1 /* This is the Linux kernel elf-loading code, ported into user space */
11 #include <sys/resource.h>
17 #include "disas/disas.h"
29 #define ELF_OSABI ELFOSABI_SYSV
31 /* from personality.h */
34 * Flags for bug emulation.
36 * These occupy the top three bytes.
39 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
40 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
41 descriptors (signal handling) */
42 MMAP_PAGE_ZERO
= 0x0100000,
43 ADDR_COMPAT_LAYOUT
= 0x0200000,
44 READ_IMPLIES_EXEC
= 0x0400000,
45 ADDR_LIMIT_32BIT
= 0x0800000,
46 SHORT_INODE
= 0x1000000,
47 WHOLE_SECONDS
= 0x2000000,
48 STICKY_TIMEOUTS
= 0x4000000,
49 ADDR_LIMIT_3GB
= 0x8000000,
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
60 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
61 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
62 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
63 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
64 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
65 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
66 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
67 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
69 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
70 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
72 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
73 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
74 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
75 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
77 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
78 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
79 PER_OSF4
= 0x000f, /* OSF/1 v4 */
85 * Return the base personality without flags.
87 #define personality(pers) (pers & PER_MASK)
89 /* this flag is uneffective under linux too, should be deleted */
91 #define MAP_DENYWRITE 0
94 /* should probably go in elf.h */
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA ELFDATA2MSB
102 #define ELF_DATA ELFDATA2LSB
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong target_elf_greg_t
;
107 #define tswapreg(ptr) tswap64(ptr)
109 typedef abi_ulong target_elf_greg_t
;
110 #define tswapreg(ptr) tswapal(ptr)
114 typedef abi_ushort target_uid_t
;
115 typedef abi_ushort target_gid_t
;
117 typedef abi_uint target_uid_t
;
118 typedef abi_uint target_gid_t
;
120 typedef abi_int target_pid_t
;
124 #define ELF_PLATFORM get_elf_platform()
126 static const char *get_elf_platform(void)
128 static char elf_platform
[] = "i386";
129 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
133 elf_platform
[1] = '0' + family
;
137 #define ELF_HWCAP get_elf_hwcap()
139 static uint32_t get_elf_hwcap(void)
141 X86CPU
*cpu
= X86_CPU(thread_cpu
);
143 return cpu
->env
.features
[FEAT_1_EDX
];
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
150 #define ELF_CLASS ELFCLASS64
151 #define ELF_ARCH EM_X86_64
153 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
156 regs
->rsp
= infop
->start_stack
;
157 regs
->rip
= infop
->entry
;
161 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
168 * See linux kernel: arch/x86/include/asm/elf.h
170 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
172 (*regs
)[0] = env
->regs
[15];
173 (*regs
)[1] = env
->regs
[14];
174 (*regs
)[2] = env
->regs
[13];
175 (*regs
)[3] = env
->regs
[12];
176 (*regs
)[4] = env
->regs
[R_EBP
];
177 (*regs
)[5] = env
->regs
[R_EBX
];
178 (*regs
)[6] = env
->regs
[11];
179 (*regs
)[7] = env
->regs
[10];
180 (*regs
)[8] = env
->regs
[9];
181 (*regs
)[9] = env
->regs
[8];
182 (*regs
)[10] = env
->regs
[R_EAX
];
183 (*regs
)[11] = env
->regs
[R_ECX
];
184 (*regs
)[12] = env
->regs
[R_EDX
];
185 (*regs
)[13] = env
->regs
[R_ESI
];
186 (*regs
)[14] = env
->regs
[R_EDI
];
187 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
188 (*regs
)[16] = env
->eip
;
189 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
190 (*regs
)[18] = env
->eflags
;
191 (*regs
)[19] = env
->regs
[R_ESP
];
192 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
193 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
194 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
195 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
196 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
197 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
198 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
203 #define ELF_START_MMAP 0x80000000
206 * This is used to ensure we don't load something for the wrong architecture.
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
211 * These are used to set parameters in the core dumps.
213 #define ELF_CLASS ELFCLASS32
214 #define ELF_ARCH EM_386
216 static inline void init_thread(struct target_pt_regs
*regs
,
217 struct image_info
*infop
)
219 regs
->esp
= infop
->start_stack
;
220 regs
->eip
= infop
->entry
;
222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223 starts %edx contains a pointer to a function which might be
224 registered using `atexit'. This provides a mean for the
225 dynamic linker to call DT_FINI functions for shared libraries
226 that have been loaded before the code runs.
228 A value of 0 tells we have no such handler. */
233 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
236 * Note that ELF_NREG should be 19 as there should be place for
237 * TRAPNO and ERR "registers" as well but linux doesn't dump
240 * See linux kernel: arch/x86/include/asm/elf.h
242 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
244 (*regs
)[0] = env
->regs
[R_EBX
];
245 (*regs
)[1] = env
->regs
[R_ECX
];
246 (*regs
)[2] = env
->regs
[R_EDX
];
247 (*regs
)[3] = env
->regs
[R_ESI
];
248 (*regs
)[4] = env
->regs
[R_EDI
];
249 (*regs
)[5] = env
->regs
[R_EBP
];
250 (*regs
)[6] = env
->regs
[R_EAX
];
251 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
252 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
253 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
254 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
255 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
256 (*regs
)[12] = env
->eip
;
257 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
258 (*regs
)[14] = env
->eflags
;
259 (*regs
)[15] = env
->regs
[R_ESP
];
260 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE 4096
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
274 #define ELF_START_MMAP 0x80000000
276 #define elf_check_arch(x) ((x) == ELF_MACHINE)
278 #define ELF_ARCH ELF_MACHINE
279 #define ELF_CLASS ELFCLASS32
281 static inline void init_thread(struct target_pt_regs
*regs
,
282 struct image_info
*infop
)
284 abi_long stack
= infop
->start_stack
;
285 memset(regs
, 0, sizeof(*regs
));
287 regs
->ARM_cpsr
= 0x10;
288 if (infop
->entry
& 1)
289 regs
->ARM_cpsr
|= CPSR_T
;
290 regs
->ARM_pc
= infop
->entry
& 0xfffffffe;
291 regs
->ARM_sp
= infop
->start_stack
;
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs
->ARM_r2
, stack
+ 8); /* envp */
294 get_user_ual(regs
->ARM_r1
, stack
+ 4); /* envp */
295 /* XXX: it seems that r0 is zeroed after ! */
297 /* For uClinux PIC binaries. */
298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299 regs
->ARM_r10
= infop
->start_data
;
303 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
305 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
307 (*regs
)[0] = tswapreg(env
->regs
[0]);
308 (*regs
)[1] = tswapreg(env
->regs
[1]);
309 (*regs
)[2] = tswapreg(env
->regs
[2]);
310 (*regs
)[3] = tswapreg(env
->regs
[3]);
311 (*regs
)[4] = tswapreg(env
->regs
[4]);
312 (*regs
)[5] = tswapreg(env
->regs
[5]);
313 (*regs
)[6] = tswapreg(env
->regs
[6]);
314 (*regs
)[7] = tswapreg(env
->regs
[7]);
315 (*regs
)[8] = tswapreg(env
->regs
[8]);
316 (*regs
)[9] = tswapreg(env
->regs
[9]);
317 (*regs
)[10] = tswapreg(env
->regs
[10]);
318 (*regs
)[11] = tswapreg(env
->regs
[11]);
319 (*regs
)[12] = tswapreg(env
->regs
[12]);
320 (*regs
)[13] = tswapreg(env
->regs
[13]);
321 (*regs
)[14] = tswapreg(env
->regs
[14]);
322 (*regs
)[15] = tswapreg(env
->regs
[15]);
324 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
325 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
328 #define USE_ELF_CORE_DUMP
329 #define ELF_EXEC_PAGESIZE 4096
333 ARM_HWCAP_ARM_SWP
= 1 << 0,
334 ARM_HWCAP_ARM_HALF
= 1 << 1,
335 ARM_HWCAP_ARM_THUMB
= 1 << 2,
336 ARM_HWCAP_ARM_26BIT
= 1 << 3,
337 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
338 ARM_HWCAP_ARM_FPA
= 1 << 5,
339 ARM_HWCAP_ARM_VFP
= 1 << 6,
340 ARM_HWCAP_ARM_EDSP
= 1 << 7,
341 ARM_HWCAP_ARM_JAVA
= 1 << 8,
342 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
343 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
344 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
345 ARM_HWCAP_ARM_NEON
= 1 << 12,
346 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
347 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
348 ARM_HWCAP_ARM_TLS
= 1 << 15,
349 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
350 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
351 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
352 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
353 ARM_HWCAP_ARM_LPAE
= 1 << 20,
354 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
358 ARM_HWCAP2_ARM_AES
= 1 << 0,
359 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
360 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
361 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
362 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
365 /* The commpage only exists for 32 bit kernels */
367 #define TARGET_HAS_VALIDATE_GUEST_SPACE
368 /* Return 1 if the proposed guest space is suitable for the guest.
369 * Return 0 if the proposed guest space isn't suitable, but another
370 * address space should be tried.
371 * Return -1 if there is no way the proposed guest space can be
372 * valid regardless of the base.
373 * The guest code may leave a page mapped and populate it if the
374 * address is suitable.
376 static int validate_guest_space(unsigned long guest_base
,
377 unsigned long guest_size
)
379 unsigned long real_start
, test_page_addr
;
381 /* We need to check that we can force a fault on access to the
382 * commpage at 0xffff0fxx
384 test_page_addr
= guest_base
+ (0xffff0f00 & qemu_host_page_mask
);
386 /* If the commpage lies within the already allocated guest space,
387 * then there is no way we can allocate it.
389 if (test_page_addr
>= guest_base
390 && test_page_addr
<= (guest_base
+ guest_size
)) {
394 /* Note it needs to be writeable to let us initialise it */
395 real_start
= (unsigned long)
396 mmap((void *)test_page_addr
, qemu_host_page_size
,
397 PROT_READ
| PROT_WRITE
,
398 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
400 /* If we can't map it then try another address */
401 if (real_start
== -1ul) {
405 if (real_start
!= test_page_addr
) {
406 /* OS didn't put the page where we asked - unmap and reject */
407 munmap((void *)real_start
, qemu_host_page_size
);
411 /* Leave the page mapped
412 * Populate it (mmap should have left it all 0'd)
415 /* Kernel helper versions */
416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul
));
418 /* Now it's populated make it RO */
419 if (mprotect((void *)test_page_addr
, qemu_host_page_size
, PROT_READ
)) {
420 perror("Protecting guest commpage");
424 return 1; /* All good */
427 #define ELF_HWCAP get_elf_hwcap()
428 #define ELF_HWCAP2 get_elf_hwcap2()
430 static uint32_t get_elf_hwcap(void)
432 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
435 hwcaps
|= ARM_HWCAP_ARM_SWP
;
436 hwcaps
|= ARM_HWCAP_ARM_HALF
;
437 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
438 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
440 /* probe for the extra features */
441 #define GET_FEATURE(feat, hwcap) \
442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
445 GET_FEATURE(ARM_FEATURE_VFP
, ARM_HWCAP_ARM_VFP
);
446 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
447 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
448 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
449 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPv3
);
450 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
451 GET_FEATURE(ARM_FEATURE_VFP4
, ARM_HWCAP_ARM_VFPv4
);
452 GET_FEATURE(ARM_FEATURE_ARM_DIV
, ARM_HWCAP_ARM_IDIVA
);
453 GET_FEATURE(ARM_FEATURE_THUMB_DIV
, ARM_HWCAP_ARM_IDIVT
);
454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457 * to our VFP_FP16 feature bit.
459 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPD32
);
460 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
465 static uint32_t get_elf_hwcap2(void)
467 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
470 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP2_ARM_AES
);
471 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP2_ARM_PMULL
);
472 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP2_ARM_SHA1
);
473 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP2_ARM_SHA2
);
474 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP2_ARM_CRC32
);
481 /* 64 bit ARM definitions */
482 #define ELF_START_MMAP 0x80000000
484 #define elf_check_arch(x) ((x) == ELF_MACHINE)
486 #define ELF_ARCH ELF_MACHINE
487 #define ELF_CLASS ELFCLASS64
488 #define ELF_PLATFORM "aarch64"
490 static inline void init_thread(struct target_pt_regs
*regs
,
491 struct image_info
*infop
)
493 abi_long stack
= infop
->start_stack
;
494 memset(regs
, 0, sizeof(*regs
));
496 regs
->pc
= infop
->entry
& ~0x3ULL
;
501 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
503 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
504 const CPUARMState
*env
)
508 for (i
= 0; i
< 32; i
++) {
509 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
511 (*regs
)[32] = tswapreg(env
->pc
);
512 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE 4096
519 ARM_HWCAP_A64_FP
= 1 << 0,
520 ARM_HWCAP_A64_ASIMD
= 1 << 1,
521 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
522 ARM_HWCAP_A64_AES
= 1 << 3,
523 ARM_HWCAP_A64_PMULL
= 1 << 4,
524 ARM_HWCAP_A64_SHA1
= 1 << 5,
525 ARM_HWCAP_A64_SHA2
= 1 << 6,
526 ARM_HWCAP_A64_CRC32
= 1 << 7,
529 #define ELF_HWCAP get_elf_hwcap()
531 static uint32_t get_elf_hwcap(void)
533 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
536 hwcaps
|= ARM_HWCAP_A64_FP
;
537 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
539 /* probe for the extra features */
540 #define GET_FEATURE(feat, hwcap) \
541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
542 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP_A64_AES
);
543 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP_A64_PMULL
);
544 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP_A64_SHA1
);
545 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP_A64_SHA2
);
546 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP_A64_CRC32
);
552 #endif /* not TARGET_AARCH64 */
553 #endif /* TARGET_ARM */
555 #ifdef TARGET_UNICORE32
557 #define ELF_START_MMAP 0x80000000
559 #define elf_check_arch(x) ((x) == EM_UNICORE32)
561 #define ELF_CLASS ELFCLASS32
562 #define ELF_DATA ELFDATA2LSB
563 #define ELF_ARCH EM_UNICORE32
565 static inline void init_thread(struct target_pt_regs
*regs
,
566 struct image_info
*infop
)
568 abi_long stack
= infop
->start_stack
;
569 memset(regs
, 0, sizeof(*regs
));
570 regs
->UC32_REG_asr
= 0x10;
571 regs
->UC32_REG_pc
= infop
->entry
& 0xfffffffe;
572 regs
->UC32_REG_sp
= infop
->start_stack
;
573 /* FIXME - what to for failure of get_user()? */
574 get_user_ual(regs
->UC32_REG_02
, stack
+ 8); /* envp */
575 get_user_ual(regs
->UC32_REG_01
, stack
+ 4); /* envp */
576 /* XXX: it seems that r0 is zeroed after ! */
577 regs
->UC32_REG_00
= 0;
581 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
583 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUUniCore32State
*env
)
585 (*regs
)[0] = env
->regs
[0];
586 (*regs
)[1] = env
->regs
[1];
587 (*regs
)[2] = env
->regs
[2];
588 (*regs
)[3] = env
->regs
[3];
589 (*regs
)[4] = env
->regs
[4];
590 (*regs
)[5] = env
->regs
[5];
591 (*regs
)[6] = env
->regs
[6];
592 (*regs
)[7] = env
->regs
[7];
593 (*regs
)[8] = env
->regs
[8];
594 (*regs
)[9] = env
->regs
[9];
595 (*regs
)[10] = env
->regs
[10];
596 (*regs
)[11] = env
->regs
[11];
597 (*regs
)[12] = env
->regs
[12];
598 (*regs
)[13] = env
->regs
[13];
599 (*regs
)[14] = env
->regs
[14];
600 (*regs
)[15] = env
->regs
[15];
601 (*regs
)[16] = env
->regs
[16];
602 (*regs
)[17] = env
->regs
[17];
603 (*regs
)[18] = env
->regs
[18];
604 (*regs
)[19] = env
->regs
[19];
605 (*regs
)[20] = env
->regs
[20];
606 (*regs
)[21] = env
->regs
[21];
607 (*regs
)[22] = env
->regs
[22];
608 (*regs
)[23] = env
->regs
[23];
609 (*regs
)[24] = env
->regs
[24];
610 (*regs
)[25] = env
->regs
[25];
611 (*regs
)[26] = env
->regs
[26];
612 (*regs
)[27] = env
->regs
[27];
613 (*regs
)[28] = env
->regs
[28];
614 (*regs
)[29] = env
->regs
[29];
615 (*regs
)[30] = env
->regs
[30];
616 (*regs
)[31] = env
->regs
[31];
618 (*regs
)[32] = cpu_asr_read((CPUUniCore32State
*)env
);
619 (*regs
)[33] = env
->regs
[0]; /* XXX */
622 #define USE_ELF_CORE_DUMP
623 #define ELF_EXEC_PAGESIZE 4096
625 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
630 #ifdef TARGET_SPARC64
632 #define ELF_START_MMAP 0x80000000
633 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
641 #define ELF_CLASS ELFCLASS64
642 #define ELF_ARCH EM_SPARCV9
644 #define STACK_BIAS 2047
646 static inline void init_thread(struct target_pt_regs
*regs
,
647 struct image_info
*infop
)
652 regs
->pc
= infop
->entry
;
653 regs
->npc
= regs
->pc
+ 4;
656 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
658 if (personality(infop
->personality
) == PER_LINUX32
)
659 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
661 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
666 #define ELF_START_MMAP 0x80000000
667 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668 | HWCAP_SPARC_MULDIV)
669 #define elf_check_arch(x) ( (x) == EM_SPARC )
671 #define ELF_CLASS ELFCLASS32
672 #define ELF_ARCH EM_SPARC
674 static inline void init_thread(struct target_pt_regs
*regs
,
675 struct image_info
*infop
)
678 regs
->pc
= infop
->entry
;
679 regs
->npc
= regs
->pc
+ 4;
681 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
689 #define ELF_START_MMAP 0x80000000
691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
693 #define elf_check_arch(x) ( (x) == EM_PPC64 )
695 #define ELF_CLASS ELFCLASS64
699 #define elf_check_arch(x) ( (x) == EM_PPC )
701 #define ELF_CLASS ELFCLASS32
705 #define ELF_ARCH EM_PPC
707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708 See arch/powerpc/include/asm/cputable.h. */
710 QEMU_PPC_FEATURE_32
= 0x80000000,
711 QEMU_PPC_FEATURE_64
= 0x40000000,
712 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
713 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
714 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
715 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
716 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
717 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
718 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
721 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
722 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
723 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
724 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
725 QEMU_PPC_FEATURE_CELL
= 0x00010000,
726 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
727 QEMU_PPC_FEATURE_SMT
= 0x00004000,
728 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
729 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
730 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
731 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
732 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
733 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
734 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
737 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
738 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
740 /* Feature definitions in AT_HWCAP2. */
741 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
742 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
743 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
744 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
745 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
746 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
749 #define ELF_HWCAP get_elf_hwcap()
751 static uint32_t get_elf_hwcap(void)
753 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
754 uint32_t features
= 0;
756 /* We don't have to be terribly complete here; the high points are
757 Altivec/FP/SPE support. Anything else is just a bonus. */
758 #define GET_FEATURE(flag, feature) \
759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature) \
761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
763 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
764 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
765 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
766 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
767 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
768 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
769 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
770 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
771 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
772 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
773 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
774 QEMU_PPC_FEATURE_ARCH_2_06
);
781 #define ELF_HWCAP2 get_elf_hwcap2()
783 static uint32_t get_elf_hwcap2(void)
785 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
786 uint32_t features
= 0;
788 #define GET_FEATURE(flag, feature) \
789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flag, feature) \
791 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
793 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
794 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
795 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
796 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
);
805 * The requirements here are:
806 * - keep the final alignment of sp (sp & 0xf)
807 * - make sure the 32-bit value at the first 16 byte aligned position of
808 * AUXV is greater than 16 for glibc compatibility.
809 * AT_IGNOREPPC is used for that.
810 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
811 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
813 #define DLINFO_ARCH_ITEMS 5
814 #define ARCH_DLINFO \
816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
817 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
818 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
819 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
821 * Now handle glibc compatibility. \
823 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
824 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
827 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
829 _regs
->gpr
[1] = infop
->start_stack
;
830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
831 if (get_ppc64_abi(infop
) < 2) {
833 get_user_u64(val
, infop
->entry
+ 8);
834 _regs
->gpr
[2] = val
+ infop
->load_bias
;
835 get_user_u64(val
, infop
->entry
);
836 infop
->entry
= val
+ infop
->load_bias
;
838 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
841 _regs
->nip
= infop
->entry
;
844 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
846 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
848 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
851 target_ulong ccr
= 0;
853 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
854 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
857 (*regs
)[32] = tswapreg(env
->nip
);
858 (*regs
)[33] = tswapreg(env
->msr
);
859 (*regs
)[35] = tswapreg(env
->ctr
);
860 (*regs
)[36] = tswapreg(env
->lr
);
861 (*regs
)[37] = tswapreg(env
->xer
);
863 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
864 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
866 (*regs
)[38] = tswapreg(ccr
);
869 #define USE_ELF_CORE_DUMP
870 #define ELF_EXEC_PAGESIZE 4096
876 #define ELF_START_MMAP 0x80000000
878 #define elf_check_arch(x) ( (x) == EM_MIPS )
881 #define ELF_CLASS ELFCLASS64
883 #define ELF_CLASS ELFCLASS32
885 #define ELF_ARCH EM_MIPS
887 static inline void init_thread(struct target_pt_regs
*regs
,
888 struct image_info
*infop
)
890 regs
->cp0_status
= 2 << CP0St_KSU
;
891 regs
->cp0_epc
= infop
->entry
;
892 regs
->regs
[29] = infop
->start_stack
;
895 /* See linux kernel: arch/mips/include/asm/elf.h. */
897 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
899 /* See linux kernel: arch/mips/include/asm/reg.h. */
906 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
907 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
908 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
909 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
910 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
911 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
912 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
913 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
916 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
917 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
921 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
924 (*regs
)[TARGET_EF_R0
] = 0;
926 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
927 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
930 (*regs
)[TARGET_EF_R26
] = 0;
931 (*regs
)[TARGET_EF_R27
] = 0;
932 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
933 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
934 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
935 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
936 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
937 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
940 #define USE_ELF_CORE_DUMP
941 #define ELF_EXEC_PAGESIZE 4096
943 #endif /* TARGET_MIPS */
945 #ifdef TARGET_MICROBLAZE
947 #define ELF_START_MMAP 0x80000000
949 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
951 #define ELF_CLASS ELFCLASS32
952 #define ELF_ARCH EM_MICROBLAZE
954 static inline void init_thread(struct target_pt_regs
*regs
,
955 struct image_info
*infop
)
957 regs
->pc
= infop
->entry
;
958 regs
->r1
= infop
->start_stack
;
962 #define ELF_EXEC_PAGESIZE 4096
964 #define USE_ELF_CORE_DUMP
966 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
968 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
969 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
973 for (i
= 0; i
< 32; i
++) {
974 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
977 for (i
= 0; i
< 6; i
++) {
978 (*regs
)[pos
++] = tswapreg(env
->sregs
[i
]);
982 #endif /* TARGET_MICROBLAZE */
984 #ifdef TARGET_OPENRISC
986 #define ELF_START_MMAP 0x08000000
988 #define elf_check_arch(x) ((x) == EM_OPENRISC)
990 #define ELF_ARCH EM_OPENRISC
991 #define ELF_CLASS ELFCLASS32
992 #define ELF_DATA ELFDATA2MSB
994 static inline void init_thread(struct target_pt_regs
*regs
,
995 struct image_info
*infop
)
997 regs
->pc
= infop
->entry
;
998 regs
->gpr
[1] = infop
->start_stack
;
1001 #define USE_ELF_CORE_DUMP
1002 #define ELF_EXEC_PAGESIZE 8192
1004 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1005 #define ELF_NREG 34 /* gprs and pc, sr */
1006 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1008 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1009 const CPUOpenRISCState
*env
)
1013 for (i
= 0; i
< 32; i
++) {
1014 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
1017 (*regs
)[32] = tswapreg(env
->pc
);
1018 (*regs
)[33] = tswapreg(env
->sr
);
1021 #define ELF_PLATFORM NULL
1023 #endif /* TARGET_OPENRISC */
1027 #define ELF_START_MMAP 0x80000000
1029 #define elf_check_arch(x) ( (x) == EM_SH )
1031 #define ELF_CLASS ELFCLASS32
1032 #define ELF_ARCH EM_SH
1034 static inline void init_thread(struct target_pt_regs
*regs
,
1035 struct image_info
*infop
)
1037 /* Check other registers XXXXX */
1038 regs
->pc
= infop
->entry
;
1039 regs
->regs
[15] = infop
->start_stack
;
1042 /* See linux kernel: arch/sh/include/asm/elf.h. */
1044 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1046 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1051 TARGET_REG_GBR
= 19,
1052 TARGET_REG_MACH
= 20,
1053 TARGET_REG_MACL
= 21,
1054 TARGET_REG_SYSCALL
= 22
1057 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1058 const CPUSH4State
*env
)
1062 for (i
= 0; i
< 16; i
++) {
1063 (*regs
[i
]) = tswapreg(env
->gregs
[i
]);
1066 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1067 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1068 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1069 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1070 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1071 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1072 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1075 #define USE_ELF_CORE_DUMP
1076 #define ELF_EXEC_PAGESIZE 4096
1079 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1080 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1081 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1082 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1083 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1084 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1085 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1086 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1087 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1088 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1091 #define ELF_HWCAP get_elf_hwcap()
1093 static uint32_t get_elf_hwcap(void)
1095 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1098 hwcap
|= SH_CPU_HAS_FPU
;
1100 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1101 hwcap
|= SH_CPU_HAS_LLSC
;
1111 #define ELF_START_MMAP 0x80000000
1113 #define elf_check_arch(x) ( (x) == EM_CRIS )
1115 #define ELF_CLASS ELFCLASS32
1116 #define ELF_ARCH EM_CRIS
1118 static inline void init_thread(struct target_pt_regs
*regs
,
1119 struct image_info
*infop
)
1121 regs
->erp
= infop
->entry
;
1124 #define ELF_EXEC_PAGESIZE 8192
1130 #define ELF_START_MMAP 0x80000000
1132 #define elf_check_arch(x) ( (x) == EM_68K )
1134 #define ELF_CLASS ELFCLASS32
1135 #define ELF_ARCH EM_68K
1137 /* ??? Does this need to do anything?
1138 #define ELF_PLAT_INIT(_r) */
1140 static inline void init_thread(struct target_pt_regs
*regs
,
1141 struct image_info
*infop
)
1143 regs
->usp
= infop
->start_stack
;
1145 regs
->pc
= infop
->entry
;
1148 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1150 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1152 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1154 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1155 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1156 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1157 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1158 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1159 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1160 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1161 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1162 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1163 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1164 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1165 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1166 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1167 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1168 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1169 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1170 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1171 (*regs
)[17] = tswapreg(env
->sr
);
1172 (*regs
)[18] = tswapreg(env
->pc
);
1173 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1176 #define USE_ELF_CORE_DUMP
1177 #define ELF_EXEC_PAGESIZE 8192
1183 #define ELF_START_MMAP (0x30000000000ULL)
1185 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1187 #define ELF_CLASS ELFCLASS64
1188 #define ELF_ARCH EM_ALPHA
1190 static inline void init_thread(struct target_pt_regs
*regs
,
1191 struct image_info
*infop
)
1193 regs
->pc
= infop
->entry
;
1195 regs
->usp
= infop
->start_stack
;
1198 #define ELF_EXEC_PAGESIZE 8192
1200 #endif /* TARGET_ALPHA */
1204 #define ELF_START_MMAP (0x20000000000ULL)
1206 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1208 #define ELF_CLASS ELFCLASS64
1209 #define ELF_DATA ELFDATA2MSB
1210 #define ELF_ARCH EM_S390
1212 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1214 regs
->psw
.addr
= infop
->entry
;
1215 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1216 regs
->gprs
[15] = infop
->start_stack
;
1219 #endif /* TARGET_S390X */
1221 #ifdef TARGET_TILEGX
1223 /* 42 bits real used address, a half for user mode */
1224 #define ELF_START_MMAP (0x00000020000000000ULL)
1226 #define elf_check_arch(x) ((x) == EM_TILEGX)
1228 #define ELF_CLASS ELFCLASS64
1229 #define ELF_DATA ELFDATA2LSB
1230 #define ELF_ARCH EM_TILEGX
1232 static inline void init_thread(struct target_pt_regs
*regs
,
1233 struct image_info
*infop
)
1235 regs
->pc
= infop
->entry
;
1236 regs
->sp
= infop
->start_stack
;
1240 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1242 #endif /* TARGET_TILEGX */
1244 #ifndef ELF_PLATFORM
1245 #define ELF_PLATFORM (NULL)
1254 #define ELF_CLASS ELFCLASS32
1256 #define bswaptls(ptr) bswap32s(ptr)
1263 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1264 unsigned int a_text
; /* length of text, in bytes */
1265 unsigned int a_data
; /* length of data, in bytes */
1266 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1267 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1268 unsigned int a_entry
; /* start address */
1269 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1270 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1274 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1280 /* Necessary parameters */
1281 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1282 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1283 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1284 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1286 #define DLINFO_ITEMS 14
1288 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1290 memcpy(to
, from
, n
);
1294 static void bswap_ehdr(struct elfhdr
*ehdr
)
1296 bswap16s(&ehdr
->e_type
); /* Object file type */
1297 bswap16s(&ehdr
->e_machine
); /* Architecture */
1298 bswap32s(&ehdr
->e_version
); /* Object file version */
1299 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1300 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1301 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1302 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1303 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1304 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1305 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1306 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1307 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1308 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1311 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1314 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1315 bswap32s(&phdr
->p_type
); /* Segment type */
1316 bswap32s(&phdr
->p_flags
); /* Segment flags */
1317 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1318 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1319 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1320 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1321 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1322 bswaptls(&phdr
->p_align
); /* Segment alignment */
1326 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1329 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1330 bswap32s(&shdr
->sh_name
);
1331 bswap32s(&shdr
->sh_type
);
1332 bswaptls(&shdr
->sh_flags
);
1333 bswaptls(&shdr
->sh_addr
);
1334 bswaptls(&shdr
->sh_offset
);
1335 bswaptls(&shdr
->sh_size
);
1336 bswap32s(&shdr
->sh_link
);
1337 bswap32s(&shdr
->sh_info
);
1338 bswaptls(&shdr
->sh_addralign
);
1339 bswaptls(&shdr
->sh_entsize
);
1343 static void bswap_sym(struct elf_sym
*sym
)
1345 bswap32s(&sym
->st_name
);
1346 bswaptls(&sym
->st_value
);
1347 bswaptls(&sym
->st_size
);
1348 bswap16s(&sym
->st_shndx
);
1351 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1352 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1353 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1354 static inline void bswap_sym(struct elf_sym
*sym
) { }
1357 #ifdef USE_ELF_CORE_DUMP
1358 static int elf_core_dump(int, const CPUArchState
*);
1359 #endif /* USE_ELF_CORE_DUMP */
1360 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1362 /* Verify the portions of EHDR within E_IDENT for the target.
1363 This can be performed before bswapping the entire header. */
1364 static bool elf_check_ident(struct elfhdr
*ehdr
)
1366 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1367 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1368 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1369 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1370 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1371 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1372 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1375 /* Verify the portions of EHDR outside of E_IDENT for the target.
1376 This has to wait until after bswapping the header. */
1377 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1379 return (elf_check_arch(ehdr
->e_machine
)
1380 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1381 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1382 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1386 * 'copy_elf_strings()' copies argument/envelope strings from user
1387 * memory to free pages in kernel mem. These are in a format ready
1388 * to be put directly into the top of new user memory.
1391 static abi_ulong
copy_elf_strings(int argc
,char ** argv
, void **page
,
1394 char *tmp
, *tmp1
, *pag
= NULL
;
1395 int len
, offset
= 0;
1398 return 0; /* bullet-proofing */
1400 while (argc
-- > 0) {
1403 fprintf(stderr
, "VFS: argc is wrong");
1409 if (p
< len
) { /* this shouldn't happen - 128kB */
1415 offset
= p
% TARGET_PAGE_SIZE
;
1416 pag
= (char *)page
[p
/TARGET_PAGE_SIZE
];
1418 pag
= g_try_malloc0(TARGET_PAGE_SIZE
);
1419 page
[p
/TARGET_PAGE_SIZE
] = pag
;
1424 if (len
== 0 || offset
== 0) {
1425 *(pag
+ offset
) = *tmp
;
1428 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1429 tmp
-= bytes_to_copy
;
1431 offset
-= bytes_to_copy
;
1432 len
-= bytes_to_copy
;
1433 memcpy_fromfs(pag
+ offset
, tmp
, bytes_to_copy
+ 1);
1440 static abi_ulong
setup_arg_pages(abi_ulong p
, struct linux_binprm
*bprm
,
1441 struct image_info
*info
)
1443 abi_ulong stack_base
, size
, error
, guard
;
1446 /* Create enough stack to hold everything. If we don't use
1447 it for args, we'll use it for something else. */
1448 size
= guest_stack_size
;
1449 if (size
< MAX_ARG_PAGES
*TARGET_PAGE_SIZE
) {
1450 size
= MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1452 guard
= TARGET_PAGE_SIZE
;
1453 if (guard
< qemu_real_host_page_size
) {
1454 guard
= qemu_real_host_page_size
;
1457 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1458 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1460 perror("mmap stack");
1464 /* We reserve one extra page at the top of the stack as guard. */
1465 target_mprotect(error
, guard
, PROT_NONE
);
1467 info
->stack_limit
= error
+ guard
;
1468 stack_base
= info
->stack_limit
+ size
- MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1471 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
1472 if (bprm
->page
[i
]) {
1474 /* FIXME - check return value of memcpy_to_target() for failure */
1475 memcpy_to_target(stack_base
, bprm
->page
[i
], TARGET_PAGE_SIZE
);
1476 g_free(bprm
->page
[i
]);
1478 stack_base
+= TARGET_PAGE_SIZE
;
1483 /* Map and zero the bss. We need to explicitly zero any fractional pages
1484 after the data section (i.e. bss). */
1485 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1487 uintptr_t host_start
, host_map_start
, host_end
;
1489 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1491 /* ??? There is confusion between qemu_real_host_page_size and
1492 qemu_host_page_size here and elsewhere in target_mmap, which
1493 may lead to the end of the data section mapping from the file
1494 not being mapped. At least there was an explicit test and
1495 comment for that here, suggesting that "the file size must
1496 be known". The comment probably pre-dates the introduction
1497 of the fstat system call in target_mmap which does in fact
1498 find out the size. What isn't clear is if the workaround
1499 here is still actually needed. For now, continue with it,
1500 but merge it with the "normal" mmap that would allocate the bss. */
1502 host_start
= (uintptr_t) g2h(elf_bss
);
1503 host_end
= (uintptr_t) g2h(last_bss
);
1504 host_map_start
= (host_start
+ qemu_real_host_page_size
- 1);
1505 host_map_start
&= -qemu_real_host_page_size
;
1507 if (host_map_start
< host_end
) {
1508 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1509 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1510 if (p
== MAP_FAILED
) {
1511 perror("cannot mmap brk");
1516 /* Ensure that the bss page(s) are valid */
1517 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1518 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1521 if (host_start
< host_map_start
) {
1522 memset((void *)host_start
, 0, host_map_start
- host_start
);
1526 #ifdef CONFIG_USE_FDPIC
1527 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1530 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1532 /* elf32_fdpic_loadseg */
1536 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1537 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1538 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1541 /* elf32_fdpic_loadmap */
1543 put_user_u16(0, sp
+0); /* version */
1544 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1546 info
->personality
= PER_LINUX_FDPIC
;
1547 info
->loadmap_addr
= sp
;
1553 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1554 struct elfhdr
*exec
,
1555 struct image_info
*info
,
1556 struct image_info
*interp_info
)
1562 abi_ulong u_rand_bytes
;
1563 uint8_t k_rand_bytes
[16];
1564 abi_ulong u_platform
;
1565 const char *k_platform
;
1566 const int n
= sizeof(elf_addr_t
);
1570 #ifdef CONFIG_USE_FDPIC
1571 /* Needs to be before we load the env/argc/... */
1572 if (elf_is_fdpic(exec
)) {
1573 /* Need 4 byte alignment for these structs */
1575 sp
= loader_build_fdpic_loadmap(info
, sp
);
1576 info
->other_info
= interp_info
;
1578 interp_info
->other_info
= info
;
1579 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1585 k_platform
= ELF_PLATFORM
;
1587 size_t len
= strlen(k_platform
) + 1;
1588 sp
-= (len
+ n
- 1) & ~(n
- 1);
1590 /* FIXME - check return value of memcpy_to_target() for failure */
1591 memcpy_to_target(sp
, k_platform
, len
);
1595 * Generate 16 random bytes for userspace PRNG seeding (not
1596 * cryptically secure but it's not the aim of QEMU).
1598 for (i
= 0; i
< 16; i
++) {
1599 k_rand_bytes
[i
] = rand();
1603 /* FIXME - check return value of memcpy_to_target() for failure */
1604 memcpy_to_target(sp
, k_rand_bytes
, 16);
1607 * Force 16 byte _final_ alignment here for generality.
1609 sp
= sp
&~ (abi_ulong
)15;
1610 size
= (DLINFO_ITEMS
+ 1) * 2;
1613 #ifdef DLINFO_ARCH_ITEMS
1614 size
+= DLINFO_ARCH_ITEMS
* 2;
1619 size
+= envc
+ argc
+ 2;
1620 size
+= 1; /* argc itself */
1623 sp
-= 16 - (size
& 15);
1625 /* This is correct because Linux defines
1626 * elf_addr_t as Elf32_Off / Elf64_Off
1628 #define NEW_AUX_ENT(id, val) do { \
1629 sp -= n; put_user_ual(val, sp); \
1630 sp -= n; put_user_ual(id, sp); \
1634 NEW_AUX_ENT (AT_NULL
, 0);
1636 /* There must be exactly DLINFO_ITEMS entries here. */
1637 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1638 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1639 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1640 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
, getpagesize())));
1641 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1642 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1643 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1644 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1645 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1646 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1647 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1648 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1649 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1650 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
1653 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
1657 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1660 * ARCH_DLINFO must come last so platform specific code can enforce
1661 * special alignment requirements on the AUXV if necessary (eg. PPC).
1667 info
->saved_auxv
= sp
;
1668 info
->auxv_len
= sp_auxv
- sp
;
1670 sp
= loader_build_argptr(envc
, argc
, sp
, p
, 0);
1671 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1672 assert(sp_auxv
- sp
== size
);
1676 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1677 /* If the guest doesn't have a validation function just agree */
1678 static int validate_guest_space(unsigned long guest_base
,
1679 unsigned long guest_size
)
1685 unsigned long init_guest_space(unsigned long host_start
,
1686 unsigned long host_size
,
1687 unsigned long guest_start
,
1690 unsigned long current_start
, real_start
;
1693 assert(host_start
|| host_size
);
1695 /* If just a starting address is given, then just verify that
1697 if (host_start
&& !host_size
) {
1698 if (validate_guest_space(host_start
, host_size
) == 1) {
1701 return (unsigned long)-1;
1705 /* Setup the initial flags and start address. */
1706 current_start
= host_start
& qemu_host_page_mask
;
1707 flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
1712 /* Otherwise, a non-zero size region of memory needs to be mapped
1715 unsigned long real_size
= host_size
;
1717 /* Do not use mmap_find_vma here because that is limited to the
1718 * guest address space. We are going to make the
1719 * guest address space fit whatever we're given.
1721 real_start
= (unsigned long)
1722 mmap((void *)current_start
, host_size
, PROT_NONE
, flags
, -1, 0);
1723 if (real_start
== (unsigned long)-1) {
1724 return (unsigned long)-1;
1727 /* Ensure the address is properly aligned. */
1728 if (real_start
& ~qemu_host_page_mask
) {
1729 munmap((void *)real_start
, host_size
);
1730 real_size
= host_size
+ qemu_host_page_size
;
1731 real_start
= (unsigned long)
1732 mmap((void *)real_start
, real_size
, PROT_NONE
, flags
, -1, 0);
1733 if (real_start
== (unsigned long)-1) {
1734 return (unsigned long)-1;
1736 real_start
= HOST_PAGE_ALIGN(real_start
);
1739 /* Check to see if the address is valid. */
1740 if (!host_start
|| real_start
== current_start
) {
1741 int valid
= validate_guest_space(real_start
- guest_start
,
1745 } else if (valid
== -1) {
1746 return (unsigned long)-1;
1748 /* valid == 0, so try again. */
1751 /* That address didn't work. Unmap and try a different one.
1752 * The address the host picked because is typically right at
1753 * the top of the host address space and leaves the guest with
1754 * no usable address space. Resort to a linear search. We
1755 * already compensated for mmap_min_addr, so this should not
1756 * happen often. Probably means we got unlucky and host
1757 * address space randomization put a shared library somewhere
1760 munmap((void *)real_start
, host_size
);
1761 current_start
+= qemu_host_page_size
;
1762 if (host_start
== current_start
) {
1763 /* Theoretically possible if host doesn't have any suitably
1764 * aligned areas. Normally the first mmap will fail.
1766 return (unsigned long)-1;
1770 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size
);
1775 static void probe_guest_base(const char *image_name
,
1776 abi_ulong loaddr
, abi_ulong hiaddr
)
1778 /* Probe for a suitable guest base address, if the user has not set
1779 * it explicitly, and set guest_base appropriately.
1780 * In case of error we will print a suitable message and exit.
1783 if (!have_guest_base
&& !reserved_va
) {
1784 unsigned long host_start
, real_start
, host_size
;
1786 /* Round addresses to page boundaries. */
1787 loaddr
&= qemu_host_page_mask
;
1788 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
1790 if (loaddr
< mmap_min_addr
) {
1791 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
1793 host_start
= loaddr
;
1794 if (host_start
!= loaddr
) {
1795 errmsg
= "Address overflow loading ELF binary";
1799 host_size
= hiaddr
- loaddr
;
1801 /* Setup the initial guest memory space with ranges gleaned from
1802 * the ELF image that is being loaded.
1804 real_start
= init_guest_space(host_start
, host_size
, loaddr
, false);
1805 if (real_start
== (unsigned long)-1) {
1806 errmsg
= "Unable to find space for application";
1809 guest_base
= real_start
- loaddr
;
1811 qemu_log("Relocating guest address space from 0x"
1812 TARGET_ABI_FMT_lx
" to 0x%lx\n",
1813 loaddr
, real_start
);
1818 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1823 /* Load an ELF image into the address space.
1825 IMAGE_NAME is the filename of the image, to use in error messages.
1826 IMAGE_FD is the open file descriptor for the image.
1828 BPRM_BUF is a copy of the beginning of the file; this of course
1829 contains the elf file header at offset 0. It is assumed that this
1830 buffer is sufficiently aligned to present no problems to the host
1831 in accessing data at aligned offsets within the buffer.
1833 On return: INFO values will be filled in, as necessary or available. */
1835 static void load_elf_image(const char *image_name
, int image_fd
,
1836 struct image_info
*info
, char **pinterp_name
,
1837 char bprm_buf
[BPRM_BUF_SIZE
])
1839 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
1840 struct elf_phdr
*phdr
;
1841 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
1845 /* First of all, some simple consistency checks */
1846 errmsg
= "Invalid ELF image for this architecture";
1847 if (!elf_check_ident(ehdr
)) {
1851 if (!elf_check_ehdr(ehdr
)) {
1855 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
1856 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
1857 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
1859 phdr
= (struct elf_phdr
*) alloca(i
);
1860 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
1865 bswap_phdr(phdr
, ehdr
->e_phnum
);
1867 #ifdef CONFIG_USE_FDPIC
1869 info
->pt_dynamic_addr
= 0;
1872 /* Find the maximum size of the image and allocate an appropriate
1873 amount of memory to handle that. */
1874 loaddr
= -1, hiaddr
= 0;
1875 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1876 if (phdr
[i
].p_type
== PT_LOAD
) {
1877 abi_ulong a
= phdr
[i
].p_vaddr
- phdr
[i
].p_offset
;
1881 a
= phdr
[i
].p_vaddr
+ phdr
[i
].p_memsz
;
1885 #ifdef CONFIG_USE_FDPIC
1892 if (ehdr
->e_type
== ET_DYN
) {
1893 /* The image indicates that it can be loaded anywhere. Find a
1894 location that can hold the memory space required. If the
1895 image is pre-linked, LOADDR will be non-zero. Since we do
1896 not supply MAP_FIXED here we'll use that address if and
1897 only if it remains available. */
1898 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
1899 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
1901 if (load_addr
== -1) {
1904 } else if (pinterp_name
!= NULL
) {
1905 /* This is the main executable. Make sure that the low
1906 address does not conflict with MMAP_MIN_ADDR or the
1907 QEMU application itself. */
1908 probe_guest_base(image_name
, loaddr
, hiaddr
);
1910 load_bias
= load_addr
- loaddr
;
1912 #ifdef CONFIG_USE_FDPIC
1914 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
1915 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
1917 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1918 switch (phdr
[i
].p_type
) {
1920 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
1923 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
1924 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
1925 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
1933 info
->load_bias
= load_bias
;
1934 info
->load_addr
= load_addr
;
1935 info
->entry
= ehdr
->e_entry
+ load_bias
;
1936 info
->start_code
= -1;
1938 info
->start_data
= -1;
1941 info
->elf_flags
= ehdr
->e_flags
;
1943 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
1944 struct elf_phdr
*eppnt
= phdr
+ i
;
1945 if (eppnt
->p_type
== PT_LOAD
) {
1946 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
1949 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
1950 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
1951 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
1953 vaddr
= load_bias
+ eppnt
->p_vaddr
;
1954 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
1955 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
1957 error
= target_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
1958 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
1959 image_fd
, eppnt
->p_offset
- vaddr_po
);
1964 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
1965 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
1967 /* If the load segment requests extra zeros (e.g. bss), map it. */
1968 if (vaddr_ef
< vaddr_em
) {
1969 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
1972 /* Find the full program boundaries. */
1973 if (elf_prot
& PROT_EXEC
) {
1974 if (vaddr
< info
->start_code
) {
1975 info
->start_code
= vaddr
;
1977 if (vaddr_ef
> info
->end_code
) {
1978 info
->end_code
= vaddr_ef
;
1981 if (elf_prot
& PROT_WRITE
) {
1982 if (vaddr
< info
->start_data
) {
1983 info
->start_data
= vaddr
;
1985 if (vaddr_ef
> info
->end_data
) {
1986 info
->end_data
= vaddr_ef
;
1988 if (vaddr_em
> info
->brk
) {
1989 info
->brk
= vaddr_em
;
1992 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
1995 if (*pinterp_name
) {
1996 errmsg
= "Multiple PT_INTERP entries";
1999 interp_name
= malloc(eppnt
->p_filesz
);
2004 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2005 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
2008 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
2010 if (retval
!= eppnt
->p_filesz
) {
2014 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
2015 errmsg
= "Invalid PT_INTERP entry";
2018 *pinterp_name
= interp_name
;
2022 if (info
->end_data
== 0) {
2023 info
->start_data
= info
->end_code
;
2024 info
->end_data
= info
->end_code
;
2025 info
->brk
= info
->end_code
;
2028 if (qemu_log_enabled()) {
2029 load_symbols(ehdr
, image_fd
, load_bias
);
2037 errmsg
= "Incomplete read of file header";
2041 errmsg
= strerror(errno
);
2043 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2047 static void load_elf_interp(const char *filename
, struct image_info
*info
,
2048 char bprm_buf
[BPRM_BUF_SIZE
])
2052 fd
= open(path(filename
), O_RDONLY
);
2057 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2061 if (retval
< BPRM_BUF_SIZE
) {
2062 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2065 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2069 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2073 static int symfind(const void *s0
, const void *s1
)
2075 target_ulong addr
= *(target_ulong
*)s0
;
2076 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2078 if (addr
< sym
->st_value
) {
2080 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2086 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2088 #if ELF_CLASS == ELFCLASS32
2089 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2091 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2095 struct elf_sym
*sym
;
2097 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2099 return s
->disas_strtab
+ sym
->st_name
;
2105 /* FIXME: This should use elf_ops.h */
2106 static int symcmp(const void *s0
, const void *s1
)
2108 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2109 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2110 return (sym0
->st_value
< sym1
->st_value
)
2112 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2115 /* Best attempt to load symbols from this ELF object. */
2116 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2118 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2119 struct elf_shdr
*shdr
;
2120 char *strings
= NULL
;
2121 struct syminfo
*s
= NULL
;
2122 struct elf_sym
*new_syms
, *syms
= NULL
;
2124 shnum
= hdr
->e_shnum
;
2125 i
= shnum
* sizeof(struct elf_shdr
);
2126 shdr
= (struct elf_shdr
*)alloca(i
);
2127 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2131 bswap_shdr(shdr
, shnum
);
2132 for (i
= 0; i
< shnum
; ++i
) {
2133 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2135 str_idx
= shdr
[i
].sh_link
;
2140 /* There will be no symbol table if the file was stripped. */
2144 /* Now know where the strtab and symtab are. Snarf them. */
2145 s
= malloc(sizeof(*s
));
2150 i
= shdr
[str_idx
].sh_size
;
2151 s
->disas_strtab
= strings
= malloc(i
);
2152 if (!strings
|| pread(fd
, strings
, i
, shdr
[str_idx
].sh_offset
) != i
) {
2156 i
= shdr
[sym_idx
].sh_size
;
2158 if (!syms
|| pread(fd
, syms
, i
, shdr
[sym_idx
].sh_offset
) != i
) {
2162 nsyms
= i
/ sizeof(struct elf_sym
);
2163 for (i
= 0; i
< nsyms
; ) {
2164 bswap_sym(syms
+ i
);
2165 /* Throw away entries which we do not need. */
2166 if (syms
[i
].st_shndx
== SHN_UNDEF
2167 || syms
[i
].st_shndx
>= SHN_LORESERVE
2168 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2170 syms
[i
] = syms
[nsyms
];
2173 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2174 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2175 syms
[i
].st_value
&= ~(target_ulong
)1;
2177 syms
[i
].st_value
+= load_bias
;
2182 /* No "useful" symbol. */
2187 /* Attempt to free the storage associated with the local symbols
2188 that we threw away. Whether or not this has any effect on the
2189 memory allocation depends on the malloc implementation and how
2190 many symbols we managed to discard. */
2191 new_syms
= realloc(syms
, nsyms
* sizeof(*syms
));
2192 if (new_syms
== NULL
) {
2197 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2199 s
->disas_num_syms
= nsyms
;
2200 #if ELF_CLASS == ELFCLASS32
2201 s
->disas_symtab
.elf32
= syms
;
2203 s
->disas_symtab
.elf64
= syms
;
2205 s
->lookup_symbol
= lookup_symbolxx
;
2217 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2219 struct image_info interp_info
;
2220 struct elfhdr elf_ex
;
2221 char *elf_interpreter
= NULL
;
2223 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2227 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2228 &elf_interpreter
, bprm
->buf
);
2230 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2231 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2232 when we load the interpreter. */
2233 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2235 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, bprm
->page
, bprm
->p
);
2236 bprm
->p
= copy_elf_strings(bprm
->envc
,bprm
->envp
,bprm
->page
,bprm
->p
);
2237 bprm
->p
= copy_elf_strings(bprm
->argc
,bprm
->argv
,bprm
->page
,bprm
->p
);
2239 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2243 /* Do this so that we can load the interpreter, if need be. We will
2244 change some of these later */
2245 bprm
->p
= setup_arg_pages(bprm
->p
, bprm
, info
);
2247 if (elf_interpreter
) {
2248 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2250 /* If the program interpreter is one of these two, then assume
2251 an iBCS2 image. Otherwise assume a native linux image. */
2253 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2254 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2255 info
->personality
= PER_SVR4
;
2257 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2258 and some applications "depend" upon this behavior. Since
2259 we do not have the power to recompile these, we emulate
2260 the SVr4 behavior. Sigh. */
2261 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2262 MAP_FIXED
| MAP_PRIVATE
, -1, 0);
2266 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2267 info
, (elf_interpreter
? &interp_info
: NULL
));
2268 info
->start_stack
= bprm
->p
;
2270 /* If we have an interpreter, set that as the program's entry point.
2271 Copy the load_bias as well, to help PPC64 interpret the entry
2272 point as a function descriptor. Do this after creating elf tables
2273 so that we copy the original program entry point into the AUXV. */
2274 if (elf_interpreter
) {
2275 info
->load_bias
= interp_info
.load_bias
;
2276 info
->entry
= interp_info
.entry
;
2277 free(elf_interpreter
);
2280 #ifdef USE_ELF_CORE_DUMP
2281 bprm
->core_dump
= &elf_core_dump
;
2287 #ifdef USE_ELF_CORE_DUMP
2289 * Definitions to generate Intel SVR4-like core files.
2290 * These mostly have the same names as the SVR4 types with "target_elf_"
2291 * tacked on the front to prevent clashes with linux definitions,
2292 * and the typedef forms have been avoided. This is mostly like
2293 * the SVR4 structure, but more Linuxy, with things that Linux does
2294 * not support and which gdb doesn't really use excluded.
2296 * Fields we don't dump (their contents is zero) in linux-user qemu
2297 * are marked with XXX.
2299 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2301 * Porting ELF coredump for target is (quite) simple process. First you
2302 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2303 * the target resides):
2305 * #define USE_ELF_CORE_DUMP
2307 * Next you define type of register set used for dumping. ELF specification
2308 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2310 * typedef <target_regtype> target_elf_greg_t;
2311 * #define ELF_NREG <number of registers>
2312 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2314 * Last step is to implement target specific function that copies registers
2315 * from given cpu into just specified register set. Prototype is:
2317 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2318 * const CPUArchState *env);
2321 * regs - copy register values into here (allocated and zeroed by caller)
2322 * env - copy registers from here
2324 * Example for ARM target is provided in this file.
2327 /* An ELF note in memory */
2331 size_t namesz_rounded
;
2334 size_t datasz_rounded
;
2339 struct target_elf_siginfo
{
2340 abi_int si_signo
; /* signal number */
2341 abi_int si_code
; /* extra code */
2342 abi_int si_errno
; /* errno */
2345 struct target_elf_prstatus
{
2346 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2347 abi_short pr_cursig
; /* Current signal */
2348 abi_ulong pr_sigpend
; /* XXX */
2349 abi_ulong pr_sighold
; /* XXX */
2350 target_pid_t pr_pid
;
2351 target_pid_t pr_ppid
;
2352 target_pid_t pr_pgrp
;
2353 target_pid_t pr_sid
;
2354 struct target_timeval pr_utime
; /* XXX User time */
2355 struct target_timeval pr_stime
; /* XXX System time */
2356 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2357 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2358 target_elf_gregset_t pr_reg
; /* GP registers */
2359 abi_int pr_fpvalid
; /* XXX */
2362 #define ELF_PRARGSZ (80) /* Number of chars for args */
2364 struct target_elf_prpsinfo
{
2365 char pr_state
; /* numeric process state */
2366 char pr_sname
; /* char for pr_state */
2367 char pr_zomb
; /* zombie */
2368 char pr_nice
; /* nice val */
2369 abi_ulong pr_flag
; /* flags */
2370 target_uid_t pr_uid
;
2371 target_gid_t pr_gid
;
2372 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
2374 char pr_fname
[16]; /* filename of executable */
2375 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
2378 /* Here is the structure in which status of each thread is captured. */
2379 struct elf_thread_status
{
2380 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
2381 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
2383 elf_fpregset_t fpu
; /* NT_PRFPREG */
2384 struct task_struct
*thread
;
2385 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
2387 struct memelfnote notes
[1];
2391 struct elf_note_info
{
2392 struct memelfnote
*notes
;
2393 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
2394 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
2396 QTAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
2399 * Current version of ELF coredump doesn't support
2400 * dumping fp regs etc.
2402 elf_fpregset_t
*fpu
;
2403 elf_fpxregset_t
*xfpu
;
2404 int thread_status_size
;
2410 struct vm_area_struct
{
2411 target_ulong vma_start
; /* start vaddr of memory region */
2412 target_ulong vma_end
; /* end vaddr of memory region */
2413 abi_ulong vma_flags
; /* protection etc. flags for the region */
2414 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
2418 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
2419 int mm_count
; /* number of mappings */
2422 static struct mm_struct
*vma_init(void);
2423 static void vma_delete(struct mm_struct
*);
2424 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
2425 target_ulong
, abi_ulong
);
2426 static int vma_get_mapping_count(const struct mm_struct
*);
2427 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
2428 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
2429 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
2430 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2431 unsigned long flags
);
2433 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
2434 static void fill_note(struct memelfnote
*, const char *, int,
2435 unsigned int, void *);
2436 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
2437 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
2438 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
2439 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
2440 static size_t note_size(const struct memelfnote
*);
2441 static void free_note_info(struct elf_note_info
*);
2442 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
2443 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
2444 static int core_dump_filename(const TaskState
*, char *, size_t);
2446 static int dump_write(int, const void *, size_t);
2447 static int write_note(struct memelfnote
*, int);
2448 static int write_note_info(struct elf_note_info
*, int);
2451 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
2453 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
2454 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
2455 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
2456 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
2457 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
2458 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
2459 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
2460 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
2461 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
2462 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
2463 /* cpu times are not filled, so we skip them */
2464 /* regs should be in correct format already */
2465 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
2468 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
2470 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
2471 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
2472 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
2473 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
2474 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
2475 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
2476 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
2479 static void bswap_note(struct elf_note
*en
)
2481 bswap32s(&en
->n_namesz
);
2482 bswap32s(&en
->n_descsz
);
2483 bswap32s(&en
->n_type
);
2486 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
2487 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
2488 static inline void bswap_note(struct elf_note
*en
) { }
2489 #endif /* BSWAP_NEEDED */
2492 * Minimal support for linux memory regions. These are needed
2493 * when we are finding out what memory exactly belongs to
2494 * emulated process. No locks needed here, as long as
2495 * thread that received the signal is stopped.
2498 static struct mm_struct
*vma_init(void)
2500 struct mm_struct
*mm
;
2502 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
2506 QTAILQ_INIT(&mm
->mm_mmap
);
2511 static void vma_delete(struct mm_struct
*mm
)
2513 struct vm_area_struct
*vma
;
2515 while ((vma
= vma_first(mm
)) != NULL
) {
2516 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
2522 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
2523 target_ulong end
, abi_ulong flags
)
2525 struct vm_area_struct
*vma
;
2527 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
2530 vma
->vma_start
= start
;
2532 vma
->vma_flags
= flags
;
2534 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
2540 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
2542 return (QTAILQ_FIRST(&mm
->mm_mmap
));
2545 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
2547 return (QTAILQ_NEXT(vma
, vma_link
));
2550 static int vma_get_mapping_count(const struct mm_struct
*mm
)
2552 return (mm
->mm_count
);
2556 * Calculate file (dump) size of given memory region.
2558 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
2560 /* if we cannot even read the first page, skip it */
2561 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
2565 * Usually we don't dump executable pages as they contain
2566 * non-writable code that debugger can read directly from
2567 * target library etc. However, thread stacks are marked
2568 * also executable so we read in first page of given region
2569 * and check whether it contains elf header. If there is
2570 * no elf header, we dump it.
2572 if (vma
->vma_flags
& PROT_EXEC
) {
2573 char page
[TARGET_PAGE_SIZE
];
2575 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
2576 if ((page
[EI_MAG0
] == ELFMAG0
) &&
2577 (page
[EI_MAG1
] == ELFMAG1
) &&
2578 (page
[EI_MAG2
] == ELFMAG2
) &&
2579 (page
[EI_MAG3
] == ELFMAG3
)) {
2581 * Mappings are possibly from ELF binary. Don't dump
2588 return (vma
->vma_end
- vma
->vma_start
);
2591 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2592 unsigned long flags
)
2594 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
2596 vma_add_mapping(mm
, start
, end
, flags
);
2600 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
2601 unsigned int sz
, void *data
)
2603 unsigned int namesz
;
2605 namesz
= strlen(name
) + 1;
2607 note
->namesz
= namesz
;
2608 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
2611 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
2616 * We calculate rounded up note size here as specified by
2619 note
->notesz
= sizeof (struct elf_note
) +
2620 note
->namesz_rounded
+ note
->datasz_rounded
;
2623 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
2626 (void) memset(elf
, 0, sizeof(*elf
));
2628 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
2629 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
2630 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
2631 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
2632 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
2634 elf
->e_type
= ET_CORE
;
2635 elf
->e_machine
= machine
;
2636 elf
->e_version
= EV_CURRENT
;
2637 elf
->e_phoff
= sizeof(struct elfhdr
);
2638 elf
->e_flags
= flags
;
2639 elf
->e_ehsize
= sizeof(struct elfhdr
);
2640 elf
->e_phentsize
= sizeof(struct elf_phdr
);
2641 elf
->e_phnum
= segs
;
2646 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
2648 phdr
->p_type
= PT_NOTE
;
2649 phdr
->p_offset
= offset
;
2652 phdr
->p_filesz
= sz
;
2657 bswap_phdr(phdr
, 1);
2660 static size_t note_size(const struct memelfnote
*note
)
2662 return (note
->notesz
);
2665 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
2666 const TaskState
*ts
, int signr
)
2668 (void) memset(prstatus
, 0, sizeof (*prstatus
));
2669 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
2670 prstatus
->pr_pid
= ts
->ts_tid
;
2671 prstatus
->pr_ppid
= getppid();
2672 prstatus
->pr_pgrp
= getpgrp();
2673 prstatus
->pr_sid
= getsid(0);
2675 bswap_prstatus(prstatus
);
2678 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
2680 char *base_filename
;
2681 unsigned int i
, len
;
2683 (void) memset(psinfo
, 0, sizeof (*psinfo
));
2685 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
2686 if (len
>= ELF_PRARGSZ
)
2687 len
= ELF_PRARGSZ
- 1;
2688 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
2690 for (i
= 0; i
< len
; i
++)
2691 if (psinfo
->pr_psargs
[i
] == 0)
2692 psinfo
->pr_psargs
[i
] = ' ';
2693 psinfo
->pr_psargs
[len
] = 0;
2695 psinfo
->pr_pid
= getpid();
2696 psinfo
->pr_ppid
= getppid();
2697 psinfo
->pr_pgrp
= getpgrp();
2698 psinfo
->pr_sid
= getsid(0);
2699 psinfo
->pr_uid
= getuid();
2700 psinfo
->pr_gid
= getgid();
2702 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
2704 * Using strncpy here is fine: at max-length,
2705 * this field is not NUL-terminated.
2707 (void) strncpy(psinfo
->pr_fname
, base_filename
,
2708 sizeof(psinfo
->pr_fname
));
2710 g_free(base_filename
);
2711 bswap_psinfo(psinfo
);
2715 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
2717 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
2718 elf_addr_t orig_auxv
= auxv
;
2720 int len
= ts
->info
->auxv_len
;
2723 * Auxiliary vector is stored in target process stack. It contains
2724 * {type, value} pairs that we need to dump into note. This is not
2725 * strictly necessary but we do it here for sake of completeness.
2728 /* read in whole auxv vector and copy it to memelfnote */
2729 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
2731 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
2732 unlock_user(ptr
, auxv
, len
);
2737 * Constructs name of coredump file. We have following convention
2739 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2741 * Returns 0 in case of success, -1 otherwise (errno is set).
2743 static int core_dump_filename(const TaskState
*ts
, char *buf
,
2747 char *filename
= NULL
;
2748 char *base_filename
= NULL
;
2752 assert(bufsize
>= PATH_MAX
);
2754 if (gettimeofday(&tv
, NULL
) < 0) {
2755 (void) fprintf(stderr
, "unable to get current timestamp: %s",
2760 filename
= strdup(ts
->bprm
->filename
);
2761 base_filename
= strdup(basename(filename
));
2762 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
2763 localtime_r(&tv
.tv_sec
, &tm
));
2764 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
2765 base_filename
, timestamp
, (int)getpid());
2766 free(base_filename
);
2772 static int dump_write(int fd
, const void *ptr
, size_t size
)
2774 const char *bufp
= (const char *)ptr
;
2775 ssize_t bytes_written
, bytes_left
;
2776 struct rlimit dumpsize
;
2780 getrlimit(RLIMIT_CORE
, &dumpsize
);
2781 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
2782 if (errno
== ESPIPE
) { /* not a seekable stream */
2788 if (dumpsize
.rlim_cur
<= pos
) {
2790 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
2793 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
2794 bytes_left
= limit_left
>= size
? size
: limit_left
;
2799 * In normal conditions, single write(2) should do but
2800 * in case of socket etc. this mechanism is more portable.
2803 bytes_written
= write(fd
, bufp
, bytes_left
);
2804 if (bytes_written
< 0) {
2808 } else if (bytes_written
== 0) { /* eof */
2811 bufp
+= bytes_written
;
2812 bytes_left
-= bytes_written
;
2813 } while (bytes_left
> 0);
2818 static int write_note(struct memelfnote
*men
, int fd
)
2822 en
.n_namesz
= men
->namesz
;
2823 en
.n_type
= men
->type
;
2824 en
.n_descsz
= men
->datasz
;
2828 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
2830 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
2832 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
2838 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
2840 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2841 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
2842 struct elf_thread_status
*ets
;
2844 ets
= g_malloc0(sizeof (*ets
));
2845 ets
->num_notes
= 1; /* only prstatus is dumped */
2846 fill_prstatus(&ets
->prstatus
, ts
, 0);
2847 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
2848 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
2851 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
2853 info
->notes_size
+= note_size(&ets
->notes
[0]);
2856 static void init_note_info(struct elf_note_info
*info
)
2858 /* Initialize the elf_note_info structure so that it is at
2859 * least safe to call free_note_info() on it. Must be
2860 * called before calling fill_note_info().
2862 memset(info
, 0, sizeof (*info
));
2863 QTAILQ_INIT(&info
->thread_list
);
2866 static int fill_note_info(struct elf_note_info
*info
,
2867 long signr
, const CPUArchState
*env
)
2870 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2871 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
2874 info
->notes
= g_malloc0(NUMNOTES
* sizeof (struct memelfnote
));
2875 if (info
->notes
== NULL
)
2877 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
2878 if (info
->prstatus
== NULL
)
2880 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
2881 if (info
->prstatus
== NULL
)
2885 * First fill in status (and registers) of current thread
2886 * including process info & aux vector.
2888 fill_prstatus(info
->prstatus
, ts
, signr
);
2889 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
2890 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
2891 sizeof (*info
->prstatus
), info
->prstatus
);
2892 fill_psinfo(info
->psinfo
, ts
);
2893 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
2894 sizeof (*info
->psinfo
), info
->psinfo
);
2895 fill_auxv_note(&info
->notes
[2], ts
);
2898 info
->notes_size
= 0;
2899 for (i
= 0; i
< info
->numnote
; i
++)
2900 info
->notes_size
+= note_size(&info
->notes
[i
]);
2902 /* read and fill status of all threads */
2905 if (cpu
== thread_cpu
) {
2908 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
2915 static void free_note_info(struct elf_note_info
*info
)
2917 struct elf_thread_status
*ets
;
2919 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
2920 ets
= QTAILQ_FIRST(&info
->thread_list
);
2921 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
2925 g_free(info
->prstatus
);
2926 g_free(info
->psinfo
);
2927 g_free(info
->notes
);
2930 static int write_note_info(struct elf_note_info
*info
, int fd
)
2932 struct elf_thread_status
*ets
;
2935 /* write prstatus, psinfo and auxv for current thread */
2936 for (i
= 0; i
< info
->numnote
; i
++)
2937 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
2940 /* write prstatus for each thread */
2941 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
2942 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
2950 * Write out ELF coredump.
2952 * See documentation of ELF object file format in:
2953 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2955 * Coredump format in linux is following:
2957 * 0 +----------------------+ \
2958 * | ELF header | ET_CORE |
2959 * +----------------------+ |
2960 * | ELF program headers | |--- headers
2961 * | - NOTE section | |
2962 * | - PT_LOAD sections | |
2963 * +----------------------+ /
2968 * +----------------------+ <-- aligned to target page
2969 * | Process memory dump |
2974 * +----------------------+
2976 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2977 * NT_PRSINFO -> struct elf_prpsinfo
2978 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2980 * Format follows System V format as close as possible. Current
2981 * version limitations are as follows:
2982 * - no floating point registers are dumped
2984 * Function returns 0 in case of success, negative errno otherwise.
2986 * TODO: make this work also during runtime: it should be
2987 * possible to force coredump from running process and then
2988 * continue processing. For example qemu could set up SIGUSR2
2989 * handler (provided that target process haven't registered
2990 * handler for that) that does the dump when signal is received.
2992 static int elf_core_dump(int signr
, const CPUArchState
*env
)
2994 const CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2995 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
2996 struct vm_area_struct
*vma
= NULL
;
2997 char corefile
[PATH_MAX
];
2998 struct elf_note_info info
;
3000 struct elf_phdr phdr
;
3001 struct rlimit dumpsize
;
3002 struct mm_struct
*mm
= NULL
;
3003 off_t offset
= 0, data_offset
= 0;
3007 init_note_info(&info
);
3010 getrlimit(RLIMIT_CORE
, &dumpsize
);
3011 if (dumpsize
.rlim_cur
== 0)
3014 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
3017 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
3018 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
3022 * Walk through target process memory mappings and
3023 * set up structure containing this information. After
3024 * this point vma_xxx functions can be used.
3026 if ((mm
= vma_init()) == NULL
)
3029 walk_memory_regions(mm
, vma_walker
);
3030 segs
= vma_get_mapping_count(mm
);
3033 * Construct valid coredump ELF header. We also
3034 * add one more segment for notes.
3036 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
3037 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
3040 /* fill in the in-memory version of notes */
3041 if (fill_note_info(&info
, signr
, env
) < 0)
3044 offset
+= sizeof (elf
); /* elf header */
3045 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
3047 /* write out notes program header */
3048 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
3050 offset
+= info
.notes_size
;
3051 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3055 * ELF specification wants data to start at page boundary so
3058 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3061 * Write program headers for memory regions mapped in
3062 * the target process.
3064 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3065 (void) memset(&phdr
, 0, sizeof (phdr
));
3067 phdr
.p_type
= PT_LOAD
;
3068 phdr
.p_offset
= offset
;
3069 phdr
.p_vaddr
= vma
->vma_start
;
3071 phdr
.p_filesz
= vma_dump_size(vma
);
3072 offset
+= phdr
.p_filesz
;
3073 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3074 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3075 if (vma
->vma_flags
& PROT_WRITE
)
3076 phdr
.p_flags
|= PF_W
;
3077 if (vma
->vma_flags
& PROT_EXEC
)
3078 phdr
.p_flags
|= PF_X
;
3079 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3081 bswap_phdr(&phdr
, 1);
3082 dump_write(fd
, &phdr
, sizeof (phdr
));
3086 * Next we write notes just after program headers. No
3087 * alignment needed here.
3089 if (write_note_info(&info
, fd
) < 0)
3092 /* align data to page boundary */
3093 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3097 * Finally we can dump process memory into corefile as well.
3099 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3103 end
= vma
->vma_start
+ vma_dump_size(vma
);
3105 for (addr
= vma
->vma_start
; addr
< end
;
3106 addr
+= TARGET_PAGE_SIZE
) {
3107 char page
[TARGET_PAGE_SIZE
];
3111 * Read in page from target process memory and
3112 * write it to coredump file.
3114 error
= copy_from_user(page
, addr
, sizeof (page
));
3116 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3121 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3127 free_note_info(&info
);
3136 #endif /* USE_ELF_CORE_DUMP */
3138 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3140 init_thread(regs
, infop
);