spapr/drc: Clean up local variable shadowing in rtas_ibm_configure_connector()
[qemu/kevin.git] / hw / i386 / x86.c
blobf034df8bf628a7e1a02c2a5f137e8667a4c7a6c9
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu/datadir.h"
29 #include "qapi/error.h"
30 #include "qapi/qapi-visit-common.h"
31 #include "qapi/clone-visitor.h"
32 #include "qapi/qapi-visit-machine.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/whpx.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/replay.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/cpu-timers.h"
40 #include "sysemu/xen.h"
41 #include "trace.h"
43 #include "hw/i386/x86.h"
44 #include "target/i386/cpu.h"
45 #include "hw/i386/topology.h"
46 #include "hw/i386/fw_cfg.h"
47 #include "hw/intc/i8259.h"
48 #include "hw/rtc/mc146818rtc.h"
49 #include "target/i386/sev.h"
51 #include "hw/acpi/cpu_hotplug.h"
52 #include "hw/irq.h"
53 #include "hw/nmi.h"
54 #include "hw/loader.h"
55 #include "multiboot.h"
56 #include "elf.h"
57 #include "standard-headers/asm-x86/bootparam.h"
58 #include CONFIG_DEVICES
59 #include "kvm/kvm_i386.h"
61 #ifdef CONFIG_XEN_EMU
62 #include "hw/xen/xen.h"
63 #include "hw/i386/kvm/xen_evtchn.h"
64 #endif
66 /* Physical Address of PVH entry point read from kernel ELF NOTE */
67 static size_t pvh_start_addr;
69 static void init_topo_info(X86CPUTopoInfo *topo_info,
70 const X86MachineState *x86ms)
72 MachineState *ms = MACHINE(x86ms);
74 topo_info->dies_per_pkg = ms->smp.dies;
75 topo_info->cores_per_die = ms->smp.cores;
76 topo_info->threads_per_core = ms->smp.threads;
80 * Calculates initial APIC ID for a specific CPU index
82 * Currently we need to be able to calculate the APIC ID from the CPU index
83 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
84 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
85 * all CPUs up to max_cpus.
87 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
88 unsigned int cpu_index)
90 X86CPUTopoInfo topo_info;
92 init_topo_info(&topo_info, x86ms);
94 return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
98 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
100 Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
102 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
103 goto out;
105 qdev_realize(DEVICE(cpu), NULL, errp);
107 out:
108 object_unref(cpu);
111 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
113 int i;
114 const CPUArchIdList *possible_cpus;
115 MachineState *ms = MACHINE(x86ms);
116 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
118 x86_cpu_set_default_version(default_cpu_version);
121 * Calculates the limit to CPU APIC ID values
123 * Limit for the APIC ID value, so that all
124 * CPU APIC IDs are < x86ms->apic_id_limit.
126 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
128 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
129 ms->smp.max_cpus - 1) + 1;
132 * Can we support APIC ID 255 or higher? With KVM, that requires
133 * both in-kernel lapic and X2APIC userspace API.
135 if (x86ms->apic_id_limit > 255 && kvm_enabled() &&
136 (!kvm_irqchip_in_kernel() || !kvm_enable_x2apic())) {
137 error_report("current -smp configuration requires kernel "
138 "irqchip and X2APIC API support.");
139 exit(EXIT_FAILURE);
142 if (kvm_enabled()) {
143 kvm_set_max_apic_id(x86ms->apic_id_limit);
146 possible_cpus = mc->possible_cpu_arch_ids(ms);
147 for (i = 0; i < ms->smp.cpus; i++) {
148 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
152 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count)
154 MC146818RtcState *rtc = MC146818_RTC(s);
156 if (cpus_count > 0xff) {
158 * If the number of CPUs can't be represented in 8 bits, the
159 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
160 * to make old BIOSes fail more predictably.
162 mc146818rtc_set_cmos_data(rtc, 0x5f, 0);
163 } else {
164 mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1);
168 static int x86_apic_cmp(const void *a, const void *b)
170 CPUArchId *apic_a = (CPUArchId *)a;
171 CPUArchId *apic_b = (CPUArchId *)b;
173 return apic_a->arch_id - apic_b->arch_id;
177 * returns pointer to CPUArchId descriptor that matches CPU's apic_id
178 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
179 * entry corresponding to CPU's apic_id returns NULL.
181 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
183 CPUArchId apic_id, *found_cpu;
185 apic_id.arch_id = id;
186 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
187 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
188 x86_apic_cmp);
189 if (found_cpu && idx) {
190 *idx = found_cpu - ms->possible_cpus->cpus;
192 return found_cpu;
195 void x86_cpu_plug(HotplugHandler *hotplug_dev,
196 DeviceState *dev, Error **errp)
198 CPUArchId *found_cpu;
199 Error *local_err = NULL;
200 X86CPU *cpu = X86_CPU(dev);
201 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
203 if (x86ms->acpi_dev) {
204 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
205 if (local_err) {
206 goto out;
210 /* increment the number of CPUs */
211 x86ms->boot_cpus++;
212 if (x86ms->rtc) {
213 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
215 if (x86ms->fw_cfg) {
216 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
219 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
220 found_cpu->cpu = OBJECT(dev);
221 out:
222 error_propagate(errp, local_err);
225 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
226 DeviceState *dev, Error **errp)
228 int idx = -1;
229 X86CPU *cpu = X86_CPU(dev);
230 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
232 if (!x86ms->acpi_dev) {
233 error_setg(errp, "CPU hot unplug not supported without ACPI");
234 return;
237 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
238 assert(idx != -1);
239 if (idx == 0) {
240 error_setg(errp, "Boot CPU is unpluggable");
241 return;
244 hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
245 errp);
248 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
249 DeviceState *dev, Error **errp)
251 CPUArchId *found_cpu;
252 Error *local_err = NULL;
253 X86CPU *cpu = X86_CPU(dev);
254 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
256 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
257 if (local_err) {
258 goto out;
261 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
262 found_cpu->cpu = NULL;
263 qdev_unrealize(dev);
265 /* decrement the number of CPUs */
266 x86ms->boot_cpus--;
267 /* Update the number of CPUs in CMOS */
268 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
269 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
270 out:
271 error_propagate(errp, local_err);
274 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
275 DeviceState *dev, Error **errp)
277 int idx;
278 CPUState *cs;
279 CPUArchId *cpu_slot;
280 X86CPUTopoIDs topo_ids;
281 X86CPU *cpu = X86_CPU(dev);
282 CPUX86State *env = &cpu->env;
283 MachineState *ms = MACHINE(hotplug_dev);
284 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
285 unsigned int smp_cores = ms->smp.cores;
286 unsigned int smp_threads = ms->smp.threads;
287 X86CPUTopoInfo topo_info;
289 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
290 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
291 ms->cpu_type);
292 return;
295 if (x86ms->acpi_dev) {
296 Error *local_err = NULL;
298 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
299 &local_err);
300 if (local_err) {
301 error_propagate(errp, local_err);
302 return;
306 init_topo_info(&topo_info, x86ms);
308 env->nr_dies = ms->smp.dies;
311 * If APIC ID is not set,
312 * set it based on socket/die/core/thread properties.
314 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
315 int max_socket = (ms->smp.max_cpus - 1) /
316 smp_threads / smp_cores / ms->smp.dies;
319 * die-id was optional in QEMU 4.0 and older, so keep it optional
320 * if there's only one die per socket.
322 if (cpu->die_id < 0 && ms->smp.dies == 1) {
323 cpu->die_id = 0;
326 if (cpu->socket_id < 0) {
327 error_setg(errp, "CPU socket-id is not set");
328 return;
329 } else if (cpu->socket_id > max_socket) {
330 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
331 cpu->socket_id, max_socket);
332 return;
334 if (cpu->die_id < 0) {
335 error_setg(errp, "CPU die-id is not set");
336 return;
337 } else if (cpu->die_id > ms->smp.dies - 1) {
338 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
339 cpu->die_id, ms->smp.dies - 1);
340 return;
342 if (cpu->core_id < 0) {
343 error_setg(errp, "CPU core-id is not set");
344 return;
345 } else if (cpu->core_id > (smp_cores - 1)) {
346 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
347 cpu->core_id, smp_cores - 1);
348 return;
350 if (cpu->thread_id < 0) {
351 error_setg(errp, "CPU thread-id is not set");
352 return;
353 } else if (cpu->thread_id > (smp_threads - 1)) {
354 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
355 cpu->thread_id, smp_threads - 1);
356 return;
359 topo_ids.pkg_id = cpu->socket_id;
360 topo_ids.die_id = cpu->die_id;
361 topo_ids.core_id = cpu->core_id;
362 topo_ids.smt_id = cpu->thread_id;
363 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
366 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
367 if (!cpu_slot) {
368 MachineState *ms = MACHINE(x86ms);
370 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
371 error_setg(errp,
372 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
373 " APIC ID %" PRIu32 ", valid index range 0:%d",
374 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
375 cpu->apic_id, ms->possible_cpus->len - 1);
376 return;
379 if (cpu_slot->cpu) {
380 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
381 idx, cpu->apic_id);
382 return;
385 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
386 * so that machine_query_hotpluggable_cpus would show correct values
388 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
389 * once -smp refactoring is complete and there will be CPU private
390 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
391 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
392 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
393 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
394 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
395 topo_ids.pkg_id);
396 return;
398 cpu->socket_id = topo_ids.pkg_id;
400 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
401 error_setg(errp, "property die-id: %u doesn't match set apic-id:"
402 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
403 return;
405 cpu->die_id = topo_ids.die_id;
407 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
408 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
409 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
410 topo_ids.core_id);
411 return;
413 cpu->core_id = topo_ids.core_id;
415 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
416 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
417 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
418 topo_ids.smt_id);
419 return;
421 cpu->thread_id = topo_ids.smt_id;
423 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
424 kvm_enabled() && !kvm_hv_vpindex_settable()) {
425 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
426 return;
429 cs = CPU(cpu);
430 cs->cpu_index = idx;
432 numa_cpu_pre_plug(cpu_slot, dev, errp);
435 CpuInstanceProperties
436 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
438 MachineClass *mc = MACHINE_GET_CLASS(ms);
439 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
441 assert(cpu_index < possible_cpus->len);
442 return possible_cpus->cpus[cpu_index].props;
445 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
447 X86CPUTopoIDs topo_ids;
448 X86MachineState *x86ms = X86_MACHINE(ms);
449 X86CPUTopoInfo topo_info;
451 init_topo_info(&topo_info, x86ms);
453 assert(idx < ms->possible_cpus->len);
454 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
455 &topo_info, &topo_ids);
456 return topo_ids.pkg_id % ms->numa_state->num_nodes;
459 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
461 X86MachineState *x86ms = X86_MACHINE(ms);
462 unsigned int max_cpus = ms->smp.max_cpus;
463 X86CPUTopoInfo topo_info;
464 int i;
466 if (ms->possible_cpus) {
468 * make sure that max_cpus hasn't changed since the first use, i.e.
469 * -smp hasn't been parsed after it
471 assert(ms->possible_cpus->len == max_cpus);
472 return ms->possible_cpus;
475 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
476 sizeof(CPUArchId) * max_cpus);
477 ms->possible_cpus->len = max_cpus;
479 init_topo_info(&topo_info, x86ms);
481 for (i = 0; i < ms->possible_cpus->len; i++) {
482 X86CPUTopoIDs topo_ids;
484 ms->possible_cpus->cpus[i].type = ms->cpu_type;
485 ms->possible_cpus->cpus[i].vcpus_count = 1;
486 ms->possible_cpus->cpus[i].arch_id =
487 x86_cpu_apic_id_from_index(x86ms, i);
488 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
489 &topo_info, &topo_ids);
490 ms->possible_cpus->cpus[i].props.has_socket_id = true;
491 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
492 if (ms->smp.dies > 1) {
493 ms->possible_cpus->cpus[i].props.has_die_id = true;
494 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
496 ms->possible_cpus->cpus[i].props.has_core_id = true;
497 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
498 ms->possible_cpus->cpus[i].props.has_thread_id = true;
499 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
501 return ms->possible_cpus;
504 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
506 /* cpu index isn't used */
507 CPUState *cs;
509 CPU_FOREACH(cs) {
510 X86CPU *cpu = X86_CPU(cs);
512 if (!cpu->apic_state) {
513 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
514 } else {
515 apic_deliver_nmi(cpu->apic_state);
520 static long get_file_size(FILE *f)
522 long where, size;
524 /* XXX: on Unix systems, using fstat() probably makes more sense */
526 where = ftell(f);
527 fseek(f, 0, SEEK_END);
528 size = ftell(f);
529 fseek(f, where, SEEK_SET);
531 return size;
534 /* TSC handling */
535 uint64_t cpu_get_tsc(CPUX86State *env)
537 return cpus_get_elapsed_ticks();
540 /* IRQ handling */
541 static void pic_irq_request(void *opaque, int irq, int level)
543 CPUState *cs = first_cpu;
544 X86CPU *cpu = X86_CPU(cs);
546 trace_x86_pic_interrupt(irq, level);
547 if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
548 !whpx_apic_in_platform()) {
549 CPU_FOREACH(cs) {
550 cpu = X86_CPU(cs);
551 if (apic_accept_pic_intr(cpu->apic_state)) {
552 apic_deliver_pic_intr(cpu->apic_state, level);
555 } else {
556 if (level) {
557 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
558 } else {
559 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
564 qemu_irq x86_allocate_cpu_irq(void)
566 return qemu_allocate_irq(pic_irq_request, NULL, 0);
569 int cpu_get_pic_interrupt(CPUX86State *env)
571 X86CPU *cpu = env_archcpu(env);
572 int intno;
574 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
575 intno = apic_get_interrupt(cpu->apic_state);
576 if (intno >= 0) {
577 return intno;
579 /* read the irq from the PIC */
580 if (!apic_accept_pic_intr(cpu->apic_state)) {
581 return -1;
585 intno = pic_read_irq(isa_pic);
586 return intno;
589 DeviceState *cpu_get_current_apic(void)
591 if (current_cpu) {
592 X86CPU *cpu = X86_CPU(current_cpu);
593 return cpu->apic_state;
594 } else {
595 return NULL;
599 void gsi_handler(void *opaque, int n, int level)
601 GSIState *s = opaque;
603 trace_x86_gsi_interrupt(n, level);
604 switch (n) {
605 case 0 ... ISA_NUM_IRQS - 1:
606 if (s->i8259_irq[n]) {
607 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
608 qemu_set_irq(s->i8259_irq[n], level);
610 /* fall through */
611 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
612 #ifdef CONFIG_XEN_EMU
614 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC
615 * routing actually works properly under Xen). And then to
616 * *either* the PIRQ handling or the I/OAPIC depending on
617 * whether the former wants it.
619 if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) {
620 break;
622 #endif
623 qemu_set_irq(s->ioapic_irq[n], level);
624 break;
625 case IO_APIC_SECONDARY_IRQBASE
626 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
627 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
628 break;
632 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
634 DeviceState *dev;
635 SysBusDevice *d;
636 unsigned int i;
638 assert(parent_name);
639 if (kvm_ioapic_in_kernel()) {
640 dev = qdev_new(TYPE_KVM_IOAPIC);
641 } else {
642 dev = qdev_new(TYPE_IOAPIC);
644 object_property_add_child(object_resolve_path(parent_name, NULL),
645 "ioapic", OBJECT(dev));
646 d = SYS_BUS_DEVICE(dev);
647 sysbus_realize_and_unref(d, &error_fatal);
648 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
650 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
651 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
655 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
657 DeviceState *dev;
658 SysBusDevice *d;
659 unsigned int i;
661 dev = qdev_new(TYPE_IOAPIC);
662 d = SYS_BUS_DEVICE(dev);
663 sysbus_realize_and_unref(d, &error_fatal);
664 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
666 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
667 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
669 return dev;
672 struct setup_data {
673 uint64_t next;
674 uint32_t type;
675 uint32_t len;
676 uint8_t data[];
677 } __attribute__((packed));
681 * The entry point into the kernel for PVH boot is different from
682 * the native entry point. The PVH entry is defined by the x86/HVM
683 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
685 * This function is passed to load_elf() when it is called from
686 * load_elfboot() which then additionally checks for an ELF Note of
687 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
688 * parse the PVH entry address from the ELF Note.
690 * Due to trickery in elf_opts.h, load_elf() is actually available as
691 * load_elf32() or load_elf64() and this routine needs to be able
692 * to deal with being called as 32 or 64 bit.
694 * The address of the PVH entry point is saved to the 'pvh_start_addr'
695 * global variable. (although the entry point is 32-bit, the kernel
696 * binary can be either 32-bit or 64-bit).
698 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
700 size_t *elf_note_data_addr;
702 /* Check if ELF Note header passed in is valid */
703 if (arg1 == NULL) {
704 return 0;
707 if (is64) {
708 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
709 uint64_t nhdr_size64 = sizeof(struct elf64_note);
710 uint64_t phdr_align = *(uint64_t *)arg2;
711 uint64_t nhdr_namesz = nhdr64->n_namesz;
713 elf_note_data_addr =
714 ((void *)nhdr64) + nhdr_size64 +
715 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
717 pvh_start_addr = *elf_note_data_addr;
718 } else {
719 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
720 uint32_t nhdr_size32 = sizeof(struct elf32_note);
721 uint32_t phdr_align = *(uint32_t *)arg2;
722 uint32_t nhdr_namesz = nhdr32->n_namesz;
724 elf_note_data_addr =
725 ((void *)nhdr32) + nhdr_size32 +
726 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
728 pvh_start_addr = *(uint32_t *)elf_note_data_addr;
731 return pvh_start_addr;
734 static bool load_elfboot(const char *kernel_filename,
735 int kernel_file_size,
736 uint8_t *header,
737 size_t pvh_xen_start_addr,
738 FWCfgState *fw_cfg)
740 uint32_t flags = 0;
741 uint32_t mh_load_addr = 0;
742 uint32_t elf_kernel_size = 0;
743 uint64_t elf_entry;
744 uint64_t elf_low, elf_high;
745 int kernel_size;
747 if (ldl_p(header) != 0x464c457f) {
748 return false; /* no elfboot */
751 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
752 flags = elf_is64 ?
753 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
755 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
756 error_report("elfboot unsupported flags = %x", flags);
757 exit(1);
760 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
761 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
762 NULL, &elf_note_type, &elf_entry,
763 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
764 0, 0);
766 if (kernel_size < 0) {
767 error_report("Error while loading elf kernel");
768 exit(1);
770 mh_load_addr = elf_low;
771 elf_kernel_size = elf_high - elf_low;
773 if (pvh_start_addr == 0) {
774 error_report("Error loading uncompressed kernel without PVH ELF Note");
775 exit(1);
777 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
778 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
779 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
781 return true;
784 void x86_load_linux(X86MachineState *x86ms,
785 FWCfgState *fw_cfg,
786 int acpi_data_size,
787 bool pvh_enabled)
789 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
790 uint16_t protocol;
791 int setup_size, kernel_size, cmdline_size;
792 int dtb_size, setup_data_offset;
793 uint32_t initrd_max;
794 uint8_t header[8192], *setup, *kernel;
795 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
796 FILE *f;
797 char *vmode;
798 MachineState *machine = MACHINE(x86ms);
799 struct setup_data *setup_data;
800 const char *kernel_filename = machine->kernel_filename;
801 const char *initrd_filename = machine->initrd_filename;
802 const char *dtb_filename = machine->dtb;
803 const char *kernel_cmdline = machine->kernel_cmdline;
804 SevKernelLoaderContext sev_load_ctx = {};
806 /* Align to 16 bytes as a paranoia measure */
807 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
809 /* load the kernel header */
810 f = fopen(kernel_filename, "rb");
811 if (!f) {
812 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
813 kernel_filename, strerror(errno));
814 exit(1);
817 kernel_size = get_file_size(f);
818 if (!kernel_size ||
819 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
820 MIN(ARRAY_SIZE(header), kernel_size)) {
821 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
822 kernel_filename, strerror(errno));
823 exit(1);
826 /* kernel protocol version */
827 if (ldl_p(header + 0x202) == 0x53726448) {
828 protocol = lduw_p(header + 0x206);
829 } else {
831 * This could be a multiboot kernel. If it is, let's stop treating it
832 * like a Linux kernel.
833 * Note: some multiboot images could be in the ELF format (the same of
834 * PVH), so we try multiboot first since we check the multiboot magic
835 * header before to load it.
837 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
838 kernel_cmdline, kernel_size, header)) {
839 return;
842 * Check if the file is an uncompressed kernel file (ELF) and load it,
843 * saving the PVH entry point used by the x86/HVM direct boot ABI.
844 * If load_elfboot() is successful, populate the fw_cfg info.
846 if (pvh_enabled &&
847 load_elfboot(kernel_filename, kernel_size,
848 header, pvh_start_addr, fw_cfg)) {
849 fclose(f);
851 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
852 strlen(kernel_cmdline) + 1);
853 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
855 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
856 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
857 header, sizeof(header));
859 /* load initrd */
860 if (initrd_filename) {
861 GMappedFile *mapped_file;
862 gsize initrd_size;
863 gchar *initrd_data;
864 GError *gerr = NULL;
866 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
867 if (!mapped_file) {
868 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
869 initrd_filename, gerr->message);
870 exit(1);
872 x86ms->initrd_mapped_file = mapped_file;
874 initrd_data = g_mapped_file_get_contents(mapped_file);
875 initrd_size = g_mapped_file_get_length(mapped_file);
876 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
877 if (initrd_size >= initrd_max) {
878 fprintf(stderr, "qemu: initrd is too large, cannot support."
879 "(max: %"PRIu32", need %"PRId64")\n",
880 initrd_max, (uint64_t)initrd_size);
881 exit(1);
884 initrd_addr = (initrd_max - initrd_size) & ~4095;
886 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
887 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
888 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
889 initrd_size);
892 option_rom[nb_option_roms].bootindex = 0;
893 option_rom[nb_option_roms].name = "pvh.bin";
894 nb_option_roms++;
896 return;
898 protocol = 0;
901 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
902 /* Low kernel */
903 real_addr = 0x90000;
904 cmdline_addr = 0x9a000 - cmdline_size;
905 prot_addr = 0x10000;
906 } else if (protocol < 0x202) {
907 /* High but ancient kernel */
908 real_addr = 0x90000;
909 cmdline_addr = 0x9a000 - cmdline_size;
910 prot_addr = 0x100000;
911 } else {
912 /* High and recent kernel */
913 real_addr = 0x10000;
914 cmdline_addr = 0x20000;
915 prot_addr = 0x100000;
918 /* highest address for loading the initrd */
919 if (protocol >= 0x20c &&
920 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
922 * Linux has supported initrd up to 4 GB for a very long time (2007,
923 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
924 * though it only sets initrd_max to 2 GB to "work around bootloader
925 * bugs". Luckily, QEMU firmware(which does something like bootloader)
926 * has supported this.
928 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
929 * be loaded into any address.
931 * In addition, initrd_max is uint32_t simply because QEMU doesn't
932 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
933 * field).
935 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
937 initrd_max = UINT32_MAX;
938 } else if (protocol >= 0x203) {
939 initrd_max = ldl_p(header + 0x22c);
940 } else {
941 initrd_max = 0x37ffffff;
944 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
945 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
948 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
949 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
950 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
951 sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
952 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
954 if (protocol >= 0x202) {
955 stl_p(header + 0x228, cmdline_addr);
956 } else {
957 stw_p(header + 0x20, 0xA33F);
958 stw_p(header + 0x22, cmdline_addr - real_addr);
961 /* handle vga= parameter */
962 vmode = strstr(kernel_cmdline, "vga=");
963 if (vmode) {
964 unsigned int video_mode;
965 const char *end;
966 int ret;
967 /* skip "vga=" */
968 vmode += 4;
969 if (!strncmp(vmode, "normal", 6)) {
970 video_mode = 0xffff;
971 } else if (!strncmp(vmode, "ext", 3)) {
972 video_mode = 0xfffe;
973 } else if (!strncmp(vmode, "ask", 3)) {
974 video_mode = 0xfffd;
975 } else {
976 ret = qemu_strtoui(vmode, &end, 0, &video_mode);
977 if (ret != 0 || (*end && *end != ' ')) {
978 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
979 exit(1);
982 stw_p(header + 0x1fa, video_mode);
985 /* loader type */
987 * High nybble = B reserved for QEMU; low nybble is revision number.
988 * If this code is substantially changed, you may want to consider
989 * incrementing the revision.
991 if (protocol >= 0x200) {
992 header[0x210] = 0xB0;
994 /* heap */
995 if (protocol >= 0x201) {
996 header[0x211] |= 0x80; /* CAN_USE_HEAP */
997 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
1000 /* load initrd */
1001 if (initrd_filename) {
1002 GMappedFile *mapped_file;
1003 gsize initrd_size;
1004 gchar *initrd_data;
1005 GError *gerr = NULL;
1007 if (protocol < 0x200) {
1008 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1009 exit(1);
1012 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
1013 if (!mapped_file) {
1014 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1015 initrd_filename, gerr->message);
1016 exit(1);
1018 x86ms->initrd_mapped_file = mapped_file;
1020 initrd_data = g_mapped_file_get_contents(mapped_file);
1021 initrd_size = g_mapped_file_get_length(mapped_file);
1022 if (initrd_size >= initrd_max) {
1023 fprintf(stderr, "qemu: initrd is too large, cannot support."
1024 "(max: %"PRIu32", need %"PRId64")\n",
1025 initrd_max, (uint64_t)initrd_size);
1026 exit(1);
1029 initrd_addr = (initrd_max - initrd_size) & ~4095;
1031 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1032 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1033 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1034 sev_load_ctx.initrd_data = initrd_data;
1035 sev_load_ctx.initrd_size = initrd_size;
1037 stl_p(header + 0x218, initrd_addr);
1038 stl_p(header + 0x21c, initrd_size);
1041 /* load kernel and setup */
1042 setup_size = header[0x1f1];
1043 if (setup_size == 0) {
1044 setup_size = 4;
1046 setup_size = (setup_size + 1) * 512;
1047 if (setup_size > kernel_size) {
1048 fprintf(stderr, "qemu: invalid kernel header\n");
1049 exit(1);
1051 kernel_size -= setup_size;
1053 setup = g_malloc(setup_size);
1054 kernel = g_malloc(kernel_size);
1055 fseek(f, 0, SEEK_SET);
1056 if (fread(setup, 1, setup_size, f) != setup_size) {
1057 fprintf(stderr, "fread() failed\n");
1058 exit(1);
1060 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1061 fprintf(stderr, "fread() failed\n");
1062 exit(1);
1064 fclose(f);
1066 /* append dtb to kernel */
1067 if (dtb_filename) {
1068 if (protocol < 0x209) {
1069 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1070 exit(1);
1073 dtb_size = get_image_size(dtb_filename);
1074 if (dtb_size <= 0) {
1075 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1076 dtb_filename, strerror(errno));
1077 exit(1);
1080 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1081 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1082 kernel = g_realloc(kernel, kernel_size);
1084 stq_p(header + 0x250, prot_addr + setup_data_offset);
1086 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1087 setup_data->next = 0;
1088 setup_data->type = cpu_to_le32(SETUP_DTB);
1089 setup_data->len = cpu_to_le32(dtb_size);
1091 load_image_size(dtb_filename, setup_data->data, dtb_size);
1095 * If we're starting an encrypted VM, it will be OVMF based, which uses the
1096 * efi stub for booting and doesn't require any values to be placed in the
1097 * kernel header. We therefore don't update the header so the hash of the
1098 * kernel on the other side of the fw_cfg interface matches the hash of the
1099 * file the user passed in.
1101 if (!sev_enabled()) {
1102 memcpy(setup, header, MIN(sizeof(header), setup_size));
1105 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1106 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1107 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1108 sev_load_ctx.kernel_data = (char *)kernel;
1109 sev_load_ctx.kernel_size = kernel_size;
1111 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1112 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1113 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1114 sev_load_ctx.setup_data = (char *)setup;
1115 sev_load_ctx.setup_size = setup_size;
1117 if (sev_enabled()) {
1118 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1121 option_rom[nb_option_roms].bootindex = 0;
1122 option_rom[nb_option_roms].name = "linuxboot.bin";
1123 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1124 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1126 nb_option_roms++;
1129 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1130 MemoryRegion *rom_memory, bool isapc_ram_fw)
1132 const char *bios_name;
1133 char *filename;
1134 MemoryRegion *bios, *isa_bios;
1135 int bios_size, isa_bios_size;
1136 ssize_t ret;
1138 /* BIOS load */
1139 bios_name = ms->firmware ?: default_firmware;
1140 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1141 if (filename) {
1142 bios_size = get_image_size(filename);
1143 } else {
1144 bios_size = -1;
1146 if (bios_size <= 0 ||
1147 (bios_size % 65536) != 0) {
1148 goto bios_error;
1150 bios = g_malloc(sizeof(*bios));
1151 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1152 if (sev_enabled()) {
1154 * The concept of a "reset" simply doesn't exist for
1155 * confidential computing guests, we have to destroy and
1156 * re-launch them instead. So there is no need to register
1157 * the firmware as rom to properly re-initialize on reset.
1158 * Just go for a straight file load instead.
1160 void *ptr = memory_region_get_ram_ptr(bios);
1161 load_image_size(filename, ptr, bios_size);
1162 x86_firmware_configure(ptr, bios_size);
1163 } else {
1164 if (!isapc_ram_fw) {
1165 memory_region_set_readonly(bios, true);
1167 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1168 if (ret != 0) {
1169 goto bios_error;
1172 g_free(filename);
1174 /* map the last 128KB of the BIOS in ISA space */
1175 isa_bios_size = MIN(bios_size, 128 * KiB);
1176 isa_bios = g_malloc(sizeof(*isa_bios));
1177 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1178 bios_size - isa_bios_size, isa_bios_size);
1179 memory_region_add_subregion_overlap(rom_memory,
1180 0x100000 - isa_bios_size,
1181 isa_bios,
1183 if (!isapc_ram_fw) {
1184 memory_region_set_readonly(isa_bios, true);
1187 /* map all the bios at the top of memory */
1188 memory_region_add_subregion(rom_memory,
1189 (uint32_t)(-bios_size),
1190 bios);
1191 return;
1193 bios_error:
1194 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1195 exit(1);
1198 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1200 bool smm_available = false;
1202 if (x86ms->smm == ON_OFF_AUTO_OFF) {
1203 return false;
1206 if (tcg_enabled() || qtest_enabled()) {
1207 smm_available = true;
1208 } else if (kvm_enabled()) {
1209 smm_available = kvm_has_smm();
1212 if (smm_available) {
1213 return true;
1216 if (x86ms->smm == ON_OFF_AUTO_ON) {
1217 error_report("System Management Mode not supported by this hypervisor.");
1218 exit(1);
1220 return false;
1223 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1224 void *opaque, Error **errp)
1226 X86MachineState *x86ms = X86_MACHINE(obj);
1227 OnOffAuto smm = x86ms->smm;
1229 visit_type_OnOffAuto(v, name, &smm, errp);
1232 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1233 void *opaque, Error **errp)
1235 X86MachineState *x86ms = X86_MACHINE(obj);
1237 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1240 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1242 if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1243 return false;
1245 return true;
1248 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1249 void *opaque, Error **errp)
1251 X86MachineState *x86ms = X86_MACHINE(obj);
1252 OnOffAuto acpi = x86ms->acpi;
1254 visit_type_OnOffAuto(v, name, &acpi, errp);
1257 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1258 void *opaque, Error **errp)
1260 X86MachineState *x86ms = X86_MACHINE(obj);
1262 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1265 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name,
1266 void *opaque, Error **errp)
1268 X86MachineState *x86ms = X86_MACHINE(obj);
1269 OnOffAuto pit = x86ms->pit;
1271 visit_type_OnOffAuto(v, name, &pit, errp);
1274 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name,
1275 void *opaque, Error **errp)
1277 X86MachineState *x86ms = X86_MACHINE(obj);;
1279 visit_type_OnOffAuto(v, name, &x86ms->pit, errp);
1282 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name,
1283 void *opaque, Error **errp)
1285 X86MachineState *x86ms = X86_MACHINE(obj);
1286 OnOffAuto pic = x86ms->pic;
1288 visit_type_OnOffAuto(v, name, &pic, errp);
1291 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name,
1292 void *opaque, Error **errp)
1294 X86MachineState *x86ms = X86_MACHINE(obj);
1296 visit_type_OnOffAuto(v, name, &x86ms->pic, errp);
1299 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1301 X86MachineState *x86ms = X86_MACHINE(obj);
1303 return g_strdup(x86ms->oem_id);
1306 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1308 X86MachineState *x86ms = X86_MACHINE(obj);
1309 size_t len = strlen(value);
1311 if (len > 6) {
1312 error_setg(errp,
1313 "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1314 "6 bytes in size");
1315 return;
1318 strncpy(x86ms->oem_id, value, 6);
1321 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1323 X86MachineState *x86ms = X86_MACHINE(obj);
1325 return g_strdup(x86ms->oem_table_id);
1328 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1329 Error **errp)
1331 X86MachineState *x86ms = X86_MACHINE(obj);
1332 size_t len = strlen(value);
1334 if (len > 8) {
1335 error_setg(errp,
1336 "User specified "X86_MACHINE_OEM_TABLE_ID
1337 " value is bigger than "
1338 "8 bytes in size");
1339 return;
1341 strncpy(x86ms->oem_table_id, value, 8);
1344 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1345 const char *name, void *opaque, Error **errp)
1347 X86MachineState *x86ms = X86_MACHINE(obj);
1348 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1350 visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1353 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1354 const char *name, void *opaque, Error **errp)
1356 X86MachineState *x86ms = X86_MACHINE(obj);
1358 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1361 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1362 void *opaque, Error **errp)
1364 X86MachineState *x86ms = X86_MACHINE(obj);
1365 SgxEPCList *list = x86ms->sgx_epc_list;
1367 visit_type_SgxEPCList(v, name, &list, errp);
1370 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1371 void *opaque, Error **errp)
1373 X86MachineState *x86ms = X86_MACHINE(obj);
1374 SgxEPCList *list;
1376 list = x86ms->sgx_epc_list;
1377 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1379 qapi_free_SgxEPCList(list);
1382 static void x86_machine_initfn(Object *obj)
1384 X86MachineState *x86ms = X86_MACHINE(obj);
1386 x86ms->smm = ON_OFF_AUTO_AUTO;
1387 x86ms->acpi = ON_OFF_AUTO_AUTO;
1388 x86ms->pit = ON_OFF_AUTO_AUTO;
1389 x86ms->pic = ON_OFF_AUTO_AUTO;
1390 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1391 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1392 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1393 x86ms->bus_lock_ratelimit = 0;
1394 x86ms->above_4g_mem_start = 4 * GiB;
1397 static void x86_machine_class_init(ObjectClass *oc, void *data)
1399 MachineClass *mc = MACHINE_CLASS(oc);
1400 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1401 NMIClass *nc = NMI_CLASS(oc);
1403 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1404 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1405 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1406 x86mc->save_tsc_khz = true;
1407 x86mc->fwcfg_dma_enabled = true;
1408 nc->nmi_monitor_handler = x86_nmi;
1410 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1411 x86_machine_get_smm, x86_machine_set_smm,
1412 NULL, NULL);
1413 object_class_property_set_description(oc, X86_MACHINE_SMM,
1414 "Enable SMM");
1416 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1417 x86_machine_get_acpi, x86_machine_set_acpi,
1418 NULL, NULL);
1419 object_class_property_set_description(oc, X86_MACHINE_ACPI,
1420 "Enable ACPI");
1422 object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto",
1423 x86_machine_get_pit,
1424 x86_machine_set_pit,
1425 NULL, NULL);
1426 object_class_property_set_description(oc, X86_MACHINE_PIT,
1427 "Enable i8254 PIT");
1429 object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto",
1430 x86_machine_get_pic,
1431 x86_machine_set_pic,
1432 NULL, NULL);
1433 object_class_property_set_description(oc, X86_MACHINE_PIC,
1434 "Enable i8259 PIC");
1436 object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1437 x86_machine_get_oem_id,
1438 x86_machine_set_oem_id);
1439 object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1440 "Override the default value of field OEMID "
1441 "in ACPI table header."
1442 "The string may be up to 6 bytes in size");
1445 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1446 x86_machine_get_oem_table_id,
1447 x86_machine_set_oem_table_id);
1448 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1449 "Override the default value of field OEM Table ID "
1450 "in ACPI table header."
1451 "The string may be up to 8 bytes in size");
1453 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1454 x86_machine_get_bus_lock_ratelimit,
1455 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1456 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1457 "Set the ratelimit for the bus locks acquired in VMs");
1459 object_class_property_add(oc, "sgx-epc", "SgxEPC",
1460 machine_get_sgx_epc, machine_set_sgx_epc,
1461 NULL, NULL);
1462 object_class_property_set_description(oc, "sgx-epc",
1463 "SGX EPC device");
1466 static const TypeInfo x86_machine_info = {
1467 .name = TYPE_X86_MACHINE,
1468 .parent = TYPE_MACHINE,
1469 .abstract = true,
1470 .instance_size = sizeof(X86MachineState),
1471 .instance_init = x86_machine_initfn,
1472 .class_size = sizeof(X86MachineClass),
1473 .class_init = x86_machine_class_init,
1474 .interfaces = (InterfaceInfo[]) {
1475 { TYPE_NMI },
1480 static void x86_machine_register_types(void)
1482 type_register_static(&x86_machine_info);
1485 type_init(x86_machine_register_types)