2 #include "exec/gdbstub.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/arch_init.h"
6 #include "sysemu/sysemu.h"
7 #include "qemu/bitops.h"
9 #ifndef CONFIG_USER_ONLY
10 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
11 int access_type
, int is_user
,
12 hwaddr
*phys_ptr
, int *prot
,
13 target_ulong
*page_size
);
16 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
20 /* VFP data registers are always little-endian. */
21 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
23 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
26 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
27 /* Aliases for Q regs. */
30 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
31 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
35 switch (reg
- nregs
) {
36 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
37 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
38 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
43 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
47 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
49 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
52 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
55 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
56 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
60 switch (reg
- nregs
) {
61 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
62 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
63 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
68 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
72 /* 128 bit FP register */
73 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
74 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
78 stl_p(buf
, vfp_get_fpsr(env
));
82 stl_p(buf
, vfp_get_fpcr(env
));
89 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
93 /* 128 bit FP register */
94 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
95 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
99 vfp_set_fpsr(env
, ldl_p(buf
));
103 vfp_set_fpcr(env
, ldl_p(buf
));
110 static int raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
113 if (ri
->type
& ARM_CP_64BIT
) {
114 *value
= CPREG_FIELD64(env
, ri
);
116 *value
= CPREG_FIELD32(env
, ri
);
121 static int raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
124 if (ri
->type
& ARM_CP_64BIT
) {
125 CPREG_FIELD64(env
, ri
) = value
;
127 CPREG_FIELD32(env
, ri
) = value
;
132 static bool read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
135 /* Raw read of a coprocessor register (as needed for migration, etc)
136 * return true on success, false if the read is impossible for some reason.
138 if (ri
->type
& ARM_CP_CONST
) {
140 } else if (ri
->raw_readfn
) {
141 return (ri
->raw_readfn(env
, ri
, v
) == 0);
142 } else if (ri
->readfn
) {
143 return (ri
->readfn(env
, ri
, v
) == 0);
145 raw_read(env
, ri
, v
);
150 static bool write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
153 /* Raw write of a coprocessor register (as needed for migration, etc).
154 * Return true on success, false if the write is impossible for some reason.
155 * Note that constant registers are treated as write-ignored; the
156 * caller should check for success by whether a readback gives the
159 if (ri
->type
& ARM_CP_CONST
) {
161 } else if (ri
->raw_writefn
) {
162 return (ri
->raw_writefn(env
, ri
, v
) == 0);
163 } else if (ri
->writefn
) {
164 return (ri
->writefn(env
, ri
, v
) == 0);
166 raw_write(env
, ri
, v
);
171 bool write_cpustate_to_list(ARMCPU
*cpu
)
173 /* Write the coprocessor state from cpu->env to the (index,value) list. */
177 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
178 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
179 const ARMCPRegInfo
*ri
;
181 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
186 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
189 if (!read_raw_cp_reg(&cpu
->env
, ri
, &v
)) {
193 cpu
->cpreg_values
[i
] = v
;
198 bool write_list_to_cpustate(ARMCPU
*cpu
)
203 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
204 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
205 uint64_t v
= cpu
->cpreg_values
[i
];
207 const ARMCPRegInfo
*ri
;
209 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
214 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
217 /* Write value and confirm it reads back as written
218 * (to catch read-only registers and partially read-only
219 * registers where the incoming migration value doesn't match)
221 if (!write_raw_cp_reg(&cpu
->env
, ri
, v
) ||
222 !read_raw_cp_reg(&cpu
->env
, ri
, &readback
) ||
230 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
232 ARMCPU
*cpu
= opaque
;
234 const ARMCPRegInfo
*ri
;
236 regidx
= *(uint32_t *)key
;
237 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
239 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
240 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
241 /* The value array need not be initialized at this point */
242 cpu
->cpreg_array_len
++;
246 static void count_cpreg(gpointer key
, gpointer opaque
)
248 ARMCPU
*cpu
= opaque
;
250 const ARMCPRegInfo
*ri
;
252 regidx
= *(uint32_t *)key
;
253 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
255 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
256 cpu
->cpreg_array_len
++;
260 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
262 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
263 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
274 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
276 GList
**plist
= udata
;
278 *plist
= g_list_prepend(*plist
, key
);
281 void init_cpreg_list(ARMCPU
*cpu
)
283 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
284 * Note that we require cpreg_tuples[] to be sorted by key ID.
289 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
291 keys
= g_list_sort(keys
, cpreg_key_compare
);
293 cpu
->cpreg_array_len
= 0;
295 g_list_foreach(keys
, count_cpreg
, cpu
);
297 arraylen
= cpu
->cpreg_array_len
;
298 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
299 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
300 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
301 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
302 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
303 cpu
->cpreg_array_len
= 0;
305 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
307 assert(cpu
->cpreg_array_len
== arraylen
);
312 static int dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
314 env
->cp15
.c3
= value
;
315 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
319 static int fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
321 if (env
->cp15
.c13_fcse
!= value
) {
322 /* Unlike real hardware the qemu TLB uses virtual addresses,
323 * not modified virtual addresses, so this causes a TLB flush.
326 env
->cp15
.c13_fcse
= value
;
330 static int contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
333 if (env
->cp15
.c13_context
!= value
&& !arm_feature(env
, ARM_FEATURE_MPU
)) {
334 /* For VMSA (when not using the LPAE long descriptor page table
335 * format) this register includes the ASID, so do a TLB flush.
336 * For PMSA it is purely a process ID and no action is needed.
340 env
->cp15
.c13_context
= value
;
344 static int tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
347 /* Invalidate all (TLBIALL) */
352 static int tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
355 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
356 tlb_flush_page(env
, value
& TARGET_PAGE_MASK
);
360 static int tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
363 /* Invalidate by ASID (TLBIASID) */
364 tlb_flush(env
, value
== 0);
368 static int tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
371 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
372 tlb_flush_page(env
, value
& TARGET_PAGE_MASK
);
376 static const ARMCPRegInfo cp_reginfo
[] = {
377 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
378 * version" bits will read as a reserved value, which should cause
379 * Linux to not try to use the debug hardware.
381 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
382 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
383 /* MMU Domain access control / MPU write buffer control */
384 { .name
= "DACR", .cp
= 15,
385 .crn
= 3, .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
386 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
387 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
388 { .name
= "FCSEIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 0,
389 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
390 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
391 { .name
= "CONTEXTIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 1,
392 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_context
),
393 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
394 /* ??? This covers not just the impdef TLB lockdown registers but also
395 * some v7VMSA registers relating to TEX remap, so it is overly broad.
397 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
398 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
399 /* MMU TLB control. Note that the wildcarding means we cover not just
400 * the unified TLB ops but also the dside/iside/inner-shareable variants.
402 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
403 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
404 .type
= ARM_CP_NO_MIGRATE
},
405 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
406 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
407 .type
= ARM_CP_NO_MIGRATE
},
408 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
409 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
410 .type
= ARM_CP_NO_MIGRATE
},
411 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
412 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
413 .type
= ARM_CP_NO_MIGRATE
},
414 /* Cache maintenance ops; some of this space may be overridden later. */
415 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
416 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
417 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
421 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
422 /* Not all pre-v6 cores implemented this WFI, so this is slightly
425 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
426 .access
= PL1_W
, .type
= ARM_CP_WFI
},
430 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
431 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
432 * is UNPREDICTABLE; we choose to NOP as most implementations do).
434 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
435 .access
= PL1_W
, .type
= ARM_CP_WFI
},
436 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
437 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
438 * OMAPCP will override this space.
440 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
441 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
443 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
444 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
446 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
447 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
448 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
453 static int cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
455 if (env
->cp15
.c1_coproc
!= value
) {
456 env
->cp15
.c1_coproc
= value
;
457 /* ??? Is this safe when called from within a TB? */
463 static const ARMCPRegInfo v6_cp_reginfo
[] = {
464 /* prefetch by MVA in v6, NOP in v7 */
465 { .name
= "MVA_prefetch",
466 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
467 .access
= PL1_W
, .type
= ARM_CP_NOP
},
468 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
469 .access
= PL0_W
, .type
= ARM_CP_NOP
},
470 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
471 .access
= PL0_W
, .type
= ARM_CP_NOP
},
472 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
473 .access
= PL0_W
, .type
= ARM_CP_NOP
},
474 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
475 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_insn
),
477 /* Watchpoint Fault Address Register : should actually only be present
478 * for 1136, 1176, 11MPCore.
480 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
481 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
482 { .name
= "CPACR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
483 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
484 .resetvalue
= 0, .writefn
= cpacr_write
},
489 static int pmreg_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
492 /* Generic performance monitor register read function for where
493 * user access may be allowed by PMUSERENR.
495 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
498 *value
= CPREG_FIELD32(env
, ri
);
502 static int pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
505 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
508 /* only the DP, X, D and E bits are writable */
509 env
->cp15
.c9_pmcr
&= ~0x39;
510 env
->cp15
.c9_pmcr
|= (value
& 0x39);
514 static int pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
517 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
521 env
->cp15
.c9_pmcnten
|= value
;
525 static int pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
528 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
532 env
->cp15
.c9_pmcnten
&= ~value
;
536 static int pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
539 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
542 env
->cp15
.c9_pmovsr
&= ~value
;
546 static int pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
549 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
552 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
556 static int pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
559 env
->cp15
.c9_pmuserenr
= value
& 1;
563 static int pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
566 /* We have no event counters so only the C bit can be changed */
568 env
->cp15
.c9_pminten
|= value
;
572 static int pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
576 env
->cp15
.c9_pminten
&= ~value
;
580 static int vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
583 env
->cp15
.c12_vbar
= value
& ~0x1Ful
;
587 static int ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
590 ARMCPU
*cpu
= arm_env_get_cpu(env
);
591 *value
= cpu
->ccsidr
[env
->cp15
.c0_cssel
];
595 static int csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
598 env
->cp15
.c0_cssel
= value
& 0xf;
602 static const ARMCPRegInfo v7_cp_reginfo
[] = {
603 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
606 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
607 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
608 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
609 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
610 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
611 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
612 .access
= PL1_W
, .type
= ARM_CP_NOP
},
613 /* Performance monitors are implementation defined in v7,
614 * but with an ARM recommended set of registers, which we
615 * follow (although we don't actually implement any counters)
617 * Performance registers fall into three categories:
618 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
619 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
620 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
621 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
622 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
624 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
625 .access
= PL0_RW
, .resetvalue
= 0,
626 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
627 .readfn
= pmreg_read
, .writefn
= pmcntenset_write
,
628 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
629 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
630 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
631 .readfn
= pmreg_read
, .writefn
= pmcntenclr_write
,
632 .type
= ARM_CP_NO_MIGRATE
},
633 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
634 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
635 .readfn
= pmreg_read
, .writefn
= pmovsr_write
,
636 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
637 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
640 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
641 .access
= PL0_W
, .type
= ARM_CP_NOP
},
642 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
643 * We choose to RAZ/WI. XXX should respect PMUSERENR.
645 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
646 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
647 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
648 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
649 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
650 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
652 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
653 .readfn
= pmreg_read
, .writefn
= pmxevtyper_write
,
654 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
655 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
656 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
657 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
658 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
659 .access
= PL0_R
| PL1_RW
,
660 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
662 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
663 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
665 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
667 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
668 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
669 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
670 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
671 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
672 { .name
= "VBAR", .cp
= 15, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
673 .access
= PL1_RW
, .writefn
= vbar_write
,
674 .fieldoffset
= offsetof(CPUARMState
, cp15
.c12_vbar
),
676 { .name
= "SCR", .cp
= 15, .crn
= 1, .crm
= 1, .opc1
= 0, .opc2
= 0,
677 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_scr
),
679 { .name
= "CCSIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
680 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_MIGRATE
},
681 { .name
= "CSSELR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
682 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cssel
),
683 .writefn
= csselr_write
, .resetvalue
= 0 },
684 /* Auxiliary ID register: this actually has an IMPDEF value but for now
685 * just RAZ for all cores:
687 { .name
= "AIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 7,
688 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
692 static int teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
699 static int teehbr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
702 /* This is a helper function because the user access rights
703 * depend on the value of the TEECR.
705 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
708 *value
= env
->teehbr
;
712 static int teehbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
715 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
722 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
723 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
724 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
726 .writefn
= teecr_write
},
727 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
728 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
729 .resetvalue
= 0, .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
730 .readfn
= teehbr_read
, .writefn
= teehbr_write
},
734 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
735 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
736 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
738 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el0
), .resetvalue
= 0 },
739 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
741 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidr_el0
),
742 .resetfn
= arm_cp_reset_ignore
},
743 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
744 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
745 .access
= PL0_R
|PL1_W
,
746 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el0
), .resetvalue
= 0 },
747 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
748 .access
= PL0_R
|PL1_W
,
749 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidrro_el0
),
750 .resetfn
= arm_cp_reset_ignore
},
751 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
752 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
754 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el1
), .resetvalue
= 0 },
758 #ifndef CONFIG_USER_ONLY
760 static uint64_t gt_get_countervalue(CPUARMState
*env
)
762 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
765 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
767 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
770 /* Timer enabled: calculate and set current ISTATUS, irq, and
771 * reset timer to when ISTATUS next has to change
773 uint64_t count
= gt_get_countervalue(&cpu
->env
);
774 /* Note that this must be unsigned 64 bit arithmetic: */
775 int istatus
= count
>= gt
->cval
;
778 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
779 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
780 (istatus
&& !(gt
->ctl
& 2)));
782 /* Next transition is when count rolls back over to zero */
783 nexttick
= UINT64_MAX
;
785 /* Next transition is when we hit cval */
788 /* Note that the desired next expiry time might be beyond the
789 * signed-64-bit range of a QEMUTimer -- in this case we just
790 * set the timer for as far in the future as possible. When the
791 * timer expires we will reset the timer for any remaining period.
793 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
794 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
796 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
798 /* Timer disabled: ISTATUS and timer output always clear */
800 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
801 timer_del(cpu
->gt_timer
[timeridx
]);
805 static int gt_cntfrq_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
808 /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
809 if (arm_current_pl(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
812 *value
= env
->cp15
.c14_cntfrq
;
816 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
818 ARMCPU
*cpu
= arm_env_get_cpu(env
);
819 int timeridx
= ri
->opc1
& 1;
821 timer_del(cpu
->gt_timer
[timeridx
]);
824 static int gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
827 int timeridx
= ri
->opc1
& 1;
829 if (arm_current_pl(env
) == 0 &&
830 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
833 *value
= gt_get_countervalue(env
);
837 static int gt_cval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
840 int timeridx
= ri
->opc1
& 1;
842 if (arm_current_pl(env
) == 0 &&
843 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
846 *value
= env
->cp15
.c14_timer
[timeridx
].cval
;
850 static int gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
853 int timeridx
= ri
->opc1
& 1;
855 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
856 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
859 static int gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
862 int timeridx
= ri
->crm
& 1;
864 if (arm_current_pl(env
) == 0 &&
865 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
868 *value
= (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
869 gt_get_countervalue(env
));
873 static int gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
876 int timeridx
= ri
->crm
& 1;
878 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
879 + sextract64(value
, 0, 32);
880 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
884 static int gt_ctl_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
887 int timeridx
= ri
->crm
& 1;
889 if (arm_current_pl(env
) == 0 &&
890 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
893 *value
= env
->cp15
.c14_timer
[timeridx
].ctl
;
897 static int gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
900 ARMCPU
*cpu
= arm_env_get_cpu(env
);
901 int timeridx
= ri
->crm
& 1;
902 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
904 env
->cp15
.c14_timer
[timeridx
].ctl
= value
& 3;
905 if ((oldval
^ value
) & 1) {
907 gt_recalc_timer(cpu
, timeridx
);
908 } else if ((oldval
& value
) & 2) {
909 /* IMASK toggled: don't need to recalculate,
910 * just set the interrupt line based on ISTATUS
912 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
913 (oldval
& 4) && (value
& 2));
918 void arm_gt_ptimer_cb(void *opaque
)
920 ARMCPU
*cpu
= opaque
;
922 gt_recalc_timer(cpu
, GTIMER_PHYS
);
925 void arm_gt_vtimer_cb(void *opaque
)
927 ARMCPU
*cpu
= opaque
;
929 gt_recalc_timer(cpu
, GTIMER_VIRT
);
932 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
933 /* Note that CNTFRQ is purely reads-as-written for the benefit
934 * of software; writing it doesn't actually change the timer frequency.
935 * Our reset value matches the fixed frequency we implement the timer at.
937 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
938 .access
= PL1_RW
| PL0_R
,
939 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
940 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
941 .readfn
= gt_cntfrq_read
, .raw_readfn
= raw_read
,
943 /* overall control: mostly access permissions */
944 { .name
= "CNTKCTL", .cp
= 15, .crn
= 14, .crm
= 1, .opc1
= 0, .opc2
= 0,
946 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
949 /* per-timer control */
950 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
951 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
952 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
954 .readfn
= gt_ctl_read
, .writefn
= gt_ctl_write
,
955 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
957 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
958 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
959 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
961 .readfn
= gt_ctl_read
, .writefn
= gt_ctl_write
,
962 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
964 /* TimerValue views: a 32 bit downcounting view of the underlying state */
965 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
966 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
967 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
969 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
970 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
971 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
973 /* The counter itself */
974 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
975 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
976 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
978 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
979 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
980 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
982 /* Comparison value, indicating when the timer goes off */
983 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
984 .access
= PL1_RW
| PL0_R
,
985 .type
= ARM_CP_64BIT
| ARM_CP_IO
,
986 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
988 .readfn
= gt_cval_read
, .writefn
= gt_cval_write
,
989 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
991 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
992 .access
= PL1_RW
| PL0_R
,
993 .type
= ARM_CP_64BIT
| ARM_CP_IO
,
994 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
996 .readfn
= gt_cval_read
, .writefn
= gt_cval_write
,
997 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
1003 /* In user-mode none of the generic timer registers are accessible,
1004 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1005 * so instead just don't register any of them.
1007 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1013 static int par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1015 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1016 env
->cp15
.c7_par
= value
;
1017 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1018 env
->cp15
.c7_par
= value
& 0xfffff6ff;
1020 env
->cp15
.c7_par
= value
& 0xfffff1ff;
1025 #ifndef CONFIG_USER_ONLY
1026 /* get_phys_addr() isn't present for user-mode-only targets */
1028 /* Return true if extended addresses are enabled, ie this is an
1029 * LPAE implementation and we are using the long-descriptor translation
1030 * table format because the TTBCR EAE bit is set.
1032 static inline bool extended_addresses_enabled(CPUARMState
*env
)
1034 return arm_feature(env
, ARM_FEATURE_LPAE
)
1035 && (env
->cp15
.c2_control
& (1U << 31));
1038 static int ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1041 target_ulong page_size
;
1043 int ret
, is_user
= ri
->opc2
& 2;
1044 int access_type
= ri
->opc2
& 1;
1047 /* Other states are only available with TrustZone */
1050 ret
= get_phys_addr(env
, value
, access_type
, is_user
,
1051 &phys_addr
, &prot
, &page_size
);
1052 if (extended_addresses_enabled(env
)) {
1053 /* ret is a DFSR/IFSR value for the long descriptor
1054 * translation table format, but with WnR always clear.
1055 * Convert it to a 64-bit PAR.
1057 uint64_t par64
= (1 << 11); /* LPAE bit always set */
1059 par64
|= phys_addr
& ~0xfffULL
;
1060 /* We don't set the ATTR or SH fields in the PAR. */
1063 par64
|= (ret
& 0x3f) << 1; /* FS */
1064 /* Note that S2WLK and FSTAGE are always zero, because we don't
1065 * implement virtualization and therefore there can't be a stage 2
1069 env
->cp15
.c7_par
= par64
;
1070 env
->cp15
.c7_par_hi
= par64
>> 32;
1072 /* ret is a DFSR/IFSR value for the short descriptor
1073 * translation table format (with WnR always clear).
1074 * Convert it to a 32-bit PAR.
1077 /* We do not set any attribute bits in the PAR */
1078 if (page_size
== (1 << 24)
1079 && arm_feature(env
, ARM_FEATURE_V7
)) {
1080 env
->cp15
.c7_par
= (phys_addr
& 0xff000000) | 1 << 1;
1082 env
->cp15
.c7_par
= phys_addr
& 0xfffff000;
1085 env
->cp15
.c7_par
= ((ret
& (10 << 1)) >> 5) |
1086 ((ret
& (12 << 1)) >> 6) |
1087 ((ret
& 0xf) << 1) | 1;
1089 env
->cp15
.c7_par_hi
= 0;
1095 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1096 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1097 .access
= PL1_RW
, .resetvalue
= 0,
1098 .fieldoffset
= offsetof(CPUARMState
, cp15
.c7_par
),
1099 .writefn
= par_write
},
1100 #ifndef CONFIG_USER_ONLY
1101 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1102 .access
= PL1_W
, .writefn
= ats_write
, .type
= ARM_CP_NO_MIGRATE
},
1107 /* Return basic MPU access permission bits. */
1108 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1115 for (i
= 0; i
< 16; i
+= 2) {
1116 ret
|= (val
>> i
) & mask
;
1122 /* Pad basic MPU access permission bits to extended format. */
1123 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1130 for (i
= 0; i
< 16; i
+= 2) {
1131 ret
|= (val
& mask
) << i
;
1137 static int pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1140 env
->cp15
.c5_data
= extended_mpu_ap_bits(value
);
1144 static int pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1147 *value
= simple_mpu_ap_bits(env
->cp15
.c5_data
);
1151 static int pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1154 env
->cp15
.c5_insn
= extended_mpu_ap_bits(value
);
1158 static int pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1161 *value
= simple_mpu_ap_bits(env
->cp15
.c5_insn
);
1165 static int arm946_prbs_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1171 *value
= env
->cp15
.c6_region
[ri
->crm
];
1175 static int arm946_prbs_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1181 env
->cp15
.c6_region
[ri
->crm
] = value
;
1185 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1186 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1187 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1188 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0,
1189 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1190 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1191 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1192 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0,
1193 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1194 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1196 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1197 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1199 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0, },
1200 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1202 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1203 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1205 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1206 /* Protection region base and size registers */
1207 { .name
= "946_PRBS", .cp
= 15, .crn
= 6, .crm
= CP_ANY
, .opc1
= 0,
1208 .opc2
= CP_ANY
, .access
= PL1_RW
,
1209 .readfn
= arm946_prbs_read
, .writefn
= arm946_prbs_write
, },
1213 static int vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1216 int maskshift
= extract32(value
, 0, 3);
1218 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& (1 << 31))) {
1219 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1223 /* Note that we always calculate c2_mask and c2_base_mask, but
1224 * they are only used for short-descriptor tables (ie if EAE is 0);
1225 * for long-descriptor tables the TTBCR fields are used differently
1226 * and the c2_mask and c2_base_mask values are meaningless.
1228 env
->cp15
.c2_control
= value
;
1229 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1230 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1234 static int vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1237 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1238 /* With LPAE the TTBCR could result in a change of ASID
1239 * via the TTBCR.A1 bit, so do a TLB flush.
1243 return vmsa_ttbcr_raw_write(env
, ri
, value
);
1246 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1248 env
->cp15
.c2_base_mask
= 0xffffc000u
;
1249 env
->cp15
.c2_control
= 0;
1250 env
->cp15
.c2_mask
= 0;
1253 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1254 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1256 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1257 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1259 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0, },
1260 { .name
= "TTBR0", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1262 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_base0
), .resetvalue
= 0, },
1263 { .name
= "TTBR1", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1265 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_base1
), .resetvalue
= 0, },
1266 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1267 .access
= PL1_RW
, .writefn
= vmsa_ttbcr_write
,
1268 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1269 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_control
) },
1270 { .name
= "DFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1271 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_data
),
1276 static int omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1279 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1280 /* The OS_TYPE bit in this register changes the reported CPUID! */
1281 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1282 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1286 static int omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1289 env
->cp15
.c15_threadid
= value
& 0xffff;
1293 static int omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1296 /* Wait-for-interrupt (deprecated) */
1297 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1301 static int omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1304 /* On OMAP there are registers indicating the max/min index of dcache lines
1305 * containing a dirty line; cache flush operations have to reset these.
1307 env
->cp15
.c15_i_max
= 0x000;
1308 env
->cp15
.c15_i_min
= 0xff0;
1312 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1313 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1314 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1315 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1316 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1317 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1318 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1320 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1321 .writefn
= omap_ticonfig_write
},
1322 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1324 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1325 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1326 .access
= PL1_RW
, .resetvalue
= 0xff0,
1327 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1328 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1330 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1331 .writefn
= omap_threadid_write
},
1332 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1333 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1334 .type
= ARM_CP_NO_MIGRATE
,
1335 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1336 /* TODO: Peripheral port remap register:
1337 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1338 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1341 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1342 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1343 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
,
1344 .writefn
= omap_cachemaint_write
},
1345 { .name
= "C9", .cp
= 15, .crn
= 9,
1346 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1347 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1351 static int xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1355 if (env
->cp15
.c15_cpar
!= value
) {
1356 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1358 env
->cp15
.c15_cpar
= value
;
1363 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1364 { .name
= "XSCALE_CPAR",
1365 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1366 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1367 .writefn
= xscale_cpar_write
, },
1368 { .name
= "XSCALE_AUXCR",
1369 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1370 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1375 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1376 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1377 * implementation of this implementation-defined space.
1378 * Ideally this should eventually disappear in favour of actually
1379 * implementing the correct behaviour for all cores.
1381 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1382 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1384 .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
| ARM_CP_OVERRIDE
,
1389 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1390 /* Cache status: RAZ because we have no cache so it's always clean */
1391 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1392 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1397 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1398 /* We never have a a block transfer operation in progress */
1399 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1400 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1402 /* The cache ops themselves: these all NOP for QEMU */
1403 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1404 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1405 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
1406 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1407 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
1408 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1409 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
1410 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1411 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
1412 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1413 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
1414 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1418 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
1419 /* The cache test-and-clean instructions always return (1 << 30)
1420 * to indicate that there are no dirty cache lines.
1422 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
1423 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1424 .resetvalue
= (1 << 30) },
1425 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
1426 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1427 .resetvalue
= (1 << 30) },
1431 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
1432 /* Ignore ReadBuffer accesses */
1433 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
1434 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1435 .access
= PL1_RW
, .resetvalue
= 0,
1436 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
},
1440 static int mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1443 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1444 uint32_t mpidr
= cs
->cpu_index
;
1445 /* We don't support setting cluster ID ([8..11])
1446 * so these bits always RAZ.
1448 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1449 mpidr
|= (1U << 31);
1450 /* Cores which are uniprocessor (non-coherent)
1451 * but still implement the MP extensions set
1452 * bit 30. (For instance, A9UP.) However we do
1453 * not currently model any of those cores.
1460 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
1461 { .name
= "MPIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
1462 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_MIGRATE
},
1466 static int par64_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
)
1468 *value
= ((uint64_t)env
->cp15
.c7_par_hi
<< 32) | env
->cp15
.c7_par
;
1472 static int par64_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1474 env
->cp15
.c7_par_hi
= value
>> 32;
1475 env
->cp15
.c7_par
= value
;
1479 static void par64_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1481 env
->cp15
.c7_par_hi
= 0;
1482 env
->cp15
.c7_par
= 0;
1485 static int ttbr064_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1488 *value
= ((uint64_t)env
->cp15
.c2_base0_hi
<< 32) | env
->cp15
.c2_base0
;
1492 static int ttbr064_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1495 env
->cp15
.c2_base0_hi
= value
>> 32;
1496 env
->cp15
.c2_base0
= value
;
1500 static int ttbr064_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1503 /* Writes to the 64 bit format TTBRs may change the ASID */
1505 return ttbr064_raw_write(env
, ri
, value
);
1508 static void ttbr064_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1510 env
->cp15
.c2_base0_hi
= 0;
1511 env
->cp15
.c2_base0
= 0;
1514 static int ttbr164_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1517 *value
= ((uint64_t)env
->cp15
.c2_base1_hi
<< 32) | env
->cp15
.c2_base1
;
1521 static int ttbr164_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1524 env
->cp15
.c2_base1_hi
= value
>> 32;
1525 env
->cp15
.c2_base1
= value
;
1529 static void ttbr164_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1531 env
->cp15
.c2_base1_hi
= 0;
1532 env
->cp15
.c2_base1
= 0;
1535 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
1536 /* NOP AMAIR0/1: the override is because these clash with the rather
1537 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1539 { .name
= "AMAIR0", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
1540 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1542 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
1543 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1545 /* 64 bit access versions of the (dummy) debug registers */
1546 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
1547 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1548 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
1549 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1550 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
1551 .access
= PL1_RW
, .type
= ARM_CP_64BIT
,
1552 .readfn
= par64_read
, .writefn
= par64_write
, .resetfn
= par64_reset
},
1553 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
1554 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .readfn
= ttbr064_read
,
1555 .writefn
= ttbr064_write
, .raw_writefn
= ttbr064_raw_write
,
1556 .resetfn
= ttbr064_reset
},
1557 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
1558 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .readfn
= ttbr164_read
,
1559 .writefn
= ttbr164_write
, .resetfn
= ttbr164_reset
},
1563 static int aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1566 *value
= vfp_get_fpcr(env
);
1570 static int aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1573 vfp_set_fpcr(env
, value
);
1577 static int aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1580 *value
= vfp_get_fpsr(env
);
1584 static int aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1587 vfp_set_fpsr(env
, value
);
1591 static const ARMCPRegInfo v8_cp_reginfo
[] = {
1592 /* Minimal set of EL0-visible registers. This will need to be expanded
1593 * significantly for system emulation of AArch64 CPUs.
1595 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
1596 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
1597 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
1598 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
1599 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
1600 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
1601 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
1602 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
1603 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
1604 /* This claims a 32 byte cacheline size for icache and dcache, VIPT icache.
1605 * It will eventually need to have a CPU-specified reset value.
1607 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
1608 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
1609 .access
= PL0_R
, .type
= ARM_CP_CONST
,
1610 .resetvalue
= 0x80030003 },
1611 /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
1612 * For system mode the DZP bit here will need to be computed, not constant.
1614 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
1615 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
1616 .access
= PL0_R
, .type
= ARM_CP_CONST
,
1617 .resetvalue
= 0x10 },
1621 static int sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1623 env
->cp15
.c1_sys
= value
;
1624 /* ??? Lots of these bits are not implemented. */
1625 /* This may enable/disable the MMU, so do a TLB flush. */
1630 void register_cp_regs_for_features(ARMCPU
*cpu
)
1632 /* Register all the coprocessor registers based on feature bits */
1633 CPUARMState
*env
= &cpu
->env
;
1634 if (arm_feature(env
, ARM_FEATURE_M
)) {
1635 /* M profile has no coprocessor registers */
1639 define_arm_cp_regs(cpu
, cp_reginfo
);
1640 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1641 /* The ID registers all have impdef reset values */
1642 ARMCPRegInfo v6_idregs
[] = {
1643 { .name
= "ID_PFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1644 .opc1
= 0, .opc2
= 0, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1645 .resetvalue
= cpu
->id_pfr0
},
1646 { .name
= "ID_PFR1", .cp
= 15, .crn
= 0, .crm
= 1,
1647 .opc1
= 0, .opc2
= 1, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1648 .resetvalue
= cpu
->id_pfr1
},
1649 { .name
= "ID_DFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1650 .opc1
= 0, .opc2
= 2, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1651 .resetvalue
= cpu
->id_dfr0
},
1652 { .name
= "ID_AFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1653 .opc1
= 0, .opc2
= 3, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1654 .resetvalue
= cpu
->id_afr0
},
1655 { .name
= "ID_MMFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1656 .opc1
= 0, .opc2
= 4, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1657 .resetvalue
= cpu
->id_mmfr0
},
1658 { .name
= "ID_MMFR1", .cp
= 15, .crn
= 0, .crm
= 1,
1659 .opc1
= 0, .opc2
= 5, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1660 .resetvalue
= cpu
->id_mmfr1
},
1661 { .name
= "ID_MMFR2", .cp
= 15, .crn
= 0, .crm
= 1,
1662 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1663 .resetvalue
= cpu
->id_mmfr2
},
1664 { .name
= "ID_MMFR3", .cp
= 15, .crn
= 0, .crm
= 1,
1665 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1666 .resetvalue
= cpu
->id_mmfr3
},
1667 { .name
= "ID_ISAR0", .cp
= 15, .crn
= 0, .crm
= 2,
1668 .opc1
= 0, .opc2
= 0, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1669 .resetvalue
= cpu
->id_isar0
},
1670 { .name
= "ID_ISAR1", .cp
= 15, .crn
= 0, .crm
= 2,
1671 .opc1
= 0, .opc2
= 1, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1672 .resetvalue
= cpu
->id_isar1
},
1673 { .name
= "ID_ISAR2", .cp
= 15, .crn
= 0, .crm
= 2,
1674 .opc1
= 0, .opc2
= 2, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1675 .resetvalue
= cpu
->id_isar2
},
1676 { .name
= "ID_ISAR3", .cp
= 15, .crn
= 0, .crm
= 2,
1677 .opc1
= 0, .opc2
= 3, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1678 .resetvalue
= cpu
->id_isar3
},
1679 { .name
= "ID_ISAR4", .cp
= 15, .crn
= 0, .crm
= 2,
1680 .opc1
= 0, .opc2
= 4, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1681 .resetvalue
= cpu
->id_isar4
},
1682 { .name
= "ID_ISAR5", .cp
= 15, .crn
= 0, .crm
= 2,
1683 .opc1
= 0, .opc2
= 5, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1684 .resetvalue
= cpu
->id_isar5
},
1685 /* 6..7 are as yet unallocated and must RAZ */
1686 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
1687 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1689 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
1690 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1694 define_arm_cp_regs(cpu
, v6_idregs
);
1695 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
1697 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
1699 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1700 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
1702 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1703 /* v7 performance monitor control register: same implementor
1704 * field as main ID register, and we implement no event counters.
1706 ARMCPRegInfo pmcr
= {
1707 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
1708 .access
= PL0_RW
, .resetvalue
= cpu
->midr
& 0xff000000,
1709 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
1710 .readfn
= pmreg_read
, .writefn
= pmcr_write
,
1711 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
1713 ARMCPRegInfo clidr
= {
1714 .name
= "CLIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
1715 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
1717 define_one_arm_cp_reg(cpu
, &pmcr
);
1718 define_one_arm_cp_reg(cpu
, &clidr
);
1719 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
1721 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
1723 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1724 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
1726 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1727 /* These are the MPU registers prior to PMSAv6. Any new
1728 * PMSA core later than the ARM946 will require that we
1729 * implement the PMSAv6 or PMSAv7 registers, which are
1730 * completely different.
1732 assert(!arm_feature(env
, ARM_FEATURE_V6
));
1733 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
1735 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
1737 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
1738 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
1740 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1741 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
1743 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
1744 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
1746 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
1747 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
1749 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
1750 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
1752 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
1753 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
1755 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1756 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
1758 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
1759 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
1761 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1762 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
1764 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
1765 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
1767 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1768 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
1770 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1771 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1772 * be read-only (ie write causes UNDEF exception).
1775 ARMCPRegInfo id_cp_reginfo
[] = {
1776 /* Note that the MIDR isn't a simple constant register because
1777 * of the TI925 behaviour where writes to another register can
1778 * cause the MIDR value to change.
1780 * Unimplemented registers in the c15 0 0 0 space default to
1781 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1782 * and friends override accordingly.
1785 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
1786 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
1787 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
1788 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
1789 .type
= ARM_CP_OVERRIDE
},
1791 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
1792 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
1794 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
1795 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1797 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
1798 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1799 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1801 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
1802 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1804 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
1805 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1807 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
1808 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1810 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
1811 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1813 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
1814 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1817 ARMCPRegInfo crn0_wi_reginfo
= {
1818 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
1819 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
1820 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
1822 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
1823 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
1825 /* Register the blanket "writes ignored" value first to cover the
1826 * whole space. Then update the specific ID registers to allow write
1827 * access, so that they ignore writes rather than causing them to
1830 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
1831 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
1835 define_arm_cp_regs(cpu
, id_cp_reginfo
);
1838 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
1839 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
1842 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
1843 ARMCPRegInfo auxcr
= {
1844 .name
= "AUXCR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1,
1845 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
1846 .resetvalue
= cpu
->reset_auxcr
1848 define_one_arm_cp_reg(cpu
, &auxcr
);
1851 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
1852 ARMCPRegInfo cbar
= {
1853 .name
= "CBAR", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
1854 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
1855 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_config_base_address
)
1857 define_one_arm_cp_reg(cpu
, &cbar
);
1860 /* Generic registers whose values depend on the implementation */
1862 ARMCPRegInfo sctlr
= {
1863 .name
= "SCTLR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
1864 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_sys
),
1865 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
1866 .raw_writefn
= raw_write
,
1868 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1869 /* Normally we would always end the TB on an SCTLR write, but Linux
1870 * arch/arm/mach-pxa/sleep.S expects two instructions following
1871 * an MMU enable to execute from cache. Imitate this behaviour.
1873 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
1875 define_one_arm_cp_reg(cpu
, &sctlr
);
1879 ARMCPU
*cpu_arm_init(const char *cpu_model
)
1884 oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpu_model
);
1888 cpu
= ARM_CPU(object_new(object_class_get_name(oc
)));
1890 /* TODO this should be set centrally, once possible */
1891 object_property_set_bool(OBJECT(cpu
), true, "realized", NULL
);
1896 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
1898 CPUState
*cs
= CPU(cpu
);
1899 CPUARMState
*env
= &cpu
->env
;
1901 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
1902 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
1903 aarch64_fpu_gdb_set_reg
,
1904 34, "aarch64-fpu.xml", 0);
1905 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
1906 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1907 51, "arm-neon.xml", 0);
1908 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
1909 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1910 35, "arm-vfp3.xml", 0);
1911 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
1912 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1913 19, "arm-vfp.xml", 0);
1917 /* Sort alphabetically by type name, except for "any". */
1918 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
1920 ObjectClass
*class_a
= (ObjectClass
*)a
;
1921 ObjectClass
*class_b
= (ObjectClass
*)b
;
1922 const char *name_a
, *name_b
;
1924 name_a
= object_class_get_name(class_a
);
1925 name_b
= object_class_get_name(class_b
);
1926 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
1928 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
1931 return strcmp(name_a
, name_b
);
1935 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
1937 ObjectClass
*oc
= data
;
1938 CPUListState
*s
= user_data
;
1939 const char *typename
;
1942 typename
= object_class_get_name(oc
);
1943 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
1944 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
1949 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
1953 .cpu_fprintf
= cpu_fprintf
,
1957 list
= object_class_get_list(TYPE_ARM_CPU
, false);
1958 list
= g_slist_sort(list
, arm_cpu_list_compare
);
1959 (*cpu_fprintf
)(f
, "Available CPUs:\n");
1960 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
1963 /* The 'host' CPU type is dynamically registered only if KVM is
1964 * enabled, so we have to special-case it here:
1966 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
1970 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
1972 ObjectClass
*oc
= data
;
1973 CpuDefinitionInfoList
**cpu_list
= user_data
;
1974 CpuDefinitionInfoList
*entry
;
1975 CpuDefinitionInfo
*info
;
1976 const char *typename
;
1978 typename
= object_class_get_name(oc
);
1979 info
= g_malloc0(sizeof(*info
));
1980 info
->name
= g_strndup(typename
,
1981 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
1983 entry
= g_malloc0(sizeof(*entry
));
1984 entry
->value
= info
;
1985 entry
->next
= *cpu_list
;
1989 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
1991 CpuDefinitionInfoList
*cpu_list
= NULL
;
1994 list
= object_class_get_list(TYPE_ARM_CPU
, false);
1995 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
2001 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
2002 void *opaque
, int state
,
2003 int crm
, int opc1
, int opc2
)
2005 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2006 * add a single reginfo struct to the hash table.
2008 uint32_t *key
= g_new(uint32_t, 1);
2009 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
2010 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
2011 if (r
->state
== ARM_CP_STATE_BOTH
&& state
== ARM_CP_STATE_AA32
) {
2012 /* The AArch32 view of a shared register sees the lower 32 bits
2013 * of a 64 bit backing field. It is not migratable as the AArch64
2014 * view handles that. AArch64 also handles reset.
2015 * We assume it is a cp15 register.
2018 r2
->type
|= ARM_CP_NO_MIGRATE
;
2019 r2
->resetfn
= arm_cp_reset_ignore
;
2020 #ifdef HOST_WORDS_BIGENDIAN
2021 if (r2
->fieldoffset
) {
2022 r2
->fieldoffset
+= sizeof(uint32_t);
2026 if (state
== ARM_CP_STATE_AA64
) {
2027 /* To allow abbreviation of ARMCPRegInfo
2028 * definitions, we treat cp == 0 as equivalent to
2029 * the value for "standard guest-visible sysreg".
2032 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
2034 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
2035 r2
->opc0
, opc1
, opc2
);
2037 *key
= ENCODE_CP_REG(r2
->cp
, is64
, r2
->crn
, crm
, opc1
, opc2
);
2040 r2
->opaque
= opaque
;
2042 /* Make sure reginfo passed to helpers for wildcarded regs
2043 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2048 /* By convention, for wildcarded registers only the first
2049 * entry is used for migration; the others are marked as
2050 * NO_MIGRATE so we don't try to transfer the register
2051 * multiple times. Special registers (ie NOP/WFI) are
2054 if ((r
->type
& ARM_CP_SPECIAL
) ||
2055 ((r
->crm
== CP_ANY
) && crm
!= 0) ||
2056 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
2057 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
2058 r2
->type
|= ARM_CP_NO_MIGRATE
;
2061 /* Overriding of an existing definition must be explicitly
2064 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
2065 ARMCPRegInfo
*oldreg
;
2066 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
2067 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
2068 fprintf(stderr
, "Register redefined: cp=%d %d bit "
2069 "crn=%d crm=%d opc1=%d opc2=%d, "
2070 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
2071 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
2072 oldreg
->name
, r2
->name
);
2073 g_assert_not_reached();
2076 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
2080 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
2081 const ARMCPRegInfo
*r
, void *opaque
)
2083 /* Define implementations of coprocessor registers.
2084 * We store these in a hashtable because typically
2085 * there are less than 150 registers in a space which
2086 * is 16*16*16*8*8 = 262144 in size.
2087 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2088 * If a register is defined twice then the second definition is
2089 * used, so this can be used to define some generic registers and
2090 * then override them with implementation specific variations.
2091 * At least one of the original and the second definition should
2092 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2093 * against accidental use.
2095 * The state field defines whether the register is to be
2096 * visible in the AArch32 or AArch64 execution state. If the
2097 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2098 * reginfo structure for the AArch32 view, which sees the lower
2099 * 32 bits of the 64 bit register.
2101 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2102 * be wildcarded. AArch64 registers are always considered to be 64
2103 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2104 * the register, if any.
2106 int crm
, opc1
, opc2
, state
;
2107 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
2108 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
2109 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
2110 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
2111 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
2112 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
2113 /* 64 bit registers have only CRm and Opc1 fields */
2114 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
2115 /* op0 only exists in the AArch64 encodings */
2116 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
2117 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2118 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
2119 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2120 * encodes a minimum access level for the register. We roll this
2121 * runtime check into our general permission check code, so check
2122 * here that the reginfo's specified permissions are strict enough
2123 * to encompass the generic architectural permission check.
2125 if (r
->state
!= ARM_CP_STATE_AA32
) {
2128 case 0: case 1: case 2:
2141 /* unallocated encoding, so not possible */
2149 /* min_EL EL1, secure mode only (we don't check the latter) */
2153 /* broken reginfo with out-of-range opc1 */
2157 /* assert our permissions are not too lax (stricter is fine) */
2158 assert((r
->access
& ~mask
) == 0);
2161 /* Check that the register definition has enough info to handle
2162 * reads and writes if they are permitted.
2164 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
2165 if (r
->access
& PL3_R
) {
2166 assert(r
->fieldoffset
|| r
->readfn
);
2168 if (r
->access
& PL3_W
) {
2169 assert(r
->fieldoffset
|| r
->writefn
);
2172 /* Bad type field probably means missing sentinel at end of reg list */
2173 assert(cptype_valid(r
->type
));
2174 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
2175 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
2176 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
2177 for (state
= ARM_CP_STATE_AA32
;
2178 state
<= ARM_CP_STATE_AA64
; state
++) {
2179 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
2182 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
2190 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
2191 const ARMCPRegInfo
*regs
, void *opaque
)
2193 /* Define a whole list of registers */
2194 const ARMCPRegInfo
*r
;
2195 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
2196 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
2200 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
2202 return g_hash_table_lookup(cpregs
, &encoded_cp
);
2205 int arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2208 /* Helper coprocessor write function for write-ignore registers */
2212 int arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
)
2214 /* Helper coprocessor write function for read-as-zero registers */
2219 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
2221 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2224 static int bad_mode_switch(CPUARMState
*env
, int mode
)
2226 /* Return true if it is not valid for us to switch to
2227 * this CPU mode (ie all the UNPREDICTABLE cases in
2228 * the ARM ARM CPSRWriteByInstr pseudocode).
2231 case ARM_CPU_MODE_USR
:
2232 case ARM_CPU_MODE_SYS
:
2233 case ARM_CPU_MODE_SVC
:
2234 case ARM_CPU_MODE_ABT
:
2235 case ARM_CPU_MODE_UND
:
2236 case ARM_CPU_MODE_IRQ
:
2237 case ARM_CPU_MODE_FIQ
:
2244 uint32_t cpsr_read(CPUARMState
*env
)
2247 ZF
= (env
->ZF
== 0);
2248 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
2249 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
2250 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
2251 | ((env
->condexec_bits
& 0xfc) << 8)
2255 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
2257 if (mask
& CPSR_NZCV
) {
2258 env
->ZF
= (~val
) & CPSR_Z
;
2260 env
->CF
= (val
>> 29) & 1;
2261 env
->VF
= (val
<< 3) & 0x80000000;
2264 env
->QF
= ((val
& CPSR_Q
) != 0);
2266 env
->thumb
= ((val
& CPSR_T
) != 0);
2267 if (mask
& CPSR_IT_0_1
) {
2268 env
->condexec_bits
&= ~3;
2269 env
->condexec_bits
|= (val
>> 25) & 3;
2271 if (mask
& CPSR_IT_2_7
) {
2272 env
->condexec_bits
&= 3;
2273 env
->condexec_bits
|= (val
>> 8) & 0xfc;
2275 if (mask
& CPSR_GE
) {
2276 env
->GE
= (val
>> 16) & 0xf;
2279 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
2280 if (bad_mode_switch(env
, val
& CPSR_M
)) {
2281 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2282 * We choose to ignore the attempt and leave the CPSR M field
2287 switch_mode(env
, val
& CPSR_M
);
2290 mask
&= ~CACHED_CPSR_BITS
;
2291 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
2294 /* Sign/zero extend */
2295 uint32_t HELPER(sxtb16
)(uint32_t x
)
2298 res
= (uint16_t)(int8_t)x
;
2299 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
2303 uint32_t HELPER(uxtb16
)(uint32_t x
)
2306 res
= (uint16_t)(uint8_t)x
;
2307 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
2311 uint32_t HELPER(clz
)(uint32_t x
)
2316 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
2320 if (num
== INT_MIN
&& den
== -1)
2325 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
2332 uint32_t HELPER(rbit
)(uint32_t x
)
2334 x
= ((x
& 0xff000000) >> 24)
2335 | ((x
& 0x00ff0000) >> 8)
2336 | ((x
& 0x0000ff00) << 8)
2337 | ((x
& 0x000000ff) << 24);
2338 x
= ((x
& 0xf0f0f0f0) >> 4)
2339 | ((x
& 0x0f0f0f0f) << 4);
2340 x
= ((x
& 0x88888888) >> 3)
2341 | ((x
& 0x44444444) >> 1)
2342 | ((x
& 0x22222222) << 1)
2343 | ((x
& 0x11111111) << 3);
2347 #if defined(CONFIG_USER_ONLY)
2349 void arm_cpu_do_interrupt(CPUState
*cs
)
2351 ARMCPU
*cpu
= ARM_CPU(cs
);
2352 CPUARMState
*env
= &cpu
->env
;
2354 env
->exception_index
= -1;
2357 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
, int rw
,
2361 env
->exception_index
= EXCP_PREFETCH_ABORT
;
2362 env
->cp15
.c6_insn
= address
;
2364 env
->exception_index
= EXCP_DATA_ABORT
;
2365 env
->cp15
.c6_data
= address
;
2370 /* These should probably raise undefined insn exceptions. */
2371 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
2373 cpu_abort(env
, "v7m_mrs %d\n", reg
);
2376 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
2378 cpu_abort(env
, "v7m_mrs %d\n", reg
);
2382 void switch_mode(CPUARMState
*env
, int mode
)
2384 if (mode
!= ARM_CPU_MODE_USR
)
2385 cpu_abort(env
, "Tried to switch out of user mode\n");
2388 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
2390 cpu_abort(env
, "banked r13 write\n");
2393 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
2395 cpu_abort(env
, "banked r13 read\n");
2401 /* Map CPU modes onto saved register banks. */
2402 int bank_number(int mode
)
2405 case ARM_CPU_MODE_USR
:
2406 case ARM_CPU_MODE_SYS
:
2408 case ARM_CPU_MODE_SVC
:
2410 case ARM_CPU_MODE_ABT
:
2412 case ARM_CPU_MODE_UND
:
2414 case ARM_CPU_MODE_IRQ
:
2416 case ARM_CPU_MODE_FIQ
:
2419 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
2422 void switch_mode(CPUARMState
*env
, int mode
)
2427 old_mode
= env
->uncached_cpsr
& CPSR_M
;
2428 if (mode
== old_mode
)
2431 if (old_mode
== ARM_CPU_MODE_FIQ
) {
2432 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
2433 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
2434 } else if (mode
== ARM_CPU_MODE_FIQ
) {
2435 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
2436 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
2439 i
= bank_number(old_mode
);
2440 env
->banked_r13
[i
] = env
->regs
[13];
2441 env
->banked_r14
[i
] = env
->regs
[14];
2442 env
->banked_spsr
[i
] = env
->spsr
;
2444 i
= bank_number(mode
);
2445 env
->regs
[13] = env
->banked_r13
[i
];
2446 env
->regs
[14] = env
->banked_r14
[i
];
2447 env
->spsr
= env
->banked_spsr
[i
];
2450 static void v7m_push(CPUARMState
*env
, uint32_t val
)
2453 stl_phys(env
->regs
[13], val
);
2456 static uint32_t v7m_pop(CPUARMState
*env
)
2459 val
= ldl_phys(env
->regs
[13]);
2464 /* Switch to V7M main or process stack pointer. */
2465 static void switch_v7m_sp(CPUARMState
*env
, int process
)
2468 if (env
->v7m
.current_sp
!= process
) {
2469 tmp
= env
->v7m
.other_sp
;
2470 env
->v7m
.other_sp
= env
->regs
[13];
2471 env
->regs
[13] = tmp
;
2472 env
->v7m
.current_sp
= process
;
2476 static void do_v7m_exception_exit(CPUARMState
*env
)
2481 type
= env
->regs
[15];
2482 if (env
->v7m
.exception
!= 0)
2483 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
2485 /* Switch to the target stack. */
2486 switch_v7m_sp(env
, (type
& 4) != 0);
2487 /* Pop registers. */
2488 env
->regs
[0] = v7m_pop(env
);
2489 env
->regs
[1] = v7m_pop(env
);
2490 env
->regs
[2] = v7m_pop(env
);
2491 env
->regs
[3] = v7m_pop(env
);
2492 env
->regs
[12] = v7m_pop(env
);
2493 env
->regs
[14] = v7m_pop(env
);
2494 env
->regs
[15] = v7m_pop(env
);
2495 xpsr
= v7m_pop(env
);
2496 xpsr_write(env
, xpsr
, 0xfffffdff);
2497 /* Undo stack alignment. */
2500 /* ??? The exception return type specifies Thread/Handler mode. However
2501 this is also implied by the xPSR value. Not sure what to do
2502 if there is a mismatch. */
2503 /* ??? Likewise for mismatches between the CONTROL register and the stack
2507 /* Exception names for debug logging; note that not all of these
2508 * precisely correspond to architectural exceptions.
2510 static const char * const excnames
[] = {
2511 [EXCP_UDEF
] = "Undefined Instruction",
2513 [EXCP_PREFETCH_ABORT
] = "Prefetch Abort",
2514 [EXCP_DATA_ABORT
] = "Data Abort",
2517 [EXCP_BKPT
] = "Breakpoint",
2518 [EXCP_EXCEPTION_EXIT
] = "QEMU v7M exception exit",
2519 [EXCP_KERNEL_TRAP
] = "QEMU intercept of kernel commpage",
2520 [EXCP_STREX
] = "QEMU intercept of STREX",
2523 static inline void arm_log_exception(int idx
)
2525 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
2526 const char *exc
= NULL
;
2528 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
2529 exc
= excnames
[idx
];
2534 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
2538 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
2540 ARMCPU
*cpu
= ARM_CPU(cs
);
2541 CPUARMState
*env
= &cpu
->env
;
2542 uint32_t xpsr
= xpsr_read(env
);
2546 arm_log_exception(env
->exception_index
);
2549 if (env
->v7m
.current_sp
)
2551 if (env
->v7m
.exception
== 0)
2554 /* For exceptions we just mark as pending on the NVIC, and let that
2556 /* TODO: Need to escalate if the current priority is higher than the
2557 one we're raising. */
2558 switch (env
->exception_index
) {
2560 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
2563 /* The PC already points to the next instruction. */
2564 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
2566 case EXCP_PREFETCH_ABORT
:
2567 case EXCP_DATA_ABORT
:
2568 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
2571 if (semihosting_enabled
) {
2573 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
2576 env
->regs
[0] = do_arm_semihosting(env
);
2577 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2581 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
2584 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
2586 case EXCP_EXCEPTION_EXIT
:
2587 do_v7m_exception_exit(env
);
2590 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
2591 return; /* Never happens. Keep compiler happy. */
2594 /* Align stack pointer. */
2595 /* ??? Should only do this if Configuration Control Register
2596 STACKALIGN bit is set. */
2597 if (env
->regs
[13] & 4) {
2601 /* Switch to the handler mode. */
2602 v7m_push(env
, xpsr
);
2603 v7m_push(env
, env
->regs
[15]);
2604 v7m_push(env
, env
->regs
[14]);
2605 v7m_push(env
, env
->regs
[12]);
2606 v7m_push(env
, env
->regs
[3]);
2607 v7m_push(env
, env
->regs
[2]);
2608 v7m_push(env
, env
->regs
[1]);
2609 v7m_push(env
, env
->regs
[0]);
2610 switch_v7m_sp(env
, 0);
2612 env
->condexec_bits
= 0;
2614 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
2615 env
->regs
[15] = addr
& 0xfffffffe;
2616 env
->thumb
= addr
& 1;
2619 /* Handle a CPU exception. */
2620 void arm_cpu_do_interrupt(CPUState
*cs
)
2622 ARMCPU
*cpu
= ARM_CPU(cs
);
2623 CPUARMState
*env
= &cpu
->env
;
2631 arm_log_exception(env
->exception_index
);
2633 /* TODO: Vectored interrupt controller. */
2634 switch (env
->exception_index
) {
2636 new_mode
= ARM_CPU_MODE_UND
;
2645 if (semihosting_enabled
) {
2646 /* Check for semihosting interrupt. */
2648 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
2651 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
2654 /* Only intercept calls from privileged modes, to provide some
2655 semblance of security. */
2656 if (((mask
== 0x123456 && !env
->thumb
)
2657 || (mask
== 0xab && env
->thumb
))
2658 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
2659 env
->regs
[0] = do_arm_semihosting(env
);
2660 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2664 new_mode
= ARM_CPU_MODE_SVC
;
2667 /* The PC already points to the next instruction. */
2671 /* See if this is a semihosting syscall. */
2672 if (env
->thumb
&& semihosting_enabled
) {
2673 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
2675 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
2677 env
->regs
[0] = do_arm_semihosting(env
);
2678 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2682 env
->cp15
.c5_insn
= 2;
2683 /* Fall through to prefetch abort. */
2684 case EXCP_PREFETCH_ABORT
:
2685 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
2686 env
->cp15
.c5_insn
, env
->cp15
.c6_insn
);
2687 new_mode
= ARM_CPU_MODE_ABT
;
2689 mask
= CPSR_A
| CPSR_I
;
2692 case EXCP_DATA_ABORT
:
2693 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
2694 env
->cp15
.c5_data
, env
->cp15
.c6_data
);
2695 new_mode
= ARM_CPU_MODE_ABT
;
2697 mask
= CPSR_A
| CPSR_I
;
2701 new_mode
= ARM_CPU_MODE_IRQ
;
2703 /* Disable IRQ and imprecise data aborts. */
2704 mask
= CPSR_A
| CPSR_I
;
2708 new_mode
= ARM_CPU_MODE_FIQ
;
2710 /* Disable FIQ, IRQ and imprecise data aborts. */
2711 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
2715 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
2716 return; /* Never happens. Keep compiler happy. */
2719 if (env
->cp15
.c1_sys
& (1 << 13)) {
2720 /* when enabled, base address cannot be remapped. */
2723 /* ARM v7 architectures provide a vector base address register to remap
2724 * the interrupt vector table.
2725 * This register is only followed in non-monitor mode, and has a secure
2726 * and un-secure copy. Since the cpu is always in a un-secure operation
2727 * and is never in monitor mode this feature is always active.
2728 * Note: only bits 31:5 are valid.
2730 addr
+= env
->cp15
.c12_vbar
;
2732 switch_mode (env
, new_mode
);
2733 env
->spsr
= cpsr_read(env
);
2734 /* Clear IT bits. */
2735 env
->condexec_bits
= 0;
2736 /* Switch to the new mode, and to the correct instruction set. */
2737 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
2738 env
->uncached_cpsr
|= mask
;
2739 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2740 * and we should just guard the thumb mode on V4 */
2741 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
2742 env
->thumb
= (env
->cp15
.c1_sys
& (1 << 30)) != 0;
2744 env
->regs
[14] = env
->regs
[15] + offset
;
2745 env
->regs
[15] = addr
;
2746 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
2749 /* Check section/page access permissions.
2750 Returns the page protection flags, or zero if the access is not
2752 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
2753 int access_type
, int is_user
)
2757 if (domain_prot
== 3) {
2758 return PAGE_READ
| PAGE_WRITE
;
2761 if (access_type
== 1)
2764 prot_ro
= PAGE_READ
;
2768 if (access_type
== 1)
2770 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
2772 return is_user
? 0 : PAGE_READ
;
2779 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
2784 return PAGE_READ
| PAGE_WRITE
;
2786 return PAGE_READ
| PAGE_WRITE
;
2787 case 4: /* Reserved. */
2790 return is_user
? 0 : prot_ro
;
2794 if (!arm_feature (env
, ARM_FEATURE_V6K
))
2802 static uint32_t get_level1_table_address(CPUARMState
*env
, uint32_t address
)
2806 if (address
& env
->cp15
.c2_mask
)
2807 table
= env
->cp15
.c2_base1
& 0xffffc000;
2809 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
2811 table
|= (address
>> 18) & 0x3ffc;
2815 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
2816 int is_user
, hwaddr
*phys_ptr
,
2817 int *prot
, target_ulong
*page_size
)
2828 /* Pagetable walk. */
2829 /* Lookup l1 descriptor. */
2830 table
= get_level1_table_address(env
, address
);
2831 desc
= ldl_phys(table
);
2833 domain
= (desc
>> 5) & 0x0f;
2834 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
2836 /* Section translation fault. */
2840 if (domain_prot
== 0 || domain_prot
== 2) {
2842 code
= 9; /* Section domain fault. */
2844 code
= 11; /* Page domain fault. */
2849 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
2850 ap
= (desc
>> 10) & 3;
2852 *page_size
= 1024 * 1024;
2854 /* Lookup l2 entry. */
2856 /* Coarse pagetable. */
2857 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
2859 /* Fine pagetable. */
2860 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
2862 desc
= ldl_phys(table
);
2864 case 0: /* Page translation fault. */
2867 case 1: /* 64k page. */
2868 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
2869 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
2870 *page_size
= 0x10000;
2872 case 2: /* 4k page. */
2873 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2874 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
2875 *page_size
= 0x1000;
2877 case 3: /* 1k page. */
2879 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2880 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2882 /* Page translation fault. */
2887 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
2889 ap
= (desc
>> 4) & 3;
2893 /* Never happens, but compiler isn't smart enough to tell. */
2898 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
2900 /* Access permission fault. */
2904 *phys_ptr
= phys_addr
;
2907 return code
| (domain
<< 4);
2910 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
2911 int is_user
, hwaddr
*phys_ptr
,
2912 int *prot
, target_ulong
*page_size
)
2925 /* Pagetable walk. */
2926 /* Lookup l1 descriptor. */
2927 table
= get_level1_table_address(env
, address
);
2928 desc
= ldl_phys(table
);
2930 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
2931 /* Section translation fault, or attempt to use the encoding
2932 * which is Reserved on implementations without PXN.
2937 if ((type
== 1) || !(desc
& (1 << 18))) {
2938 /* Page or Section. */
2939 domain
= (desc
>> 5) & 0x0f;
2941 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
2942 if (domain_prot
== 0 || domain_prot
== 2) {
2944 code
= 9; /* Section domain fault. */
2946 code
= 11; /* Page domain fault. */
2951 if (desc
& (1 << 18)) {
2953 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
2954 *page_size
= 0x1000000;
2957 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
2958 *page_size
= 0x100000;
2960 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
2961 xn
= desc
& (1 << 4);
2965 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
2966 pxn
= (desc
>> 2) & 1;
2968 /* Lookup l2 entry. */
2969 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
2970 desc
= ldl_phys(table
);
2971 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
2973 case 0: /* Page translation fault. */
2976 case 1: /* 64k page. */
2977 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
2978 xn
= desc
& (1 << 15);
2979 *page_size
= 0x10000;
2981 case 2: case 3: /* 4k page. */
2982 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2984 *page_size
= 0x1000;
2987 /* Never happens, but compiler isn't smart enough to tell. */
2992 if (domain_prot
== 3) {
2993 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
2995 if (pxn
&& !is_user
) {
2998 if (xn
&& access_type
== 2)
3001 /* The simplified model uses AP[0] as an access control bit. */
3002 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
3003 /* Access flag fault. */
3004 code
= (code
== 15) ? 6 : 3;
3007 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
3009 /* Access permission fault. */
3016 *phys_ptr
= phys_addr
;
3019 return code
| (domain
<< 4);
3022 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3023 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3026 translation_fault
= 1,
3028 permission_fault
= 3,
3031 static int get_phys_addr_lpae(CPUARMState
*env
, uint32_t address
,
3032 int access_type
, int is_user
,
3033 hwaddr
*phys_ptr
, int *prot
,
3034 target_ulong
*page_size_ptr
)
3036 /* Read an LPAE long-descriptor translation table. */
3037 MMUFaultType fault_type
= translation_fault
;
3045 uint32_t tableattrs
;
3046 target_ulong page_size
;
3049 /* Determine whether this address is in the region controlled by
3050 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3051 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3052 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3054 uint32_t t0sz
= extract32(env
->cp15
.c2_control
, 0, 3);
3055 uint32_t t1sz
= extract32(env
->cp15
.c2_control
, 16, 3);
3056 if (t0sz
&& !extract32(address
, 32 - t0sz
, t0sz
)) {
3057 /* there is a ttbr0 region and we are in it (high bits all zero) */
3059 } else if (t1sz
&& !extract32(~address
, 32 - t1sz
, t1sz
)) {
3060 /* there is a ttbr1 region and we are in it (high bits all one) */
3063 /* ttbr0 region is "everything not in the ttbr1 region" */
3066 /* ttbr1 region is "everything not in the ttbr0 region" */
3069 /* in the gap between the two regions, this is a Translation fault */
3070 fault_type
= translation_fault
;
3074 /* Note that QEMU ignores shareability and cacheability attributes,
3075 * so we don't need to do anything with the SH, ORGN, IRGN fields
3076 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3077 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3078 * implement any ASID-like capability so we can ignore it (instead
3079 * we will always flush the TLB any time the ASID is changed).
3081 if (ttbr_select
== 0) {
3082 ttbr
= ((uint64_t)env
->cp15
.c2_base0_hi
<< 32) | env
->cp15
.c2_base0
;
3083 epd
= extract32(env
->cp15
.c2_control
, 7, 1);
3086 ttbr
= ((uint64_t)env
->cp15
.c2_base1_hi
<< 32) | env
->cp15
.c2_base1
;
3087 epd
= extract32(env
->cp15
.c2_control
, 23, 1);
3092 /* Translation table walk disabled => Translation fault on TLB miss */
3096 /* If the region is small enough we will skip straight to a 2nd level
3097 * lookup. This affects the number of bits of the address used in
3098 * combination with the TTBR to find the first descriptor. ('n' here
3099 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
3100 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
3109 /* Clear the vaddr bits which aren't part of the within-region address,
3110 * so that we don't have to special case things when calculating the
3111 * first descriptor address.
3113 address
&= (0xffffffffU
>> tsz
);
3115 /* Now we can extract the actual base address from the TTBR */
3116 descaddr
= extract64(ttbr
, 0, 40);
3117 descaddr
&= ~((1ULL << n
) - 1);
3121 uint64_t descriptor
;
3123 descaddr
|= ((address
>> (9 * (4 - level
))) & 0xff8);
3124 descriptor
= ldq_phys(descaddr
);
3125 if (!(descriptor
& 1) ||
3126 (!(descriptor
& 2) && (level
== 3))) {
3127 /* Invalid, or the Reserved level 3 encoding */
3130 descaddr
= descriptor
& 0xfffffff000ULL
;
3132 if ((descriptor
& 2) && (level
< 3)) {
3133 /* Table entry. The top five bits are attributes which may
3134 * propagate down through lower levels of the table (and
3135 * which are all arranged so that 0 means "no effect", so
3136 * we can gather them up by ORing in the bits at each level).
3138 tableattrs
|= extract64(descriptor
, 59, 5);
3142 /* Block entry at level 1 or 2, or page entry at level 3.
3143 * These are basically the same thing, although the number
3144 * of bits we pull in from the vaddr varies.
3146 page_size
= (1 << (39 - (9 * level
)));
3147 descaddr
|= (address
& (page_size
- 1));
3148 /* Extract attributes from the descriptor and merge with table attrs */
3149 attrs
= extract64(descriptor
, 2, 10)
3150 | (extract64(descriptor
, 52, 12) << 10);
3151 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
3152 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
3153 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3154 * means "force PL1 access only", which means forcing AP[1] to 0.
3156 if (extract32(tableattrs
, 2, 1)) {
3159 /* Since we're always in the Non-secure state, NSTable is ignored. */
3162 /* Here descaddr is the final physical address, and attributes
3165 fault_type
= access_fault
;
3166 if ((attrs
& (1 << 8)) == 0) {
3170 fault_type
= permission_fault
;
3171 if (is_user
&& !(attrs
& (1 << 4))) {
3172 /* Unprivileged access not enabled */
3175 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3176 if (attrs
& (1 << 12) || (!is_user
&& (attrs
& (1 << 11)))) {
3178 if (access_type
== 2) {
3181 *prot
&= ~PAGE_EXEC
;
3183 if (attrs
& (1 << 5)) {
3184 /* Write access forbidden */
3185 if (access_type
== 1) {
3188 *prot
&= ~PAGE_WRITE
;
3191 *phys_ptr
= descaddr
;
3192 *page_size_ptr
= page_size
;
3196 /* Long-descriptor format IFSR/DFSR value */
3197 return (1 << 9) | (fault_type
<< 2) | level
;
3200 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
3201 int access_type
, int is_user
,
3202 hwaddr
*phys_ptr
, int *prot
)
3208 *phys_ptr
= address
;
3209 for (n
= 7; n
>= 0; n
--) {
3210 base
= env
->cp15
.c6_region
[n
];
3211 if ((base
& 1) == 0)
3213 mask
= 1 << ((base
>> 1) & 0x1f);
3214 /* Keep this shift separate from the above to avoid an
3215 (undefined) << 32. */
3216 mask
= (mask
<< 1) - 1;
3217 if (((base
^ address
) & ~mask
) == 0)
3223 if (access_type
== 2) {
3224 mask
= env
->cp15
.c5_insn
;
3226 mask
= env
->cp15
.c5_data
;
3228 mask
= (mask
>> (n
* 4)) & 0xf;
3235 *prot
= PAGE_READ
| PAGE_WRITE
;
3240 *prot
|= PAGE_WRITE
;
3243 *prot
= PAGE_READ
| PAGE_WRITE
;
3254 /* Bad permission. */
3261 /* get_phys_addr - get the physical address for this virtual address
3263 * Find the physical address corresponding to the given virtual address,
3264 * by doing a translation table walk on MMU based systems or using the
3265 * MPU state on MPU based systems.
3267 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3268 * prot and page_size are not filled in, and the return value provides
3269 * information on why the translation aborted, in the format of a
3270 * DFSR/IFSR fault register, with the following caveats:
3271 * * we honour the short vs long DFSR format differences.
3272 * * the WnR bit is never set (the caller must do this).
3273 * * for MPU based systems we don't bother to return a full FSR format
3277 * @address: virtual address to get physical address for
3278 * @access_type: 0 for read, 1 for write, 2 for execute
3279 * @is_user: 0 for privileged access, 1 for user
3280 * @phys_ptr: set to the physical address corresponding to the virtual address
3281 * @prot: set to the permissions for the page containing phys_ptr
3282 * @page_size: set to the size of the page containing phys_ptr
3284 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
3285 int access_type
, int is_user
,
3286 hwaddr
*phys_ptr
, int *prot
,
3287 target_ulong
*page_size
)
3289 /* Fast Context Switch Extension. */
3290 if (address
< 0x02000000)
3291 address
+= env
->cp15
.c13_fcse
;
3293 if ((env
->cp15
.c1_sys
& 1) == 0) {
3294 /* MMU/MPU disabled. */
3295 *phys_ptr
= address
;
3296 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3297 *page_size
= TARGET_PAGE_SIZE
;
3299 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
3300 *page_size
= TARGET_PAGE_SIZE
;
3301 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
3303 } else if (extended_addresses_enabled(env
)) {
3304 return get_phys_addr_lpae(env
, address
, access_type
, is_user
, phys_ptr
,
3306 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
3307 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
3310 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
3315 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
,
3316 int access_type
, int mmu_idx
)
3319 target_ulong page_size
;
3323 is_user
= mmu_idx
== MMU_USER_IDX
;
3324 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
3327 /* Map a single [sub]page. */
3328 phys_addr
&= ~(hwaddr
)0x3ff;
3329 address
&= ~(uint32_t)0x3ff;
3330 tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
3334 if (access_type
== 2) {
3335 env
->cp15
.c5_insn
= ret
;
3336 env
->cp15
.c6_insn
= address
;
3337 env
->exception_index
= EXCP_PREFETCH_ABORT
;
3339 env
->cp15
.c5_data
= ret
;
3340 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
3341 env
->cp15
.c5_data
|= (1 << 11);
3342 env
->cp15
.c6_data
= address
;
3343 env
->exception_index
= EXCP_DATA_ABORT
;
3348 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
3350 ARMCPU
*cpu
= ARM_CPU(cs
);
3352 target_ulong page_size
;
3356 ret
= get_phys_addr(&cpu
->env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
3365 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
3367 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
3368 env
->regs
[13] = val
;
3370 env
->banked_r13
[bank_number(mode
)] = val
;
3374 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
3376 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
3377 return env
->regs
[13];
3379 return env
->banked_r13
[bank_number(mode
)];
3383 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
3387 return xpsr_read(env
) & 0xf8000000;
3389 return xpsr_read(env
) & 0xf80001ff;
3391 return xpsr_read(env
) & 0xff00fc00;
3393 return xpsr_read(env
) & 0xff00fdff;
3395 return xpsr_read(env
) & 0x000001ff;
3397 return xpsr_read(env
) & 0x0700fc00;
3399 return xpsr_read(env
) & 0x0700edff;
3401 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
3403 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
3404 case 16: /* PRIMASK */
3405 return (env
->uncached_cpsr
& CPSR_I
) != 0;
3406 case 17: /* BASEPRI */
3407 case 18: /* BASEPRI_MAX */
3408 return env
->v7m
.basepri
;
3409 case 19: /* FAULTMASK */
3410 return (env
->uncached_cpsr
& CPSR_F
) != 0;
3411 case 20: /* CONTROL */
3412 return env
->v7m
.control
;
3414 /* ??? For debugging only. */
3415 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
3420 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
3424 xpsr_write(env
, val
, 0xf8000000);
3427 xpsr_write(env
, val
, 0xf8000000);
3430 xpsr_write(env
, val
, 0xfe00fc00);
3433 xpsr_write(env
, val
, 0xfe00fc00);
3436 /* IPSR bits are readonly. */
3439 xpsr_write(env
, val
, 0x0600fc00);
3442 xpsr_write(env
, val
, 0x0600fc00);
3445 if (env
->v7m
.current_sp
)
3446 env
->v7m
.other_sp
= val
;
3448 env
->regs
[13] = val
;
3451 if (env
->v7m
.current_sp
)
3452 env
->regs
[13] = val
;
3454 env
->v7m
.other_sp
= val
;
3456 case 16: /* PRIMASK */
3458 env
->uncached_cpsr
|= CPSR_I
;
3460 env
->uncached_cpsr
&= ~CPSR_I
;
3462 case 17: /* BASEPRI */
3463 env
->v7m
.basepri
= val
& 0xff;
3465 case 18: /* BASEPRI_MAX */
3467 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
3468 env
->v7m
.basepri
= val
;
3470 case 19: /* FAULTMASK */
3472 env
->uncached_cpsr
|= CPSR_F
;
3474 env
->uncached_cpsr
&= ~CPSR_F
;
3476 case 20: /* CONTROL */
3477 env
->v7m
.control
= val
& 3;
3478 switch_v7m_sp(env
, (val
& 2) != 0);
3481 /* ??? For debugging only. */
3482 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
3489 /* Note that signed overflow is undefined in C. The following routines are
3490 careful to use unsigned types where modulo arithmetic is required.
3491 Failure to do so _will_ break on newer gcc. */
3493 /* Signed saturating arithmetic. */
3495 /* Perform 16-bit signed saturating addition. */
3496 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
3501 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
3510 /* Perform 8-bit signed saturating addition. */
3511 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
3516 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
3525 /* Perform 16-bit signed saturating subtraction. */
3526 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
3531 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
3540 /* Perform 8-bit signed saturating subtraction. */
3541 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
3546 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
3555 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3556 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3557 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3558 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3561 #include "op_addsub.h"
3563 /* Unsigned saturating arithmetic. */
3564 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
3573 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
3581 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
3590 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
3598 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3599 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3600 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3601 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3604 #include "op_addsub.h"
3606 /* Signed modulo arithmetic. */
3607 #define SARITH16(a, b, n, op) do { \
3609 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3610 RESULT(sum, n, 16); \
3612 ge |= 3 << (n * 2); \
3615 #define SARITH8(a, b, n, op) do { \
3617 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3618 RESULT(sum, n, 8); \
3624 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3625 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3626 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3627 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3631 #include "op_addsub.h"
3633 /* Unsigned modulo arithmetic. */
3634 #define ADD16(a, b, n) do { \
3636 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3637 RESULT(sum, n, 16); \
3638 if ((sum >> 16) == 1) \
3639 ge |= 3 << (n * 2); \
3642 #define ADD8(a, b, n) do { \
3644 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3645 RESULT(sum, n, 8); \
3646 if ((sum >> 8) == 1) \
3650 #define SUB16(a, b, n) do { \
3652 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3653 RESULT(sum, n, 16); \
3654 if ((sum >> 16) == 0) \
3655 ge |= 3 << (n * 2); \
3658 #define SUB8(a, b, n) do { \
3660 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3661 RESULT(sum, n, 8); \
3662 if ((sum >> 8) == 0) \
3669 #include "op_addsub.h"
3671 /* Halved signed arithmetic. */
3672 #define ADD16(a, b, n) \
3673 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3674 #define SUB16(a, b, n) \
3675 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3676 #define ADD8(a, b, n) \
3677 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3678 #define SUB8(a, b, n) \
3679 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3682 #include "op_addsub.h"
3684 /* Halved unsigned arithmetic. */
3685 #define ADD16(a, b, n) \
3686 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3687 #define SUB16(a, b, n) \
3688 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3689 #define ADD8(a, b, n) \
3690 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3691 #define SUB8(a, b, n) \
3692 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3695 #include "op_addsub.h"
3697 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
3705 /* Unsigned sum of absolute byte differences. */
3706 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
3709 sum
= do_usad(a
, b
);
3710 sum
+= do_usad(a
>> 8, b
>> 8);
3711 sum
+= do_usad(a
>> 16, b
>>16);
3712 sum
+= do_usad(a
>> 24, b
>> 24);
3716 /* For ARMv6 SEL instruction. */
3717 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
3730 return (a
& mask
) | (b
& ~mask
);
3733 /* VFP support. We follow the convention used for VFP instructions:
3734 Single precision routines have a "s" suffix, double precision a
3737 /* Convert host exception flags to vfp form. */
3738 static inline int vfp_exceptbits_from_host(int host_bits
)
3740 int target_bits
= 0;
3742 if (host_bits
& float_flag_invalid
)
3744 if (host_bits
& float_flag_divbyzero
)
3746 if (host_bits
& float_flag_overflow
)
3748 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
3750 if (host_bits
& float_flag_inexact
)
3751 target_bits
|= 0x10;
3752 if (host_bits
& float_flag_input_denormal
)
3753 target_bits
|= 0x80;
3757 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
3762 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
3763 | (env
->vfp
.vec_len
<< 16)
3764 | (env
->vfp
.vec_stride
<< 20);
3765 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
3766 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
3767 fpscr
|= vfp_exceptbits_from_host(i
);
3771 uint32_t vfp_get_fpscr(CPUARMState
*env
)
3773 return HELPER(vfp_get_fpscr
)(env
);
3776 /* Convert vfp exception flags to target form. */
3777 static inline int vfp_exceptbits_to_host(int target_bits
)
3781 if (target_bits
& 1)
3782 host_bits
|= float_flag_invalid
;
3783 if (target_bits
& 2)
3784 host_bits
|= float_flag_divbyzero
;
3785 if (target_bits
& 4)
3786 host_bits
|= float_flag_overflow
;
3787 if (target_bits
& 8)
3788 host_bits
|= float_flag_underflow
;
3789 if (target_bits
& 0x10)
3790 host_bits
|= float_flag_inexact
;
3791 if (target_bits
& 0x80)
3792 host_bits
|= float_flag_input_denormal
;
3796 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
3801 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
3802 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
3803 env
->vfp
.vec_len
= (val
>> 16) & 7;
3804 env
->vfp
.vec_stride
= (val
>> 20) & 3;
3807 if (changed
& (3 << 22)) {
3808 i
= (val
>> 22) & 3;
3810 case FPROUNDING_TIEEVEN
:
3811 i
= float_round_nearest_even
;
3813 case FPROUNDING_POSINF
:
3816 case FPROUNDING_NEGINF
:
3817 i
= float_round_down
;
3819 case FPROUNDING_ZERO
:
3820 i
= float_round_to_zero
;
3823 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
3825 if (changed
& (1 << 24)) {
3826 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
3827 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
3829 if (changed
& (1 << 25))
3830 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
3832 i
= vfp_exceptbits_to_host(val
);
3833 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
3834 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
3837 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
3839 HELPER(vfp_set_fpscr
)(env
, val
);
3842 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3844 #define VFP_BINOP(name) \
3845 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3847 float_status *fpst = fpstp; \
3848 return float32_ ## name(a, b, fpst); \
3850 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3852 float_status *fpst = fpstp; \
3853 return float64_ ## name(a, b, fpst); \
3865 float32
VFP_HELPER(neg
, s
)(float32 a
)
3867 return float32_chs(a
);
3870 float64
VFP_HELPER(neg
, d
)(float64 a
)
3872 return float64_chs(a
);
3875 float32
VFP_HELPER(abs
, s
)(float32 a
)
3877 return float32_abs(a
);
3880 float64
VFP_HELPER(abs
, d
)(float64 a
)
3882 return float64_abs(a
);
3885 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
3887 return float32_sqrt(a
, &env
->vfp
.fp_status
);
3890 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
3892 return float64_sqrt(a
, &env
->vfp
.fp_status
);
3895 /* XXX: check quiet/signaling case */
3896 #define DO_VFP_cmp(p, type) \
3897 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3900 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3901 case 0: flags = 0x6; break; \
3902 case -1: flags = 0x8; break; \
3903 case 1: flags = 0x2; break; \
3904 default: case 2: flags = 0x3; break; \
3906 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3907 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3909 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3912 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3913 case 0: flags = 0x6; break; \
3914 case -1: flags = 0x8; break; \
3915 case 1: flags = 0x2; break; \
3916 default: case 2: flags = 0x3; break; \
3918 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3919 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3921 DO_VFP_cmp(s
, float32
)
3922 DO_VFP_cmp(d
, float64
)
3925 /* Integer to float and float to integer conversions */
3927 #define CONV_ITOF(name, fsz, sign) \
3928 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3930 float_status *fpst = fpstp; \
3931 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3934 #define CONV_FTOI(name, fsz, sign, round) \
3935 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3937 float_status *fpst = fpstp; \
3938 if (float##fsz##_is_any_nan(x)) { \
3939 float_raise(float_flag_invalid, fpst); \
3942 return float##fsz##_to_##sign##int32##round(x, fpst); \
3945 #define FLOAT_CONVS(name, p, fsz, sign) \
3946 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3947 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3948 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3950 FLOAT_CONVS(si
, s
, 32, )
3951 FLOAT_CONVS(si
, d
, 64, )
3952 FLOAT_CONVS(ui
, s
, 32, u
)
3953 FLOAT_CONVS(ui
, d
, 64, u
)
3959 /* floating point conversion */
3960 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
3962 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
3963 /* ARM requires that S<->D conversion of any kind of NaN generates
3964 * a quiet NaN by forcing the most significant frac bit to 1.
3966 return float64_maybe_silence_nan(r
);
3969 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
3971 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
3972 /* ARM requires that S<->D conversion of any kind of NaN generates
3973 * a quiet NaN by forcing the most significant frac bit to 1.
3975 return float32_maybe_silence_nan(r
);
3978 /* VFP3 fixed point conversion. */
3979 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3980 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
3983 float_status *fpst = fpstp; \
3985 tmp = itype##_to_##float##fsz(x, fpst); \
3986 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3989 /* Notice that we want only input-denormal exception flags from the
3990 * scalbn operation: the other possible flags (overflow+inexact if
3991 * we overflow to infinity, output-denormal) aren't correct for the
3992 * complete scale-and-convert operation.
3994 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
3995 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
3999 float_status *fpst = fpstp; \
4000 int old_exc_flags = get_float_exception_flags(fpst); \
4002 if (float##fsz##_is_any_nan(x)) { \
4003 float_raise(float_flag_invalid, fpst); \
4006 tmp = float##fsz##_scalbn(x, shift, fpst); \
4007 old_exc_flags |= get_float_exception_flags(fpst) \
4008 & float_flag_input_denormal; \
4009 set_float_exception_flags(old_exc_flags, fpst); \
4010 return float##fsz##_to_##itype##round(tmp, fpst); \
4013 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4014 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4015 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4016 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4018 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4019 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4020 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4022 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
4023 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
4024 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
4025 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
4026 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
4027 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
4028 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
4029 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
4030 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
4031 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
4032 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
4033 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
4035 #undef VFP_CONV_FIX_FLOAT
4036 #undef VFP_CONV_FLOAT_FIX_ROUND
4038 /* Set the current fp rounding mode and return the old one.
4039 * The argument is a softfloat float_round_ value.
4041 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
4043 float_status
*fp_status
= &env
->vfp
.fp_status
;
4045 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
4046 set_float_rounding_mode(rmode
, fp_status
);
4051 /* Half precision conversions. */
4052 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
4054 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4055 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
4057 return float32_maybe_silence_nan(r
);
4062 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
4064 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4065 float16 r
= float32_to_float16(a
, ieee
, s
);
4067 r
= float16_maybe_silence_nan(r
);
4069 return float16_val(r
);
4072 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
4074 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
4077 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
4079 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
4082 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
4084 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
4087 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
4089 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
4092 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
4094 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4095 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
4097 return float64_maybe_silence_nan(r
);
4102 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
4104 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4105 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
4107 r
= float16_maybe_silence_nan(r
);
4109 return float16_val(r
);
4112 #define float32_two make_float32(0x40000000)
4113 #define float32_three make_float32(0x40400000)
4114 #define float32_one_point_five make_float32(0x3fc00000)
4116 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
4118 float_status
*s
= &env
->vfp
.standard_fp_status
;
4119 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
4120 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
4121 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
4122 float_raise(float_flag_input_denormal
, s
);
4126 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
4129 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
4131 float_status
*s
= &env
->vfp
.standard_fp_status
;
4133 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
4134 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
4135 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
4136 float_raise(float_flag_input_denormal
, s
);
4138 return float32_one_point_five
;
4140 product
= float32_mul(a
, b
, s
);
4141 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
4146 /* Constants 256 and 512 are used in some helpers; we avoid relying on
4147 * int->float conversions at run-time. */
4148 #define float64_256 make_float64(0x4070000000000000LL)
4149 #define float64_512 make_float64(0x4080000000000000LL)
4151 /* The algorithm that must be used to calculate the estimate
4152 * is specified by the ARM ARM.
4154 static float64
recip_estimate(float64 a
, CPUARMState
*env
)
4156 /* These calculations mustn't set any fp exception flags,
4157 * so we use a local copy of the fp_status.
4159 float_status dummy_status
= env
->vfp
.standard_fp_status
;
4160 float_status
*s
= &dummy_status
;
4161 /* q = (int)(a * 512.0) */
4162 float64 q
= float64_mul(float64_512
, a
, s
);
4163 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
4165 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
4166 q
= int64_to_float64(q_int
, s
);
4167 q
= float64_add(q
, float64_half
, s
);
4168 q
= float64_div(q
, float64_512
, s
);
4169 q
= float64_div(float64_one
, q
, s
);
4171 /* s = (int)(256.0 * r + 0.5) */
4172 q
= float64_mul(q
, float64_256
, s
);
4173 q
= float64_add(q
, float64_half
, s
);
4174 q_int
= float64_to_int64_round_to_zero(q
, s
);
4176 /* return (double)s / 256.0 */
4177 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
4180 float32
HELPER(recpe_f32
)(float32 a
, CPUARMState
*env
)
4182 float_status
*s
= &env
->vfp
.standard_fp_status
;
4184 uint32_t val32
= float32_val(a
);
4187 int a_exp
= (val32
& 0x7f800000) >> 23;
4188 int sign
= val32
& 0x80000000;
4190 if (float32_is_any_nan(a
)) {
4191 if (float32_is_signaling_nan(a
)) {
4192 float_raise(float_flag_invalid
, s
);
4194 return float32_default_nan
;
4195 } else if (float32_is_infinity(a
)) {
4196 return float32_set_sign(float32_zero
, float32_is_neg(a
));
4197 } else if (float32_is_zero_or_denormal(a
)) {
4198 if (!float32_is_zero(a
)) {
4199 float_raise(float_flag_input_denormal
, s
);
4201 float_raise(float_flag_divbyzero
, s
);
4202 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
4203 } else if (a_exp
>= 253) {
4204 float_raise(float_flag_underflow
, s
);
4205 return float32_set_sign(float32_zero
, float32_is_neg(a
));
4208 f64
= make_float64((0x3feULL
<< 52)
4209 | ((int64_t)(val32
& 0x7fffff) << 29));
4211 result_exp
= 253 - a_exp
;
4213 f64
= recip_estimate(f64
, env
);
4216 | ((result_exp
& 0xff) << 23)
4217 | ((float64_val(f64
) >> 29) & 0x7fffff);
4218 return make_float32(val32
);
4221 /* The algorithm that must be used to calculate the estimate
4222 * is specified by the ARM ARM.
4224 static float64
recip_sqrt_estimate(float64 a
, CPUARMState
*env
)
4226 /* These calculations mustn't set any fp exception flags,
4227 * so we use a local copy of the fp_status.
4229 float_status dummy_status
= env
->vfp
.standard_fp_status
;
4230 float_status
*s
= &dummy_status
;
4234 if (float64_lt(a
, float64_half
, s
)) {
4235 /* range 0.25 <= a < 0.5 */
4237 /* a in units of 1/512 rounded down */
4238 /* q0 = (int)(a * 512.0); */
4239 q
= float64_mul(float64_512
, a
, s
);
4240 q_int
= float64_to_int64_round_to_zero(q
, s
);
4242 /* reciprocal root r */
4243 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
4244 q
= int64_to_float64(q_int
, s
);
4245 q
= float64_add(q
, float64_half
, s
);
4246 q
= float64_div(q
, float64_512
, s
);
4247 q
= float64_sqrt(q
, s
);
4248 q
= float64_div(float64_one
, q
, s
);
4250 /* range 0.5 <= a < 1.0 */
4252 /* a in units of 1/256 rounded down */
4253 /* q1 = (int)(a * 256.0); */
4254 q
= float64_mul(float64_256
, a
, s
);
4255 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
4257 /* reciprocal root r */
4258 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
4259 q
= int64_to_float64(q_int
, s
);
4260 q
= float64_add(q
, float64_half
, s
);
4261 q
= float64_div(q
, float64_256
, s
);
4262 q
= float64_sqrt(q
, s
);
4263 q
= float64_div(float64_one
, q
, s
);
4265 /* r in units of 1/256 rounded to nearest */
4266 /* s = (int)(256.0 * r + 0.5); */
4268 q
= float64_mul(q
, float64_256
,s
);
4269 q
= float64_add(q
, float64_half
, s
);
4270 q_int
= float64_to_int64_round_to_zero(q
, s
);
4272 /* return (double)s / 256.0;*/
4273 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
4276 float32
HELPER(rsqrte_f32
)(float32 a
, CPUARMState
*env
)
4278 float_status
*s
= &env
->vfp
.standard_fp_status
;
4284 val
= float32_val(a
);
4286 if (float32_is_any_nan(a
)) {
4287 if (float32_is_signaling_nan(a
)) {
4288 float_raise(float_flag_invalid
, s
);
4290 return float32_default_nan
;
4291 } else if (float32_is_zero_or_denormal(a
)) {
4292 if (!float32_is_zero(a
)) {
4293 float_raise(float_flag_input_denormal
, s
);
4295 float_raise(float_flag_divbyzero
, s
);
4296 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
4297 } else if (float32_is_neg(a
)) {
4298 float_raise(float_flag_invalid
, s
);
4299 return float32_default_nan
;
4300 } else if (float32_is_infinity(a
)) {
4301 return float32_zero
;
4304 /* Normalize to a double-precision value between 0.25 and 1.0,
4305 * preserving the parity of the exponent. */
4306 if ((val
& 0x800000) == 0) {
4307 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
4309 | ((uint64_t)(val
& 0x7fffff) << 29));
4311 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
4313 | ((uint64_t)(val
& 0x7fffff) << 29));
4316 result_exp
= (380 - ((val
& 0x7f800000) >> 23)) / 2;
4318 f64
= recip_sqrt_estimate(f64
, env
);
4320 val64
= float64_val(f64
);
4322 val
= ((result_exp
& 0xff) << 23)
4323 | ((val64
>> 29) & 0x7fffff);
4324 return make_float32(val
);
4327 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUARMState
*env
)
4331 if ((a
& 0x80000000) == 0) {
4335 f64
= make_float64((0x3feULL
<< 52)
4336 | ((int64_t)(a
& 0x7fffffff) << 21));
4338 f64
= recip_estimate (f64
, env
);
4340 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
4343 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUARMState
*env
)
4347 if ((a
& 0xc0000000) == 0) {
4351 if (a
& 0x80000000) {
4352 f64
= make_float64((0x3feULL
<< 52)
4353 | ((uint64_t)(a
& 0x7fffffff) << 21));
4354 } else { /* bits 31-30 == '01' */
4355 f64
= make_float64((0x3fdULL
<< 52)
4356 | ((uint64_t)(a
& 0x3fffffff) << 22));
4359 f64
= recip_sqrt_estimate(f64
, env
);
4361 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
4364 /* VFPv4 fused multiply-accumulate */
4365 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
4367 float_status
*fpst
= fpstp
;
4368 return float32_muladd(a
, b
, c
, 0, fpst
);
4371 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
4373 float_status
*fpst
= fpstp
;
4374 return float64_muladd(a
, b
, c
, 0, fpst
);
4377 /* ARMv8 round to integral */
4378 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
4380 return float32_round_to_int(x
, fp_status
);
4383 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
4385 return float64_round_to_int(x
, fp_status
);
4388 float32
HELPER(rints
)(float32 x
, void *fp_status
)
4390 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
4393 ret
= float32_round_to_int(x
, fp_status
);
4395 /* Suppress any inexact exceptions the conversion produced */
4396 if (!(old_flags
& float_flag_inexact
)) {
4397 new_flags
= get_float_exception_flags(fp_status
);
4398 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
4404 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
4406 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
4409 ret
= float64_round_to_int(x
, fp_status
);
4411 new_flags
= get_float_exception_flags(fp_status
);
4413 /* Suppress any inexact exceptions the conversion produced */
4414 if (!(old_flags
& float_flag_inexact
)) {
4415 new_flags
= get_float_exception_flags(fp_status
);
4416 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);