2 * QEMU PowerPC XIVE internal structure definitions
5 * The XIVE structures are accessed by the HW and their format is
6 * architected to be big-endian. Some macros are provided to ease
7 * access to the different fields.
10 * Copyright (c) 2016-2018, IBM Corporation.
12 * This code is licensed under the GPL version 2 or later. See the
13 * COPYING file in the top-level directory.
16 #ifndef PPC_XIVE_REGS_H
17 #define PPC_XIVE_REGS_H
19 #include "qemu/bswap.h"
20 #include "qemu/host-utils.h"
23 * Interrupt source number encoding on PowerBUS
26 * Trigger data definition
28 * The trigger definition is used for triggers both for HW source
29 * interrupts (PHB, PSI), as well as for rerouting interrupts between
30 * Interrupt Controller.
32 * HW source controllers set bit0 of word0 to ‘0’ as they provide EAS
33 * information (EAS block + EAS index) in the 8 byte data and not END
34 * information, which is use for rerouting interrupts.
36 * bit1 of word0 to ‘1’ signals that the state bit check has been
39 #define XIVE_TRIGGER_END PPC_BIT(0)
40 #define XIVE_TRIGGER_PQ PPC_BIT(1)
43 * QEMU macros to manipulate the trigger payload in native endian
45 #define XIVE_EAS_BLOCK(n) (((n) >> 28) & 0xf)
46 #define XIVE_EAS_INDEX(n) ((n) & 0x0fffffff)
47 #define XIVE_EAS(blk, idx) ((uint32_t)(blk) << 28 | (idx))
52 * TIMA addresses are 12-bits (4k page).
53 * The MSB indicates a special op with side effect, which can be
54 * refined with bit 10 (see below).
55 * The registers, logically grouped in 4 rings (a quad-word each), are
56 * defined on the 6 LSBs (offset below 0x40)
57 * In between, we can add a cache line index from 0...3 (ie, 0, 0x80,
58 * 0x100, 0x180) to select a specific snooper. Those 'snoop port
59 * address' bits should be dropped when processing the operations as
60 * they are all equivalent.
62 #define TM_ADDRESS_MASK 0xC3F
63 #define TM_SPECIAL_OP 0x800
64 #define TM_RING_OFFSET 0x30
65 #define TM_REG_OFFSET 0x3F
67 /* TM register offsets */
68 #define TM_QW0_USER 0x000 /* All rings */
69 #define TM_QW1_OS 0x010 /* Ring 0..2 */
70 #define TM_QW2_HV_POOL 0x020 /* Ring 0..1 */
71 #define TM_QW3_HV_PHYS 0x030 /* Ring 0..1 */
73 /* Byte offsets inside a QW QW0 QW1 QW2 QW3 */
74 #define TM_NSR 0x0 /* + + - + */
75 #define TM_CPPR 0x1 /* - + - + */
76 #define TM_IPB 0x2 /* - + + + */
77 #define TM_LSMFB 0x3 /* - + + + */
78 #define TM_ACK_CNT 0x4 /* - + - - */
79 #define TM_INC 0x5 /* - + - + */
80 #define TM_AGE 0x6 /* - + - + */
81 #define TM_PIPR 0x7 /* - + - + */
87 * QW word 2 contains the valid bit at the top and other fields
88 * depending on the QW.
91 #define TM_QW0W2_VU PPC_BIT32(0)
92 #define TM_QW0W2_LOGIC_SERV PPC_BITMASK32(1, 31) /* XX 2,31 ? */
93 #define TM_QW1W2_VO PPC_BIT32(0)
94 #define TM_QW1W2_OS_CAM PPC_BITMASK32(8, 31)
95 #define TM_QW2W2_VP PPC_BIT32(0)
96 #define TM_QW2W2_POOL_CAM PPC_BITMASK32(8, 31)
97 #define TM_QW3W2_VT PPC_BIT32(0)
98 #define TM_QW3W2_LP PPC_BIT32(6)
99 #define TM_QW3W2_LE PPC_BIT32(7)
100 #define TM_QW3W2_T PPC_BIT32(31)
103 * In addition to normal loads to "peek" and writes (only when invalid)
104 * using 4 and 8 bytes accesses, the above registers support these
105 * "special" byte operations:
107 * - Byte load from QW0[NSR] - User level NSR (EBB)
108 * - Byte store to QW0[NSR] - User level NSR (EBB)
109 * - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access
110 * - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0
111 * otherwise VT||0000000
112 * - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present)
114 * Then we have all these "special" CI ops at these offset that trigger
115 * all sorts of side effects:
117 #define TM_SPC_ACK_EBB 0x800 /* Load8 ack EBB to reg*/
118 #define TM_SPC_ACK_OS_REG 0x810 /* Load16 ack OS irq to reg */
119 #define TM_SPC_PUSH_USR_CTX 0x808 /* Store32 Push/Validate user context */
120 #define TM_SPC_PULL_USR_CTX 0x808 /* Load32 Pull/Invalidate user
122 #define TM_SPC_SET_OS_PENDING 0x812 /* Store8 Set OS irq pending bit */
123 #define TM_SPC_PULL_OS_CTX 0x818 /* Load32/Load64 Pull/Invalidate OS
125 #define TM_SPC_PULL_POOL_CTX 0x828 /* Load32/Load64 Pull/Invalidate Pool
127 #define TM_SPC_ACK_HV_REG 0x830 /* Load16 ack HV irq to reg */
128 #define TM_SPC_PULL_USR_CTX_OL 0xc08 /* Store8 Pull/Inval usr ctx to odd
130 #define TM_SPC_ACK_OS_EL 0xc10 /* Store8 ack OS irq to even line */
131 #define TM_SPC_ACK_HV_POOL_EL 0xc20 /* Store8 ack HV evt pool to even
133 #define TM_SPC_ACK_HV_EL 0xc30 /* Store8 ack HV irq to even line */
136 /* NSR fields for the various QW ack types */
137 #define TM_QW0_NSR_EB PPC_BIT8(0)
138 #define TM_QW1_NSR_EO PPC_BIT8(0)
139 #define TM_QW3_NSR_HE PPC_BITMASK8(0, 1)
140 #define TM_QW3_NSR_HE_NONE 0
141 #define TM_QW3_NSR_HE_POOL 1
142 #define TM_QW3_NSR_HE_PHYS 2
143 #define TM_QW3_NSR_HE_LSI 3
144 #define TM_QW3_NSR_I PPC_BIT8(2)
145 #define TM_QW3_NSR_GRP_LVL PPC_BIT8(3, 7)
148 * EAS (Event Assignment Structure)
150 * One per interrupt source. Targets an interrupt to a given Event
151 * Notification Descriptor (END) and provides the corresponding
152 * logical interrupt number (END data)
154 typedef struct XiveEAS
{
156 * Use a single 64-bit definition to make it easier to perform
160 #define EAS_VALID PPC_BIT(0)
161 #define EAS_END_BLOCK PPC_BITMASK(4, 7) /* Destination END block# */
162 #define EAS_END_INDEX PPC_BITMASK(8, 31) /* Destination END index */
163 #define EAS_MASKED PPC_BIT(32) /* Masked */
164 #define EAS_END_DATA PPC_BITMASK(33, 63) /* Data written to the END */
167 #define xive_eas_is_valid(eas) (be64_to_cpu((eas)->w) & EAS_VALID)
168 #define xive_eas_is_masked(eas) (be64_to_cpu((eas)->w) & EAS_MASKED)
170 void xive_eas_pic_print_info(XiveEAS
*eas
, uint32_t lisn
, Monitor
*mon
);
172 static inline uint64_t xive_get_field64(uint64_t mask
, uint64_t word
)
174 return (be64_to_cpu(word
) & mask
) >> ctz64(mask
);
177 static inline uint64_t xive_set_field64(uint64_t mask
, uint64_t word
,
181 (be64_to_cpu(word
) & ~mask
) | ((value
<< ctz64(mask
)) & mask
);
182 return cpu_to_be64(tmp
);
185 static inline uint32_t xive_get_field32(uint32_t mask
, uint32_t word
)
187 return (be32_to_cpu(word
) & mask
) >> ctz32(mask
);
190 static inline uint32_t xive_set_field32(uint32_t mask
, uint32_t word
,
194 (be32_to_cpu(word
) & ~mask
) | ((value
<< ctz32(mask
)) & mask
);
195 return cpu_to_be32(tmp
);
198 /* Event Notification Descriptor (END) */
199 typedef struct XiveEND
{
201 #define END_W0_VALID PPC_BIT32(0) /* "v" bit */
202 #define END_W0_ENQUEUE PPC_BIT32(1) /* "q" bit */
203 #define END_W0_UCOND_NOTIFY PPC_BIT32(2) /* "n" bit */
204 #define END_W0_BACKLOG PPC_BIT32(3) /* "b" bit */
205 #define END_W0_PRECL_ESC_CTL PPC_BIT32(4) /* "p" bit */
206 #define END_W0_ESCALATE_CTL PPC_BIT32(5) /* "e" bit */
207 #define END_W0_UNCOND_ESCALATE PPC_BIT32(6) /* "u" bit - DD2.0 */
208 #define END_W0_SILENT_ESCALATE PPC_BIT32(7) /* "s" bit - DD2.0 */
209 #define END_W0_QSIZE PPC_BITMASK32(12, 15)
210 #define END_W0_SW0 PPC_BIT32(16)
211 #define END_W0_FIRMWARE END_W0_SW0 /* Owned by FW */
212 #define END_QSIZE_4K 0
213 #define END_QSIZE_64K 4
214 #define END_W0_HWDEP PPC_BITMASK32(24, 31)
216 #define END_W1_ESn PPC_BITMASK32(0, 1)
217 #define END_W1_ESn_P PPC_BIT32(0)
218 #define END_W1_ESn_Q PPC_BIT32(1)
219 #define END_W1_ESe PPC_BITMASK32(2, 3)
220 #define END_W1_ESe_P PPC_BIT32(2)
221 #define END_W1_ESe_Q PPC_BIT32(3)
222 #define END_W1_GENERATION PPC_BIT32(9)
223 #define END_W1_PAGE_OFF PPC_BITMASK32(10, 31)
225 #define END_W2_MIGRATION_REG PPC_BITMASK32(0, 3)
226 #define END_W2_OP_DESC_HI PPC_BITMASK32(4, 31)
228 #define END_W3_OP_DESC_LO PPC_BITMASK32(0, 31)
230 #define END_W4_ESC_END_BLOCK PPC_BITMASK32(4, 7)
231 #define END_W4_ESC_END_INDEX PPC_BITMASK32(8, 31)
233 #define END_W5_ESC_END_DATA PPC_BITMASK32(1, 31)
235 #define END_W6_FORMAT_BIT PPC_BIT32(8)
236 #define END_W6_NVT_BLOCK PPC_BITMASK32(9, 12)
237 #define END_W6_NVT_INDEX PPC_BITMASK32(13, 31)
239 #define END_W7_F0_IGNORE PPC_BIT32(0)
240 #define END_W7_F0_BLK_GROUPING PPC_BIT32(1)
241 #define END_W7_F0_PRIORITY PPC_BITMASK32(8, 15)
242 #define END_W7_F1_WAKEZ PPC_BIT32(0)
243 #define END_W7_F1_LOG_SERVER_ID PPC_BITMASK32(1, 31)
246 #define xive_end_is_valid(end) (be32_to_cpu((end)->w0) & END_W0_VALID)
247 #define xive_end_is_enqueue(end) (be32_to_cpu((end)->w0) & END_W0_ENQUEUE)
248 #define xive_end_is_notify(end) (be32_to_cpu((end)->w0) & END_W0_UCOND_NOTIFY)
249 #define xive_end_is_backlog(end) (be32_to_cpu((end)->w0) & END_W0_BACKLOG)
250 #define xive_end_is_escalate(end) (be32_to_cpu((end)->w0) & END_W0_ESCALATE_CTL)
251 #define xive_end_is_uncond_escalation(end) \
252 (be32_to_cpu((end)->w0) & END_W0_UNCOND_ESCALATE)
253 #define xive_end_is_silent_escalation(end) \
254 (be32_to_cpu((end)->w0) & END_W0_SILENT_ESCALATE)
255 #define xive_end_is_firmware(end) \
256 (be32_to_cpu((end)->w0) & END_W0_FIRMWARE)
258 static inline uint64_t xive_end_qaddr(XiveEND
*end
)
260 return ((uint64_t) be32_to_cpu(end
->w2
) & 0x0fffffff) << 32 |
261 be32_to_cpu(end
->w3
);
264 void xive_end_pic_print_info(XiveEND
*end
, uint32_t end_idx
, Monitor
*mon
);
265 void xive_end_queue_pic_print_info(XiveEND
*end
, uint32_t width
, Monitor
*mon
);
266 void xive_end_eas_pic_print_info(XiveEND
*end
, uint32_t end_idx
, Monitor
*mon
);
268 /* Notification Virtual Target (NVT) */
269 typedef struct XiveNVT
{
271 #define NVT_W0_VALID PPC_BIT32(0)
273 #define NVT_W1_EQ_BLOCK PPC_BITMASK32(0, 3)
274 #define NVT_W1_EQ_INDEX PPC_BITMASK32(4, 31)
278 #define NVT_W4_IPB PPC_BITMASK32(16, 23)
283 #define NVT_W8_GRP_VALID PPC_BIT32(0)
293 #define xive_nvt_is_valid(nvt) (be32_to_cpu((nvt)->w0) & NVT_W0_VALID)
296 * The VP number space in a block is defined by the END_W6_NVT_INDEX
297 * field of the XIVE END
299 #define XIVE_NVT_SHIFT 19
300 #define XIVE_NVT_COUNT (1 << XIVE_NVT_SHIFT)
302 static inline uint32_t xive_nvt_cam_line(uint8_t nvt_blk
, uint32_t nvt_idx
)
304 return (nvt_blk
<< XIVE_NVT_SHIFT
) | nvt_idx
;
307 static inline uint32_t xive_nvt_idx(uint32_t cam_line
)
309 return cam_line
& ((1 << XIVE_NVT_SHIFT
) - 1);
312 static inline uint32_t xive_nvt_blk(uint32_t cam_line
)
314 return (cam_line
>> XIVE_NVT_SHIFT
) & 0xf;
317 #endif /* PPC_XIVE_REGS_H */