arm: drop intermediate cpu_model -> cpu type parsing and use cpu type directly
[qemu/kevin.git] / target / arm / cpu.h
blob6e50ae2b55595cb6aefcc040889952e7c1331a89
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
36 #define CPUArchState struct CPUARMState
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
42 #include "fpu/softfloat.h"
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_HVC 11 /* HyperVisor Call */
54 #define EXCP_HYP_TRAP 12
55 #define EXCP_SMC 13 /* Secure Monitor Call */
56 #define EXCP_VIRQ 14
57 #define EXCP_VFIQ 15
58 #define EXCP_SEMIHOST 16 /* semihosting call */
59 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
63 #define ARMV7M_EXCP_RESET 1
64 #define ARMV7M_EXCP_NMI 2
65 #define ARMV7M_EXCP_HARD 3
66 #define ARMV7M_EXCP_MEM 4
67 #define ARMV7M_EXCP_BUS 5
68 #define ARMV7M_EXCP_USAGE 6
69 #define ARMV7M_EXCP_SECURE 7
70 #define ARMV7M_EXCP_SVC 11
71 #define ARMV7M_EXCP_DEBUG 12
72 #define ARMV7M_EXCP_PENDSV 14
73 #define ARMV7M_EXCP_SYSTICK 15
75 /* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
84 enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
90 /* ARM-specific interrupt pending bits. */
91 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
92 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
95 /* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
101 #ifdef HOST_WORDS_BIGENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
115 #define NB_MMU_MODES 7
116 /* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
120 #define TARGET_INSN_START_EXTRA_WORDS 2
122 /* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128 #define ARM_INSN_START_WORD2_SHIFT 14
130 /* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
138 /* CPU state for each instance of a generic timer (in cp15 c14) */
139 typedef struct ARMGenericTimer {
140 uint64_t cval; /* Timer CompareValue register */
141 uint64_t ctl; /* Timer Control register */
142 } ARMGenericTimer;
144 #define GTIMER_PHYS 0
145 #define GTIMER_VIRT 1
146 #define GTIMER_HYP 2
147 #define GTIMER_SEC 3
148 #define NUM_GTIMERS 4
150 typedef struct {
151 uint64_t raw_tcr;
152 uint32_t mask;
153 uint32_t base_mask;
154 } TCR;
156 typedef struct CPUARMState {
157 /* Regs for current mode. */
158 uint32_t regs[16];
160 /* 32/64 switch only happens when taking and returning from
161 * exceptions so the overlap semantics are taken care of then
162 * instead of having a complicated union.
164 /* Regs for A64 mode. */
165 uint64_t xregs[32];
166 uint64_t pc;
167 /* PSTATE isn't an architectural register for ARMv8. However, it is
168 * convenient for us to assemble the underlying state into a 32 bit format
169 * identical to the architectural format used for the SPSR. (This is also
170 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
171 * 'pstate' register are.) Of the PSTATE bits:
172 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
173 * semantics as for AArch32, as described in the comments on each field)
174 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
175 * DAIF (exception masks) are kept in env->daif
176 * all other bits are stored in their correct places in env->pstate
178 uint32_t pstate;
179 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
181 /* Frequently accessed CPSR bits are stored separately for efficiency.
182 This contains all the other bits. Use cpsr_{read,write} to access
183 the whole CPSR. */
184 uint32_t uncached_cpsr;
185 uint32_t spsr;
187 /* Banked registers. */
188 uint64_t banked_spsr[8];
189 uint32_t banked_r13[8];
190 uint32_t banked_r14[8];
192 /* These hold r8-r12. */
193 uint32_t usr_regs[5];
194 uint32_t fiq_regs[5];
196 /* cpsr flag cache for faster execution */
197 uint32_t CF; /* 0 or 1 */
198 uint32_t VF; /* V is the bit 31. All other bits are undefined */
199 uint32_t NF; /* N is bit 31. All other bits are undefined. */
200 uint32_t ZF; /* Z set if zero. */
201 uint32_t QF; /* 0 or 1 */
202 uint32_t GE; /* cpsr[19:16] */
203 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
204 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
205 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
207 uint64_t elr_el[4]; /* AArch64 exception link regs */
208 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
210 /* System control coprocessor (cp15) */
211 struct {
212 uint32_t c0_cpuid;
213 union { /* Cache size selection */
214 struct {
215 uint64_t _unused_csselr0;
216 uint64_t csselr_ns;
217 uint64_t _unused_csselr1;
218 uint64_t csselr_s;
220 uint64_t csselr_el[4];
222 union { /* System control register. */
223 struct {
224 uint64_t _unused_sctlr;
225 uint64_t sctlr_ns;
226 uint64_t hsctlr;
227 uint64_t sctlr_s;
229 uint64_t sctlr_el[4];
231 uint64_t cpacr_el1; /* Architectural feature access control register */
232 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
233 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
234 uint64_t sder; /* Secure debug enable register. */
235 uint32_t nsacr; /* Non-secure access control register. */
236 union { /* MMU translation table base 0. */
237 struct {
238 uint64_t _unused_ttbr0_0;
239 uint64_t ttbr0_ns;
240 uint64_t _unused_ttbr0_1;
241 uint64_t ttbr0_s;
243 uint64_t ttbr0_el[4];
245 union { /* MMU translation table base 1. */
246 struct {
247 uint64_t _unused_ttbr1_0;
248 uint64_t ttbr1_ns;
249 uint64_t _unused_ttbr1_1;
250 uint64_t ttbr1_s;
252 uint64_t ttbr1_el[4];
254 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
255 /* MMU translation table base control. */
256 TCR tcr_el[4];
257 TCR vtcr_el2; /* Virtualization Translation Control. */
258 uint32_t c2_data; /* MPU data cacheable bits. */
259 uint32_t c2_insn; /* MPU instruction cacheable bits. */
260 union { /* MMU domain access control register
261 * MPU write buffer control.
263 struct {
264 uint64_t dacr_ns;
265 uint64_t dacr_s;
267 struct {
268 uint64_t dacr32_el2;
271 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
272 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
273 uint64_t hcr_el2; /* Hypervisor configuration register */
274 uint64_t scr_el3; /* Secure configuration register. */
275 union { /* Fault status registers. */
276 struct {
277 uint64_t ifsr_ns;
278 uint64_t ifsr_s;
280 struct {
281 uint64_t ifsr32_el2;
284 union {
285 struct {
286 uint64_t _unused_dfsr;
287 uint64_t dfsr_ns;
288 uint64_t hsr;
289 uint64_t dfsr_s;
291 uint64_t esr_el[4];
293 uint32_t c6_region[8]; /* MPU base/size registers. */
294 union { /* Fault address registers. */
295 struct {
296 uint64_t _unused_far0;
297 #ifdef HOST_WORDS_BIGENDIAN
298 uint32_t ifar_ns;
299 uint32_t dfar_ns;
300 uint32_t ifar_s;
301 uint32_t dfar_s;
302 #else
303 uint32_t dfar_ns;
304 uint32_t ifar_ns;
305 uint32_t dfar_s;
306 uint32_t ifar_s;
307 #endif
308 uint64_t _unused_far3;
310 uint64_t far_el[4];
312 uint64_t hpfar_el2;
313 uint64_t hstr_el2;
314 union { /* Translation result. */
315 struct {
316 uint64_t _unused_par_0;
317 uint64_t par_ns;
318 uint64_t _unused_par_1;
319 uint64_t par_s;
321 uint64_t par_el[4];
324 uint32_t c9_insn; /* Cache lockdown registers. */
325 uint32_t c9_data;
326 uint64_t c9_pmcr; /* performance monitor control register */
327 uint64_t c9_pmcnten; /* perf monitor counter enables */
328 uint32_t c9_pmovsr; /* perf monitor overflow status */
329 uint32_t c9_pmuserenr; /* perf monitor user enable */
330 uint64_t c9_pmselr; /* perf monitor counter selection register */
331 uint64_t c9_pminten; /* perf monitor interrupt enables */
332 union { /* Memory attribute redirection */
333 struct {
334 #ifdef HOST_WORDS_BIGENDIAN
335 uint64_t _unused_mair_0;
336 uint32_t mair1_ns;
337 uint32_t mair0_ns;
338 uint64_t _unused_mair_1;
339 uint32_t mair1_s;
340 uint32_t mair0_s;
341 #else
342 uint64_t _unused_mair_0;
343 uint32_t mair0_ns;
344 uint32_t mair1_ns;
345 uint64_t _unused_mair_1;
346 uint32_t mair0_s;
347 uint32_t mair1_s;
348 #endif
350 uint64_t mair_el[4];
352 union { /* vector base address register */
353 struct {
354 uint64_t _unused_vbar;
355 uint64_t vbar_ns;
356 uint64_t hvbar;
357 uint64_t vbar_s;
359 uint64_t vbar_el[4];
361 uint32_t mvbar; /* (monitor) vector base address register */
362 struct { /* FCSE PID. */
363 uint32_t fcseidr_ns;
364 uint32_t fcseidr_s;
366 union { /* Context ID. */
367 struct {
368 uint64_t _unused_contextidr_0;
369 uint64_t contextidr_ns;
370 uint64_t _unused_contextidr_1;
371 uint64_t contextidr_s;
373 uint64_t contextidr_el[4];
375 union { /* User RW Thread register. */
376 struct {
377 uint64_t tpidrurw_ns;
378 uint64_t tpidrprw_ns;
379 uint64_t htpidr;
380 uint64_t _tpidr_el3;
382 uint64_t tpidr_el[4];
384 /* The secure banks of these registers don't map anywhere */
385 uint64_t tpidrurw_s;
386 uint64_t tpidrprw_s;
387 uint64_t tpidruro_s;
389 union { /* User RO Thread register. */
390 uint64_t tpidruro_ns;
391 uint64_t tpidrro_el[1];
393 uint64_t c14_cntfrq; /* Counter Frequency register */
394 uint64_t c14_cntkctl; /* Timer Control register */
395 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
396 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
397 ARMGenericTimer c14_timer[NUM_GTIMERS];
398 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
399 uint32_t c15_ticonfig; /* TI925T configuration byte. */
400 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
401 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
402 uint32_t c15_threadid; /* TI debugger thread-ID. */
403 uint32_t c15_config_base_address; /* SCU base address. */
404 uint32_t c15_diagnostic; /* diagnostic register */
405 uint32_t c15_power_diagnostic;
406 uint32_t c15_power_control; /* power control */
407 uint64_t dbgbvr[16]; /* breakpoint value registers */
408 uint64_t dbgbcr[16]; /* breakpoint control registers */
409 uint64_t dbgwvr[16]; /* watchpoint value registers */
410 uint64_t dbgwcr[16]; /* watchpoint control registers */
411 uint64_t mdscr_el1;
412 uint64_t oslsr_el1; /* OS Lock Status */
413 uint64_t mdcr_el2;
414 uint64_t mdcr_el3;
415 /* If the counter is enabled, this stores the last time the counter
416 * was reset. Otherwise it stores the counter value
418 uint64_t c15_ccnt;
419 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
420 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
421 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
422 } cp15;
424 struct {
425 /* M profile has up to 4 stack pointers:
426 * a Main Stack Pointer and a Process Stack Pointer for each
427 * of the Secure and Non-Secure states. (If the CPU doesn't support
428 * the security extension then it has only two SPs.)
429 * In QEMU we always store the currently active SP in regs[13],
430 * and the non-active SP for the current security state in
431 * v7m.other_sp. The stack pointers for the inactive security state
432 * are stored in other_ss_msp and other_ss_psp.
433 * switch_v7m_security_state() is responsible for rearranging them
434 * when we change security state.
436 uint32_t other_sp;
437 uint32_t other_ss_msp;
438 uint32_t other_ss_psp;
439 uint32_t vecbase[M_REG_NUM_BANKS];
440 uint32_t basepri[M_REG_NUM_BANKS];
441 uint32_t control[M_REG_NUM_BANKS];
442 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
443 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
444 uint32_t hfsr; /* HardFault Status */
445 uint32_t dfsr; /* Debug Fault Status Register */
446 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
447 uint32_t bfar; /* BusFault Address */
448 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
449 int exception;
450 uint32_t primask[M_REG_NUM_BANKS];
451 uint32_t faultmask[M_REG_NUM_BANKS];
452 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
453 } v7m;
455 /* Information associated with an exception about to be taken:
456 * code which raises an exception must set cs->exception_index and
457 * the relevant parts of this structure; the cpu_do_interrupt function
458 * will then set the guest-visible registers as part of the exception
459 * entry process.
461 struct {
462 uint32_t syndrome; /* AArch64 format syndrome register */
463 uint32_t fsr; /* AArch32 format fault status register info */
464 uint64_t vaddress; /* virtual addr associated with exception, if any */
465 uint32_t target_el; /* EL the exception should be targeted for */
466 /* If we implement EL2 we will also need to store information
467 * about the intermediate physical address for stage 2 faults.
469 } exception;
471 /* Thumb-2 EE state. */
472 uint32_t teecr;
473 uint32_t teehbr;
475 /* VFP coprocessor state. */
476 struct {
477 /* VFP/Neon register state. Note that the mapping between S, D and Q
478 * views of the register bank differs between AArch64 and AArch32:
479 * In AArch32:
480 * Qn = regs[2n+1]:regs[2n]
481 * Dn = regs[n]
482 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
483 * (and regs[32] to regs[63] are inaccessible)
484 * In AArch64:
485 * Qn = regs[2n+1]:regs[2n]
486 * Dn = regs[2n]
487 * Sn = regs[2n] bits 31..0
488 * This corresponds to the architecturally defined mapping between
489 * the two execution states, and means we do not need to explicitly
490 * map these registers when changing states.
492 float64 regs[64];
494 uint32_t xregs[16];
495 /* We store these fpcsr fields separately for convenience. */
496 int vec_len;
497 int vec_stride;
499 /* scratch space when Tn are not sufficient. */
500 uint32_t scratch[8];
502 /* fp_status is the "normal" fp status. standard_fp_status retains
503 * values corresponding to the ARM "Standard FPSCR Value", ie
504 * default-NaN, flush-to-zero, round-to-nearest and is used by
505 * any operations (generally Neon) which the architecture defines
506 * as controlled by the standard FPSCR value rather than the FPSCR.
508 * To avoid having to transfer exception bits around, we simply
509 * say that the FPSCR cumulative exception flags are the logical
510 * OR of the flags in the two fp statuses. This relies on the
511 * only thing which needs to read the exception flags being
512 * an explicit FPSCR read.
514 float_status fp_status;
515 float_status standard_fp_status;
516 } vfp;
517 uint64_t exclusive_addr;
518 uint64_t exclusive_val;
519 uint64_t exclusive_high;
521 /* iwMMXt coprocessor state. */
522 struct {
523 uint64_t regs[16];
524 uint64_t val;
526 uint32_t cregs[16];
527 } iwmmxt;
529 #if defined(CONFIG_USER_ONLY)
530 /* For usermode syscall translation. */
531 int eabi;
532 #endif
534 struct CPUBreakpoint *cpu_breakpoint[16];
535 struct CPUWatchpoint *cpu_watchpoint[16];
537 /* Fields up to this point are cleared by a CPU reset */
538 struct {} end_reset_fields;
540 CPU_COMMON
542 /* Fields after CPU_COMMON are preserved across CPU reset. */
544 /* Internal CPU feature flags. */
545 uint64_t features;
547 /* PMSAv7 MPU */
548 struct {
549 uint32_t *drbar;
550 uint32_t *drsr;
551 uint32_t *dracr;
552 uint32_t rnr[M_REG_NUM_BANKS];
553 } pmsav7;
555 /* PMSAv8 MPU */
556 struct {
557 /* The PMSAv8 implementation also shares some PMSAv7 config
558 * and state:
559 * pmsav7.rnr (region number register)
560 * pmsav7_dregion (number of configured regions)
562 uint32_t *rbar[M_REG_NUM_BANKS];
563 uint32_t *rlar[M_REG_NUM_BANKS];
564 uint32_t mair0[M_REG_NUM_BANKS];
565 uint32_t mair1[M_REG_NUM_BANKS];
566 } pmsav8;
568 void *nvic;
569 const struct arm_boot_info *boot_info;
570 /* Store GICv3CPUState to access from this struct */
571 void *gicv3state;
572 } CPUARMState;
575 * ARMELChangeHook:
576 * type of a function which can be registered via arm_register_el_change_hook()
577 * to get callbacks when the CPU changes its exception level or mode.
579 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
582 /* These values map onto the return values for
583 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
584 typedef enum ARMPSCIState {
585 PSCI_ON = 0,
586 PSCI_OFF = 1,
587 PSCI_ON_PENDING = 2
588 } ARMPSCIState;
591 * ARMCPU:
592 * @env: #CPUARMState
594 * An ARM CPU core.
596 struct ARMCPU {
597 /*< private >*/
598 CPUState parent_obj;
599 /*< public >*/
601 CPUARMState env;
603 /* Coprocessor information */
604 GHashTable *cp_regs;
605 /* For marshalling (mostly coprocessor) register state between the
606 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
607 * we use these arrays.
609 /* List of register indexes managed via these arrays; (full KVM style
610 * 64 bit indexes, not CPRegInfo 32 bit indexes)
612 uint64_t *cpreg_indexes;
613 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
614 uint64_t *cpreg_values;
615 /* Length of the indexes, values, reset_values arrays */
616 int32_t cpreg_array_len;
617 /* These are used only for migration: incoming data arrives in
618 * these fields and is sanity checked in post_load before copying
619 * to the working data structures above.
621 uint64_t *cpreg_vmstate_indexes;
622 uint64_t *cpreg_vmstate_values;
623 int32_t cpreg_vmstate_array_len;
625 /* Timers used by the generic (architected) timer */
626 QEMUTimer *gt_timer[NUM_GTIMERS];
627 /* GPIO outputs for generic timer */
628 qemu_irq gt_timer_outputs[NUM_GTIMERS];
629 /* GPIO output for GICv3 maintenance interrupt signal */
630 qemu_irq gicv3_maintenance_interrupt;
631 /* GPIO output for the PMU interrupt */
632 qemu_irq pmu_interrupt;
634 /* MemoryRegion to use for secure physical accesses */
635 MemoryRegion *secure_memory;
637 /* 'compatible' string for this CPU for Linux device trees */
638 const char *dtb_compatible;
640 /* PSCI version for this CPU
641 * Bits[31:16] = Major Version
642 * Bits[15:0] = Minor Version
644 uint32_t psci_version;
646 /* Should CPU start in PSCI powered-off state? */
647 bool start_powered_off;
649 /* Current power state, access guarded by BQL */
650 ARMPSCIState power_state;
652 /* CPU has virtualization extension */
653 bool has_el2;
654 /* CPU has security extension */
655 bool has_el3;
656 /* CPU has PMU (Performance Monitor Unit) */
657 bool has_pmu;
659 /* CPU has memory protection unit */
660 bool has_mpu;
661 /* PMSAv7 MPU number of supported regions */
662 uint32_t pmsav7_dregion;
664 /* PSCI conduit used to invoke PSCI methods
665 * 0 - disabled, 1 - smc, 2 - hvc
667 uint32_t psci_conduit;
669 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
670 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
672 uint32_t kvm_target;
674 /* KVM init features for this CPU */
675 uint32_t kvm_init_features[7];
677 /* Uniprocessor system with MP extensions */
678 bool mp_is_up;
680 /* The instance init functions for implementation-specific subclasses
681 * set these fields to specify the implementation-dependent values of
682 * various constant registers and reset values of non-constant
683 * registers.
684 * Some of these might become QOM properties eventually.
685 * Field names match the official register names as defined in the
686 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
687 * is used for reset values of non-constant registers; no reset_
688 * prefix means a constant register.
690 uint32_t midr;
691 uint32_t revidr;
692 uint32_t reset_fpsid;
693 uint32_t mvfr0;
694 uint32_t mvfr1;
695 uint32_t mvfr2;
696 uint32_t ctr;
697 uint32_t reset_sctlr;
698 uint32_t id_pfr0;
699 uint32_t id_pfr1;
700 uint32_t id_dfr0;
701 uint32_t pmceid0;
702 uint32_t pmceid1;
703 uint32_t id_afr0;
704 uint32_t id_mmfr0;
705 uint32_t id_mmfr1;
706 uint32_t id_mmfr2;
707 uint32_t id_mmfr3;
708 uint32_t id_mmfr4;
709 uint32_t id_isar0;
710 uint32_t id_isar1;
711 uint32_t id_isar2;
712 uint32_t id_isar3;
713 uint32_t id_isar4;
714 uint32_t id_isar5;
715 uint64_t id_aa64pfr0;
716 uint64_t id_aa64pfr1;
717 uint64_t id_aa64dfr0;
718 uint64_t id_aa64dfr1;
719 uint64_t id_aa64afr0;
720 uint64_t id_aa64afr1;
721 uint64_t id_aa64isar0;
722 uint64_t id_aa64isar1;
723 uint64_t id_aa64mmfr0;
724 uint64_t id_aa64mmfr1;
725 uint32_t dbgdidr;
726 uint32_t clidr;
727 uint64_t mp_affinity; /* MP ID without feature bits */
728 /* The elements of this array are the CCSIDR values for each cache,
729 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
731 uint32_t ccsidr[16];
732 uint64_t reset_cbar;
733 uint32_t reset_auxcr;
734 bool reset_hivecs;
735 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
736 uint32_t dcz_blocksize;
737 uint64_t rvbar;
739 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
740 int gic_num_lrs; /* number of list registers */
741 int gic_vpribits; /* number of virtual priority bits */
742 int gic_vprebits; /* number of virtual preemption bits */
744 /* Whether the cfgend input is high (i.e. this CPU should reset into
745 * big-endian mode). This setting isn't used directly: instead it modifies
746 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
747 * architecture version.
749 bool cfgend;
751 ARMELChangeHook *el_change_hook;
752 void *el_change_hook_opaque;
754 int32_t node_id; /* NUMA node this CPU belongs to */
756 /* Used to synchronize KVM and QEMU in-kernel device levels */
757 uint8_t device_irq_level;
760 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
762 return container_of(env, ARMCPU, env);
765 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
767 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
769 #define ENV_OFFSET offsetof(ARMCPU, env)
771 #ifndef CONFIG_USER_ONLY
772 extern const struct VMStateDescription vmstate_arm_cpu;
773 #endif
775 void arm_cpu_do_interrupt(CPUState *cpu);
776 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
777 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
779 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
780 int flags);
782 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
783 MemTxAttrs *attrs);
785 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
786 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
788 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
789 int cpuid, void *opaque);
790 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
791 int cpuid, void *opaque);
793 #ifdef TARGET_AARCH64
794 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
795 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
796 #endif
798 target_ulong do_arm_semihosting(CPUARMState *env);
799 void aarch64_sync_32_to_64(CPUARMState *env);
800 void aarch64_sync_64_to_32(CPUARMState *env);
802 static inline bool is_a64(CPUARMState *env)
804 return env->aarch64;
807 /* you can call this signal handler from your SIGBUS and SIGSEGV
808 signal handlers to inform the virtual CPU of exceptions. non zero
809 is returned if the signal was handled by the virtual CPU. */
810 int cpu_arm_signal_handler(int host_signum, void *pinfo,
811 void *puc);
814 * pmccntr_sync
815 * @env: CPUARMState
817 * Synchronises the counter in the PMCCNTR. This must always be called twice,
818 * once before any action that might affect the timer and again afterwards.
819 * The function is used to swap the state of the register if required.
820 * This only happens when not in user mode (!CONFIG_USER_ONLY)
822 void pmccntr_sync(CPUARMState *env);
824 /* SCTLR bit meanings. Several bits have been reused in newer
825 * versions of the architecture; in that case we define constants
826 * for both old and new bit meanings. Code which tests against those
827 * bits should probably check or otherwise arrange that the CPU
828 * is the architectural version it expects.
830 #define SCTLR_M (1U << 0)
831 #define SCTLR_A (1U << 1)
832 #define SCTLR_C (1U << 2)
833 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
834 #define SCTLR_SA (1U << 3)
835 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
836 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
837 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
838 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
839 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
840 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
841 #define SCTLR_ITD (1U << 7) /* v8 onward */
842 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
843 #define SCTLR_SED (1U << 8) /* v8 onward */
844 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
845 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
846 #define SCTLR_F (1U << 10) /* up to v6 */
847 #define SCTLR_SW (1U << 10) /* v7 onward */
848 #define SCTLR_Z (1U << 11)
849 #define SCTLR_I (1U << 12)
850 #define SCTLR_V (1U << 13)
851 #define SCTLR_RR (1U << 14) /* up to v7 */
852 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
853 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
854 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
855 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
856 #define SCTLR_nTWI (1U << 16) /* v8 onward */
857 #define SCTLR_HA (1U << 17)
858 #define SCTLR_BR (1U << 17) /* PMSA only */
859 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
860 #define SCTLR_nTWE (1U << 18) /* v8 onward */
861 #define SCTLR_WXN (1U << 19)
862 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
863 #define SCTLR_UWXN (1U << 20) /* v7 onward */
864 #define SCTLR_FI (1U << 21)
865 #define SCTLR_U (1U << 22)
866 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
867 #define SCTLR_VE (1U << 24) /* up to v7 */
868 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
869 #define SCTLR_EE (1U << 25)
870 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
871 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
872 #define SCTLR_NMFI (1U << 27)
873 #define SCTLR_TRE (1U << 28)
874 #define SCTLR_AFE (1U << 29)
875 #define SCTLR_TE (1U << 30)
877 #define CPTR_TCPAC (1U << 31)
878 #define CPTR_TTA (1U << 20)
879 #define CPTR_TFP (1U << 10)
881 #define MDCR_EPMAD (1U << 21)
882 #define MDCR_EDAD (1U << 20)
883 #define MDCR_SPME (1U << 17)
884 #define MDCR_SDD (1U << 16)
885 #define MDCR_SPD (3U << 14)
886 #define MDCR_TDRA (1U << 11)
887 #define MDCR_TDOSA (1U << 10)
888 #define MDCR_TDA (1U << 9)
889 #define MDCR_TDE (1U << 8)
890 #define MDCR_HPME (1U << 7)
891 #define MDCR_TPM (1U << 6)
892 #define MDCR_TPMCR (1U << 5)
894 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
895 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
897 #define CPSR_M (0x1fU)
898 #define CPSR_T (1U << 5)
899 #define CPSR_F (1U << 6)
900 #define CPSR_I (1U << 7)
901 #define CPSR_A (1U << 8)
902 #define CPSR_E (1U << 9)
903 #define CPSR_IT_2_7 (0xfc00U)
904 #define CPSR_GE (0xfU << 16)
905 #define CPSR_IL (1U << 20)
906 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
907 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
908 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
909 * where it is live state but not accessible to the AArch32 code.
911 #define CPSR_RESERVED (0x7U << 21)
912 #define CPSR_J (1U << 24)
913 #define CPSR_IT_0_1 (3U << 25)
914 #define CPSR_Q (1U << 27)
915 #define CPSR_V (1U << 28)
916 #define CPSR_C (1U << 29)
917 #define CPSR_Z (1U << 30)
918 #define CPSR_N (1U << 31)
919 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
920 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
922 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
923 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
924 | CPSR_NZCV)
925 /* Bits writable in user mode. */
926 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
927 /* Execution state bits. MRS read as zero, MSR writes ignored. */
928 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
929 /* Mask of bits which may be set by exception return copying them from SPSR */
930 #define CPSR_ERET_MASK (~CPSR_RESERVED)
932 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
933 #define XPSR_EXCP 0x1ffU
934 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
935 #define XPSR_IT_2_7 CPSR_IT_2_7
936 #define XPSR_GE CPSR_GE
937 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
938 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
939 #define XPSR_IT_0_1 CPSR_IT_0_1
940 #define XPSR_Q CPSR_Q
941 #define XPSR_V CPSR_V
942 #define XPSR_C CPSR_C
943 #define XPSR_Z CPSR_Z
944 #define XPSR_N CPSR_N
945 #define XPSR_NZCV CPSR_NZCV
946 #define XPSR_IT CPSR_IT
948 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
949 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
950 #define TTBCR_PD0 (1U << 4)
951 #define TTBCR_PD1 (1U << 5)
952 #define TTBCR_EPD0 (1U << 7)
953 #define TTBCR_IRGN0 (3U << 8)
954 #define TTBCR_ORGN0 (3U << 10)
955 #define TTBCR_SH0 (3U << 12)
956 #define TTBCR_T1SZ (3U << 16)
957 #define TTBCR_A1 (1U << 22)
958 #define TTBCR_EPD1 (1U << 23)
959 #define TTBCR_IRGN1 (3U << 24)
960 #define TTBCR_ORGN1 (3U << 26)
961 #define TTBCR_SH1 (1U << 28)
962 #define TTBCR_EAE (1U << 31)
964 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
965 * Only these are valid when in AArch64 mode; in
966 * AArch32 mode SPSRs are basically CPSR-format.
968 #define PSTATE_SP (1U)
969 #define PSTATE_M (0xFU)
970 #define PSTATE_nRW (1U << 4)
971 #define PSTATE_F (1U << 6)
972 #define PSTATE_I (1U << 7)
973 #define PSTATE_A (1U << 8)
974 #define PSTATE_D (1U << 9)
975 #define PSTATE_IL (1U << 20)
976 #define PSTATE_SS (1U << 21)
977 #define PSTATE_V (1U << 28)
978 #define PSTATE_C (1U << 29)
979 #define PSTATE_Z (1U << 30)
980 #define PSTATE_N (1U << 31)
981 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
982 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
983 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
984 /* Mode values for AArch64 */
985 #define PSTATE_MODE_EL3h 13
986 #define PSTATE_MODE_EL3t 12
987 #define PSTATE_MODE_EL2h 9
988 #define PSTATE_MODE_EL2t 8
989 #define PSTATE_MODE_EL1h 5
990 #define PSTATE_MODE_EL1t 4
991 #define PSTATE_MODE_EL0t 0
993 /* Map EL and handler into a PSTATE_MODE. */
994 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
996 return (el << 2) | handler;
999 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1000 * interprocessing, so we don't attempt to sync with the cpsr state used by
1001 * the 32 bit decoder.
1003 static inline uint32_t pstate_read(CPUARMState *env)
1005 int ZF;
1007 ZF = (env->ZF == 0);
1008 return (env->NF & 0x80000000) | (ZF << 30)
1009 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1010 | env->pstate | env->daif;
1013 static inline void pstate_write(CPUARMState *env, uint32_t val)
1015 env->ZF = (~val) & PSTATE_Z;
1016 env->NF = val;
1017 env->CF = (val >> 29) & 1;
1018 env->VF = (val << 3) & 0x80000000;
1019 env->daif = val & PSTATE_DAIF;
1020 env->pstate = val & ~CACHED_PSTATE_BITS;
1023 /* Return the current CPSR value. */
1024 uint32_t cpsr_read(CPUARMState *env);
1026 typedef enum CPSRWriteType {
1027 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1028 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1029 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1030 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1031 } CPSRWriteType;
1033 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1034 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1035 CPSRWriteType write_type);
1037 /* Return the current xPSR value. */
1038 static inline uint32_t xpsr_read(CPUARMState *env)
1040 int ZF;
1041 ZF = (env->ZF == 0);
1042 return (env->NF & 0x80000000) | (ZF << 30)
1043 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1044 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1045 | ((env->condexec_bits & 0xfc) << 8)
1046 | env->v7m.exception;
1049 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1050 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1052 if (mask & XPSR_NZCV) {
1053 env->ZF = (~val) & XPSR_Z;
1054 env->NF = val;
1055 env->CF = (val >> 29) & 1;
1056 env->VF = (val << 3) & 0x80000000;
1058 if (mask & XPSR_Q) {
1059 env->QF = ((val & XPSR_Q) != 0);
1061 if (mask & XPSR_T) {
1062 env->thumb = ((val & XPSR_T) != 0);
1064 if (mask & XPSR_IT_0_1) {
1065 env->condexec_bits &= ~3;
1066 env->condexec_bits |= (val >> 25) & 3;
1068 if (mask & XPSR_IT_2_7) {
1069 env->condexec_bits &= 3;
1070 env->condexec_bits |= (val >> 8) & 0xfc;
1072 if (mask & XPSR_EXCP) {
1073 env->v7m.exception = val & XPSR_EXCP;
1077 #define HCR_VM (1ULL << 0)
1078 #define HCR_SWIO (1ULL << 1)
1079 #define HCR_PTW (1ULL << 2)
1080 #define HCR_FMO (1ULL << 3)
1081 #define HCR_IMO (1ULL << 4)
1082 #define HCR_AMO (1ULL << 5)
1083 #define HCR_VF (1ULL << 6)
1084 #define HCR_VI (1ULL << 7)
1085 #define HCR_VSE (1ULL << 8)
1086 #define HCR_FB (1ULL << 9)
1087 #define HCR_BSU_MASK (3ULL << 10)
1088 #define HCR_DC (1ULL << 12)
1089 #define HCR_TWI (1ULL << 13)
1090 #define HCR_TWE (1ULL << 14)
1091 #define HCR_TID0 (1ULL << 15)
1092 #define HCR_TID1 (1ULL << 16)
1093 #define HCR_TID2 (1ULL << 17)
1094 #define HCR_TID3 (1ULL << 18)
1095 #define HCR_TSC (1ULL << 19)
1096 #define HCR_TIDCP (1ULL << 20)
1097 #define HCR_TACR (1ULL << 21)
1098 #define HCR_TSW (1ULL << 22)
1099 #define HCR_TPC (1ULL << 23)
1100 #define HCR_TPU (1ULL << 24)
1101 #define HCR_TTLB (1ULL << 25)
1102 #define HCR_TVM (1ULL << 26)
1103 #define HCR_TGE (1ULL << 27)
1104 #define HCR_TDZ (1ULL << 28)
1105 #define HCR_HCD (1ULL << 29)
1106 #define HCR_TRVM (1ULL << 30)
1107 #define HCR_RW (1ULL << 31)
1108 #define HCR_CD (1ULL << 32)
1109 #define HCR_ID (1ULL << 33)
1110 #define HCR_MASK ((1ULL << 34) - 1)
1112 #define SCR_NS (1U << 0)
1113 #define SCR_IRQ (1U << 1)
1114 #define SCR_FIQ (1U << 2)
1115 #define SCR_EA (1U << 3)
1116 #define SCR_FW (1U << 4)
1117 #define SCR_AW (1U << 5)
1118 #define SCR_NET (1U << 6)
1119 #define SCR_SMD (1U << 7)
1120 #define SCR_HCE (1U << 8)
1121 #define SCR_SIF (1U << 9)
1122 #define SCR_RW (1U << 10)
1123 #define SCR_ST (1U << 11)
1124 #define SCR_TWI (1U << 12)
1125 #define SCR_TWE (1U << 13)
1126 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1127 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1129 /* Return the current FPSCR value. */
1130 uint32_t vfp_get_fpscr(CPUARMState *env);
1131 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1133 /* For A64 the FPSCR is split into two logically distinct registers,
1134 * FPCR and FPSR. However since they still use non-overlapping bits
1135 * we store the underlying state in fpscr and just mask on read/write.
1137 #define FPSR_MASK 0xf800009f
1138 #define FPCR_MASK 0x07f79f00
1139 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1141 return vfp_get_fpscr(env) & FPSR_MASK;
1144 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1146 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1147 vfp_set_fpscr(env, new_fpscr);
1150 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1152 return vfp_get_fpscr(env) & FPCR_MASK;
1155 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1157 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1158 vfp_set_fpscr(env, new_fpscr);
1161 enum arm_cpu_mode {
1162 ARM_CPU_MODE_USR = 0x10,
1163 ARM_CPU_MODE_FIQ = 0x11,
1164 ARM_CPU_MODE_IRQ = 0x12,
1165 ARM_CPU_MODE_SVC = 0x13,
1166 ARM_CPU_MODE_MON = 0x16,
1167 ARM_CPU_MODE_ABT = 0x17,
1168 ARM_CPU_MODE_HYP = 0x1a,
1169 ARM_CPU_MODE_UND = 0x1b,
1170 ARM_CPU_MODE_SYS = 0x1f
1173 /* VFP system registers. */
1174 #define ARM_VFP_FPSID 0
1175 #define ARM_VFP_FPSCR 1
1176 #define ARM_VFP_MVFR2 5
1177 #define ARM_VFP_MVFR1 6
1178 #define ARM_VFP_MVFR0 7
1179 #define ARM_VFP_FPEXC 8
1180 #define ARM_VFP_FPINST 9
1181 #define ARM_VFP_FPINST2 10
1183 /* iwMMXt coprocessor control registers. */
1184 #define ARM_IWMMXT_wCID 0
1185 #define ARM_IWMMXT_wCon 1
1186 #define ARM_IWMMXT_wCSSF 2
1187 #define ARM_IWMMXT_wCASF 3
1188 #define ARM_IWMMXT_wCGR0 8
1189 #define ARM_IWMMXT_wCGR1 9
1190 #define ARM_IWMMXT_wCGR2 10
1191 #define ARM_IWMMXT_wCGR3 11
1193 /* V7M CCR bits */
1194 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1195 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1196 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1197 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1198 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1199 FIELD(V7M_CCR, STKALIGN, 9, 1)
1200 FIELD(V7M_CCR, DC, 16, 1)
1201 FIELD(V7M_CCR, IC, 17, 1)
1203 /* V7M CFSR bits for MMFSR */
1204 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1205 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1206 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1207 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1208 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1209 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1211 /* V7M CFSR bits for BFSR */
1212 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1213 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1214 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1215 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1216 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1217 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1218 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1220 /* V7M CFSR bits for UFSR */
1221 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1222 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1223 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1224 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1225 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1226 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1228 /* V7M CFSR bit masks covering all of the subregister bits */
1229 FIELD(V7M_CFSR, MMFSR, 0, 8)
1230 FIELD(V7M_CFSR, BFSR, 8, 8)
1231 FIELD(V7M_CFSR, UFSR, 16, 16)
1233 /* V7M HFSR bits */
1234 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1235 FIELD(V7M_HFSR, FORCED, 30, 1)
1236 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1238 /* V7M DFSR bits */
1239 FIELD(V7M_DFSR, HALTED, 0, 1)
1240 FIELD(V7M_DFSR, BKPT, 1, 1)
1241 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1242 FIELD(V7M_DFSR, VCATCH, 3, 1)
1243 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1245 /* v7M MPU_CTRL bits */
1246 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1247 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1248 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1250 /* If adding a feature bit which corresponds to a Linux ELF
1251 * HWCAP bit, remember to update the feature-bit-to-hwcap
1252 * mapping in linux-user/elfload.c:get_elf_hwcap().
1254 enum arm_features {
1255 ARM_FEATURE_VFP,
1256 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1257 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1258 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1259 ARM_FEATURE_V6,
1260 ARM_FEATURE_V6K,
1261 ARM_FEATURE_V7,
1262 ARM_FEATURE_THUMB2,
1263 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1264 ARM_FEATURE_VFP3,
1265 ARM_FEATURE_VFP_FP16,
1266 ARM_FEATURE_NEON,
1267 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1268 ARM_FEATURE_M, /* Microcontroller profile. */
1269 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1270 ARM_FEATURE_THUMB2EE,
1271 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1272 ARM_FEATURE_V4T,
1273 ARM_FEATURE_V5,
1274 ARM_FEATURE_STRONGARM,
1275 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1276 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1277 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1278 ARM_FEATURE_GENERIC_TIMER,
1279 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1280 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1281 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1282 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1283 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1284 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1285 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1286 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1287 ARM_FEATURE_V8,
1288 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1289 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1290 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1291 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1292 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1293 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1294 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1295 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1296 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1297 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1298 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1299 ARM_FEATURE_PMU, /* has PMU support */
1300 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1301 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1302 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1305 static inline int arm_feature(CPUARMState *env, int feature)
1307 return (env->features & (1ULL << feature)) != 0;
1310 #if !defined(CONFIG_USER_ONLY)
1311 /* Return true if exception levels below EL3 are in secure state,
1312 * or would be following an exception return to that level.
1313 * Unlike arm_is_secure() (which is always a question about the
1314 * _current_ state of the CPU) this doesn't care about the current
1315 * EL or mode.
1317 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1319 if (arm_feature(env, ARM_FEATURE_EL3)) {
1320 return !(env->cp15.scr_el3 & SCR_NS);
1321 } else {
1322 /* If EL3 is not supported then the secure state is implementation
1323 * defined, in which case QEMU defaults to non-secure.
1325 return false;
1329 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1330 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1332 if (arm_feature(env, ARM_FEATURE_EL3)) {
1333 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1334 /* CPU currently in AArch64 state and EL3 */
1335 return true;
1336 } else if (!is_a64(env) &&
1337 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1338 /* CPU currently in AArch32 state and monitor mode */
1339 return true;
1342 return false;
1345 /* Return true if the processor is in secure state */
1346 static inline bool arm_is_secure(CPUARMState *env)
1348 if (arm_is_el3_or_mon(env)) {
1349 return true;
1351 return arm_is_secure_below_el3(env);
1354 #else
1355 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1357 return false;
1360 static inline bool arm_is_secure(CPUARMState *env)
1362 return false;
1364 #endif
1366 /* Return true if the specified exception level is running in AArch64 state. */
1367 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1369 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1370 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1372 assert(el >= 1 && el <= 3);
1373 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1375 /* The highest exception level is always at the maximum supported
1376 * register width, and then lower levels have a register width controlled
1377 * by bits in the SCR or HCR registers.
1379 if (el == 3) {
1380 return aa64;
1383 if (arm_feature(env, ARM_FEATURE_EL3)) {
1384 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1387 if (el == 2) {
1388 return aa64;
1391 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1392 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1395 return aa64;
1398 /* Function for determing whether guest cp register reads and writes should
1399 * access the secure or non-secure bank of a cp register. When EL3 is
1400 * operating in AArch32 state, the NS-bit determines whether the secure
1401 * instance of a cp register should be used. When EL3 is AArch64 (or if
1402 * it doesn't exist at all) then there is no register banking, and all
1403 * accesses are to the non-secure version.
1405 static inline bool access_secure_reg(CPUARMState *env)
1407 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1408 !arm_el_is_aa64(env, 3) &&
1409 !(env->cp15.scr_el3 & SCR_NS));
1411 return ret;
1414 /* Macros for accessing a specified CP register bank */
1415 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1416 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1418 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1419 do { \
1420 if (_secure) { \
1421 (_env)->cp15._regname##_s = (_val); \
1422 } else { \
1423 (_env)->cp15._regname##_ns = (_val); \
1425 } while (0)
1427 /* Macros for automatically accessing a specific CP register bank depending on
1428 * the current secure state of the system. These macros are not intended for
1429 * supporting instruction translation reads/writes as these are dependent
1430 * solely on the SCR.NS bit and not the mode.
1432 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1433 A32_BANKED_REG_GET((_env), _regname, \
1434 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1436 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1437 A32_BANKED_REG_SET((_env), _regname, \
1438 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1439 (_val))
1441 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1442 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1443 uint32_t cur_el, bool secure);
1445 /* Interface between CPU and Interrupt controller. */
1446 #ifndef CONFIG_USER_ONLY
1447 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1448 #else
1449 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1451 return true;
1453 #endif
1454 void armv7m_nvic_set_pending(void *opaque, int irq);
1455 void armv7m_nvic_acknowledge_irq(void *opaque);
1457 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1458 * @opaque: the NVIC
1459 * @irq: the exception number to complete
1461 * Returns: -1 if the irq was not active
1462 * 1 if completing this irq brought us back to base (no active irqs)
1463 * 0 if there is still an irq active after this one was completed
1464 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1466 int armv7m_nvic_complete_irq(void *opaque, int irq);
1468 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1469 * @opaque: the NVIC
1471 * Returns: the raw execution priority as defined by the v8M architecture.
1472 * This is the execution priority minus the effects of AIRCR.PRIS,
1473 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1474 * (v8M ARM ARM I_PKLD.)
1476 int armv7m_nvic_raw_execution_priority(void *opaque);
1478 /* Interface for defining coprocessor registers.
1479 * Registers are defined in tables of arm_cp_reginfo structs
1480 * which are passed to define_arm_cp_regs().
1483 /* When looking up a coprocessor register we look for it
1484 * via an integer which encodes all of:
1485 * coprocessor number
1486 * Crn, Crm, opc1, opc2 fields
1487 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1488 * or via MRRC/MCRR?)
1489 * non-secure/secure bank (AArch32 only)
1490 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1491 * (In this case crn and opc2 should be zero.)
1492 * For AArch64, there is no 32/64 bit size distinction;
1493 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1494 * and 4 bit CRn and CRm. The encoding patterns are chosen
1495 * to be easy to convert to and from the KVM encodings, and also
1496 * so that the hashtable can contain both AArch32 and AArch64
1497 * registers (to allow for interprocessing where we might run
1498 * 32 bit code on a 64 bit core).
1500 /* This bit is private to our hashtable cpreg; in KVM register
1501 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1502 * in the upper bits of the 64 bit ID.
1504 #define CP_REG_AA64_SHIFT 28
1505 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1507 /* To enable banking of coprocessor registers depending on ns-bit we
1508 * add a bit to distinguish between secure and non-secure cpregs in the
1509 * hashtable.
1511 #define CP_REG_NS_SHIFT 29
1512 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1514 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1515 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1516 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1518 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1519 (CP_REG_AA64_MASK | \
1520 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1521 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1522 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1523 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1524 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1525 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1527 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1528 * version used as a key for the coprocessor register hashtable
1530 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1532 uint32_t cpregid = kvmid;
1533 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1534 cpregid |= CP_REG_AA64_MASK;
1535 } else {
1536 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1537 cpregid |= (1 << 15);
1540 /* KVM is always non-secure so add the NS flag on AArch32 register
1541 * entries.
1543 cpregid |= 1 << CP_REG_NS_SHIFT;
1545 return cpregid;
1548 /* Convert a truncated 32 bit hashtable key into the full
1549 * 64 bit KVM register ID.
1551 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1553 uint64_t kvmid;
1555 if (cpregid & CP_REG_AA64_MASK) {
1556 kvmid = cpregid & ~CP_REG_AA64_MASK;
1557 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1558 } else {
1559 kvmid = cpregid & ~(1 << 15);
1560 if (cpregid & (1 << 15)) {
1561 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1562 } else {
1563 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1566 return kvmid;
1569 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1570 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1571 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1572 * TCG can assume the value to be constant (ie load at translate time)
1573 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1574 * indicates that the TB should not be ended after a write to this register
1575 * (the default is that the TB ends after cp writes). OVERRIDE permits
1576 * a register definition to override a previous definition for the
1577 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1578 * old must have the OVERRIDE bit set.
1579 * ALIAS indicates that this register is an alias view of some underlying
1580 * state which is also visible via another register, and that the other
1581 * register is handling migration and reset; registers marked ALIAS will not be
1582 * migrated but may have their state set by syncing of register state from KVM.
1583 * NO_RAW indicates that this register has no underlying state and does not
1584 * support raw access for state saving/loading; it will not be used for either
1585 * migration or KVM state synchronization. (Typically this is for "registers"
1586 * which are actually used as instructions for cache maintenance and so on.)
1587 * IO indicates that this register does I/O and therefore its accesses
1588 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1589 * registers which implement clocks or timers require this.
1591 #define ARM_CP_SPECIAL 1
1592 #define ARM_CP_CONST 2
1593 #define ARM_CP_64BIT 4
1594 #define ARM_CP_SUPPRESS_TB_END 8
1595 #define ARM_CP_OVERRIDE 16
1596 #define ARM_CP_ALIAS 32
1597 #define ARM_CP_IO 64
1598 #define ARM_CP_NO_RAW 128
1599 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1600 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1601 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1602 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1603 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1604 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1605 /* Used only as a terminator for ARMCPRegInfo lists */
1606 #define ARM_CP_SENTINEL 0xffff
1607 /* Mask of only the flag bits in a type field */
1608 #define ARM_CP_FLAG_MASK 0xff
1610 /* Valid values for ARMCPRegInfo state field, indicating which of
1611 * the AArch32 and AArch64 execution states this register is visible in.
1612 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1613 * If the reginfo is declared to be visible in both states then a second
1614 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1615 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1616 * Note that we rely on the values of these enums as we iterate through
1617 * the various states in some places.
1619 enum {
1620 ARM_CP_STATE_AA32 = 0,
1621 ARM_CP_STATE_AA64 = 1,
1622 ARM_CP_STATE_BOTH = 2,
1625 /* ARM CP register secure state flags. These flags identify security state
1626 * attributes for a given CP register entry.
1627 * The existence of both or neither secure and non-secure flags indicates that
1628 * the register has both a secure and non-secure hash entry. A single one of
1629 * these flags causes the register to only be hashed for the specified
1630 * security state.
1631 * Although definitions may have any combination of the S/NS bits, each
1632 * registered entry will only have one to identify whether the entry is secure
1633 * or non-secure.
1635 enum {
1636 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1637 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1640 /* Return true if cptype is a valid type field. This is used to try to
1641 * catch errors where the sentinel has been accidentally left off the end
1642 * of a list of registers.
1644 static inline bool cptype_valid(int cptype)
1646 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1647 || ((cptype & ARM_CP_SPECIAL) &&
1648 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1651 /* Access rights:
1652 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1653 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1654 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1655 * (ie any of the privileged modes in Secure state, or Monitor mode).
1656 * If a register is accessible in one privilege level it's always accessible
1657 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1658 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1659 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1660 * terminology a little and call this PL3.
1661 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1662 * with the ELx exception levels.
1664 * If access permissions for a register are more complex than can be
1665 * described with these bits, then use a laxer set of restrictions, and
1666 * do the more restrictive/complex check inside a helper function.
1668 #define PL3_R 0x80
1669 #define PL3_W 0x40
1670 #define PL2_R (0x20 | PL3_R)
1671 #define PL2_W (0x10 | PL3_W)
1672 #define PL1_R (0x08 | PL2_R)
1673 #define PL1_W (0x04 | PL2_W)
1674 #define PL0_R (0x02 | PL1_R)
1675 #define PL0_W (0x01 | PL1_W)
1677 #define PL3_RW (PL3_R | PL3_W)
1678 #define PL2_RW (PL2_R | PL2_W)
1679 #define PL1_RW (PL1_R | PL1_W)
1680 #define PL0_RW (PL0_R | PL0_W)
1682 /* Return the highest implemented Exception Level */
1683 static inline int arm_highest_el(CPUARMState *env)
1685 if (arm_feature(env, ARM_FEATURE_EL3)) {
1686 return 3;
1688 if (arm_feature(env, ARM_FEATURE_EL2)) {
1689 return 2;
1691 return 1;
1694 /* Return true if a v7M CPU is in Handler mode */
1695 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1697 return env->v7m.exception != 0;
1700 /* Return the current Exception Level (as per ARMv8; note that this differs
1701 * from the ARMv7 Privilege Level).
1703 static inline int arm_current_el(CPUARMState *env)
1705 if (arm_feature(env, ARM_FEATURE_M)) {
1706 return arm_v7m_is_handler_mode(env) ||
1707 !(env->v7m.control[env->v7m.secure] & 1);
1710 if (is_a64(env)) {
1711 return extract32(env->pstate, 2, 2);
1714 switch (env->uncached_cpsr & 0x1f) {
1715 case ARM_CPU_MODE_USR:
1716 return 0;
1717 case ARM_CPU_MODE_HYP:
1718 return 2;
1719 case ARM_CPU_MODE_MON:
1720 return 3;
1721 default:
1722 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1723 /* If EL3 is 32-bit then all secure privileged modes run in
1724 * EL3
1726 return 3;
1729 return 1;
1733 typedef struct ARMCPRegInfo ARMCPRegInfo;
1735 typedef enum CPAccessResult {
1736 /* Access is permitted */
1737 CP_ACCESS_OK = 0,
1738 /* Access fails due to a configurable trap or enable which would
1739 * result in a categorized exception syndrome giving information about
1740 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1741 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1742 * PL1 if in EL0, otherwise to the current EL).
1744 CP_ACCESS_TRAP = 1,
1745 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1746 * Note that this is not a catch-all case -- the set of cases which may
1747 * result in this failure is specifically defined by the architecture.
1749 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1750 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1751 CP_ACCESS_TRAP_EL2 = 3,
1752 CP_ACCESS_TRAP_EL3 = 4,
1753 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1754 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1755 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1756 /* Access fails and results in an exception syndrome for an FP access,
1757 * trapped directly to EL2 or EL3
1759 CP_ACCESS_TRAP_FP_EL2 = 7,
1760 CP_ACCESS_TRAP_FP_EL3 = 8,
1761 } CPAccessResult;
1763 /* Access functions for coprocessor registers. These cannot fail and
1764 * may not raise exceptions.
1766 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1767 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1768 uint64_t value);
1769 /* Access permission check functions for coprocessor registers. */
1770 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1771 const ARMCPRegInfo *opaque,
1772 bool isread);
1773 /* Hook function for register reset */
1774 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1776 #define CP_ANY 0xff
1778 /* Definition of an ARM coprocessor register */
1779 struct ARMCPRegInfo {
1780 /* Name of register (useful mainly for debugging, need not be unique) */
1781 const char *name;
1782 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1783 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1784 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1785 * will be decoded to this register. The register read and write
1786 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1787 * used by the program, so it is possible to register a wildcard and
1788 * then behave differently on read/write if necessary.
1789 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1790 * must both be zero.
1791 * For AArch64-visible registers, opc0 is also used.
1792 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1793 * way to distinguish (for KVM's benefit) guest-visible system registers
1794 * from demuxed ones provided to preserve the "no side effects on
1795 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1796 * visible (to match KVM's encoding); cp==0 will be converted to
1797 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1799 uint8_t cp;
1800 uint8_t crn;
1801 uint8_t crm;
1802 uint8_t opc0;
1803 uint8_t opc1;
1804 uint8_t opc2;
1805 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1806 int state;
1807 /* Register type: ARM_CP_* bits/values */
1808 int type;
1809 /* Access rights: PL*_[RW] */
1810 int access;
1811 /* Security state: ARM_CP_SECSTATE_* bits/values */
1812 int secure;
1813 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1814 * this register was defined: can be used to hand data through to the
1815 * register read/write functions, since they are passed the ARMCPRegInfo*.
1817 void *opaque;
1818 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1819 * fieldoffset is non-zero, the reset value of the register.
1821 uint64_t resetvalue;
1822 /* Offset of the field in CPUARMState for this register.
1824 * This is not needed if either:
1825 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1826 * 2. both readfn and writefn are specified
1828 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1830 /* Offsets of the secure and non-secure fields in CPUARMState for the
1831 * register if it is banked. These fields are only used during the static
1832 * registration of a register. During hashing the bank associated
1833 * with a given security state is copied to fieldoffset which is used from
1834 * there on out.
1836 * It is expected that register definitions use either fieldoffset or
1837 * bank_fieldoffsets in the definition but not both. It is also expected
1838 * that both bank offsets are set when defining a banked register. This
1839 * use indicates that a register is banked.
1841 ptrdiff_t bank_fieldoffsets[2];
1843 /* Function for making any access checks for this register in addition to
1844 * those specified by the 'access' permissions bits. If NULL, no extra
1845 * checks required. The access check is performed at runtime, not at
1846 * translate time.
1848 CPAccessFn *accessfn;
1849 /* Function for handling reads of this register. If NULL, then reads
1850 * will be done by loading from the offset into CPUARMState specified
1851 * by fieldoffset.
1853 CPReadFn *readfn;
1854 /* Function for handling writes of this register. If NULL, then writes
1855 * will be done by writing to the offset into CPUARMState specified
1856 * by fieldoffset.
1858 CPWriteFn *writefn;
1859 /* Function for doing a "raw" read; used when we need to copy
1860 * coprocessor state to the kernel for KVM or out for
1861 * migration. This only needs to be provided if there is also a
1862 * readfn and it has side effects (for instance clear-on-read bits).
1864 CPReadFn *raw_readfn;
1865 /* Function for doing a "raw" write; used when we need to copy KVM
1866 * kernel coprocessor state into userspace, or for inbound
1867 * migration. This only needs to be provided if there is also a
1868 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1869 * or similar behaviour.
1871 CPWriteFn *raw_writefn;
1872 /* Function for resetting the register. If NULL, then reset will be done
1873 * by writing resetvalue to the field specified in fieldoffset. If
1874 * fieldoffset is 0 then no reset will be done.
1876 CPResetFn *resetfn;
1879 /* Macros which are lvalues for the field in CPUARMState for the
1880 * ARMCPRegInfo *ri.
1882 #define CPREG_FIELD32(env, ri) \
1883 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1884 #define CPREG_FIELD64(env, ri) \
1885 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1887 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1889 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1890 const ARMCPRegInfo *regs, void *opaque);
1891 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1892 const ARMCPRegInfo *regs, void *opaque);
1893 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1895 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1897 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1899 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1901 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1903 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1904 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1905 uint64_t value);
1906 /* CPReadFn that can be used for read-as-zero behaviour */
1907 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1909 /* CPResetFn that does nothing, for use if no reset is required even
1910 * if fieldoffset is non zero.
1912 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1914 /* Return true if this reginfo struct's field in the cpu state struct
1915 * is 64 bits wide.
1917 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1919 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1922 static inline bool cp_access_ok(int current_el,
1923 const ARMCPRegInfo *ri, int isread)
1925 return (ri->access >> ((current_el * 2) + isread)) & 1;
1928 /* Raw read of a coprocessor register (as needed for migration, etc) */
1929 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1932 * write_list_to_cpustate
1933 * @cpu: ARMCPU
1935 * For each register listed in the ARMCPU cpreg_indexes list, write
1936 * its value from the cpreg_values list into the ARMCPUState structure.
1937 * This updates TCG's working data structures from KVM data or
1938 * from incoming migration state.
1940 * Returns: true if all register values were updated correctly,
1941 * false if some register was unknown or could not be written.
1942 * Note that we do not stop early on failure -- we will attempt
1943 * writing all registers in the list.
1945 bool write_list_to_cpustate(ARMCPU *cpu);
1948 * write_cpustate_to_list:
1949 * @cpu: ARMCPU
1951 * For each register listed in the ARMCPU cpreg_indexes list, write
1952 * its value from the ARMCPUState structure into the cpreg_values list.
1953 * This is used to copy info from TCG's working data structures into
1954 * KVM or for outbound migration.
1956 * Returns: true if all register values were read correctly,
1957 * false if some register was unknown or could not be read.
1958 * Note that we do not stop early on failure -- we will attempt
1959 * reading all registers in the list.
1961 bool write_cpustate_to_list(ARMCPU *cpu);
1963 #define ARM_CPUID_TI915T 0x54029152
1964 #define ARM_CPUID_TI925T 0x54029252
1966 #if defined(CONFIG_USER_ONLY)
1967 #define TARGET_PAGE_BITS 12
1968 #else
1969 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1970 * have to support 1K tiny pages.
1972 #define TARGET_PAGE_BITS_VARY
1973 #define TARGET_PAGE_BITS_MIN 10
1974 #endif
1976 #if defined(TARGET_AARCH64)
1977 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1978 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1979 #else
1980 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1981 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1982 #endif
1984 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1985 unsigned int target_el)
1987 CPUARMState *env = cs->env_ptr;
1988 unsigned int cur_el = arm_current_el(env);
1989 bool secure = arm_is_secure(env);
1990 bool pstate_unmasked;
1991 int8_t unmasked = 0;
1993 /* Don't take exceptions if they target a lower EL.
1994 * This check should catch any exceptions that would not be taken but left
1995 * pending.
1997 if (cur_el > target_el) {
1998 return false;
2001 switch (excp_idx) {
2002 case EXCP_FIQ:
2003 pstate_unmasked = !(env->daif & PSTATE_F);
2004 break;
2006 case EXCP_IRQ:
2007 pstate_unmasked = !(env->daif & PSTATE_I);
2008 break;
2010 case EXCP_VFIQ:
2011 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2012 /* VFIQs are only taken when hypervized and non-secure. */
2013 return false;
2015 return !(env->daif & PSTATE_F);
2016 case EXCP_VIRQ:
2017 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2018 /* VIRQs are only taken when hypervized and non-secure. */
2019 return false;
2021 return !(env->daif & PSTATE_I);
2022 default:
2023 g_assert_not_reached();
2026 /* Use the target EL, current execution state and SCR/HCR settings to
2027 * determine whether the corresponding CPSR bit is used to mask the
2028 * interrupt.
2030 if ((target_el > cur_el) && (target_el != 1)) {
2031 /* Exceptions targeting a higher EL may not be maskable */
2032 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2033 /* 64-bit masking rules are simple: exceptions to EL3
2034 * can't be masked, and exceptions to EL2 can only be
2035 * masked from Secure state. The HCR and SCR settings
2036 * don't affect the masking logic, only the interrupt routing.
2038 if (target_el == 3 || !secure) {
2039 unmasked = 1;
2041 } else {
2042 /* The old 32-bit-only environment has a more complicated
2043 * masking setup. HCR and SCR bits not only affect interrupt
2044 * routing but also change the behaviour of masking.
2046 bool hcr, scr;
2048 switch (excp_idx) {
2049 case EXCP_FIQ:
2050 /* If FIQs are routed to EL3 or EL2 then there are cases where
2051 * we override the CPSR.F in determining if the exception is
2052 * masked or not. If neither of these are set then we fall back
2053 * to the CPSR.F setting otherwise we further assess the state
2054 * below.
2056 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2057 scr = (env->cp15.scr_el3 & SCR_FIQ);
2059 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2060 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2061 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2062 * when non-secure but only when FIQs are only routed to EL3.
2064 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2065 break;
2066 case EXCP_IRQ:
2067 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2068 * we may override the CPSR.I masking when in non-secure state.
2069 * The SCR.IRQ setting has already been taken into consideration
2070 * when setting the target EL, so it does not have a further
2071 * affect here.
2073 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2074 scr = false;
2075 break;
2076 default:
2077 g_assert_not_reached();
2080 if ((scr || hcr) && !secure) {
2081 unmasked = 1;
2086 /* The PSTATE bits only mask the interrupt if we have not overriden the
2087 * ability above.
2089 return unmasked || pstate_unmasked;
2092 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
2094 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2095 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2097 #define cpu_signal_handler cpu_arm_signal_handler
2098 #define cpu_list arm_cpu_list
2100 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2102 * If EL3 is 64-bit:
2103 * + NonSecure EL1 & 0 stage 1
2104 * + NonSecure EL1 & 0 stage 2
2105 * + NonSecure EL2
2106 * + Secure EL1 & EL0
2107 * + Secure EL3
2108 * If EL3 is 32-bit:
2109 * + NonSecure PL1 & 0 stage 1
2110 * + NonSecure PL1 & 0 stage 2
2111 * + NonSecure PL2
2112 * + Secure PL0 & PL1
2113 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2115 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2116 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2117 * may differ in access permissions even if the VA->PA map is the same
2118 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2119 * translation, which means that we have one mmu_idx that deals with two
2120 * concatenated translation regimes [this sort of combined s1+2 TLB is
2121 * architecturally permitted]
2122 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2123 * handling via the TLB. The only way to do a stage 1 translation without
2124 * the immediate stage 2 translation is via the ATS or AT system insns,
2125 * which can be slow-pathed and always do a page table walk.
2126 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2127 * translation regimes, because they map reasonably well to each other
2128 * and they can't both be active at the same time.
2129 * This gives us the following list of mmu_idx values:
2131 * NS EL0 (aka NS PL0) stage 1+2
2132 * NS EL1 (aka NS PL1) stage 1+2
2133 * NS EL2 (aka NS PL2)
2134 * S EL3 (aka S PL1)
2135 * S EL0 (aka S PL0)
2136 * S EL1 (not used if EL3 is 32 bit)
2137 * NS EL0+1 stage 2
2139 * (The last of these is an mmu_idx because we want to be able to use the TLB
2140 * for the accesses done as part of a stage 1 page table walk, rather than
2141 * having to walk the stage 2 page table over and over.)
2143 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2144 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2145 * NS EL2 if we ever model a Cortex-R52).
2147 * M profile CPUs are rather different as they do not have a true MMU.
2148 * They have the following different MMU indexes:
2149 * User
2150 * Privileged
2151 * Execution priority negative (this is like privileged, but the
2152 * MPU HFNMIENA bit means that it may have different access permission
2153 * check results to normal privileged code, so can't share a TLB).
2154 * If the CPU supports the v8M Security Extension then there are also:
2155 * Secure User
2156 * Secure Privileged
2157 * Secure, execution priority negative
2159 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2160 * are not quite the same -- different CPU types (most notably M profile
2161 * vs A/R profile) would like to use MMU indexes with different semantics,
2162 * but since we don't ever need to use all of those in a single CPU we
2163 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2164 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2165 * the same for any particular CPU.
2166 * Variables of type ARMMUIdx are always full values, and the core
2167 * index values are in variables of type 'int'.
2169 * Our enumeration includes at the end some entries which are not "true"
2170 * mmu_idx values in that they don't have corresponding TLBs and are only
2171 * valid for doing slow path page table walks.
2173 * The constant names here are patterned after the general style of the names
2174 * of the AT/ATS operations.
2175 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2177 #define ARM_MMU_IDX_A 0x10 /* A profile */
2178 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2179 #define ARM_MMU_IDX_M 0x40 /* M profile */
2181 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2182 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2184 typedef enum ARMMMUIdx {
2185 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2186 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2187 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2188 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2189 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2190 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2191 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2192 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2193 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2194 ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
2195 ARMMMUIdx_MSUser = 3 | ARM_MMU_IDX_M,
2196 ARMMMUIdx_MSPriv = 4 | ARM_MMU_IDX_M,
2197 ARMMMUIdx_MSNegPri = 5 | ARM_MMU_IDX_M,
2198 /* Indexes below here don't have TLBs and are used only for AT system
2199 * instructions or for the first stage of an S12 page table walk.
2201 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2202 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2203 } ARMMMUIdx;
2205 /* Bit macros for the core-mmu-index values for each index,
2206 * for use when calling tlb_flush_by_mmuidx() and friends.
2208 typedef enum ARMMMUIdxBit {
2209 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2210 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2211 ARMMMUIdxBit_S1E2 = 1 << 2,
2212 ARMMMUIdxBit_S1E3 = 1 << 3,
2213 ARMMMUIdxBit_S1SE0 = 1 << 4,
2214 ARMMMUIdxBit_S1SE1 = 1 << 5,
2215 ARMMMUIdxBit_S2NS = 1 << 6,
2216 ARMMMUIdxBit_MUser = 1 << 0,
2217 ARMMMUIdxBit_MPriv = 1 << 1,
2218 ARMMMUIdxBit_MNegPri = 1 << 2,
2219 ARMMMUIdxBit_MSUser = 1 << 3,
2220 ARMMMUIdxBit_MSPriv = 1 << 4,
2221 ARMMMUIdxBit_MSNegPri = 1 << 5,
2222 } ARMMMUIdxBit;
2224 #define MMU_USER_IDX 0
2226 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2228 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2231 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2233 if (arm_feature(env, ARM_FEATURE_M)) {
2234 return mmu_idx | ARM_MMU_IDX_M;
2235 } else {
2236 return mmu_idx | ARM_MMU_IDX_A;
2240 /* Return the exception level we're running at if this is our mmu_idx */
2241 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2243 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2244 case ARM_MMU_IDX_A:
2245 return mmu_idx & 3;
2246 case ARM_MMU_IDX_M:
2247 return (mmu_idx == ARMMMUIdx_MUser || mmu_idx == ARMMMUIdx_MSUser)
2248 ? 0 : 1;
2249 default:
2250 g_assert_not_reached();
2254 /* Determine the current mmu_idx to use for normal loads/stores */
2255 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2257 int el = arm_current_el(env);
2259 if (arm_feature(env, ARM_FEATURE_M)) {
2260 ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2262 /* Execution priority is negative if FAULTMASK is set or
2263 * we're in a HardFault or NMI handler.
2265 if ((env->v7m.exception > 0 && env->v7m.exception <= 3)
2266 || env->v7m.faultmask[env->v7m.secure]) {
2267 mmu_idx = ARMMMUIdx_MNegPri;
2270 if (env->v7m.secure) {
2271 mmu_idx += ARMMMUIdx_MSUser;
2274 return arm_to_core_mmu_idx(mmu_idx);
2277 if (el < 2 && arm_is_secure_below_el3(env)) {
2278 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2280 return el;
2283 /* Indexes used when registering address spaces with cpu_address_space_init */
2284 typedef enum ARMASIdx {
2285 ARMASIdx_NS = 0,
2286 ARMASIdx_S = 1,
2287 } ARMASIdx;
2289 /* Return the Exception Level targeted by debug exceptions. */
2290 static inline int arm_debug_target_el(CPUARMState *env)
2292 bool secure = arm_is_secure(env);
2293 bool route_to_el2 = false;
2295 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2296 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2297 env->cp15.mdcr_el2 & (1 << 8);
2300 if (route_to_el2) {
2301 return 2;
2302 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2303 !arm_el_is_aa64(env, 3) && secure) {
2304 return 3;
2305 } else {
2306 return 1;
2310 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2312 if (arm_is_secure(env)) {
2313 /* MDCR_EL3.SDD disables debug events from Secure state */
2314 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2315 || arm_current_el(env) == 3) {
2316 return false;
2320 if (arm_current_el(env) == arm_debug_target_el(env)) {
2321 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2322 || (env->daif & PSTATE_D)) {
2323 return false;
2326 return true;
2329 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2331 int el = arm_current_el(env);
2333 if (el == 0 && arm_el_is_aa64(env, 1)) {
2334 return aa64_generate_debug_exceptions(env);
2337 if (arm_is_secure(env)) {
2338 int spd;
2340 if (el == 0 && (env->cp15.sder & 1)) {
2341 /* SDER.SUIDEN means debug exceptions from Secure EL0
2342 * are always enabled. Otherwise they are controlled by
2343 * SDCR.SPD like those from other Secure ELs.
2345 return true;
2348 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2349 switch (spd) {
2350 case 1:
2351 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2352 case 0:
2353 /* For 0b00 we return true if external secure invasive debug
2354 * is enabled. On real hardware this is controlled by external
2355 * signals to the core. QEMU always permits debug, and behaves
2356 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2358 return true;
2359 case 2:
2360 return false;
2361 case 3:
2362 return true;
2366 return el != 2;
2369 /* Return true if debugging exceptions are currently enabled.
2370 * This corresponds to what in ARM ARM pseudocode would be
2371 * if UsingAArch32() then
2372 * return AArch32.GenerateDebugExceptions()
2373 * else
2374 * return AArch64.GenerateDebugExceptions()
2375 * We choose to push the if() down into this function for clarity,
2376 * since the pseudocode has it at all callsites except for the one in
2377 * CheckSoftwareStep(), where it is elided because both branches would
2378 * always return the same value.
2380 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2381 * don't yet implement those exception levels or their associated trap bits.
2383 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2385 if (env->aarch64) {
2386 return aa64_generate_debug_exceptions(env);
2387 } else {
2388 return aa32_generate_debug_exceptions(env);
2392 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2393 * implicitly means this always returns false in pre-v8 CPUs.)
2395 static inline bool arm_singlestep_active(CPUARMState *env)
2397 return extract32(env->cp15.mdscr_el1, 0, 1)
2398 && arm_el_is_aa64(env, arm_debug_target_el(env))
2399 && arm_generate_debug_exceptions(env);
2402 static inline bool arm_sctlr_b(CPUARMState *env)
2404 return
2405 /* We need not implement SCTLR.ITD in user-mode emulation, so
2406 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2407 * This lets people run BE32 binaries with "-cpu any".
2409 #ifndef CONFIG_USER_ONLY
2410 !arm_feature(env, ARM_FEATURE_V7) &&
2411 #endif
2412 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2415 /* Return true if the processor is in big-endian mode. */
2416 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2418 int cur_el;
2420 /* In 32bit endianness is determined by looking at CPSR's E bit */
2421 if (!is_a64(env)) {
2422 return
2423 #ifdef CONFIG_USER_ONLY
2424 /* In system mode, BE32 is modelled in line with the
2425 * architecture (as word-invariant big-endianness), where loads
2426 * and stores are done little endian but from addresses which
2427 * are adjusted by XORing with the appropriate constant. So the
2428 * endianness to use for the raw data access is not affected by
2429 * SCTLR.B.
2430 * In user mode, however, we model BE32 as byte-invariant
2431 * big-endianness (because user-only code cannot tell the
2432 * difference), and so we need to use a data access endianness
2433 * that depends on SCTLR.B.
2435 arm_sctlr_b(env) ||
2436 #endif
2437 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2440 cur_el = arm_current_el(env);
2442 if (cur_el == 0) {
2443 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2446 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2449 #include "exec/cpu-all.h"
2451 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2452 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2453 * We put flags which are shared between 32 and 64 bit mode at the top
2454 * of the word, and flags which apply to only one mode at the bottom.
2456 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2457 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2458 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2459 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2460 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2461 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2462 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2463 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2464 /* Target EL if we take a floating-point-disabled exception */
2465 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2466 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2468 /* Bit usage when in AArch32 state: */
2469 #define ARM_TBFLAG_THUMB_SHIFT 0
2470 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2471 #define ARM_TBFLAG_VECLEN_SHIFT 1
2472 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2473 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2474 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2475 #define ARM_TBFLAG_VFPEN_SHIFT 7
2476 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2477 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2478 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2479 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2480 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2481 /* We store the bottom two bits of the CPAR as TB flags and handle
2482 * checks on the other bits at runtime
2484 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2485 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2486 /* Indicates whether cp register reads and writes by guest code should access
2487 * the secure or nonsecure bank of banked registers; note that this is not
2488 * the same thing as the current security state of the processor!
2490 #define ARM_TBFLAG_NS_SHIFT 19
2491 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2492 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2493 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2494 /* For M profile only, Handler (ie not Thread) mode */
2495 #define ARM_TBFLAG_HANDLER_SHIFT 21
2496 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
2498 /* Bit usage when in AArch64 state */
2499 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2500 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2501 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2502 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2504 /* some convenience accessor macros */
2505 #define ARM_TBFLAG_AARCH64_STATE(F) \
2506 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2507 #define ARM_TBFLAG_MMUIDX(F) \
2508 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2509 #define ARM_TBFLAG_SS_ACTIVE(F) \
2510 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2511 #define ARM_TBFLAG_PSTATE_SS(F) \
2512 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2513 #define ARM_TBFLAG_FPEXC_EL(F) \
2514 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2515 #define ARM_TBFLAG_THUMB(F) \
2516 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2517 #define ARM_TBFLAG_VECLEN(F) \
2518 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2519 #define ARM_TBFLAG_VECSTRIDE(F) \
2520 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2521 #define ARM_TBFLAG_VFPEN(F) \
2522 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2523 #define ARM_TBFLAG_CONDEXEC(F) \
2524 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2525 #define ARM_TBFLAG_SCTLR_B(F) \
2526 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2527 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2528 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2529 #define ARM_TBFLAG_NS(F) \
2530 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2531 #define ARM_TBFLAG_BE_DATA(F) \
2532 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2533 #define ARM_TBFLAG_HANDLER(F) \
2534 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2535 #define ARM_TBFLAG_TBI0(F) \
2536 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2537 #define ARM_TBFLAG_TBI1(F) \
2538 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2540 static inline bool bswap_code(bool sctlr_b)
2542 #ifdef CONFIG_USER_ONLY
2543 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2544 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2545 * would also end up as a mixed-endian mode with BE code, LE data.
2547 return
2548 #ifdef TARGET_WORDS_BIGENDIAN
2550 #endif
2551 sctlr_b;
2552 #else
2553 /* All code access in ARM is little endian, and there are no loaders
2554 * doing swaps that need to be reversed
2556 return 0;
2557 #endif
2560 /* Return the exception level to which FP-disabled exceptions should
2561 * be taken, or 0 if FP is enabled.
2563 static inline int fp_exception_el(CPUARMState *env)
2565 int fpen;
2566 int cur_el = arm_current_el(env);
2568 /* CPACR and the CPTR registers don't exist before v6, so FP is
2569 * always accessible
2571 if (!arm_feature(env, ARM_FEATURE_V6)) {
2572 return 0;
2575 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2576 * 0, 2 : trap EL0 and EL1/PL1 accesses
2577 * 1 : trap only EL0 accesses
2578 * 3 : trap no accesses
2580 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2581 switch (fpen) {
2582 case 0:
2583 case 2:
2584 if (cur_el == 0 || cur_el == 1) {
2585 /* Trap to PL1, which might be EL1 or EL3 */
2586 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2587 return 3;
2589 return 1;
2591 if (cur_el == 3 && !is_a64(env)) {
2592 /* Secure PL1 running at EL3 */
2593 return 3;
2595 break;
2596 case 1:
2597 if (cur_el == 0) {
2598 return 1;
2600 break;
2601 case 3:
2602 break;
2605 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2606 * check because zero bits in the registers mean "don't trap".
2609 /* CPTR_EL2 : present in v7VE or v8 */
2610 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2611 && !arm_is_secure_below_el3(env)) {
2612 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2613 return 2;
2616 /* CPTR_EL3 : present in v8 */
2617 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2618 /* Trap all FP ops to EL3 */
2619 return 3;
2622 return 0;
2625 #ifdef CONFIG_USER_ONLY
2626 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2628 return
2629 #ifdef TARGET_WORDS_BIGENDIAN
2631 #endif
2632 arm_cpu_data_is_big_endian(env);
2634 #endif
2636 #ifndef CONFIG_USER_ONLY
2638 * arm_regime_tbi0:
2639 * @env: CPUARMState
2640 * @mmu_idx: MMU index indicating required translation regime
2642 * Extracts the TBI0 value from the appropriate TCR for the current EL
2644 * Returns: the TBI0 value.
2646 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2649 * arm_regime_tbi1:
2650 * @env: CPUARMState
2651 * @mmu_idx: MMU index indicating required translation regime
2653 * Extracts the TBI1 value from the appropriate TCR for the current EL
2655 * Returns: the TBI1 value.
2657 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2658 #else
2659 /* We can't handle tagged addresses properly in user-only mode */
2660 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2662 return 0;
2665 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2667 return 0;
2669 #endif
2671 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2672 target_ulong *cs_base, uint32_t *flags)
2674 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2675 if (is_a64(env)) {
2676 *pc = env->pc;
2677 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2678 /* Get control bits for tagged addresses */
2679 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2680 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2681 } else {
2682 *pc = env->regs[15];
2683 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2684 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2685 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2686 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2687 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2688 if (!(access_secure_reg(env))) {
2689 *flags |= ARM_TBFLAG_NS_MASK;
2691 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2692 || arm_el_is_aa64(env, 1)) {
2693 *flags |= ARM_TBFLAG_VFPEN_MASK;
2695 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2696 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2699 *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2701 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2702 * states defined in the ARM ARM for software singlestep:
2703 * SS_ACTIVE PSTATE.SS State
2704 * 0 x Inactive (the TB flag for SS is always 0)
2705 * 1 0 Active-pending
2706 * 1 1 Active-not-pending
2708 if (arm_singlestep_active(env)) {
2709 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2710 if (is_a64(env)) {
2711 if (env->pstate & PSTATE_SS) {
2712 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2714 } else {
2715 if (env->uncached_cpsr & PSTATE_SS) {
2716 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2720 if (arm_cpu_data_is_big_endian(env)) {
2721 *flags |= ARM_TBFLAG_BE_DATA_MASK;
2723 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2725 if (arm_v7m_is_handler_mode(env)) {
2726 *flags |= ARM_TBFLAG_HANDLER_MASK;
2729 *cs_base = 0;
2732 enum {
2733 QEMU_PSCI_CONDUIT_DISABLED = 0,
2734 QEMU_PSCI_CONDUIT_SMC = 1,
2735 QEMU_PSCI_CONDUIT_HVC = 2,
2738 #ifndef CONFIG_USER_ONLY
2739 /* Return the address space index to use for a memory access */
2740 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2742 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2745 /* Return the AddressSpace to use for a memory access
2746 * (which depends on whether the access is S or NS, and whether
2747 * the board gave us a separate AddressSpace for S accesses).
2749 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2751 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2753 #endif
2756 * arm_register_el_change_hook:
2757 * Register a hook function which will be called back whenever this
2758 * CPU changes exception level or mode. The hook function will be
2759 * passed a pointer to the ARMCPU and the opaque data pointer passed
2760 * to this function when the hook was registered.
2762 * Note that we currently only support registering a single hook function,
2763 * and will assert if this function is called twice.
2764 * This facility is intended for the use of the GICv3 emulation.
2766 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2767 void *opaque);
2770 * arm_get_el_change_hook_opaque:
2771 * Return the opaque data that will be used by the el_change_hook
2772 * for this CPU.
2774 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2776 return cpu->el_change_hook_opaque;
2779 #endif