;
2210 case AIOCB_WRITE_UDATA:
2211 if (!inode->data_vdi_id[idx]) {
2212 create = true;
2213 } else if (!is_data_obj_writable(inode, idx)) {
2214 /* Copy-On-Write */
2215 create = true;
2216 old_oid = oid;
2217 flags = SD_FLAG_CMD_COW;
2219 break;
2220 case AIOCB_DISCARD_OBJ:
2222 * We discard the object only when the whole object is
2223 * 1) allocated 2) trimmed. Otherwise, simply skip it.
2225 if (len != object_size || inode->data_vdi_id[idx] == 0) {
2226 goto done;
2228 break;
2229 default:
2230 break;
2233 if (create) {
2234 DPRINTF("update ino (%" PRIu32 ") %" PRIu64 " %" PRIu64 " %ld\n",
2235 inode->vdi_id, oid,
2236 vid_to_data_oid(inode->data_vdi_id[idx], idx), idx);
2237 oid = vid_to_data_oid(inode->vdi_id, idx);
2238 DPRINTF("new oid %" PRIx64 "\n", oid);
2241 aio_req = alloc_aio_req(s, acb, oid, len, offset, flags, create,
2242 old_oid,
2243 acb->aiocb_type == AIOCB_DISCARD_OBJ ?
2244 0 : done);
2245 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
2247 add_aio_request(s, aio_req, acb->qiov->iov, acb->qiov->niov,
2248 acb->aiocb_type);
2249 done:
2250 offset = 0;
2251 idx++;
2252 done += len;
2254 out:
2255 if (!--acb->nr_pending) {
2256 return acb->ret;
2258 return 1;
2261 static bool check_overlapping_aiocb(BDRVSheepdogState *s, SheepdogAIOCB *aiocb)
2263 SheepdogAIOCB *cb;
2265 QLIST_FOREACH(cb, &s->inflight_aiocb_head, aiocb_siblings) {
2266 if (AIOCBOverlapping(aiocb, cb)) {
2267 return true;
2271 QLIST_INSERT_HEAD(&s->inflight_aiocb_head, aiocb, aiocb_siblings);
2272 return false;
2275 static coroutine_fn int sd_co_writev(BlockDriverState *bs, int64_t sector_num,
2276 int nb_sectors, QEMUIOVector *qiov)
2278 SheepdogAIOCB *acb;
2279 int ret;
2280 int64_t offset = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE;
2281 BDRVSheepdogState *s = bs->opaque;
2283 if (offset > s->inode.vdi_size) {
2284 ret = sd_truncate(bs, offset);
2285 if (ret < 0) {
2286 return ret;
2290 acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors);
2291 acb->aio_done_func = sd_write_done;
2292 acb->aiocb_type = AIOCB_WRITE_UDATA;
2294 retry:
2295 if (check_overlapping_aiocb(s, acb)) {
2296 qemu_co_queue_wait(&s->overlapping_queue);
2297 goto retry;
2300 ret = sd_co_rw_vector(acb);
2301 if (ret <= 0) {
2302 QLIST_REMOVE(acb, aiocb_siblings);
2303 qemu_co_queue_restart_all(&s->overlapping_queue);
2304 qemu_aio_unref(acb);
2305 return ret;
2308 qemu_coroutine_yield();
2310 QLIST_REMOVE(acb, aiocb_siblings);
2311 qemu_co_queue_restart_all(&s->overlapping_queue);
2313 return acb->ret;
2316 static coroutine_fn int sd_co_readv(BlockDriverState *bs, int64_t sector_num,
2317 int nb_sectors, QEMUIOVector *qiov)
2319 SheepdogAIOCB *acb;
2320 int ret;
2321 BDRVSheepdogState *s = bs->opaque;
2323 acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors);
2324 acb->aiocb_type = AIOCB_READ_UDATA;
2325 acb->aio_done_func = sd_finish_aiocb;
2327 retry:
2328 if (check_overlapping_aiocb(s, acb)) {
2329 qemu_co_queue_wait(&s->overlapping_queue);
2330 goto retry;
2333 ret = sd_co_rw_vector(acb);
2334 if (ret <= 0) {
2335 QLIST_REMOVE(acb, aiocb_siblings);
2336 qemu_co_queue_restart_all(&s->overlapping_queue);
2337 qemu_aio_unref(acb);
2338 return ret;
2341 qemu_coroutine_yield();
2343 QLIST_REMOVE(acb, aiocb_siblings);
2344 qemu_co_queue_restart_all(&s->overlapping_queue);
2345 return acb->ret;
2348 static int coroutine_fn sd_co_flush_to_disk(BlockDriverState *bs)
2350 BDRVSheepdogState *s = bs->opaque;
2351 SheepdogAIOCB *acb;
2352 AIOReq *aio_req;
2354 if (s->cache_flags != SD_FLAG_CMD_CACHE) {
2355 return 0;
2358 acb = sd_aio_setup(bs, NULL, 0, 0);
2359 acb->aiocb_type = AIOCB_FLUSH_CACHE;
2360 acb->aio_done_func = sd_finish_aiocb;
2362 aio_req = alloc_aio_req(s, acb, vid_to_vdi_oid(s->inode.vdi_id),
2363 0, 0, 0, false, 0, 0);
2364 QLIST_INSERT_HEAD(&s->inflight_aio_head, aio_req, aio_siblings);
2365 add_aio_request(s, aio_req, NULL, 0, acb->aiocb_type);
2367 qemu_coroutine_yield();
2368 return acb->ret;
2371 static int sd_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info)
2373 Error *local_err = NULL;
2374 BDRVSheepdogState *s = bs->opaque;
2375 int ret, fd;
2376 uint32_t new_vid;
2377 SheepdogInode *inode;
2378 unsigned int datalen;
2380 DPRINTF("sn_info: name %s id_str %s s: name %s vm_state_size %" PRId64 " "
2381 "is_snapshot %d\n", sn_info->name, sn_info->id_str,
2382 s->name, sn_info->vm_state_size, s->is_snapshot);
2384 if (s->is_snapshot) {
2385 error_report("You can't create a snapshot of a snapshot VDI, "
2386 "%s (%" PRIu32 ").", s->name, s->inode.vdi_id);
2388 return -EINVAL;
2391 DPRINTF("%s %s\n", sn_info->name, sn_info->id_str);
2393 s->inode.vm_state_size = sn_info->vm_state_size;
2394 s->inode.vm_clock_nsec = sn_info->vm_clock_nsec;
2395 /* It appears that inode.tag does not require a NUL terminator,
2396 * which means this use of strncpy is ok.
2398 strncpy(s->inode.tag, sn_info->name, sizeof(s->inode.tag));
2399 /* we don't need to update entire object */
2400 datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id);
2401 inode = g_malloc(datalen);
2403 /* refresh inode. */
2404 fd = connect_to_sdog(s, &local_err);
2405 if (fd < 0) {
2406 error_report_err(local_err);
2407 ret = fd;
2408 goto cleanup;
2411 ret = write_object(fd, s->aio_context, (char *)&s->inode,
2412 vid_to_vdi_oid(s->inode.vdi_id), s->inode.nr_copies,
2413 datalen, 0, false, s->cache_flags);
2414 if (ret < 0) {
2415 error_report("failed to write snapshot's inode.");
2416 goto cleanup;
2419 ret = do_sd_create(s, &new_vid, 1, &local_err);
2420 if (ret < 0) {
2421 error_reportf_err(local_err,
2422 "failed to create inode for snapshot: ");
2423 goto cleanup;
2426 ret = read_object(fd, s->aio_context, (char *)inode,
2427 vid_to_vdi_oid(new_vid), s->inode.nr_copies, datalen, 0,
2428 s->cache_flags);
2430 if (ret < 0) {
2431 error_report("failed to read new inode info. %s", strerror(errno));
2432 goto cleanup;
2435 memcpy(&s->inode, inode, datalen);
2436 DPRINTF("s->inode: name %s snap_id %x oid %x\n",
2437 s->inode.name, s->inode.snap_id, s->inode.vdi_id);
2439 cleanup:
2440 g_free(inode);
2441 closesocket(fd);
2442 return ret;
2446 * We implement rollback(loadvm) operation to the specified snapshot by
2447 * 1) switch to the snapshot
2448 * 2) rely on sd_create_branch to delete working VDI and
2449 * 3) create a new working VDI based on the specified snapshot
2451 static int sd_snapshot_goto(BlockDriverState *bs, const char *snapshot_id)
2453 BDRVSheepdogState *s = bs->opaque;
2454 BDRVSheepdogState *old_s;
2455 char tag[SD_MAX_VDI_TAG_LEN];
2456 uint32_t snapid = 0;
2457 int ret = 0;
2459 old_s = g_new(BDRVSheepdogState, 1);
2461 memcpy(old_s, s, sizeof(BDRVSheepdogState));
2463 snapid = strtoul(snapshot_id, NULL, 10);
2464 if (snapid) {
2465 tag[0] = 0;
2466 } else {
2467 pstrcpy(tag, sizeof(tag), snapshot_id);
2470 ret = reload_inode(s, snapid, tag);
2471 if (ret) {
2472 goto out;
2475 ret = sd_create_branch(s);
2476 if (ret) {
2477 goto out;
2480 g_free(old_s);
2482 return 0;
2483 out:
2484 /* recover bdrv_sd_state */
2485 memcpy(s, old_s, sizeof(BDRVSheepdogState));
2486 g_free(old_s);
2488 error_report("failed to open. recover old bdrv_sd_state.");
2490 return ret;
2493 #define NR_BATCHED_DISCARD 128
2495 static bool remove_objects(BDRVSheepdogState *s)
2497 int fd, i = 0, nr_objs = 0;
2498 Error *local_err = NULL;
2499 int ret = 0;
2500 bool result = true;
2501 SheepdogInode *inode = &s->inode;
2503 fd = connect_to_sdog(s, &local_err);
2504 if (fd < 0) {
2505 error_report_err(local_err);
2506 return false;
2509 nr_objs = count_data_objs(inode);
2510 while (i < nr_objs) {
2511 int start_idx, nr_filled_idx;
2513 while (i < nr_objs && !inode->data_vdi_id[i]) {
2514 i++;
2516 start_idx = i;
2518 nr_filled_idx = 0;
2519 while (i < nr_objs && nr_filled_idx < NR_BATCHED_DISCARD) {
2520 if (inode->data_vdi_id[i]) {
2521 inode->data_vdi_id[i] = 0;
2522 nr_filled_idx++;
2525 i++;
2528 ret = write_object(fd, s->aio_context,
2529 (char *)&inode->data_vdi_id[start_idx],
2530 vid_to_vdi_oid(s->inode.vdi_id), inode->nr_copies,
2531 (i - start_idx) * sizeof(uint32_t),
2532 offsetof(struct SheepdogInode,
2533 data_vdi_id[start_idx]),
2534 false, s->cache_flags);
2535 if (ret < 0) {
2536 error_report("failed to discard snapshot inode.");
2537 result = false;
2538 goto out;
2542 out:
2543 closesocket(fd);
2544 return result;
2547 static int sd_snapshot_delete(BlockDriverState *bs,
2548 const char *snapshot_id,
2549 const char *name,
2550 Error **errp)
2552 uint32_t snap_id = 0;
2553 char snap_tag[SD_MAX_VDI_TAG_LEN];
2554 Error *local_err = NULL;
2555 int fd, ret;
2556 char buf[SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN];
2557 BDRVSheepdogState *s = bs->opaque;
2558 unsigned int wlen = SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN, rlen = 0;
2559 uint32_t vid;
2560 SheepdogVdiReq hdr = {
2561 .opcode = SD_OP_DEL_VDI,
2562 .data_length = wlen,
2563 .flags = SD_FLAG_CMD_WRITE,
2565 SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr;
2567 if (!remove_objects(s)) {
2568 return -1;
2571 memset(buf, 0, sizeof(buf));
2572 memset(snap_tag, 0, sizeof(snap_tag));
2573 pstrcpy(buf, SD_MAX_VDI_LEN, s->name);
2574 if (qemu_strtoul(snapshot_id, NULL, 10, (unsigned long *)&snap_id)) {
2575 return -1;
2578 if (snap_id) {
2579 hdr.snapid = snap_id;
2580 } else {
2581 pstrcpy(snap_tag, sizeof(snap_tag), snapshot_id);
2582 pstrcpy(buf + SD_MAX_VDI_LEN, SD_MAX_VDI_TAG_LEN, snap_tag);
2585 ret = find_vdi_name(s, s->name, snap_id, snap_tag, &vid, true,
2586 &local_err);
2587 if (ret) {
2588 return ret;
2591 fd = connect_to_sdog(s, &local_err);
2592 if (fd < 0) {
2593 error_report_err(local_err);
2594 return -1;
2597 ret = do_req(fd, s->aio_context, (SheepdogReq *)&hdr,
2598 buf, &wlen, &rlen);
2599 closesocket(fd);
2600 if (ret) {
2601 return ret;
2604 switch (rsp->result) {
2605 case SD_RES_NO_VDI:
2606 error_report("%s was already deleted", s->name);
2607 case SD_RES_SUCCESS:
2608 break;
2609 default:
2610 error_report("%s, %s", sd_strerror(rsp->result), s->name);
2611 return -1;
2614 return ret;
2617 static int sd_snapshot_list(BlockDriverState *bs, QEMUSnapshotInfo **psn_tab)
2619 Error *local_err = NULL;
2620 BDRVSheepdogState *s = bs->opaque;
2621 SheepdogReq req;
2622 int fd, nr = 1024, ret, max = BITS_TO_LONGS(SD_NR_VDIS) * sizeof(long);
2623 QEMUSnapshotInfo *sn_tab = NULL;
2624 unsigned wlen, rlen;
2625 int found = 0;
2626 static SheepdogInode inode;
2627 unsigned long *vdi_inuse;
2628 unsigned int start_nr;
2629 uint64_t hval;
2630 uint32_t vid;
2632 vdi_inuse = g_malloc(max);
2634 fd = connect_to_sdog(s, &local_err);
2635 if (fd < 0) {
2636 error_report_err(local_err);
2637 ret = fd;
2638 goto out;
2641 rlen = max;
2642 wlen = 0;
2644 memset(&req, 0, sizeof(req));
2646 req.opcode = SD_OP_READ_VDIS;
2647 req.data_length = max;
2649 ret = do_req(fd, s->aio_context, (SheepdogReq *)&req,
2650 vdi_inuse, &wlen, &rlen);
2652 closesocket(fd);
2653 if (ret) {
2654 goto out;
2657 sn_tab = g_new0(QEMUSnapshotInfo, nr);
2659 /* calculate a vdi id with hash function */
2660 hval = fnv_64a_buf(s->name, strlen(s->name), FNV1A_64_INIT);
2661 start_nr = hval & (SD_NR_VDIS - 1);
2663 fd = connect_to_sdog(s, &local_err);
2664 if (fd < 0) {
2665 error_report_err(local_err);
2666 ret = fd;
2667 goto out;
2670 for (vid = start_nr; found < nr; vid = (vid + 1) % SD_NR_VDIS) {
2671 if (!test_bit(vid, vdi_inuse)) {
2672 break;
2675 /* we don't need to read entire object */
2676 ret = read_object(fd, s->aio_context, (char *)&inode,
2677 vid_to_vdi_oid(vid),
2678 0, SD_INODE_SIZE - sizeof(inode.data_vdi_id), 0,
2679 s->cache_flags);
2681 if (ret) {
2682 continue;
2685 if (!strcmp(inode.name, s->name) && is_snapshot(&inode)) {
2686 sn_tab[found].date_sec = inode.snap_ctime >> 32;
2687 sn_tab[found].date_nsec = inode.snap_ctime & 0xffffffff;
2688 sn_tab[found].vm_state_size = inode.vm_state_size;
2689 sn_tab[found].vm_clock_nsec = inode.vm_clock_nsec;
2691 snprintf(sn_tab[found].id_str, sizeof(sn_tab[found].id_str),
2692 "%" PRIu32, inode.snap_id);
2693 pstrcpy(sn_tab[found].name,
2694 MIN(sizeof(sn_tab[found].name), sizeof(inode.tag)),
2695 inode.tag);
2696 found++;
2700 closesocket(fd);
2701 out:
2702 *psn_tab = sn_tab;
2704 g_free(vdi_inuse);
2706 if (ret < 0) {
2707 return ret;
2710 return found;
2713 static int do_load_save_vmstate(BDRVSheepdogState *s, uint8_t *data,
2714 int64_t pos, int size, int load)
2716 Error *local_err = NULL;
2717 bool create;
2718 int fd, ret = 0, remaining = size;
2719 unsigned int data_len;
2720 uint64_t vmstate_oid;
2721 uint64_t offset;
2722 uint32_t vdi_index;
2723 uint32_t vdi_id = load ? s->inode.parent_vdi_id : s->inode.vdi_id;
2724 uint32_t object_size = (UINT32_C(1) << s->inode.block_size_shift);
2726 fd = connect_to_sdog(s, &local_err);
2727 if (fd < 0) {
2728 error_report_err(local_err);
2729 return fd;
2732 while (remaining) {
2733 vdi_index = pos / object_size;
2734 offset = pos % object_size;
2736 data_len = MIN(remaining, object_size - offset);
2738 vmstate_oid = vid_to_vmstate_oid(vdi_id, vdi_index);
2740 create = (offset == 0);
2741 if (load) {
2742 ret = read_object(fd, s->aio_context, (char *)data, vmstate_oid,
2743 s->inode.nr_copies, data_len, offset,
2744 s->cache_flags);
2745 } else {
2746 ret = write_object(fd, s->aio_context, (char *)data, vmstate_oid,
2747 s->inode.nr_copies, data_len, offset, create,
2748 s->cache_flags);
2751 if (ret < 0) {
2752 error_report("failed to save vmstate %s", strerror(errno));
2753 goto cleanup;
2756 pos += data_len;
2757 data += data_len;
2758 remaining -= data_len;
2760 ret = size;
2761 cleanup:
2762 closesocket(fd);
2763 return ret;
2766 static int sd_save_vmstate(BlockDriverState *bs, QEMUIOVector *qiov,
2767 int64_t pos)
2769 BDRVSheepdogState *s = bs->opaque;
2770 void *buf;
2771 int ret;
2773 buf = qemu_blockalign(bs, qiov->size);
2774 qemu_iovec_to_buf(qiov, 0, buf, qiov->size);
2775 ret = do_load_save_vmstate(s, (uint8_t *) buf, pos, qiov->size, 0);
2776 qemu_vfree(buf);
2778 return ret;
2781 static int sd_load_vmstate(BlockDriverState *bs, uint8_t *data,
2782 int64_t pos, int size)
2784 BDRVSheepdogState *s = bs->opaque;
2786 return do_load_save_vmstate(s, data, pos, size, 1);
2790 static coroutine_fn int sd_co_discard(BlockDriverState *bs, int64_t sector_num,
2791 int nb_sectors)
2793 SheepdogAIOCB *acb;
2794 BDRVSheepdogState *s = bs->opaque;
2795 int ret;
2796 QEMUIOVector discard_iov;
2797 struct iovec iov;
2798 uint32_t zero = 0;
2800 if (!s->discard_supported) {
2801 return 0;
2804 memset(&discard_iov, 0, sizeof(discard_iov));
2805 memset(&iov, 0, sizeof(iov));
2806 iov.iov_base = &zero;
2807 iov.iov_len = sizeof(zero);
2808 discard_iov.iov = &iov;
2809 discard_iov.niov = 1;
2810 acb = sd_aio_setup(bs, &discard_iov, sector_num, nb_sectors);
2811 acb->aiocb_type = AIOCB_DISCARD_OBJ;
2812 acb->aio_done_func = sd_finish_aiocb;
2814 retry:
2815 if (check_overlapping_aiocb(s, acb)) {
2816 qemu_co_queue_wait(&s->overlapping_queue);
2817 goto retry;
2820 ret = sd_co_rw_vector(acb);
2821 if (ret <= 0) {
2822 QLIST_REMOVE(acb, aiocb_siblings);
2823 qemu_co_queue_restart_all(&s->overlapping_queue);
2824 qemu_aio_unref(acb);
2825 return ret;
2828 qemu_coroutine_yield();
2830 QLIST_REMOVE(acb, aiocb_siblings);
2831 qemu_co_queue_restart_all(&s->overlapping_queue);
2833 return acb->ret;
2836 static coroutine_fn int64_t
2837 sd_co_get_block_status(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2838 int *pnum, BlockDriverState **file)
2840 BDRVSheepdogState *s = bs->opaque;
2841 SheepdogInode *inode = &s->inode;
2842 uint32_t object_size = (UINT32_C(1) << inode->block_size_shift);
2843 uint64_t offset = sector_num * BDRV_SECTOR_SIZE;
2844 unsigned long start = offset / object_size,
2845 end = DIV_ROUND_UP((sector_num + nb_sectors) *
2846 BDRV_SECTOR_SIZE, object_size);
2847 unsigned long idx;
2848 int64_t ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
2850 for (idx = start; idx < end; idx++) {
2851 if (inode->data_vdi_id[idx] == 0) {
2852 break;
2855 if (idx == start) {
2856 /* Get the longest length of unallocated sectors */
2857 ret = 0;
2858 for (idx = start + 1; idx < end; idx++) {
2859 if (inode->data_vdi_id[idx] != 0) {
2860 break;
2865 *pnum = (idx - start) * object_size / BDRV_SECTOR_SIZE;
2866 if (*pnum > nb_sectors) {
2867 *pnum = nb_sectors;
2869 if (ret > 0 && ret & BDRV_BLOCK_OFFSET_VALID) {
2870 *file = bs;
2872 return ret;
2875 static int64_t sd_get_allocated_file_size(BlockDriverState *bs)
2877 BDRVSheepdogState *s = bs->opaque;
2878 SheepdogInode *inode = &s->inode;
2879 uint32_t object_size = (UINT32_C(1) << inode->block_size_shift);
2880 unsigned long i, last = DIV_ROUND_UP(inode->vdi_size, object_size);
2881 uint64_t size = 0;
2883 for (i = 0; i < last; i++) {
2884 if (inode->data_vdi_id[i] == 0) {
2885 continue;
2887 size += object_size;
2889 return size;
2892 static QemuOptsList sd_create_opts = {
2893 .name = "sheepdog-create-opts",
2894 .head = QTAILQ_HEAD_INITIALIZER(sd_create_opts.head),
2895 .desc = {
2897 .name = BLOCK_OPT_SIZE,
2898 .type = QEMU_OPT_SIZE,
2899 .help = "Virtual disk size"
2902 .name = BLOCK_OPT_BACKING_FILE,
2903 .type = QEMU_OPT_STRING,
2904 .help = "File name of a base image"
2907 .name = BLOCK_OPT_PREALLOC,
2908 .type = QEMU_OPT_STRING,
2909 .help = "Preallocation mode (allowed values: off, full)"
2912 .name = BLOCK_OPT_REDUNDANCY,
2913 .type = QEMU_OPT_STRING,
2914 .help = "Redundancy of the image"
2917 .name = BLOCK_OPT_OBJECT_SIZE,
2918 .type = QEMU_OPT_SIZE,
2919 .help = "Object size of the image"
2921 { /* end of list */ }
2925 static BlockDriver bdrv_sheepdog = {
2926 .format_name = "sheepdog",
2927 .protocol_name = "sheepdog",
2928 .instance_size = sizeof(BDRVSheepdogState),
2929 .bdrv_needs_filename = true,
2930 .bdrv_file_open = sd_open,
2931 .bdrv_reopen_prepare = sd_reopen_prepare,
2932 .bdrv_reopen_commit = sd_reopen_commit,
2933 .bdrv_reopen_abort = sd_reopen_abort,
2934 .bdrv_close = sd_close,
2935 .bdrv_create = sd_create,
2936 .bdrv_has_zero_init = bdrv_has_zero_init_1,
2937 .bdrv_getlength = sd_getlength,
2938 .bdrv_get_allocated_file_size = sd_get_allocated_file_size,
2939 .bdrv_truncate = sd_truncate,
2941 .bdrv_co_readv = sd_co_readv,
2942 .bdrv_co_writev = sd_co_writev,
2943 .bdrv_co_flush_to_disk = sd_co_flush_to_disk,
2944 .bdrv_co_discard = sd_co_discard,
2945 .bdrv_co_get_block_status = sd_co_get_block_status,
2947 .bdrv_snapshot_create = sd_snapshot_create,
2948 .bdrv_snapshot_goto = sd_snapshot_goto,
2949 .bdrv_snapshot_delete = sd_snapshot_delete,
2950 .bdrv_snapshot_list = sd_snapshot_list,
2952 .bdrv_save_vmstate = sd_save_vmstate,
2953 .bdrv_load_vmstate = sd_load_vmstate,
2955 .bdrv_detach_aio_context = sd_detach_aio_context,
2956 .bdrv_attach_aio_context = sd_attach_aio_context,
2958 .create_opts = &sd_create_opts,
2961 static BlockDriver bdrv_sheepdog_tcp = {
2962 .format_name = "sheepdog",
2963 .protocol_name = "sheepdog+tcp",
2964 .instance_size = sizeof(BDRVSheepdogState),
2965 .bdrv_needs_filename = true,
2966 .bdrv_file_open = sd_open,
2967 .bdrv_reopen_prepare = sd_reopen_prepare,
2968 .bdrv_reopen_commit = sd_reopen_commit,
2969 .bdrv_reopen_abort = sd_reopen_abort,
2970 .bdrv_close = sd_close,
2971 .bdrv_create = sd_create,
2972 .bdrv_has_zero_init = bdrv_has_zero_init_1,
2973 .bdrv_getlength = sd_getlength,
2974 .bdrv_get_allocated_file_size = sd_get_allocated_file_size,
2975 .bdrv_truncate = sd_truncate,
2977 .bdrv_co_readv = sd_co_readv,
2978 .bdrv_co_writev = sd_co_writev,
2979 .bdrv_co_flush_to_disk = sd_co_flush_to_disk,
2980 .bdrv_co_discard = sd_co_discard,
2981 .bdrv_co_get_block_status = sd_co_get_block_status,
2983 .bdrv_snapshot_create = sd_snapshot_create,
2984 .bdrv_snapshot_goto = sd_snapshot_goto,
2985 .bdrv_snapshot_delete = sd_snapshot_delete,
2986 .bdrv_snapshot_list = sd_snapshot_list,
2988 .bdrv_save_vmstate = sd_save_vmstate,
2989 .bdrv_load_vmstate = sd_load_vmstate,
2991 .bdrv_detach_aio_context = sd_detach_aio_context,
2992 .bdrv_attach_aio_context = sd_attach_aio_context,
2994 .create_opts = &sd_create_opts,
2997 static BlockDriver bdrv_sheepdog_unix = {
2998 .format_name = "sheepdog",
2999 .protocol_name = "sheepdog+unix",
3000 .instance_size = sizeof(BDRVSheepdogState),
3001 .bdrv_needs_filename = true,
3002 .bdrv_file_open = sd_open,
3003 .bdrv_reopen_prepare = sd_reopen_prepare,
3004 .bdrv_reopen_commit = sd_reopen_commit,
3005 .bdrv_reopen_abort = sd_reopen_abort,
3006 .bdrv_close = sd_close,
3007 .bdrv_create = sd_create,
3008 .bdrv_has_zero_init = bdrv_has_zero_init_1,
3009 .bdrv_getlength = sd_getlength,
3010 .bdrv_get_allocated_file_size = sd_get_allocated_file_size,
3011 .bdrv_truncate = sd_truncate,
3013 .bdrv_co_readv = sd_co_readv,
3014 .bdrv_co_writev = sd_co_writev,
3015 .bdrv_co_flush_to_disk = sd_co_flush_to_disk,
3016 .bdrv_co_discard = sd_co_discard,
3017 .bdrv_co_get_block_status = sd_co_get_block_status,
3019 .bdrv_snapshot_create = sd_snapshot_create,
3020 .bdrv_snapshot_goto = sd_snapshot_goto,
3021 .bdrv_snapshot_delete = sd_snapshot_delete,
3022 .bdrv_snapshot_list = sd_snapshot_list,
3024 .bdrv_save_vmstate = sd_save_vmstate,
3025 .bdrv_load_vmstate = sd_load_vmstate,
3027 .bdrv_detach_aio_context = sd_detach_aio_context,
3028 .bdrv_attach_aio_context = sd_attach_aio_context,
3030 .create_opts = &sd_create_opts,
3033 static void bdrv_sheepdog_init(void)
3035 bdrv_register(&bdrv_sheepdog);
3036 bdrv_register(&bdrv_sheepdog_tcp);
3037 bdrv_register(&bdrv_sheepdog_unix);
3039 block_init(bdrv_sheepdog_init);