2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
32 #include "hw/block/fdc.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/isa/isa.h"
36 #include "hw/sysbus.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/blockdev.h"
39 #include "sysemu/sysemu.h"
42 /********************************************************/
43 /* debug Floppy devices */
44 //#define DEBUG_FLOPPY
47 #define FLOPPY_DPRINTF(fmt, ...) \
48 do { printf("FLOPPY: " fmt , ## __VA_ARGS__); } while (0)
50 #define FLOPPY_DPRINTF(fmt, ...)
53 /********************************************************/
54 /* Floppy drive emulation */
56 typedef enum FDriveRate
{
57 FDRIVE_RATE_500K
= 0x00, /* 500 Kbps */
58 FDRIVE_RATE_300K
= 0x01, /* 300 Kbps */
59 FDRIVE_RATE_250K
= 0x02, /* 250 Kbps */
60 FDRIVE_RATE_1M
= 0x03, /* 1 Mbps */
63 typedef enum FDriveSize
{
69 typedef struct FDFormat
{
70 FloppyDriveType drive
;
77 /* In many cases, the total sector size of a format is enough to uniquely
78 * identify it. However, there are some total sector collisions between
79 * formats of different physical size, and these are noted below by
80 * highlighting the total sector size for entries with collisions. */
81 static const FDFormat fd_formats
[] = {
82 /* First entry is default format */
83 /* 1.44 MB 3"1/2 floppy disks */
84 { FLOPPY_DRIVE_TYPE_144
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 2880 */
85 { FLOPPY_DRIVE_TYPE_144
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 3200 */
86 { FLOPPY_DRIVE_TYPE_144
, 21, 80, 1, FDRIVE_RATE_500K
, },
87 { FLOPPY_DRIVE_TYPE_144
, 21, 82, 1, FDRIVE_RATE_500K
, },
88 { FLOPPY_DRIVE_TYPE_144
, 21, 83, 1, FDRIVE_RATE_500K
, },
89 { FLOPPY_DRIVE_TYPE_144
, 22, 80, 1, FDRIVE_RATE_500K
, },
90 { FLOPPY_DRIVE_TYPE_144
, 23, 80, 1, FDRIVE_RATE_500K
, },
91 { FLOPPY_DRIVE_TYPE_144
, 24, 80, 1, FDRIVE_RATE_500K
, },
92 /* 2.88 MB 3"1/2 floppy disks */
93 { FLOPPY_DRIVE_TYPE_288
, 36, 80, 1, FDRIVE_RATE_1M
, },
94 { FLOPPY_DRIVE_TYPE_288
, 39, 80, 1, FDRIVE_RATE_1M
, },
95 { FLOPPY_DRIVE_TYPE_288
, 40, 80, 1, FDRIVE_RATE_1M
, },
96 { FLOPPY_DRIVE_TYPE_288
, 44, 80, 1, FDRIVE_RATE_1M
, },
97 { FLOPPY_DRIVE_TYPE_288
, 48, 80, 1, FDRIVE_RATE_1M
, },
98 /* 720 kB 3"1/2 floppy disks */
99 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 3.5" 1440 */
100 { FLOPPY_DRIVE_TYPE_144
, 10, 80, 1, FDRIVE_RATE_250K
, },
101 { FLOPPY_DRIVE_TYPE_144
, 10, 82, 1, FDRIVE_RATE_250K
, },
102 { FLOPPY_DRIVE_TYPE_144
, 10, 83, 1, FDRIVE_RATE_250K
, },
103 { FLOPPY_DRIVE_TYPE_144
, 13, 80, 1, FDRIVE_RATE_250K
, },
104 { FLOPPY_DRIVE_TYPE_144
, 14, 80, 1, FDRIVE_RATE_250K
, },
105 /* 1.2 MB 5"1/4 floppy disks */
106 { FLOPPY_DRIVE_TYPE_120
, 15, 80, 1, FDRIVE_RATE_500K
, },
107 { FLOPPY_DRIVE_TYPE_120
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 2880 */
108 { FLOPPY_DRIVE_TYPE_120
, 18, 82, 1, FDRIVE_RATE_500K
, },
109 { FLOPPY_DRIVE_TYPE_120
, 18, 83, 1, FDRIVE_RATE_500K
, },
110 { FLOPPY_DRIVE_TYPE_120
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 3200 */
111 /* 720 kB 5"1/4 floppy disks */
112 { FLOPPY_DRIVE_TYPE_120
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 5.25" 1440 */
113 { FLOPPY_DRIVE_TYPE_120
, 11, 80, 1, FDRIVE_RATE_250K
, },
114 /* 360 kB 5"1/4 floppy disks */
115 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 1, FDRIVE_RATE_300K
, }, /* 5.25" 720 */
116 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 0, FDRIVE_RATE_300K
, },
117 { FLOPPY_DRIVE_TYPE_120
, 10, 41, 1, FDRIVE_RATE_300K
, },
118 { FLOPPY_DRIVE_TYPE_120
, 10, 42, 1, FDRIVE_RATE_300K
, },
119 /* 320 kB 5"1/4 floppy disks */
120 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 1, FDRIVE_RATE_250K
, },
121 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 0, FDRIVE_RATE_250K
, },
122 /* 360 kB must match 5"1/4 better than 3"1/2... */
123 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 0, FDRIVE_RATE_250K
, }, /* 3.5" 720 */
125 { FLOPPY_DRIVE_TYPE_NONE
, -1, -1, 0, 0, },
128 static FDriveSize
drive_size(FloppyDriveType drive
)
131 case FLOPPY_DRIVE_TYPE_120
:
132 return FDRIVE_SIZE_525
;
133 case FLOPPY_DRIVE_TYPE_144
:
134 case FLOPPY_DRIVE_TYPE_288
:
135 return FDRIVE_SIZE_350
;
137 return FDRIVE_SIZE_UNKNOWN
;
141 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
142 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
144 /* Will always be a fixed parameter for us */
145 #define FD_SECTOR_LEN 512
146 #define FD_SECTOR_SC 2 /* Sector size code */
147 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
149 typedef struct FDCtrl FDCtrl
;
151 /* Floppy disk drive emulation */
152 typedef enum FDiskFlags
{
153 FDISK_DBL_SIDES
= 0x01,
156 typedef struct FDrive
{
160 FloppyDriveType drive
; /* CMOS drive type */
161 uint8_t perpendicular
; /* 2.88 MB access mode */
167 FloppyDriveType disk
; /* Current disk type */
169 uint8_t last_sect
; /* Nb sector per track */
170 uint8_t max_track
; /* Nb of tracks */
171 uint16_t bps
; /* Bytes per sector */
172 uint8_t ro
; /* Is read-only */
173 uint8_t media_changed
; /* Is media changed */
174 uint8_t media_rate
; /* Data rate of medium */
176 bool media_validated
; /* Have we validated the media? */
180 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
);
182 static void fd_init(FDrive
*drv
)
185 drv
->perpendicular
= 0;
187 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
191 drv
->media_changed
= 1;
194 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
196 static int fd_sector_calc(uint8_t head
, uint8_t track
, uint8_t sect
,
197 uint8_t last_sect
, uint8_t num_sides
)
199 return (((track
* num_sides
) + head
) * last_sect
) + sect
- 1;
202 /* Returns current position, in sectors, for given drive */
203 static int fd_sector(FDrive
*drv
)
205 return fd_sector_calc(drv
->head
, drv
->track
, drv
->sect
, drv
->last_sect
,
209 /* Seek to a new position:
210 * returns 0 if already on right track
211 * returns 1 if track changed
212 * returns 2 if track is invalid
213 * returns 3 if sector is invalid
214 * returns 4 if seek is disabled
216 static int fd_seek(FDrive
*drv
, uint8_t head
, uint8_t track
, uint8_t sect
,
222 if (track
> drv
->max_track
||
223 (head
!= 0 && (drv
->flags
& FDISK_DBL_SIDES
) == 0)) {
224 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
225 head
, track
, sect
, 1,
226 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
227 drv
->max_track
, drv
->last_sect
);
230 if (sect
> drv
->last_sect
) {
231 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
232 head
, track
, sect
, 1,
233 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
234 drv
->max_track
, drv
->last_sect
);
237 sector
= fd_sector_calc(head
, track
, sect
, drv
->last_sect
, NUM_SIDES(drv
));
239 if (sector
!= fd_sector(drv
)) {
242 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
243 " (max=%d %02x %02x)\n",
244 head
, track
, sect
, 1, drv
->max_track
,
250 if (drv
->track
!= track
) {
251 if (drv
->blk
!= NULL
&& blk_is_inserted(drv
->blk
)) {
252 drv
->media_changed
= 0;
260 if (drv
->blk
== NULL
|| !blk_is_inserted(drv
->blk
)) {
267 /* Set drive back to track 0 */
268 static void fd_recalibrate(FDrive
*drv
)
270 FLOPPY_DPRINTF("recalibrate\n");
271 fd_seek(drv
, 0, 0, 1, 1);
275 * Determine geometry based on inserted diskette.
276 * Will not operate on an empty drive.
278 * @return: 0 on success, -1 if the drive is empty.
280 static int pick_geometry(FDrive
*drv
)
282 BlockBackend
*blk
= drv
->blk
;
283 const FDFormat
*parse
;
284 uint64_t nb_sectors
, size
;
286 int match
, size_match
, type_match
;
287 bool magic
= drv
->drive
== FLOPPY_DRIVE_TYPE_AUTO
;
289 /* We can only pick a geometry if we have a diskette. */
290 if (!drv
->blk
|| !blk_is_inserted(drv
->blk
) ||
291 drv
->drive
== FLOPPY_DRIVE_TYPE_NONE
)
296 /* We need to determine the likely geometry of the inserted medium.
297 * In order of preference, we look for:
298 * (1) The same drive type and number of sectors,
299 * (2) The same diskette size and number of sectors,
300 * (3) The same drive type.
302 * In all cases, matches that occur higher in the drive table will take
303 * precedence over matches that occur later in the table.
305 blk_get_geometry(blk
, &nb_sectors
);
306 match
= size_match
= type_match
= -1;
308 parse
= &fd_formats
[i
];
309 if (parse
->drive
== FLOPPY_DRIVE_TYPE_NONE
) {
312 size
= (parse
->max_head
+ 1) * parse
->max_track
* parse
->last_sect
;
313 if (nb_sectors
== size
) {
314 if (magic
|| parse
->drive
== drv
->drive
) {
315 /* (1) perfect match -- nb_sectors and drive type */
317 } else if (drive_size(parse
->drive
) == drive_size(drv
->drive
)) {
318 /* (2) size match -- nb_sectors and physical medium size */
319 match
= (match
== -1) ? i
: match
;
321 /* This is suspicious -- Did the user misconfigure? */
322 size_match
= (size_match
== -1) ? i
: size_match
;
324 } else if (type_match
== -1) {
325 if ((parse
->drive
== drv
->drive
) ||
326 (magic
&& (parse
->drive
== get_fallback_drive_type(drv
)))) {
327 /* (3) type match -- nb_sectors mismatch, but matches the type
328 * specified explicitly by the user, or matches the fallback
329 * default type when using the drive autodetect mechanism */
335 /* No exact match found */
337 if (size_match
!= -1) {
338 parse
= &fd_formats
[size_match
];
339 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
340 "but inserted medium appears to be a "
341 "%d sector '%s' type\n",
342 FloppyDriveType_lookup
[drv
->drive
],
344 FloppyDriveType_lookup
[parse
->drive
]);
349 /* No match of any kind found -- fd_format is misconfigured, abort. */
351 error_setg(&error_abort
, "No candidate geometries present in table "
352 " for floppy drive type '%s'",
353 FloppyDriveType_lookup
[drv
->drive
]);
356 parse
= &(fd_formats
[match
]);
359 if (parse
->max_head
== 0) {
360 drv
->flags
&= ~FDISK_DBL_SIDES
;
362 drv
->flags
|= FDISK_DBL_SIDES
;
364 drv
->max_track
= parse
->max_track
;
365 drv
->last_sect
= parse
->last_sect
;
366 drv
->disk
= parse
->drive
;
367 drv
->media_rate
= parse
->rate
;
371 static void pick_drive_type(FDrive
*drv
)
373 if (drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
) {
377 if (pick_geometry(drv
) == 0) {
378 drv
->drive
= drv
->disk
;
380 drv
->drive
= get_fallback_drive_type(drv
);
383 g_assert(drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
);
386 /* Revalidate a disk drive after a disk change */
387 static void fd_revalidate(FDrive
*drv
)
391 FLOPPY_DPRINTF("revalidate\n");
392 if (drv
->blk
!= NULL
) {
393 drv
->ro
= blk_is_read_only(drv
->blk
);
394 if (!blk_is_inserted(drv
->blk
)) {
395 FLOPPY_DPRINTF("No disk in drive\n");
396 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
397 } else if (!drv
->media_validated
) {
398 rc
= pick_geometry(drv
);
400 FLOPPY_DPRINTF("Could not validate floppy drive media");
402 drv
->media_validated
= true;
403 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
404 (drv
->flags
& FDISK_DBL_SIDES
) ? 2 : 1,
405 drv
->max_track
, drv
->last_sect
,
406 drv
->ro
? "ro" : "rw");
410 FLOPPY_DPRINTF("No drive connected\n");
413 drv
->flags
&= ~FDISK_DBL_SIDES
;
414 drv
->drive
= FLOPPY_DRIVE_TYPE_NONE
;
415 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
419 /********************************************************/
420 /* Intel 82078 floppy disk controller emulation */
422 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
);
423 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
);
424 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
425 int dma_pos
, int dma_len
);
426 static void fdctrl_raise_irq(FDCtrl
*fdctrl
);
427 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
);
429 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
);
430 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
);
431 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
);
432 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
);
433 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
);
434 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
);
435 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
);
436 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
);
437 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
);
438 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
);
439 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
);
440 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
);
452 FD_STATE_MULTI
= 0x01, /* multi track flag */
453 FD_STATE_FORMAT
= 0x02, /* format flag */
469 FD_CMD_READ_TRACK
= 0x02,
470 FD_CMD_SPECIFY
= 0x03,
471 FD_CMD_SENSE_DRIVE_STATUS
= 0x04,
474 FD_CMD_RECALIBRATE
= 0x07,
475 FD_CMD_SENSE_INTERRUPT_STATUS
= 0x08,
476 FD_CMD_WRITE_DELETED
= 0x09,
477 FD_CMD_READ_ID
= 0x0a,
478 FD_CMD_READ_DELETED
= 0x0c,
479 FD_CMD_FORMAT_TRACK
= 0x0d,
480 FD_CMD_DUMPREG
= 0x0e,
482 FD_CMD_VERSION
= 0x10,
483 FD_CMD_SCAN_EQUAL
= 0x11,
484 FD_CMD_PERPENDICULAR_MODE
= 0x12,
485 FD_CMD_CONFIGURE
= 0x13,
487 FD_CMD_VERIFY
= 0x16,
488 FD_CMD_POWERDOWN_MODE
= 0x17,
489 FD_CMD_PART_ID
= 0x18,
490 FD_CMD_SCAN_LOW_OR_EQUAL
= 0x19,
491 FD_CMD_SCAN_HIGH_OR_EQUAL
= 0x1d,
493 FD_CMD_OPTION
= 0x33,
494 FD_CMD_RESTORE
= 0x4e,
495 FD_CMD_DRIVE_SPECIFICATION_COMMAND
= 0x8e,
496 FD_CMD_RELATIVE_SEEK_OUT
= 0x8f,
497 FD_CMD_FORMAT_AND_WRITE
= 0xcd,
498 FD_CMD_RELATIVE_SEEK_IN
= 0xcf,
502 FD_CONFIG_PRETRK
= 0xff, /* Pre-compensation set to track 0 */
503 FD_CONFIG_FIFOTHR
= 0x0f, /* FIFO threshold set to 1 byte */
504 FD_CONFIG_POLL
= 0x10, /* Poll enabled */
505 FD_CONFIG_EFIFO
= 0x20, /* FIFO disabled */
506 FD_CONFIG_EIS
= 0x40, /* No implied seeks */
515 FD_SR0_ABNTERM
= 0x40,
516 FD_SR0_INVCMD
= 0x80,
517 FD_SR0_RDYCHG
= 0xc0,
521 FD_SR1_MA
= 0x01, /* Missing address mark */
522 FD_SR1_NW
= 0x02, /* Not writable */
523 FD_SR1_EC
= 0x80, /* End of cylinder */
527 FD_SR2_SNS
= 0x04, /* Scan not satisfied */
528 FD_SR2_SEH
= 0x08, /* Scan equal hit */
539 FD_SRA_INTPEND
= 0x80,
553 FD_DOR_SELMASK
= 0x03,
555 FD_DOR_SELMASK
= 0x01,
557 FD_DOR_nRESET
= 0x04,
559 FD_DOR_MOTEN0
= 0x10,
560 FD_DOR_MOTEN1
= 0x20,
561 FD_DOR_MOTEN2
= 0x40,
562 FD_DOR_MOTEN3
= 0x80,
567 FD_TDR_BOOTSEL
= 0x0c,
569 FD_TDR_BOOTSEL
= 0x04,
574 FD_DSR_DRATEMASK
= 0x03,
575 FD_DSR_PWRDOWN
= 0x40,
576 FD_DSR_SWRESET
= 0x80,
580 FD_MSR_DRV0BUSY
= 0x01,
581 FD_MSR_DRV1BUSY
= 0x02,
582 FD_MSR_DRV2BUSY
= 0x04,
583 FD_MSR_DRV3BUSY
= 0x08,
584 FD_MSR_CMDBUSY
= 0x10,
585 FD_MSR_NONDMA
= 0x20,
591 FD_DIR_DSKCHG
= 0x80,
595 * See chapter 5.0 "Controller phases" of the spec:
598 * The host writes a command and its parameters into the FIFO. The command
599 * phase is completed when all parameters for the command have been supplied,
600 * and execution phase is entered.
603 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
604 * contains the payload now, otherwise it's unused. When all bytes of the
605 * required data have been transferred, the state is switched to either result
606 * phase (if the command produces status bytes) or directly back into the
607 * command phase for the next command.
610 * The host reads out the FIFO, which contains one or more result bytes now.
613 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
614 FD_PHASE_RECONSTRUCT
= 0,
616 FD_PHASE_COMMAND
= 1,
617 FD_PHASE_EXECUTION
= 2,
621 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
622 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
627 /* Controller state */
628 QEMUTimer
*result_timer
;
631 /* Controller's identification */
637 uint8_t dor_vmstate
; /* only used as temp during vmstate */
652 uint8_t eot
; /* last wanted sector */
653 /* States kept only to be returned back */
654 /* precompensation */
658 /* Power down config (also with status regB access mode */
661 uint8_t num_floppies
;
662 FDrive drives
[MAX_FD
];
664 uint32_t check_media_rate
;
665 FloppyDriveType fallback
; /* type=auto failure fallback */
671 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
)
673 return drv
->fdctrl
->fallback
;
676 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
677 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
679 typedef struct FDCtrlSysBus
{
681 SysBusDevice parent_obj
;
687 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
689 typedef struct FDCtrlISABus
{
690 ISADevice parent_obj
;
700 static uint32_t fdctrl_read (void *opaque
, uint32_t reg
)
702 FDCtrl
*fdctrl
= opaque
;
708 retval
= fdctrl_read_statusA(fdctrl
);
711 retval
= fdctrl_read_statusB(fdctrl
);
714 retval
= fdctrl_read_dor(fdctrl
);
717 retval
= fdctrl_read_tape(fdctrl
);
720 retval
= fdctrl_read_main_status(fdctrl
);
723 retval
= fdctrl_read_data(fdctrl
);
726 retval
= fdctrl_read_dir(fdctrl
);
729 retval
= (uint32_t)(-1);
732 FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg
& 7, retval
);
737 static void fdctrl_write (void *opaque
, uint32_t reg
, uint32_t value
)
739 FDCtrl
*fdctrl
= opaque
;
741 FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg
& 7, value
);
746 fdctrl_write_dor(fdctrl
, value
);
749 fdctrl_write_tape(fdctrl
, value
);
752 fdctrl_write_rate(fdctrl
, value
);
755 fdctrl_write_data(fdctrl
, value
);
758 fdctrl_write_ccr(fdctrl
, value
);
765 static uint64_t fdctrl_read_mem (void *opaque
, hwaddr reg
,
768 return fdctrl_read(opaque
, (uint32_t)reg
);
771 static void fdctrl_write_mem (void *opaque
, hwaddr reg
,
772 uint64_t value
, unsigned size
)
774 fdctrl_write(opaque
, (uint32_t)reg
, value
);
777 static const MemoryRegionOps fdctrl_mem_ops
= {
778 .read
= fdctrl_read_mem
,
779 .write
= fdctrl_write_mem
,
780 .endianness
= DEVICE_NATIVE_ENDIAN
,
783 static const MemoryRegionOps fdctrl_mem_strict_ops
= {
784 .read
= fdctrl_read_mem
,
785 .write
= fdctrl_write_mem
,
786 .endianness
= DEVICE_NATIVE_ENDIAN
,
788 .min_access_size
= 1,
789 .max_access_size
= 1,
793 static bool fdrive_media_changed_needed(void *opaque
)
795 FDrive
*drive
= opaque
;
797 return (drive
->blk
!= NULL
&& drive
->media_changed
!= 1);
800 static const VMStateDescription vmstate_fdrive_media_changed
= {
801 .name
= "fdrive/media_changed",
803 .minimum_version_id
= 1,
804 .needed
= fdrive_media_changed_needed
,
805 .fields
= (VMStateField
[]) {
806 VMSTATE_UINT8(media_changed
, FDrive
),
807 VMSTATE_END_OF_LIST()
811 static bool fdrive_media_rate_needed(void *opaque
)
813 FDrive
*drive
= opaque
;
815 return drive
->fdctrl
->check_media_rate
;
818 static const VMStateDescription vmstate_fdrive_media_rate
= {
819 .name
= "fdrive/media_rate",
821 .minimum_version_id
= 1,
822 .needed
= fdrive_media_rate_needed
,
823 .fields
= (VMStateField
[]) {
824 VMSTATE_UINT8(media_rate
, FDrive
),
825 VMSTATE_END_OF_LIST()
829 static bool fdrive_perpendicular_needed(void *opaque
)
831 FDrive
*drive
= opaque
;
833 return drive
->perpendicular
!= 0;
836 static const VMStateDescription vmstate_fdrive_perpendicular
= {
837 .name
= "fdrive/perpendicular",
839 .minimum_version_id
= 1,
840 .needed
= fdrive_perpendicular_needed
,
841 .fields
= (VMStateField
[]) {
842 VMSTATE_UINT8(perpendicular
, FDrive
),
843 VMSTATE_END_OF_LIST()
847 static int fdrive_post_load(void *opaque
, int version_id
)
849 fd_revalidate(opaque
);
853 static const VMStateDescription vmstate_fdrive
= {
856 .minimum_version_id
= 1,
857 .post_load
= fdrive_post_load
,
858 .fields
= (VMStateField
[]) {
859 VMSTATE_UINT8(head
, FDrive
),
860 VMSTATE_UINT8(track
, FDrive
),
861 VMSTATE_UINT8(sect
, FDrive
),
862 VMSTATE_END_OF_LIST()
864 .subsections
= (const VMStateDescription
*[]) {
865 &vmstate_fdrive_media_changed
,
866 &vmstate_fdrive_media_rate
,
867 &vmstate_fdrive_perpendicular
,
873 * Reconstructs the phase from register values according to the logic that was
874 * implemented in qemu 2.3. This is the default value that is used if the phase
875 * subsection is not present on migration.
877 * Don't change this function to reflect newer qemu versions, it is part of
880 static int reconstruct_phase(FDCtrl
*fdctrl
)
882 if (fdctrl
->msr
& FD_MSR_NONDMA
) {
883 return FD_PHASE_EXECUTION
;
884 } else if ((fdctrl
->msr
& FD_MSR_RQM
) == 0) {
885 /* qemu 2.3 disabled RQM only during DMA transfers */
886 return FD_PHASE_EXECUTION
;
887 } else if (fdctrl
->msr
& FD_MSR_DIO
) {
888 return FD_PHASE_RESULT
;
890 return FD_PHASE_COMMAND
;
894 static void fdc_pre_save(void *opaque
)
898 s
->dor_vmstate
= s
->dor
| GET_CUR_DRV(s
);
901 static int fdc_pre_load(void *opaque
)
904 s
->phase
= FD_PHASE_RECONSTRUCT
;
908 static int fdc_post_load(void *opaque
, int version_id
)
912 SET_CUR_DRV(s
, s
->dor_vmstate
& FD_DOR_SELMASK
);
913 s
->dor
= s
->dor_vmstate
& ~FD_DOR_SELMASK
;
915 if (s
->phase
== FD_PHASE_RECONSTRUCT
) {
916 s
->phase
= reconstruct_phase(s
);
922 static bool fdc_reset_sensei_needed(void *opaque
)
926 return s
->reset_sensei
!= 0;
929 static const VMStateDescription vmstate_fdc_reset_sensei
= {
930 .name
= "fdc/reset_sensei",
932 .minimum_version_id
= 1,
933 .needed
= fdc_reset_sensei_needed
,
934 .fields
= (VMStateField
[]) {
935 VMSTATE_INT32(reset_sensei
, FDCtrl
),
936 VMSTATE_END_OF_LIST()
940 static bool fdc_result_timer_needed(void *opaque
)
944 return timer_pending(s
->result_timer
);
947 static const VMStateDescription vmstate_fdc_result_timer
= {
948 .name
= "fdc/result_timer",
950 .minimum_version_id
= 1,
951 .needed
= fdc_result_timer_needed
,
952 .fields
= (VMStateField
[]) {
953 VMSTATE_TIMER_PTR(result_timer
, FDCtrl
),
954 VMSTATE_END_OF_LIST()
958 static bool fdc_phase_needed(void *opaque
)
960 FDCtrl
*fdctrl
= opaque
;
962 return reconstruct_phase(fdctrl
) != fdctrl
->phase
;
965 static const VMStateDescription vmstate_fdc_phase
= {
968 .minimum_version_id
= 1,
969 .needed
= fdc_phase_needed
,
970 .fields
= (VMStateField
[]) {
971 VMSTATE_UINT8(phase
, FDCtrl
),
972 VMSTATE_END_OF_LIST()
976 static const VMStateDescription vmstate_fdc
= {
979 .minimum_version_id
= 2,
980 .pre_save
= fdc_pre_save
,
981 .pre_load
= fdc_pre_load
,
982 .post_load
= fdc_post_load
,
983 .fields
= (VMStateField
[]) {
984 /* Controller State */
985 VMSTATE_UINT8(sra
, FDCtrl
),
986 VMSTATE_UINT8(srb
, FDCtrl
),
987 VMSTATE_UINT8(dor_vmstate
, FDCtrl
),
988 VMSTATE_UINT8(tdr
, FDCtrl
),
989 VMSTATE_UINT8(dsr
, FDCtrl
),
990 VMSTATE_UINT8(msr
, FDCtrl
),
991 VMSTATE_UINT8(status0
, FDCtrl
),
992 VMSTATE_UINT8(status1
, FDCtrl
),
993 VMSTATE_UINT8(status2
, FDCtrl
),
995 VMSTATE_VARRAY_INT32(fifo
, FDCtrl
, fifo_size
, 0, vmstate_info_uint8
,
997 VMSTATE_UINT32(data_pos
, FDCtrl
),
998 VMSTATE_UINT32(data_len
, FDCtrl
),
999 VMSTATE_UINT8(data_state
, FDCtrl
),
1000 VMSTATE_UINT8(data_dir
, FDCtrl
),
1001 VMSTATE_UINT8(eot
, FDCtrl
),
1002 /* States kept only to be returned back */
1003 VMSTATE_UINT8(timer0
, FDCtrl
),
1004 VMSTATE_UINT8(timer1
, FDCtrl
),
1005 VMSTATE_UINT8(precomp_trk
, FDCtrl
),
1006 VMSTATE_UINT8(config
, FDCtrl
),
1007 VMSTATE_UINT8(lock
, FDCtrl
),
1008 VMSTATE_UINT8(pwrd
, FDCtrl
),
1009 VMSTATE_UINT8_EQUAL(num_floppies
, FDCtrl
),
1010 VMSTATE_STRUCT_ARRAY(drives
, FDCtrl
, MAX_FD
, 1,
1011 vmstate_fdrive
, FDrive
),
1012 VMSTATE_END_OF_LIST()
1014 .subsections
= (const VMStateDescription
*[]) {
1015 &vmstate_fdc_reset_sensei
,
1016 &vmstate_fdc_result_timer
,
1022 static void fdctrl_external_reset_sysbus(DeviceState
*d
)
1024 FDCtrlSysBus
*sys
= SYSBUS_FDC(d
);
1025 FDCtrl
*s
= &sys
->state
;
1030 static void fdctrl_external_reset_isa(DeviceState
*d
)
1032 FDCtrlISABus
*isa
= ISA_FDC(d
);
1033 FDCtrl
*s
= &isa
->state
;
1038 static void fdctrl_handle_tc(void *opaque
, int irq
, int level
)
1040 //FDCtrl *s = opaque;
1044 FLOPPY_DPRINTF("TC pulsed\n");
1048 /* Change IRQ state */
1049 static void fdctrl_reset_irq(FDCtrl
*fdctrl
)
1051 fdctrl
->status0
= 0;
1052 if (!(fdctrl
->sra
& FD_SRA_INTPEND
))
1054 FLOPPY_DPRINTF("Reset interrupt\n");
1055 qemu_set_irq(fdctrl
->irq
, 0);
1056 fdctrl
->sra
&= ~FD_SRA_INTPEND
;
1059 static void fdctrl_raise_irq(FDCtrl
*fdctrl
)
1061 if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
1062 qemu_set_irq(fdctrl
->irq
, 1);
1063 fdctrl
->sra
|= FD_SRA_INTPEND
;
1066 fdctrl
->reset_sensei
= 0;
1067 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl
->status0
);
1070 /* Reset controller */
1071 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
)
1075 FLOPPY_DPRINTF("reset controller\n");
1076 fdctrl_reset_irq(fdctrl
);
1077 /* Initialise controller */
1080 if (!fdctrl
->drives
[1].blk
) {
1081 fdctrl
->sra
|= FD_SRA_nDRV2
;
1083 fdctrl
->cur_drv
= 0;
1084 fdctrl
->dor
= FD_DOR_nRESET
;
1085 fdctrl
->dor
|= (fdctrl
->dma_chann
!= -1) ? FD_DOR_DMAEN
: 0;
1086 fdctrl
->msr
= FD_MSR_RQM
;
1087 fdctrl
->reset_sensei
= 0;
1088 timer_del(fdctrl
->result_timer
);
1090 fdctrl
->data_pos
= 0;
1091 fdctrl
->data_len
= 0;
1092 fdctrl
->data_state
= 0;
1093 fdctrl
->data_dir
= FD_DIR_WRITE
;
1094 for (i
= 0; i
< MAX_FD
; i
++)
1095 fd_recalibrate(&fdctrl
->drives
[i
]);
1096 fdctrl_to_command_phase(fdctrl
);
1098 fdctrl
->status0
|= FD_SR0_RDYCHG
;
1099 fdctrl_raise_irq(fdctrl
);
1100 fdctrl
->reset_sensei
= FD_RESET_SENSEI_COUNT
;
1104 static inline FDrive
*drv0(FDCtrl
*fdctrl
)
1106 return &fdctrl
->drives
[(fdctrl
->tdr
& FD_TDR_BOOTSEL
) >> 2];
1109 static inline FDrive
*drv1(FDCtrl
*fdctrl
)
1111 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (1 << 2))
1112 return &fdctrl
->drives
[1];
1114 return &fdctrl
->drives
[0];
1118 static inline FDrive
*drv2(FDCtrl
*fdctrl
)
1120 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (2 << 2))
1121 return &fdctrl
->drives
[2];
1123 return &fdctrl
->drives
[1];
1126 static inline FDrive
*drv3(FDCtrl
*fdctrl
)
1128 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (3 << 2))
1129 return &fdctrl
->drives
[3];
1131 return &fdctrl
->drives
[2];
1135 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
)
1137 switch (fdctrl
->cur_drv
) {
1138 case 0: return drv0(fdctrl
);
1139 case 1: return drv1(fdctrl
);
1141 case 2: return drv2(fdctrl
);
1142 case 3: return drv3(fdctrl
);
1144 default: return NULL
;
1148 /* Status A register : 0x00 (read-only) */
1149 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
)
1151 uint32_t retval
= fdctrl
->sra
;
1153 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval
);
1158 /* Status B register : 0x01 (read-only) */
1159 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
)
1161 uint32_t retval
= fdctrl
->srb
;
1163 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval
);
1168 /* Digital output register : 0x02 */
1169 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
)
1171 uint32_t retval
= fdctrl
->dor
;
1173 /* Selected drive */
1174 retval
|= fdctrl
->cur_drv
;
1175 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval
);
1180 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
)
1182 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value
);
1185 if (value
& FD_DOR_MOTEN0
)
1186 fdctrl
->srb
|= FD_SRB_MTR0
;
1188 fdctrl
->srb
&= ~FD_SRB_MTR0
;
1189 if (value
& FD_DOR_MOTEN1
)
1190 fdctrl
->srb
|= FD_SRB_MTR1
;
1192 fdctrl
->srb
&= ~FD_SRB_MTR1
;
1196 fdctrl
->srb
|= FD_SRB_DR0
;
1198 fdctrl
->srb
&= ~FD_SRB_DR0
;
1201 if (!(value
& FD_DOR_nRESET
)) {
1202 if (fdctrl
->dor
& FD_DOR_nRESET
) {
1203 FLOPPY_DPRINTF("controller enter RESET state\n");
1206 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1207 FLOPPY_DPRINTF("controller out of RESET state\n");
1208 fdctrl_reset(fdctrl
, 1);
1209 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1212 /* Selected drive */
1213 fdctrl
->cur_drv
= value
& FD_DOR_SELMASK
;
1215 fdctrl
->dor
= value
;
1218 /* Tape drive register : 0x03 */
1219 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
)
1221 uint32_t retval
= fdctrl
->tdr
;
1223 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval
);
1228 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
)
1231 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1232 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1235 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value
);
1236 /* Disk boot selection indicator */
1237 fdctrl
->tdr
= value
& FD_TDR_BOOTSEL
;
1238 /* Tape indicators: never allow */
1241 /* Main status register : 0x04 (read) */
1242 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
)
1244 uint32_t retval
= fdctrl
->msr
;
1246 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1247 fdctrl
->dor
|= FD_DOR_nRESET
;
1249 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval
);
1254 /* Data select rate register : 0x04 (write) */
1255 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
)
1258 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1259 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1262 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value
);
1263 /* Reset: autoclear */
1264 if (value
& FD_DSR_SWRESET
) {
1265 fdctrl
->dor
&= ~FD_DOR_nRESET
;
1266 fdctrl_reset(fdctrl
, 1);
1267 fdctrl
->dor
|= FD_DOR_nRESET
;
1269 if (value
& FD_DSR_PWRDOWN
) {
1270 fdctrl_reset(fdctrl
, 1);
1272 fdctrl
->dsr
= value
;
1275 /* Configuration control register: 0x07 (write) */
1276 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
)
1279 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1280 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1283 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value
);
1285 /* Only the rate selection bits used in AT mode, and we
1286 * store those in the DSR.
1288 fdctrl
->dsr
= (fdctrl
->dsr
& ~FD_DSR_DRATEMASK
) |
1289 (value
& FD_DSR_DRATEMASK
);
1292 static int fdctrl_media_changed(FDrive
*drv
)
1294 return drv
->media_changed
;
1297 /* Digital input register : 0x07 (read-only) */
1298 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
)
1300 uint32_t retval
= 0;
1302 if (fdctrl_media_changed(get_cur_drv(fdctrl
))) {
1303 retval
|= FD_DIR_DSKCHG
;
1306 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval
);
1312 /* Clear the FIFO and update the state for receiving the next command */
1313 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
)
1315 fdctrl
->phase
= FD_PHASE_COMMAND
;
1316 fdctrl
->data_dir
= FD_DIR_WRITE
;
1317 fdctrl
->data_pos
= 0;
1318 fdctrl
->data_len
= 1; /* Accept command byte, adjust for params later */
1319 fdctrl
->msr
&= ~(FD_MSR_CMDBUSY
| FD_MSR_DIO
);
1320 fdctrl
->msr
|= FD_MSR_RQM
;
1323 /* Update the state to allow the guest to read out the command status.
1324 * @fifo_len is the number of result bytes to be read out. */
1325 static void fdctrl_to_result_phase(FDCtrl
*fdctrl
, int fifo_len
)
1327 fdctrl
->phase
= FD_PHASE_RESULT
;
1328 fdctrl
->data_dir
= FD_DIR_READ
;
1329 fdctrl
->data_len
= fifo_len
;
1330 fdctrl
->data_pos
= 0;
1331 fdctrl
->msr
|= FD_MSR_CMDBUSY
| FD_MSR_RQM
| FD_MSR_DIO
;
1334 /* Set an error: unimplemented/unknown command */
1335 static void fdctrl_unimplemented(FDCtrl
*fdctrl
, int direction
)
1337 qemu_log_mask(LOG_UNIMP
, "fdc: unimplemented command 0x%02x\n",
1339 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
1340 fdctrl_to_result_phase(fdctrl
, 1);
1343 /* Seek to next sector
1344 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1345 * otherwise returns 1
1347 static int fdctrl_seek_to_next_sect(FDCtrl
*fdctrl
, FDrive
*cur_drv
)
1349 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1350 cur_drv
->head
, cur_drv
->track
, cur_drv
->sect
,
1351 fd_sector(cur_drv
));
1352 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1354 uint8_t new_head
= cur_drv
->head
;
1355 uint8_t new_track
= cur_drv
->track
;
1356 uint8_t new_sect
= cur_drv
->sect
;
1360 if (new_sect
>= cur_drv
->last_sect
||
1361 new_sect
== fdctrl
->eot
) {
1363 if (FD_MULTI_TRACK(fdctrl
->data_state
)) {
1364 if (new_head
== 0 &&
1365 (cur_drv
->flags
& FDISK_DBL_SIDES
) != 0) {
1370 fdctrl
->status0
|= FD_SR0_SEEK
;
1371 if ((cur_drv
->flags
& FDISK_DBL_SIDES
) == 0) {
1376 fdctrl
->status0
|= FD_SR0_SEEK
;
1381 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1382 new_head
, new_track
, new_sect
, fd_sector(cur_drv
));
1387 fd_seek(cur_drv
, new_head
, new_track
, new_sect
, 1);
1391 /* Callback for transfer end (stop or abort) */
1392 static void fdctrl_stop_transfer(FDCtrl
*fdctrl
, uint8_t status0
,
1393 uint8_t status1
, uint8_t status2
)
1396 cur_drv
= get_cur_drv(fdctrl
);
1398 fdctrl
->status0
&= ~(FD_SR0_DS0
| FD_SR0_DS1
| FD_SR0_HEAD
);
1399 fdctrl
->status0
|= GET_CUR_DRV(fdctrl
);
1400 if (cur_drv
->head
) {
1401 fdctrl
->status0
|= FD_SR0_HEAD
;
1403 fdctrl
->status0
|= status0
;
1405 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1406 status0
, status1
, status2
, fdctrl
->status0
);
1407 fdctrl
->fifo
[0] = fdctrl
->status0
;
1408 fdctrl
->fifo
[1] = status1
;
1409 fdctrl
->fifo
[2] = status2
;
1410 fdctrl
->fifo
[3] = cur_drv
->track
;
1411 fdctrl
->fifo
[4] = cur_drv
->head
;
1412 fdctrl
->fifo
[5] = cur_drv
->sect
;
1413 fdctrl
->fifo
[6] = FD_SECTOR_SC
;
1414 fdctrl
->data_dir
= FD_DIR_READ
;
1415 if (!(fdctrl
->msr
& FD_MSR_NONDMA
)) {
1416 DMA_release_DREQ(fdctrl
->dma_chann
);
1418 fdctrl
->msr
|= FD_MSR_RQM
| FD_MSR_DIO
;
1419 fdctrl
->msr
&= ~FD_MSR_NONDMA
;
1421 fdctrl_to_result_phase(fdctrl
, 7);
1422 fdctrl_raise_irq(fdctrl
);
1425 /* Prepare a data transfer (either DMA or FIFO) */
1426 static void fdctrl_start_transfer(FDCtrl
*fdctrl
, int direction
)
1431 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1432 cur_drv
= get_cur_drv(fdctrl
);
1433 kt
= fdctrl
->fifo
[2];
1434 kh
= fdctrl
->fifo
[3];
1435 ks
= fdctrl
->fifo
[4];
1436 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1437 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1438 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1439 NUM_SIDES(cur_drv
)));
1440 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1443 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1444 fdctrl
->fifo
[3] = kt
;
1445 fdctrl
->fifo
[4] = kh
;
1446 fdctrl
->fifo
[5] = ks
;
1450 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1451 fdctrl
->fifo
[3] = kt
;
1452 fdctrl
->fifo
[4] = kh
;
1453 fdctrl
->fifo
[5] = ks
;
1456 /* No seek enabled */
1457 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1458 fdctrl
->fifo
[3] = kt
;
1459 fdctrl
->fifo
[4] = kh
;
1460 fdctrl
->fifo
[5] = ks
;
1463 fdctrl
->status0
|= FD_SR0_SEEK
;
1469 /* Check the data rate. If the programmed data rate does not match
1470 * the currently inserted medium, the operation has to fail. */
1471 if (fdctrl
->check_media_rate
&&
1472 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
1473 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1474 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
1475 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
1476 fdctrl
->fifo
[3] = kt
;
1477 fdctrl
->fifo
[4] = kh
;
1478 fdctrl
->fifo
[5] = ks
;
1482 /* Set the FIFO state */
1483 fdctrl
->data_dir
= direction
;
1484 fdctrl
->data_pos
= 0;
1485 assert(fdctrl
->msr
& FD_MSR_CMDBUSY
);
1486 if (fdctrl
->fifo
[0] & 0x80)
1487 fdctrl
->data_state
|= FD_STATE_MULTI
;
1489 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
1490 if (fdctrl
->fifo
[5] == 0) {
1491 fdctrl
->data_len
= fdctrl
->fifo
[8];
1494 fdctrl
->data_len
= 128 << (fdctrl
->fifo
[5] > 7 ? 7 : fdctrl
->fifo
[5]);
1495 tmp
= (fdctrl
->fifo
[6] - ks
+ 1);
1496 if (fdctrl
->fifo
[0] & 0x80)
1497 tmp
+= fdctrl
->fifo
[6];
1498 fdctrl
->data_len
*= tmp
;
1500 fdctrl
->eot
= fdctrl
->fifo
[6];
1501 if (fdctrl
->dor
& FD_DOR_DMAEN
) {
1503 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1504 dma_mode
= DMA_get_channel_mode(fdctrl
->dma_chann
);
1505 dma_mode
= (dma_mode
>> 2) & 3;
1506 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1507 dma_mode
, direction
,
1508 (128 << fdctrl
->fifo
[5]) *
1509 (cur_drv
->last_sect
- ks
+ 1), fdctrl
->data_len
);
1510 if (((direction
== FD_DIR_SCANE
|| direction
== FD_DIR_SCANL
||
1511 direction
== FD_DIR_SCANH
) && dma_mode
== 0) ||
1512 (direction
== FD_DIR_WRITE
&& dma_mode
== 2) ||
1513 (direction
== FD_DIR_READ
&& dma_mode
== 1) ||
1514 (direction
== FD_DIR_VERIFY
)) {
1515 /* No access is allowed until DMA transfer has completed */
1516 fdctrl
->msr
&= ~FD_MSR_RQM
;
1517 if (direction
!= FD_DIR_VERIFY
) {
1518 /* Now, we just have to wait for the DMA controller to
1521 DMA_hold_DREQ(fdctrl
->dma_chann
);
1524 /* Start transfer */
1525 fdctrl_transfer_handler(fdctrl
, fdctrl
->dma_chann
, 0,
1530 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode
,
1534 FLOPPY_DPRINTF("start non-DMA transfer\n");
1535 fdctrl
->msr
|= FD_MSR_NONDMA
| FD_MSR_RQM
;
1536 if (direction
!= FD_DIR_WRITE
)
1537 fdctrl
->msr
|= FD_MSR_DIO
;
1538 /* IO based transfer: calculate len */
1539 fdctrl_raise_irq(fdctrl
);
1542 /* Prepare a transfer of deleted data */
1543 static void fdctrl_start_transfer_del(FDCtrl
*fdctrl
, int direction
)
1545 qemu_log_mask(LOG_UNIMP
, "fdctrl_start_transfer_del() unimplemented\n");
1547 /* We don't handle deleted data,
1548 * so we don't return *ANYTHING*
1550 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1553 /* handlers for DMA transfers */
1554 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
1555 int dma_pos
, int dma_len
)
1559 int len
, start_pos
, rel_pos
;
1560 uint8_t status0
= 0x00, status1
= 0x00, status2
= 0x00;
1563 if (fdctrl
->msr
& FD_MSR_RQM
) {
1564 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1567 cur_drv
= get_cur_drv(fdctrl
);
1568 if (fdctrl
->data_dir
== FD_DIR_SCANE
|| fdctrl
->data_dir
== FD_DIR_SCANL
||
1569 fdctrl
->data_dir
== FD_DIR_SCANH
)
1570 status2
= FD_SR2_SNS
;
1571 if (dma_len
> fdctrl
->data_len
)
1572 dma_len
= fdctrl
->data_len
;
1573 if (cur_drv
->blk
== NULL
) {
1574 if (fdctrl
->data_dir
== FD_DIR_WRITE
)
1575 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1577 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1579 goto transfer_error
;
1581 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1582 for (start_pos
= fdctrl
->data_pos
; fdctrl
->data_pos
< dma_len
;) {
1583 len
= dma_len
- fdctrl
->data_pos
;
1584 if (len
+ rel_pos
> FD_SECTOR_LEN
)
1585 len
= FD_SECTOR_LEN
- rel_pos
;
1586 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1587 "(%d-0x%08x 0x%08x)\n", len
, dma_len
, fdctrl
->data_pos
,
1588 fdctrl
->data_len
, GET_CUR_DRV(fdctrl
), cur_drv
->head
,
1589 cur_drv
->track
, cur_drv
->sect
, fd_sector(cur_drv
),
1590 fd_sector(cur_drv
) * FD_SECTOR_LEN
);
1591 if (fdctrl
->data_dir
!= FD_DIR_WRITE
||
1592 len
< FD_SECTOR_LEN
|| rel_pos
!= 0) {
1593 /* READ & SCAN commands and realign to a sector for WRITE */
1594 if (blk_read(cur_drv
->blk
, fd_sector(cur_drv
),
1595 fdctrl
->fifo
, 1) < 0) {
1596 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1597 fd_sector(cur_drv
));
1598 /* Sure, image size is too small... */
1599 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1602 switch (fdctrl
->data_dir
) {
1605 DMA_write_memory (nchan
, fdctrl
->fifo
+ rel_pos
,
1606 fdctrl
->data_pos
, len
);
1609 /* WRITE commands */
1611 /* Handle readonly medium early, no need to do DMA, touch the
1612 * LED or attempt any writes. A real floppy doesn't attempt
1613 * to write to readonly media either. */
1614 fdctrl_stop_transfer(fdctrl
,
1615 FD_SR0_ABNTERM
| FD_SR0_SEEK
, FD_SR1_NW
,
1617 goto transfer_error
;
1620 DMA_read_memory (nchan
, fdctrl
->fifo
+ rel_pos
,
1621 fdctrl
->data_pos
, len
);
1622 if (blk_write(cur_drv
->blk
, fd_sector(cur_drv
),
1623 fdctrl
->fifo
, 1) < 0) {
1624 FLOPPY_DPRINTF("error writing sector %d\n",
1625 fd_sector(cur_drv
));
1626 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1627 goto transfer_error
;
1631 /* VERIFY commands */
1636 uint8_t tmpbuf
[FD_SECTOR_LEN
];
1638 DMA_read_memory (nchan
, tmpbuf
, fdctrl
->data_pos
, len
);
1639 ret
= memcmp(tmpbuf
, fdctrl
->fifo
+ rel_pos
, len
);
1641 status2
= FD_SR2_SEH
;
1644 if ((ret
< 0 && fdctrl
->data_dir
== FD_DIR_SCANL
) ||
1645 (ret
> 0 && fdctrl
->data_dir
== FD_DIR_SCANH
)) {
1652 fdctrl
->data_pos
+= len
;
1653 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1655 /* Seek to next sector */
1656 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
))
1661 len
= fdctrl
->data_pos
- start_pos
;
1662 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1663 fdctrl
->data_pos
, len
, fdctrl
->data_len
);
1664 if (fdctrl
->data_dir
== FD_DIR_SCANE
||
1665 fdctrl
->data_dir
== FD_DIR_SCANL
||
1666 fdctrl
->data_dir
== FD_DIR_SCANH
)
1667 status2
= FD_SR2_SEH
;
1668 fdctrl
->data_len
-= len
;
1669 fdctrl_stop_transfer(fdctrl
, status0
, status1
, status2
);
1675 /* Data register : 0x05 */
1676 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
)
1679 uint32_t retval
= 0;
1682 cur_drv
= get_cur_drv(fdctrl
);
1683 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1684 if (!(fdctrl
->msr
& FD_MSR_RQM
) || !(fdctrl
->msr
& FD_MSR_DIO
)) {
1685 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1689 /* If data_len spans multiple sectors, the current position in the FIFO
1690 * wraps around while fdctrl->data_pos is the real position in the whole
1692 pos
= fdctrl
->data_pos
;
1693 pos
%= FD_SECTOR_LEN
;
1695 switch (fdctrl
->phase
) {
1696 case FD_PHASE_EXECUTION
:
1697 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
1699 if (fdctrl
->data_pos
!= 0)
1700 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
1701 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1702 fd_sector(cur_drv
));
1705 if (blk_read(cur_drv
->blk
, fd_sector(cur_drv
), fdctrl
->fifo
, 1)
1707 FLOPPY_DPRINTF("error getting sector %d\n",
1708 fd_sector(cur_drv
));
1709 /* Sure, image size is too small... */
1710 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1714 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1715 fdctrl
->msr
&= ~FD_MSR_RQM
;
1716 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
1720 case FD_PHASE_RESULT
:
1721 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
1722 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1723 fdctrl
->msr
&= ~FD_MSR_RQM
;
1724 fdctrl_to_command_phase(fdctrl
);
1725 fdctrl_reset_irq(fdctrl
);
1729 case FD_PHASE_COMMAND
:
1734 retval
= fdctrl
->fifo
[pos
];
1735 FLOPPY_DPRINTF("data register: 0x%02x\n", retval
);
1740 static void fdctrl_format_sector(FDCtrl
*fdctrl
)
1745 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1746 cur_drv
= get_cur_drv(fdctrl
);
1747 kt
= fdctrl
->fifo
[6];
1748 kh
= fdctrl
->fifo
[7];
1749 ks
= fdctrl
->fifo
[8];
1750 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1751 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1752 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1753 NUM_SIDES(cur_drv
)));
1754 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1757 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1758 fdctrl
->fifo
[3] = kt
;
1759 fdctrl
->fifo
[4] = kh
;
1760 fdctrl
->fifo
[5] = ks
;
1764 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1765 fdctrl
->fifo
[3] = kt
;
1766 fdctrl
->fifo
[4] = kh
;
1767 fdctrl
->fifo
[5] = ks
;
1770 /* No seek enabled */
1771 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1772 fdctrl
->fifo
[3] = kt
;
1773 fdctrl
->fifo
[4] = kh
;
1774 fdctrl
->fifo
[5] = ks
;
1777 fdctrl
->status0
|= FD_SR0_SEEK
;
1782 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1783 if (cur_drv
->blk
== NULL
||
1784 blk_write(cur_drv
->blk
, fd_sector(cur_drv
), fdctrl
->fifo
, 1) < 0) {
1785 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv
));
1786 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1788 if (cur_drv
->sect
== cur_drv
->last_sect
) {
1789 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
1790 /* Last sector done */
1791 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
1794 fdctrl
->data_pos
= 0;
1795 fdctrl
->data_len
= 4;
1800 static void fdctrl_handle_lock(FDCtrl
*fdctrl
, int direction
)
1802 fdctrl
->lock
= (fdctrl
->fifo
[0] & 0x80) ? 1 : 0;
1803 fdctrl
->fifo
[0] = fdctrl
->lock
<< 4;
1804 fdctrl_to_result_phase(fdctrl
, 1);
1807 static void fdctrl_handle_dumpreg(FDCtrl
*fdctrl
, int direction
)
1809 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
1811 /* Drives position */
1812 fdctrl
->fifo
[0] = drv0(fdctrl
)->track
;
1813 fdctrl
->fifo
[1] = drv1(fdctrl
)->track
;
1815 fdctrl
->fifo
[2] = drv2(fdctrl
)->track
;
1816 fdctrl
->fifo
[3] = drv3(fdctrl
)->track
;
1818 fdctrl
->fifo
[2] = 0;
1819 fdctrl
->fifo
[3] = 0;
1822 fdctrl
->fifo
[4] = fdctrl
->timer0
;
1823 fdctrl
->fifo
[5] = (fdctrl
->timer1
<< 1) | (fdctrl
->dor
& FD_DOR_DMAEN
? 1 : 0);
1824 fdctrl
->fifo
[6] = cur_drv
->last_sect
;
1825 fdctrl
->fifo
[7] = (fdctrl
->lock
<< 7) |
1826 (cur_drv
->perpendicular
<< 2);
1827 fdctrl
->fifo
[8] = fdctrl
->config
;
1828 fdctrl
->fifo
[9] = fdctrl
->precomp_trk
;
1829 fdctrl_to_result_phase(fdctrl
, 10);
1832 static void fdctrl_handle_version(FDCtrl
*fdctrl
, int direction
)
1834 /* Controller's version */
1835 fdctrl
->fifo
[0] = fdctrl
->version
;
1836 fdctrl_to_result_phase(fdctrl
, 1);
1839 static void fdctrl_handle_partid(FDCtrl
*fdctrl
, int direction
)
1841 fdctrl
->fifo
[0] = 0x41; /* Stepping 1 */
1842 fdctrl_to_result_phase(fdctrl
, 1);
1845 static void fdctrl_handle_restore(FDCtrl
*fdctrl
, int direction
)
1847 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
1849 /* Drives position */
1850 drv0(fdctrl
)->track
= fdctrl
->fifo
[3];
1851 drv1(fdctrl
)->track
= fdctrl
->fifo
[4];
1853 drv2(fdctrl
)->track
= fdctrl
->fifo
[5];
1854 drv3(fdctrl
)->track
= fdctrl
->fifo
[6];
1857 fdctrl
->timer0
= fdctrl
->fifo
[7];
1858 fdctrl
->timer1
= fdctrl
->fifo
[8];
1859 cur_drv
->last_sect
= fdctrl
->fifo
[9];
1860 fdctrl
->lock
= fdctrl
->fifo
[10] >> 7;
1861 cur_drv
->perpendicular
= (fdctrl
->fifo
[10] >> 2) & 0xF;
1862 fdctrl
->config
= fdctrl
->fifo
[11];
1863 fdctrl
->precomp_trk
= fdctrl
->fifo
[12];
1864 fdctrl
->pwrd
= fdctrl
->fifo
[13];
1865 fdctrl_to_command_phase(fdctrl
);
1868 static void fdctrl_handle_save(FDCtrl
*fdctrl
, int direction
)
1870 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
1872 fdctrl
->fifo
[0] = 0;
1873 fdctrl
->fifo
[1] = 0;
1874 /* Drives position */
1875 fdctrl
->fifo
[2] = drv0(fdctrl
)->track
;
1876 fdctrl
->fifo
[3] = drv1(fdctrl
)->track
;
1878 fdctrl
->fifo
[4] = drv2(fdctrl
)->track
;
1879 fdctrl
->fifo
[5] = drv3(fdctrl
)->track
;
1881 fdctrl
->fifo
[4] = 0;
1882 fdctrl
->fifo
[5] = 0;
1885 fdctrl
->fifo
[6] = fdctrl
->timer0
;
1886 fdctrl
->fifo
[7] = fdctrl
->timer1
;
1887 fdctrl
->fifo
[8] = cur_drv
->last_sect
;
1888 fdctrl
->fifo
[9] = (fdctrl
->lock
<< 7) |
1889 (cur_drv
->perpendicular
<< 2);
1890 fdctrl
->fifo
[10] = fdctrl
->config
;
1891 fdctrl
->fifo
[11] = fdctrl
->precomp_trk
;
1892 fdctrl
->fifo
[12] = fdctrl
->pwrd
;
1893 fdctrl
->fifo
[13] = 0;
1894 fdctrl
->fifo
[14] = 0;
1895 fdctrl_to_result_phase(fdctrl
, 15);
1898 static void fdctrl_handle_readid(FDCtrl
*fdctrl
, int direction
)
1900 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
1902 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
1903 timer_mod(fdctrl
->result_timer
,
1904 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + (get_ticks_per_sec() / 50));
1907 static void fdctrl_handle_format_track(FDCtrl
*fdctrl
, int direction
)
1911 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1912 cur_drv
= get_cur_drv(fdctrl
);
1913 fdctrl
->data_state
|= FD_STATE_FORMAT
;
1914 if (fdctrl
->fifo
[0] & 0x80)
1915 fdctrl
->data_state
|= FD_STATE_MULTI
;
1917 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
1919 fdctrl
->fifo
[2] > 7 ? 16384 : 128 << fdctrl
->fifo
[2];
1921 cur_drv
->last_sect
=
1922 cur_drv
->flags
& FDISK_DBL_SIDES
? fdctrl
->fifo
[3] :
1923 fdctrl
->fifo
[3] / 2;
1925 cur_drv
->last_sect
= fdctrl
->fifo
[3];
1927 /* TODO: implement format using DMA expected by the Bochs BIOS
1928 * and Linux fdformat (read 3 bytes per sector via DMA and fill
1929 * the sector with the specified fill byte
1931 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
1932 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
1935 static void fdctrl_handle_specify(FDCtrl
*fdctrl
, int direction
)
1937 fdctrl
->timer0
= (fdctrl
->fifo
[1] >> 4) & 0xF;
1938 fdctrl
->timer1
= fdctrl
->fifo
[2] >> 1;
1939 if (fdctrl
->fifo
[2] & 1)
1940 fdctrl
->dor
&= ~FD_DOR_DMAEN
;
1942 fdctrl
->dor
|= FD_DOR_DMAEN
;
1943 /* No result back */
1944 fdctrl_to_command_phase(fdctrl
);
1947 static void fdctrl_handle_sense_drive_status(FDCtrl
*fdctrl
, int direction
)
1951 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1952 cur_drv
= get_cur_drv(fdctrl
);
1953 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
1954 /* 1 Byte status back */
1955 fdctrl
->fifo
[0] = (cur_drv
->ro
<< 6) |
1956 (cur_drv
->track
== 0 ? 0x10 : 0x00) |
1957 (cur_drv
->head
<< 2) |
1958 GET_CUR_DRV(fdctrl
) |
1960 fdctrl_to_result_phase(fdctrl
, 1);
1963 static void fdctrl_handle_recalibrate(FDCtrl
*fdctrl
, int direction
)
1967 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1968 cur_drv
= get_cur_drv(fdctrl
);
1969 fd_recalibrate(cur_drv
);
1970 fdctrl_to_command_phase(fdctrl
);
1971 /* Raise Interrupt */
1972 fdctrl
->status0
|= FD_SR0_SEEK
;
1973 fdctrl_raise_irq(fdctrl
);
1976 static void fdctrl_handle_sense_interrupt_status(FDCtrl
*fdctrl
, int direction
)
1978 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
1980 if (fdctrl
->reset_sensei
> 0) {
1982 FD_SR0_RDYCHG
+ FD_RESET_SENSEI_COUNT
- fdctrl
->reset_sensei
;
1983 fdctrl
->reset_sensei
--;
1984 } else if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
1985 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
1986 fdctrl_to_result_phase(fdctrl
, 1);
1990 (fdctrl
->status0
& ~(FD_SR0_HEAD
| FD_SR0_DS1
| FD_SR0_DS0
))
1991 | GET_CUR_DRV(fdctrl
);
1994 fdctrl
->fifo
[1] = cur_drv
->track
;
1995 fdctrl_to_result_phase(fdctrl
, 2);
1996 fdctrl_reset_irq(fdctrl
);
1997 fdctrl
->status0
= FD_SR0_RDYCHG
;
2000 static void fdctrl_handle_seek(FDCtrl
*fdctrl
, int direction
)
2004 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2005 cur_drv
= get_cur_drv(fdctrl
);
2006 fdctrl_to_command_phase(fdctrl
);
2007 /* The seek command just sends step pulses to the drive and doesn't care if
2008 * there is a medium inserted of if it's banging the head against the drive.
2010 fd_seek(cur_drv
, cur_drv
->head
, fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2011 /* Raise Interrupt */
2012 fdctrl
->status0
|= FD_SR0_SEEK
;
2013 fdctrl_raise_irq(fdctrl
);
2016 static void fdctrl_handle_perpendicular_mode(FDCtrl
*fdctrl
, int direction
)
2018 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2020 if (fdctrl
->fifo
[1] & 0x80)
2021 cur_drv
->perpendicular
= fdctrl
->fifo
[1] & 0x7;
2022 /* No result back */
2023 fdctrl_to_command_phase(fdctrl
);
2026 static void fdctrl_handle_configure(FDCtrl
*fdctrl
, int direction
)
2028 fdctrl
->config
= fdctrl
->fifo
[2];
2029 fdctrl
->precomp_trk
= fdctrl
->fifo
[3];
2030 /* No result back */
2031 fdctrl_to_command_phase(fdctrl
);
2034 static void fdctrl_handle_powerdown_mode(FDCtrl
*fdctrl
, int direction
)
2036 fdctrl
->pwrd
= fdctrl
->fifo
[1];
2037 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2038 fdctrl_to_result_phase(fdctrl
, 1);
2041 static void fdctrl_handle_option(FDCtrl
*fdctrl
, int direction
)
2043 /* No result back */
2044 fdctrl_to_command_phase(fdctrl
);
2047 static void fdctrl_handle_drive_specification_command(FDCtrl
*fdctrl
, int direction
)
2049 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2052 pos
= fdctrl
->data_pos
- 1;
2053 pos
%= FD_SECTOR_LEN
;
2054 if (fdctrl
->fifo
[pos
] & 0x80) {
2055 /* Command parameters done */
2056 if (fdctrl
->fifo
[pos
] & 0x40) {
2057 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2058 fdctrl
->fifo
[2] = 0;
2059 fdctrl
->fifo
[3] = 0;
2060 fdctrl_to_result_phase(fdctrl
, 4);
2062 fdctrl_to_command_phase(fdctrl
);
2064 } else if (fdctrl
->data_len
> 7) {
2066 fdctrl
->fifo
[0] = 0x80 |
2067 (cur_drv
->head
<< 2) | GET_CUR_DRV(fdctrl
);
2068 fdctrl_to_result_phase(fdctrl
, 1);
2072 static void fdctrl_handle_relative_seek_in(FDCtrl
*fdctrl
, int direction
)
2076 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2077 cur_drv
= get_cur_drv(fdctrl
);
2078 if (fdctrl
->fifo
[2] + cur_drv
->track
>= cur_drv
->max_track
) {
2079 fd_seek(cur_drv
, cur_drv
->head
, cur_drv
->max_track
- 1,
2082 fd_seek(cur_drv
, cur_drv
->head
,
2083 cur_drv
->track
+ fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2085 fdctrl_to_command_phase(fdctrl
);
2086 /* Raise Interrupt */
2087 fdctrl
->status0
|= FD_SR0_SEEK
;
2088 fdctrl_raise_irq(fdctrl
);
2091 static void fdctrl_handle_relative_seek_out(FDCtrl
*fdctrl
, int direction
)
2095 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2096 cur_drv
= get_cur_drv(fdctrl
);
2097 if (fdctrl
->fifo
[2] > cur_drv
->track
) {
2098 fd_seek(cur_drv
, cur_drv
->head
, 0, cur_drv
->sect
, 1);
2100 fd_seek(cur_drv
, cur_drv
->head
,
2101 cur_drv
->track
- fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2103 fdctrl_to_command_phase(fdctrl
);
2104 /* Raise Interrupt */
2105 fdctrl
->status0
|= FD_SR0_SEEK
;
2106 fdctrl_raise_irq(fdctrl
);
2110 * Handlers for the execution phase of each command
2112 typedef struct FDCtrlCommand
{
2117 void (*handler
)(FDCtrl
*fdctrl
, int direction
);
2121 static const FDCtrlCommand handlers
[] = {
2122 { FD_CMD_READ
, 0x1f, "READ", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2123 { FD_CMD_WRITE
, 0x3f, "WRITE", 8, fdctrl_start_transfer
, FD_DIR_WRITE
},
2124 { FD_CMD_SEEK
, 0xff, "SEEK", 2, fdctrl_handle_seek
},
2125 { FD_CMD_SENSE_INTERRUPT_STATUS
, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status
},
2126 { FD_CMD_RECALIBRATE
, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate
},
2127 { FD_CMD_FORMAT_TRACK
, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track
},
2128 { FD_CMD_READ_TRACK
, 0xbf, "READ TRACK", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2129 { FD_CMD_RESTORE
, 0xff, "RESTORE", 17, fdctrl_handle_restore
}, /* part of READ DELETED DATA */
2130 { FD_CMD_SAVE
, 0xff, "SAVE", 0, fdctrl_handle_save
}, /* part of READ DELETED DATA */
2131 { FD_CMD_READ_DELETED
, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_READ
},
2132 { FD_CMD_SCAN_EQUAL
, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANE
},
2133 { FD_CMD_VERIFY
, 0x1f, "VERIFY", 8, fdctrl_start_transfer
, FD_DIR_VERIFY
},
2134 { FD_CMD_SCAN_LOW_OR_EQUAL
, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANL
},
2135 { FD_CMD_SCAN_HIGH_OR_EQUAL
, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANH
},
2136 { FD_CMD_WRITE_DELETED
, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_WRITE
},
2137 { FD_CMD_READ_ID
, 0xbf, "READ ID", 1, fdctrl_handle_readid
},
2138 { FD_CMD_SPECIFY
, 0xff, "SPECIFY", 2, fdctrl_handle_specify
},
2139 { FD_CMD_SENSE_DRIVE_STATUS
, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status
},
2140 { FD_CMD_PERPENDICULAR_MODE
, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode
},
2141 { FD_CMD_CONFIGURE
, 0xff, "CONFIGURE", 3, fdctrl_handle_configure
},
2142 { FD_CMD_POWERDOWN_MODE
, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode
},
2143 { FD_CMD_OPTION
, 0xff, "OPTION", 1, fdctrl_handle_option
},
2144 { FD_CMD_DRIVE_SPECIFICATION_COMMAND
, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command
},
2145 { FD_CMD_RELATIVE_SEEK_OUT
, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out
},
2146 { FD_CMD_FORMAT_AND_WRITE
, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented
},
2147 { FD_CMD_RELATIVE_SEEK_IN
, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in
},
2148 { FD_CMD_LOCK
, 0x7f, "LOCK", 0, fdctrl_handle_lock
},
2149 { FD_CMD_DUMPREG
, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg
},
2150 { FD_CMD_VERSION
, 0xff, "VERSION", 0, fdctrl_handle_version
},
2151 { FD_CMD_PART_ID
, 0xff, "PART ID", 0, fdctrl_handle_partid
},
2152 { FD_CMD_WRITE
, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer
, FD_DIR_WRITE
}, /* not in specification ; BeOS 4.5 bug */
2153 { 0, 0, "unknown", 0, fdctrl_unimplemented
}, /* default handler */
2155 /* Associate command to an index in the 'handlers' array */
2156 static uint8_t command_to_handler
[256];
2158 static const FDCtrlCommand
*get_command(uint8_t cmd
)
2162 idx
= command_to_handler
[cmd
];
2163 FLOPPY_DPRINTF("%s command\n", handlers
[idx
].name
);
2164 return &handlers
[idx
];
2167 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
)
2170 const FDCtrlCommand
*cmd
;
2174 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
2175 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2178 if (!(fdctrl
->msr
& FD_MSR_RQM
) || (fdctrl
->msr
& FD_MSR_DIO
)) {
2179 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2182 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
2184 FLOPPY_DPRINTF("%s: %02x\n", __func__
, value
);
2186 /* If data_len spans multiple sectors, the current position in the FIFO
2187 * wraps around while fdctrl->data_pos is the real position in the whole
2189 pos
= fdctrl
->data_pos
++;
2190 pos
%= FD_SECTOR_LEN
;
2191 fdctrl
->fifo
[pos
] = value
;
2193 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2194 fdctrl
->msr
&= ~FD_MSR_RQM
;
2197 switch (fdctrl
->phase
) {
2198 case FD_PHASE_EXECUTION
:
2199 /* For DMA requests, RQM should be cleared during execution phase, so
2200 * we would have errored out above. */
2201 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
2203 /* FIFO data write */
2204 if (pos
== FD_SECTOR_LEN
- 1 ||
2205 fdctrl
->data_pos
== fdctrl
->data_len
) {
2206 cur_drv
= get_cur_drv(fdctrl
);
2207 if (blk_write(cur_drv
->blk
, fd_sector(cur_drv
), fdctrl
->fifo
, 1)
2209 FLOPPY_DPRINTF("error writing sector %d\n",
2210 fd_sector(cur_drv
));
2213 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
2214 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2215 fd_sector(cur_drv
));
2220 /* Switch to result phase when done with the transfer */
2221 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2222 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2226 case FD_PHASE_COMMAND
:
2227 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
2228 assert(fdctrl
->data_pos
< FD_SECTOR_LEN
);
2231 /* The first byte specifies the command. Now we start reading
2232 * as many parameters as this command requires. */
2233 cmd
= get_command(value
);
2234 fdctrl
->data_len
= cmd
->parameters
+ 1;
2235 if (cmd
->parameters
) {
2236 fdctrl
->msr
|= FD_MSR_RQM
;
2238 fdctrl
->msr
|= FD_MSR_CMDBUSY
;
2241 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2242 /* We have all parameters now, execute the command */
2243 fdctrl
->phase
= FD_PHASE_EXECUTION
;
2245 if (fdctrl
->data_state
& FD_STATE_FORMAT
) {
2246 fdctrl_format_sector(fdctrl
);
2250 cmd
= get_command(fdctrl
->fifo
[0]);
2251 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd
->name
);
2252 cmd
->handler(fdctrl
, cmd
->direction
);
2256 case FD_PHASE_RESULT
:
2262 static void fdctrl_result_timer(void *opaque
)
2264 FDCtrl
*fdctrl
= opaque
;
2265 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2267 /* Pretend we are spinning.
2268 * This is needed for Coherent, which uses READ ID to check for
2269 * sector interleaving.
2271 if (cur_drv
->last_sect
!= 0) {
2272 cur_drv
->sect
= (cur_drv
->sect
% cur_drv
->last_sect
) + 1;
2274 /* READ_ID can't automatically succeed! */
2275 if (fdctrl
->check_media_rate
&&
2276 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
2277 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2278 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
2279 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
2281 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2285 static void fdctrl_change_cb(void *opaque
, bool load
)
2287 FDrive
*drive
= opaque
;
2289 drive
->media_changed
= 1;
2290 drive
->media_validated
= false;
2291 fd_revalidate(drive
);
2294 static const BlockDevOps fdctrl_block_ops
= {
2295 .change_media_cb
= fdctrl_change_cb
,
2298 /* Init functions */
2299 static void fdctrl_connect_drives(FDCtrl
*fdctrl
, Error
**errp
)
2304 for (i
= 0; i
< MAX_FD
; i
++) {
2305 drive
= &fdctrl
->drives
[i
];
2306 drive
->fdctrl
= fdctrl
;
2309 if (blk_get_on_error(drive
->blk
, 0) != BLOCKDEV_ON_ERROR_ENOSPC
) {
2310 error_setg(errp
, "fdc doesn't support drive option werror");
2313 if (blk_get_on_error(drive
->blk
, 1) != BLOCKDEV_ON_ERROR_REPORT
) {
2314 error_setg(errp
, "fdc doesn't support drive option rerror");
2321 blk_set_dev_ops(drive
->blk
, &fdctrl_block_ops
, drive
);
2322 pick_drive_type(drive
);
2324 fd_revalidate(drive
);
2328 ISADevice
*fdctrl_init_isa(ISABus
*bus
, DriveInfo
**fds
)
2333 isadev
= isa_try_create(bus
, TYPE_ISA_FDC
);
2337 dev
= DEVICE(isadev
);
2340 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2344 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2347 qdev_init_nofail(dev
);
2352 void fdctrl_init_sysbus(qemu_irq irq
, int dma_chann
,
2353 hwaddr mmio_base
, DriveInfo
**fds
)
2360 dev
= qdev_create(NULL
, "sysbus-fdc");
2361 sys
= SYSBUS_FDC(dev
);
2362 fdctrl
= &sys
->state
;
2363 fdctrl
->dma_chann
= dma_chann
; /* FIXME */
2365 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2369 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2372 qdev_init_nofail(dev
);
2373 sbd
= SYS_BUS_DEVICE(dev
);
2374 sysbus_connect_irq(sbd
, 0, irq
);
2375 sysbus_mmio_map(sbd
, 0, mmio_base
);
2378 void sun4m_fdctrl_init(qemu_irq irq
, hwaddr io_base
,
2379 DriveInfo
**fds
, qemu_irq
*fdc_tc
)
2384 dev
= qdev_create(NULL
, "SUNW,fdtwo");
2386 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(fds
[0]),
2389 qdev_init_nofail(dev
);
2390 sys
= SYSBUS_FDC(dev
);
2391 sysbus_connect_irq(SYS_BUS_DEVICE(sys
), 0, irq
);
2392 sysbus_mmio_map(SYS_BUS_DEVICE(sys
), 0, io_base
);
2393 *fdc_tc
= qdev_get_gpio_in(dev
, 0);
2396 static void fdctrl_realize_common(FDCtrl
*fdctrl
, Error
**errp
)
2399 static int command_tables_inited
= 0;
2401 if (fdctrl
->fallback
== FLOPPY_DRIVE_TYPE_AUTO
) {
2402 error_setg(errp
, "Cannot choose a fallback FDrive type of 'auto'");
2405 /* Fill 'command_to_handler' lookup table */
2406 if (!command_tables_inited
) {
2407 command_tables_inited
= 1;
2408 for (i
= ARRAY_SIZE(handlers
) - 1; i
>= 0; i
--) {
2409 for (j
= 0; j
< sizeof(command_to_handler
); j
++) {
2410 if ((j
& handlers
[i
].mask
) == handlers
[i
].value
) {
2411 command_to_handler
[j
] = i
;
2417 FLOPPY_DPRINTF("init controller\n");
2418 fdctrl
->fifo
= qemu_memalign(512, FD_SECTOR_LEN
);
2419 fdctrl
->fifo_size
= 512;
2420 fdctrl
->result_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
2421 fdctrl_result_timer
, fdctrl
);
2423 fdctrl
->version
= 0x90; /* Intel 82078 controller */
2424 fdctrl
->config
= FD_CONFIG_EIS
| FD_CONFIG_EFIFO
; /* Implicit seek, polling & FIFO enabled */
2425 fdctrl
->num_floppies
= MAX_FD
;
2427 if (fdctrl
->dma_chann
!= -1) {
2428 DMA_register_channel(fdctrl
->dma_chann
, &fdctrl_transfer_handler
, fdctrl
);
2430 fdctrl_connect_drives(fdctrl
, errp
);
2433 static const MemoryRegionPortio fdc_portio_list
[] = {
2434 { 1, 5, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2435 { 7, 1, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2436 PORTIO_END_OF_LIST(),
2439 static void isabus_fdc_realize(DeviceState
*dev
, Error
**errp
)
2441 ISADevice
*isadev
= ISA_DEVICE(dev
);
2442 FDCtrlISABus
*isa
= ISA_FDC(dev
);
2443 FDCtrl
*fdctrl
= &isa
->state
;
2446 isa_register_portio_list(isadev
, isa
->iobase
, fdc_portio_list
, fdctrl
,
2449 isa_init_irq(isadev
, &fdctrl
->irq
, isa
->irq
);
2450 fdctrl
->dma_chann
= isa
->dma
;
2452 qdev_set_legacy_instance_id(dev
, isa
->iobase
, 2);
2453 fdctrl_realize_common(fdctrl
, &err
);
2455 error_propagate(errp
, err
);
2460 static void sysbus_fdc_initfn(Object
*obj
)
2462 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2463 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2464 FDCtrl
*fdctrl
= &sys
->state
;
2466 fdctrl
->dma_chann
= -1;
2468 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_ops
, fdctrl
,
2470 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2473 static void sun4m_fdc_initfn(Object
*obj
)
2475 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2476 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2477 FDCtrl
*fdctrl
= &sys
->state
;
2479 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_strict_ops
,
2480 fdctrl
, "fdctrl", 0x08);
2481 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2484 static void sysbus_fdc_common_initfn(Object
*obj
)
2486 DeviceState
*dev
= DEVICE(obj
);
2487 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
2488 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2489 FDCtrl
*fdctrl
= &sys
->state
;
2491 qdev_set_legacy_instance_id(dev
, 0 /* io */, 2); /* FIXME */
2493 sysbus_init_irq(sbd
, &fdctrl
->irq
);
2494 qdev_init_gpio_in(dev
, fdctrl_handle_tc
, 1);
2497 static void sysbus_fdc_common_realize(DeviceState
*dev
, Error
**errp
)
2499 FDCtrlSysBus
*sys
= SYSBUS_FDC(dev
);
2500 FDCtrl
*fdctrl
= &sys
->state
;
2502 fdctrl_realize_common(fdctrl
, errp
);
2505 FloppyDriveType
isa_fdc_get_drive_type(ISADevice
*fdc
, int i
)
2507 FDCtrlISABus
*isa
= ISA_FDC(fdc
);
2509 return isa
->state
.drives
[i
].drive
;
2512 static const VMStateDescription vmstate_isa_fdc
={
2515 .minimum_version_id
= 2,
2516 .fields
= (VMStateField
[]) {
2517 VMSTATE_STRUCT(state
, FDCtrlISABus
, 0, vmstate_fdc
, FDCtrl
),
2518 VMSTATE_END_OF_LIST()
2522 static Property isa_fdc_properties
[] = {
2523 DEFINE_PROP_UINT32("iobase", FDCtrlISABus
, iobase
, 0x3f0),
2524 DEFINE_PROP_UINT32("irq", FDCtrlISABus
, irq
, 6),
2525 DEFINE_PROP_UINT32("dma", FDCtrlISABus
, dma
, 2),
2526 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus
, state
.drives
[0].blk
),
2527 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus
, state
.drives
[1].blk
),
2528 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus
, state
.check_media_rate
,
2530 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus
, state
.drives
[0].drive
,
2531 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2533 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus
, state
.drives
[1].drive
,
2534 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2536 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus
, state
.fallback
,
2537 FLOPPY_DRIVE_TYPE_288
, qdev_prop_fdc_drive_type
,
2539 DEFINE_PROP_END_OF_LIST(),
2542 static void isabus_fdc_class_init(ObjectClass
*klass
, void *data
)
2544 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2546 dc
->realize
= isabus_fdc_realize
;
2547 dc
->fw_name
= "fdc";
2548 dc
->reset
= fdctrl_external_reset_isa
;
2549 dc
->vmsd
= &vmstate_isa_fdc
;
2550 dc
->props
= isa_fdc_properties
;
2551 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2554 static void isabus_fdc_instance_init(Object
*obj
)
2556 FDCtrlISABus
*isa
= ISA_FDC(obj
);
2558 device_add_bootindex_property(obj
, &isa
->bootindexA
,
2559 "bootindexA", "/floppy@0",
2561 device_add_bootindex_property(obj
, &isa
->bootindexB
,
2562 "bootindexB", "/floppy@1",
2566 static const TypeInfo isa_fdc_info
= {
2567 .name
= TYPE_ISA_FDC
,
2568 .parent
= TYPE_ISA_DEVICE
,
2569 .instance_size
= sizeof(FDCtrlISABus
),
2570 .class_init
= isabus_fdc_class_init
,
2571 .instance_init
= isabus_fdc_instance_init
,
2574 static const VMStateDescription vmstate_sysbus_fdc
={
2577 .minimum_version_id
= 2,
2578 .fields
= (VMStateField
[]) {
2579 VMSTATE_STRUCT(state
, FDCtrlSysBus
, 0, vmstate_fdc
, FDCtrl
),
2580 VMSTATE_END_OF_LIST()
2584 static Property sysbus_fdc_properties
[] = {
2585 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus
, state
.drives
[0].blk
),
2586 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus
, state
.drives
[1].blk
),
2587 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus
, state
.drives
[0].drive
,
2588 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2590 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus
, state
.drives
[1].drive
,
2591 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2593 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus
, state
.fallback
,
2594 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2596 DEFINE_PROP_END_OF_LIST(),
2599 static void sysbus_fdc_class_init(ObjectClass
*klass
, void *data
)
2601 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2603 dc
->props
= sysbus_fdc_properties
;
2604 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2607 static const TypeInfo sysbus_fdc_info
= {
2608 .name
= "sysbus-fdc",
2609 .parent
= TYPE_SYSBUS_FDC
,
2610 .instance_init
= sysbus_fdc_initfn
,
2611 .class_init
= sysbus_fdc_class_init
,
2614 static Property sun4m_fdc_properties
[] = {
2615 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus
, state
.drives
[0].blk
),
2616 DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus
, state
.drives
[0].drive
,
2617 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2619 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus
, state
.fallback
,
2620 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2622 DEFINE_PROP_END_OF_LIST(),
2625 static void sun4m_fdc_class_init(ObjectClass
*klass
, void *data
)
2627 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2629 dc
->props
= sun4m_fdc_properties
;
2630 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2633 static const TypeInfo sun4m_fdc_info
= {
2634 .name
= "SUNW,fdtwo",
2635 .parent
= TYPE_SYSBUS_FDC
,
2636 .instance_init
= sun4m_fdc_initfn
,
2637 .class_init
= sun4m_fdc_class_init
,
2640 static void sysbus_fdc_common_class_init(ObjectClass
*klass
, void *data
)
2642 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2644 dc
->realize
= sysbus_fdc_common_realize
;
2645 dc
->reset
= fdctrl_external_reset_sysbus
;
2646 dc
->vmsd
= &vmstate_sysbus_fdc
;
2649 static const TypeInfo sysbus_fdc_type_info
= {
2650 .name
= TYPE_SYSBUS_FDC
,
2651 .parent
= TYPE_SYS_BUS_DEVICE
,
2652 .instance_size
= sizeof(FDCtrlSysBus
),
2653 .instance_init
= sysbus_fdc_common_initfn
,
2655 .class_init
= sysbus_fdc_common_class_init
,
2658 static void fdc_register_types(void)
2660 type_register_static(&isa_fdc_info
);
2661 type_register_static(&sysbus_fdc_type_info
);
2662 type_register_static(&sysbus_fdc_info
);
2663 type_register_static(&sun4m_fdc_info
);
2666 type_init(fdc_register_types
)