dbdma: always define DBDMA_DPRINTF and enable debug with DEBUG_DBDMA
[qemu/kevin.git] / hw / net / mcf_fec.c
blob7c0398ed9988d0e270faaf70d4556306697c8978
1 /*
2 * ColdFire Fast Ethernet Controller emulation.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licensed under the GPL
7 */
8 #include "qemu/osdep.h"
9 #include "hw/hw.h"
10 #include "net/net.h"
11 #include "hw/m68k/mcf.h"
12 #include "hw/net/mii.h"
13 /* For crc32 */
14 #include <zlib.h>
15 #include "exec/address-spaces.h"
17 //#define DEBUG_FEC 1
19 #ifdef DEBUG_FEC
20 #define DPRINTF(fmt, ...) \
21 do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
22 #else
23 #define DPRINTF(fmt, ...) do {} while(0)
24 #endif
26 #define FEC_MAX_FRAME_SIZE 2032
28 typedef struct {
29 MemoryRegion *sysmem;
30 MemoryRegion iomem;
31 qemu_irq *irq;
32 NICState *nic;
33 NICConf conf;
34 uint32_t irq_state;
35 uint32_t eir;
36 uint32_t eimr;
37 int rx_enabled;
38 uint32_t rx_descriptor;
39 uint32_t tx_descriptor;
40 uint32_t ecr;
41 uint32_t mmfr;
42 uint32_t mscr;
43 uint32_t rcr;
44 uint32_t tcr;
45 uint32_t tfwr;
46 uint32_t rfsr;
47 uint32_t erdsr;
48 uint32_t etdsr;
49 uint32_t emrbr;
50 } mcf_fec_state;
52 #define FEC_INT_HB 0x80000000
53 #define FEC_INT_BABR 0x40000000
54 #define FEC_INT_BABT 0x20000000
55 #define FEC_INT_GRA 0x10000000
56 #define FEC_INT_TXF 0x08000000
57 #define FEC_INT_TXB 0x04000000
58 #define FEC_INT_RXF 0x02000000
59 #define FEC_INT_RXB 0x01000000
60 #define FEC_INT_MII 0x00800000
61 #define FEC_INT_EB 0x00400000
62 #define FEC_INT_LC 0x00200000
63 #define FEC_INT_RL 0x00100000
64 #define FEC_INT_UN 0x00080000
66 #define FEC_EN 2
67 #define FEC_RESET 1
69 /* Map interrupt flags onto IRQ lines. */
70 #define FEC_NUM_IRQ 13
71 static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
72 FEC_INT_TXF,
73 FEC_INT_TXB,
74 FEC_INT_UN,
75 FEC_INT_RL,
76 FEC_INT_RXF,
77 FEC_INT_RXB,
78 FEC_INT_MII,
79 FEC_INT_LC,
80 FEC_INT_HB,
81 FEC_INT_GRA,
82 FEC_INT_EB,
83 FEC_INT_BABT,
84 FEC_INT_BABR
87 /* Buffer Descriptor. */
88 typedef struct {
89 uint16_t flags;
90 uint16_t length;
91 uint32_t data;
92 } mcf_fec_bd;
94 #define FEC_BD_R 0x8000
95 #define FEC_BD_E 0x8000
96 #define FEC_BD_O1 0x4000
97 #define FEC_BD_W 0x2000
98 #define FEC_BD_O2 0x1000
99 #define FEC_BD_L 0x0800
100 #define FEC_BD_TC 0x0400
101 #define FEC_BD_ABC 0x0200
102 #define FEC_BD_M 0x0100
103 #define FEC_BD_BC 0x0080
104 #define FEC_BD_MC 0x0040
105 #define FEC_BD_LG 0x0020
106 #define FEC_BD_NO 0x0010
107 #define FEC_BD_CR 0x0004
108 #define FEC_BD_OV 0x0002
109 #define FEC_BD_TR 0x0001
111 static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
113 cpu_physical_memory_read(addr, bd, sizeof(*bd));
114 be16_to_cpus(&bd->flags);
115 be16_to_cpus(&bd->length);
116 be32_to_cpus(&bd->data);
119 static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
121 mcf_fec_bd tmp;
122 tmp.flags = cpu_to_be16(bd->flags);
123 tmp.length = cpu_to_be16(bd->length);
124 tmp.data = cpu_to_be32(bd->data);
125 cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
128 static void mcf_fec_update(mcf_fec_state *s)
130 uint32_t active;
131 uint32_t changed;
132 uint32_t mask;
133 int i;
135 active = s->eir & s->eimr;
136 changed = active ^s->irq_state;
137 for (i = 0; i < FEC_NUM_IRQ; i++) {
138 mask = mcf_fec_irq_map[i];
139 if (changed & mask) {
140 DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
141 qemu_set_irq(s->irq[i], (active & mask) != 0);
144 s->irq_state = active;
147 static void mcf_fec_do_tx(mcf_fec_state *s)
149 uint32_t addr;
150 mcf_fec_bd bd;
151 int frame_size;
152 int len;
153 uint8_t frame[FEC_MAX_FRAME_SIZE];
154 uint8_t *ptr;
156 DPRINTF("do_tx\n");
157 ptr = frame;
158 frame_size = 0;
159 addr = s->tx_descriptor;
160 while (1) {
161 mcf_fec_read_bd(&bd, addr);
162 DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
163 addr, bd.flags, bd.length, bd.data);
164 if ((bd.flags & FEC_BD_R) == 0) {
165 /* Run out of descriptors to transmit. */
166 break;
168 len = bd.length;
169 if (frame_size + len > FEC_MAX_FRAME_SIZE) {
170 len = FEC_MAX_FRAME_SIZE - frame_size;
171 s->eir |= FEC_INT_BABT;
173 cpu_physical_memory_read(bd.data, ptr, len);
174 ptr += len;
175 frame_size += len;
176 if (bd.flags & FEC_BD_L) {
177 /* Last buffer in frame. */
178 DPRINTF("Sending packet\n");
179 qemu_send_packet(qemu_get_queue(s->nic), frame, len);
180 ptr = frame;
181 frame_size = 0;
182 s->eir |= FEC_INT_TXF;
184 s->eir |= FEC_INT_TXB;
185 bd.flags &= ~FEC_BD_R;
186 /* Write back the modified descriptor. */
187 mcf_fec_write_bd(&bd, addr);
188 /* Advance to the next descriptor. */
189 if ((bd.flags & FEC_BD_W) != 0) {
190 addr = s->etdsr;
191 } else {
192 addr += 8;
195 s->tx_descriptor = addr;
198 static void mcf_fec_enable_rx(mcf_fec_state *s)
200 NetClientState *nc = qemu_get_queue(s->nic);
201 mcf_fec_bd bd;
203 mcf_fec_read_bd(&bd, s->rx_descriptor);
204 s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
205 if (s->rx_enabled) {
206 qemu_flush_queued_packets(nc);
210 static void mcf_fec_reset(mcf_fec_state *s)
212 s->eir = 0;
213 s->eimr = 0;
214 s->rx_enabled = 0;
215 s->ecr = 0;
216 s->mscr = 0;
217 s->rcr = 0x05ee0001;
218 s->tcr = 0;
219 s->tfwr = 0;
220 s->rfsr = 0x500;
223 #define MMFR_WRITE_OP (1 << 28)
224 #define MMFR_READ_OP (2 << 28)
225 #define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f)
226 #define MMFR_REGNUM(v) (((v) >> 18) & 0x1f)
228 static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
230 uint64_t v;
232 if (s->mmfr & MMFR_WRITE_OP)
233 return s->mmfr;
234 if (MMFR_PHYADDR(s->mmfr) != 1)
235 return s->mmfr |= 0xffff;
237 switch (MMFR_REGNUM(s->mmfr)) {
238 case MII_BMCR:
239 v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
240 break;
241 case MII_BMSR:
242 v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
243 MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
244 MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
245 break;
246 case MII_PHYID1:
247 v = DP83848_PHYID1;
248 break;
249 case MII_PHYID2:
250 v = DP83848_PHYID2;
251 break;
252 case MII_ANAR:
253 v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
254 MII_ANAR_10 | MII_ANAR_CSMACD;
255 break;
256 case MII_ANLPAR:
257 v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
258 MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
259 break;
260 default:
261 v = 0xffff;
262 break;
264 s->mmfr = (s->mmfr & ~0xffff) | v;
265 return s->mmfr;
268 static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
269 unsigned size)
271 mcf_fec_state *s = (mcf_fec_state *)opaque;
272 switch (addr & 0x3ff) {
273 case 0x004: return s->eir;
274 case 0x008: return s->eimr;
275 case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
276 case 0x014: return 0; /* TDAR */
277 case 0x024: return s->ecr;
278 case 0x040: return mcf_fec_read_mdio(s);
279 case 0x044: return s->mscr;
280 case 0x064: return 0; /* MIBC */
281 case 0x084: return s->rcr;
282 case 0x0c4: return s->tcr;
283 case 0x0e4: /* PALR */
284 return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
285 | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
286 break;
287 case 0x0e8: /* PAUR */
288 return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
289 case 0x0ec: return 0x10000; /* OPD */
290 case 0x118: return 0;
291 case 0x11c: return 0;
292 case 0x120: return 0;
293 case 0x124: return 0;
294 case 0x144: return s->tfwr;
295 case 0x14c: return 0x600;
296 case 0x150: return s->rfsr;
297 case 0x180: return s->erdsr;
298 case 0x184: return s->etdsr;
299 case 0x188: return s->emrbr;
300 default:
301 hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
302 return 0;
306 static void mcf_fec_write(void *opaque, hwaddr addr,
307 uint64_t value, unsigned size)
309 mcf_fec_state *s = (mcf_fec_state *)opaque;
310 switch (addr & 0x3ff) {
311 case 0x004:
312 s->eir &= ~value;
313 break;
314 case 0x008:
315 s->eimr = value;
316 break;
317 case 0x010: /* RDAR */
318 if ((s->ecr & FEC_EN) && !s->rx_enabled) {
319 DPRINTF("RX enable\n");
320 mcf_fec_enable_rx(s);
322 break;
323 case 0x014: /* TDAR */
324 if (s->ecr & FEC_EN) {
325 mcf_fec_do_tx(s);
327 break;
328 case 0x024:
329 s->ecr = value;
330 if (value & FEC_RESET) {
331 DPRINTF("Reset\n");
332 mcf_fec_reset(s);
334 if ((s->ecr & FEC_EN) == 0) {
335 s->rx_enabled = 0;
337 break;
338 case 0x040:
339 s->mmfr = value;
340 s->eir |= FEC_INT_MII;
341 break;
342 case 0x044:
343 s->mscr = value & 0xfe;
344 break;
345 case 0x064:
346 /* TODO: Implement MIB. */
347 break;
348 case 0x084:
349 s->rcr = value & 0x07ff003f;
350 /* TODO: Implement LOOP mode. */
351 break;
352 case 0x0c4: /* TCR */
353 /* We transmit immediately, so raise GRA immediately. */
354 s->tcr = value;
355 if (value & 1)
356 s->eir |= FEC_INT_GRA;
357 break;
358 case 0x0e4: /* PALR */
359 s->conf.macaddr.a[0] = value >> 24;
360 s->conf.macaddr.a[1] = value >> 16;
361 s->conf.macaddr.a[2] = value >> 8;
362 s->conf.macaddr.a[3] = value;
363 break;
364 case 0x0e8: /* PAUR */
365 s->conf.macaddr.a[4] = value >> 24;
366 s->conf.macaddr.a[5] = value >> 16;
367 break;
368 case 0x0ec:
369 /* OPD */
370 break;
371 case 0x118:
372 case 0x11c:
373 case 0x120:
374 case 0x124:
375 /* TODO: implement MAC hash filtering. */
376 break;
377 case 0x144:
378 s->tfwr = value & 3;
379 break;
380 case 0x14c:
381 /* FRBR writes ignored. */
382 break;
383 case 0x150:
384 s->rfsr = (value & 0x3fc) | 0x400;
385 break;
386 case 0x180:
387 s->erdsr = value & ~3;
388 s->rx_descriptor = s->erdsr;
389 break;
390 case 0x184:
391 s->etdsr = value & ~3;
392 s->tx_descriptor = s->etdsr;
393 break;
394 case 0x188:
395 s->emrbr = value & 0x7f0;
396 break;
397 default:
398 hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
400 mcf_fec_update(s);
403 static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
405 mcf_fec_bd bd;
406 uint32_t addr;
408 /* Walk descriptor list to determine if we have enough buffer */
409 addr = s->rx_descriptor;
410 while (want > 0) {
411 mcf_fec_read_bd(&bd, addr);
412 if ((bd.flags & FEC_BD_E) == 0) {
413 return 0;
415 if (want < s->emrbr) {
416 return 1;
418 want -= s->emrbr;
419 /* Advance to the next descriptor. */
420 if ((bd.flags & FEC_BD_W) != 0) {
421 addr = s->erdsr;
422 } else {
423 addr += 8;
426 return 0;
429 static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
431 mcf_fec_state *s = qemu_get_nic_opaque(nc);
432 mcf_fec_bd bd;
433 uint32_t flags = 0;
434 uint32_t addr;
435 uint32_t crc;
436 uint32_t buf_addr;
437 uint8_t *crc_ptr;
438 unsigned int buf_len;
439 size_t retsize;
441 DPRINTF("do_rx len %d\n", size);
442 if (!s->rx_enabled) {
443 return -1;
445 /* 4 bytes for the CRC. */
446 size += 4;
447 crc = cpu_to_be32(crc32(~0, buf, size));
448 crc_ptr = (uint8_t *)&crc;
449 /* Huge frames are truncted. */
450 if (size > FEC_MAX_FRAME_SIZE) {
451 size = FEC_MAX_FRAME_SIZE;
452 flags |= FEC_BD_TR | FEC_BD_LG;
454 /* Frames larger than the user limit just set error flags. */
455 if (size > (s->rcr >> 16)) {
456 flags |= FEC_BD_LG;
458 /* Check if we have enough space in current descriptors */
459 if (!mcf_fec_have_receive_space(s, size)) {
460 return 0;
462 addr = s->rx_descriptor;
463 retsize = size;
464 while (size > 0) {
465 mcf_fec_read_bd(&bd, addr);
466 buf_len = (size <= s->emrbr) ? size: s->emrbr;
467 bd.length = buf_len;
468 size -= buf_len;
469 DPRINTF("rx_bd %x length %d\n", addr, bd.length);
470 /* The last 4 bytes are the CRC. */
471 if (size < 4)
472 buf_len += size - 4;
473 buf_addr = bd.data;
474 cpu_physical_memory_write(buf_addr, buf, buf_len);
475 buf += buf_len;
476 if (size < 4) {
477 cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
478 crc_ptr += 4 - size;
480 bd.flags &= ~FEC_BD_E;
481 if (size == 0) {
482 /* Last buffer in frame. */
483 bd.flags |= flags | FEC_BD_L;
484 DPRINTF("rx frame flags %04x\n", bd.flags);
485 s->eir |= FEC_INT_RXF;
486 } else {
487 s->eir |= FEC_INT_RXB;
489 mcf_fec_write_bd(&bd, addr);
490 /* Advance to the next descriptor. */
491 if ((bd.flags & FEC_BD_W) != 0) {
492 addr = s->erdsr;
493 } else {
494 addr += 8;
497 s->rx_descriptor = addr;
498 mcf_fec_enable_rx(s);
499 mcf_fec_update(s);
500 return retsize;
503 static const MemoryRegionOps mcf_fec_ops = {
504 .read = mcf_fec_read,
505 .write = mcf_fec_write,
506 .endianness = DEVICE_NATIVE_ENDIAN,
509 static NetClientInfo net_mcf_fec_info = {
510 .type = NET_CLIENT_OPTIONS_KIND_NIC,
511 .size = sizeof(NICState),
512 .receive = mcf_fec_receive,
515 void mcf_fec_init(MemoryRegion *sysmem, NICInfo *nd,
516 hwaddr base, qemu_irq *irq)
518 mcf_fec_state *s;
520 qemu_check_nic_model(nd, "mcf_fec");
522 s = (mcf_fec_state *)g_malloc0(sizeof(mcf_fec_state));
523 s->sysmem = sysmem;
524 s->irq = irq;
526 memory_region_init_io(&s->iomem, NULL, &mcf_fec_ops, s, "fec", 0x400);
527 memory_region_add_subregion(sysmem, base, &s->iomem);
529 s->conf.macaddr = nd->macaddr;
530 s->conf.peers.ncs[0] = nd->netdev;
532 s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf, nd->model, nd->name, s);
534 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);