hw/acpi/ich9: Enable ACPI PCI hot-plug
[qemu/kevin.git] / util / qemu-thread-win32.c
blob52eb19f3511a85b04f77acd290b32193b2125413
1 /*
2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qemu-common.h"
16 #include "qemu/thread.h"
17 #include "qemu/notify.h"
18 #include "qemu-thread-common.h"
19 #include <process.h>
21 static bool name_threads;
23 void qemu_thread_naming(bool enable)
25 /* But note we don't actually name them on Windows yet */
26 name_threads = enable;
28 fprintf(stderr, "qemu: thread naming not supported on this host\n");
31 static void error_exit(int err, const char *msg)
33 char *pstr;
35 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
36 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
37 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
38 LocalFree(pstr);
39 abort();
42 void qemu_mutex_init(QemuMutex *mutex)
44 InitializeSRWLock(&mutex->lock);
45 qemu_mutex_post_init(mutex);
48 void qemu_mutex_destroy(QemuMutex *mutex)
50 assert(mutex->initialized);
51 mutex->initialized = false;
52 InitializeSRWLock(&mutex->lock);
55 void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
57 assert(mutex->initialized);
58 qemu_mutex_pre_lock(mutex, file, line);
59 AcquireSRWLockExclusive(&mutex->lock);
60 qemu_mutex_post_lock(mutex, file, line);
63 int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
65 int owned;
67 assert(mutex->initialized);
68 owned = TryAcquireSRWLockExclusive(&mutex->lock);
69 if (owned) {
70 qemu_mutex_post_lock(mutex, file, line);
71 return 0;
73 return -EBUSY;
76 void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
78 assert(mutex->initialized);
79 qemu_mutex_pre_unlock(mutex, file, line);
80 ReleaseSRWLockExclusive(&mutex->lock);
83 void qemu_rec_mutex_init(QemuRecMutex *mutex)
85 InitializeCriticalSection(&mutex->lock);
86 mutex->initialized = true;
89 void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
91 assert(mutex->initialized);
92 mutex->initialized = false;
93 DeleteCriticalSection(&mutex->lock);
96 void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line)
98 assert(mutex->initialized);
99 EnterCriticalSection(&mutex->lock);
102 int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line)
104 assert(mutex->initialized);
105 return !TryEnterCriticalSection(&mutex->lock);
108 void qemu_rec_mutex_unlock_impl(QemuRecMutex *mutex, const char *file, int line)
110 assert(mutex->initialized);
111 LeaveCriticalSection(&mutex->lock);
114 void qemu_cond_init(QemuCond *cond)
116 memset(cond, 0, sizeof(*cond));
117 InitializeConditionVariable(&cond->var);
118 cond->initialized = true;
121 void qemu_cond_destroy(QemuCond *cond)
123 assert(cond->initialized);
124 cond->initialized = false;
125 InitializeConditionVariable(&cond->var);
128 void qemu_cond_signal(QemuCond *cond)
130 assert(cond->initialized);
131 WakeConditionVariable(&cond->var);
134 void qemu_cond_broadcast(QemuCond *cond)
136 assert(cond->initialized);
137 WakeAllConditionVariable(&cond->var);
140 void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
142 assert(cond->initialized);
143 qemu_mutex_pre_unlock(mutex, file, line);
144 SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
145 qemu_mutex_post_lock(mutex, file, line);
148 bool qemu_cond_timedwait_impl(QemuCond *cond, QemuMutex *mutex, int ms,
149 const char *file, const int line)
151 int rc = 0;
153 assert(cond->initialized);
154 trace_qemu_mutex_unlock(mutex, file, line);
155 if (!SleepConditionVariableSRW(&cond->var, &mutex->lock, ms, 0)) {
156 rc = GetLastError();
158 trace_qemu_mutex_locked(mutex, file, line);
159 if (rc && rc != ERROR_TIMEOUT) {
160 error_exit(rc, __func__);
162 return rc != ERROR_TIMEOUT;
165 void qemu_sem_init(QemuSemaphore *sem, int init)
167 /* Manual reset. */
168 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
169 sem->initialized = true;
172 void qemu_sem_destroy(QemuSemaphore *sem)
174 assert(sem->initialized);
175 sem->initialized = false;
176 CloseHandle(sem->sema);
179 void qemu_sem_post(QemuSemaphore *sem)
181 assert(sem->initialized);
182 ReleaseSemaphore(sem->sema, 1, NULL);
185 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
187 int rc;
189 assert(sem->initialized);
190 rc = WaitForSingleObject(sem->sema, ms);
191 if (rc == WAIT_OBJECT_0) {
192 return 0;
194 if (rc != WAIT_TIMEOUT) {
195 error_exit(GetLastError(), __func__);
197 return -1;
200 void qemu_sem_wait(QemuSemaphore *sem)
202 assert(sem->initialized);
203 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
204 error_exit(GetLastError(), __func__);
208 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
209 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
210 * sequence. Such a sequence is, indeed, how QemuEvents are used by
211 * RCU and other subsystems!
213 * Valid transitions:
214 * - free->set, when setting the event
215 * - busy->set, when setting the event, followed by SetEvent
216 * - set->free, when resetting the event
217 * - free->busy, when waiting
219 * set->busy does not happen (it can be observed from the outside but
220 * it really is set->free->busy).
222 * busy->free provably cannot happen; to enforce it, the set->free transition
223 * is done with an OR, which becomes a no-op if the event has concurrently
224 * transitioned to free or busy (and is faster than cmpxchg).
227 #define EV_SET 0
228 #define EV_FREE 1
229 #define EV_BUSY -1
231 void qemu_event_init(QemuEvent *ev, bool init)
233 /* Manual reset. */
234 ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
235 ev->value = (init ? EV_SET : EV_FREE);
236 ev->initialized = true;
239 void qemu_event_destroy(QemuEvent *ev)
241 assert(ev->initialized);
242 ev->initialized = false;
243 CloseHandle(ev->event);
246 void qemu_event_set(QemuEvent *ev)
248 assert(ev->initialized);
249 /* qemu_event_set has release semantics, but because it *loads*
250 * ev->value we need a full memory barrier here.
252 smp_mb();
253 if (qatomic_read(&ev->value) != EV_SET) {
254 if (qatomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
255 /* There were waiters, wake them up. */
256 SetEvent(ev->event);
261 void qemu_event_reset(QemuEvent *ev)
263 unsigned value;
265 assert(ev->initialized);
266 value = qatomic_read(&ev->value);
267 smp_mb_acquire();
268 if (value == EV_SET) {
269 /* If there was a concurrent reset (or even reset+wait),
270 * do nothing. Otherwise change EV_SET->EV_FREE.
272 qatomic_or(&ev->value, EV_FREE);
276 void qemu_event_wait(QemuEvent *ev)
278 unsigned value;
280 assert(ev->initialized);
281 value = qatomic_read(&ev->value);
282 smp_mb_acquire();
283 if (value != EV_SET) {
284 if (value == EV_FREE) {
285 /* qemu_event_set is not yet going to call SetEvent, but we are
286 * going to do another check for EV_SET below when setting EV_BUSY.
287 * At that point it is safe to call WaitForSingleObject.
289 ResetEvent(ev->event);
291 /* Tell qemu_event_set that there are waiters. No need to retry
292 * because there cannot be a concurrent busy->free transition.
293 * After the CAS, the event will be either set or busy.
295 if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
296 value = EV_SET;
297 } else {
298 value = EV_BUSY;
301 if (value == EV_BUSY) {
302 WaitForSingleObject(ev->event, INFINITE);
307 struct QemuThreadData {
308 /* Passed to win32_start_routine. */
309 void *(*start_routine)(void *);
310 void *arg;
311 short mode;
312 NotifierList exit;
314 /* Only used for joinable threads. */
315 bool exited;
316 void *ret;
317 CRITICAL_SECTION cs;
320 static bool atexit_registered;
321 static NotifierList main_thread_exit;
323 static __thread QemuThreadData *qemu_thread_data;
325 static void run_main_thread_exit(void)
327 notifier_list_notify(&main_thread_exit, NULL);
330 void qemu_thread_atexit_add(Notifier *notifier)
332 if (!qemu_thread_data) {
333 if (!atexit_registered) {
334 atexit_registered = true;
335 atexit(run_main_thread_exit);
337 notifier_list_add(&main_thread_exit, notifier);
338 } else {
339 notifier_list_add(&qemu_thread_data->exit, notifier);
343 void qemu_thread_atexit_remove(Notifier *notifier)
345 notifier_remove(notifier);
348 static unsigned __stdcall win32_start_routine(void *arg)
350 QemuThreadData *data = (QemuThreadData *) arg;
351 void *(*start_routine)(void *) = data->start_routine;
352 void *thread_arg = data->arg;
354 qemu_thread_data = data;
355 qemu_thread_exit(start_routine(thread_arg));
356 abort();
359 void qemu_thread_exit(void *arg)
361 QemuThreadData *data = qemu_thread_data;
363 notifier_list_notify(&data->exit, NULL);
364 if (data->mode == QEMU_THREAD_JOINABLE) {
365 data->ret = arg;
366 EnterCriticalSection(&data->cs);
367 data->exited = true;
368 LeaveCriticalSection(&data->cs);
369 } else {
370 g_free(data);
372 _endthreadex(0);
375 void *qemu_thread_join(QemuThread *thread)
377 QemuThreadData *data;
378 void *ret;
379 HANDLE handle;
381 data = thread->data;
382 if (data->mode == QEMU_THREAD_DETACHED) {
383 return NULL;
387 * Because multiple copies of the QemuThread can exist via
388 * qemu_thread_get_self, we need to store a value that cannot
389 * leak there. The simplest, non racy way is to store the TID,
390 * discard the handle that _beginthreadex gives back, and
391 * get another copy of the handle here.
393 handle = qemu_thread_get_handle(thread);
394 if (handle) {
395 WaitForSingleObject(handle, INFINITE);
396 CloseHandle(handle);
398 ret = data->ret;
399 DeleteCriticalSection(&data->cs);
400 g_free(data);
401 return ret;
404 void qemu_thread_create(QemuThread *thread, const char *name,
405 void *(*start_routine)(void *),
406 void *arg, int mode)
408 HANDLE hThread;
409 struct QemuThreadData *data;
411 data = g_malloc(sizeof *data);
412 data->start_routine = start_routine;
413 data->arg = arg;
414 data->mode = mode;
415 data->exited = false;
416 notifier_list_init(&data->exit);
418 if (data->mode != QEMU_THREAD_DETACHED) {
419 InitializeCriticalSection(&data->cs);
422 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
423 data, 0, &thread->tid);
424 if (!hThread) {
425 error_exit(GetLastError(), __func__);
427 CloseHandle(hThread);
428 thread->data = data;
431 void qemu_thread_get_self(QemuThread *thread)
433 thread->data = qemu_thread_data;
434 thread->tid = GetCurrentThreadId();
437 HANDLE qemu_thread_get_handle(QemuThread *thread)
439 QemuThreadData *data;
440 HANDLE handle;
442 data = thread->data;
443 if (data->mode == QEMU_THREAD_DETACHED) {
444 return NULL;
447 EnterCriticalSection(&data->cs);
448 if (!data->exited) {
449 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
450 THREAD_SET_CONTEXT, FALSE, thread->tid);
451 } else {
452 handle = NULL;
454 LeaveCriticalSection(&data->cs);
455 return handle;
458 bool qemu_thread_is_self(QemuThread *thread)
460 return GetCurrentThreadId() == thread->tid;