disas: Remove monitor_disas_is_physical
[qemu/kevin.git] / block / io.c
blob0854e0fdac42c709cabe0674bfe900ba6111bfd8
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
38 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
41 int64_t offset, int bytes, BdrvRequestFlags flags);
43 void bdrv_parent_drained_begin(BlockDriverState *bs)
45 BdrvChild *c;
47 QLIST_FOREACH(c, &bs->parents, next_parent) {
48 if (c->role->drained_begin) {
49 c->role->drained_begin(c);
54 void bdrv_parent_drained_end(BlockDriverState *bs)
56 BdrvChild *c;
58 QLIST_FOREACH(c, &bs->parents, next_parent) {
59 if (c->role->drained_end) {
60 c->role->drained_end(c);
65 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
67 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
68 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
69 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
70 src->opt_mem_alignment);
71 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
72 src->min_mem_alignment);
73 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
76 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
78 BlockDriver *drv = bs->drv;
79 Error *local_err = NULL;
81 memset(&bs->bl, 0, sizeof(bs->bl));
83 if (!drv) {
84 return;
87 /* Default alignment based on whether driver has byte interface */
88 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
90 /* Take some limits from the children as a default */
91 if (bs->file) {
92 bdrv_refresh_limits(bs->file->bs, &local_err);
93 if (local_err) {
94 error_propagate(errp, local_err);
95 return;
97 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
98 } else {
99 bs->bl.min_mem_alignment = 512;
100 bs->bl.opt_mem_alignment = getpagesize();
102 /* Safe default since most protocols use readv()/writev()/etc */
103 bs->bl.max_iov = IOV_MAX;
106 if (bs->backing) {
107 bdrv_refresh_limits(bs->backing->bs, &local_err);
108 if (local_err) {
109 error_propagate(errp, local_err);
110 return;
112 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
115 /* Then let the driver override it */
116 if (drv->bdrv_refresh_limits) {
117 drv->bdrv_refresh_limits(bs, errp);
122 * The copy-on-read flag is actually a reference count so multiple users may
123 * use the feature without worrying about clobbering its previous state.
124 * Copy-on-read stays enabled until all users have called to disable it.
126 void bdrv_enable_copy_on_read(BlockDriverState *bs)
128 atomic_inc(&bs->copy_on_read);
131 void bdrv_disable_copy_on_read(BlockDriverState *bs)
133 int old = atomic_fetch_dec(&bs->copy_on_read);
134 assert(old >= 1);
137 /* Check if any requests are in-flight (including throttled requests) */
138 bool bdrv_requests_pending(BlockDriverState *bs)
140 BdrvChild *child;
142 if (atomic_read(&bs->in_flight)) {
143 return true;
146 QLIST_FOREACH(child, &bs->children, next) {
147 if (bdrv_requests_pending(child->bs)) {
148 return true;
152 return false;
155 typedef struct {
156 Coroutine *co;
157 BlockDriverState *bs;
158 bool done;
159 bool begin;
160 } BdrvCoDrainData;
162 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
164 BdrvCoDrainData *data = opaque;
165 BlockDriverState *bs = data->bs;
167 if (data->begin) {
168 bs->drv->bdrv_co_drain_begin(bs);
169 } else {
170 bs->drv->bdrv_co_drain_end(bs);
173 /* Set data->done before reading bs->wakeup. */
174 atomic_mb_set(&data->done, true);
175 bdrv_wakeup(bs);
178 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin)
180 BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin};
182 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
183 (!begin && !bs->drv->bdrv_co_drain_end)) {
184 return;
187 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
188 bdrv_coroutine_enter(bs, data.co);
189 BDRV_POLL_WHILE(bs, !data.done);
192 static bool bdrv_drain_recurse(BlockDriverState *bs, bool begin)
194 BdrvChild *child, *tmp;
195 bool waited;
197 /* Ensure any pending metadata writes are submitted to bs->file. */
198 bdrv_drain_invoke(bs, begin);
200 /* Wait for drained requests to finish */
201 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
203 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
204 BlockDriverState *bs = child->bs;
205 bool in_main_loop =
206 qemu_get_current_aio_context() == qemu_get_aio_context();
207 assert(bs->refcnt > 0);
208 if (in_main_loop) {
209 /* In case the recursive bdrv_drain_recurse processes a
210 * block_job_defer_to_main_loop BH and modifies the graph,
211 * let's hold a reference to bs until we are done.
213 * IOThread doesn't have such a BH, and it is not safe to call
214 * bdrv_unref without BQL, so skip doing it there.
216 bdrv_ref(bs);
218 waited |= bdrv_drain_recurse(bs, begin);
219 if (in_main_loop) {
220 bdrv_unref(bs);
224 return waited;
227 static void bdrv_co_drain_bh_cb(void *opaque)
229 BdrvCoDrainData *data = opaque;
230 Coroutine *co = data->co;
231 BlockDriverState *bs = data->bs;
233 bdrv_dec_in_flight(bs);
234 if (data->begin) {
235 bdrv_drained_begin(bs);
236 } else {
237 bdrv_drained_end(bs);
240 data->done = true;
241 aio_co_wake(co);
244 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
245 bool begin)
247 BdrvCoDrainData data;
249 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
250 * other coroutines run if they were queued from
251 * qemu_co_queue_run_restart(). */
253 assert(qemu_in_coroutine());
254 data = (BdrvCoDrainData) {
255 .co = qemu_coroutine_self(),
256 .bs = bs,
257 .done = false,
258 .begin = begin,
260 bdrv_inc_in_flight(bs);
261 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
262 bdrv_co_drain_bh_cb, &data);
264 qemu_coroutine_yield();
265 /* If we are resumed from some other event (such as an aio completion or a
266 * timer callback), it is a bug in the caller that should be fixed. */
267 assert(data.done);
270 void bdrv_drained_begin(BlockDriverState *bs)
272 if (qemu_in_coroutine()) {
273 bdrv_co_yield_to_drain(bs, true);
274 return;
277 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
278 aio_disable_external(bdrv_get_aio_context(bs));
279 bdrv_parent_drained_begin(bs);
282 bdrv_drain_recurse(bs, true);
285 void bdrv_drained_end(BlockDriverState *bs)
287 if (qemu_in_coroutine()) {
288 bdrv_co_yield_to_drain(bs, false);
289 return;
291 assert(bs->quiesce_counter > 0);
292 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) {
293 return;
296 bdrv_parent_drained_end(bs);
297 bdrv_drain_recurse(bs, false);
298 aio_enable_external(bdrv_get_aio_context(bs));
302 * Wait for pending requests to complete on a single BlockDriverState subtree,
303 * and suspend block driver's internal I/O until next request arrives.
305 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
306 * AioContext.
308 * Only this BlockDriverState's AioContext is run, so in-flight requests must
309 * not depend on events in other AioContexts. In that case, use
310 * bdrv_drain_all() instead.
312 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
314 assert(qemu_in_coroutine());
315 bdrv_drained_begin(bs);
316 bdrv_drained_end(bs);
319 void bdrv_drain(BlockDriverState *bs)
321 bdrv_drained_begin(bs);
322 bdrv_drained_end(bs);
326 * Wait for pending requests to complete across all BlockDriverStates
328 * This function does not flush data to disk, use bdrv_flush_all() for that
329 * after calling this function.
331 * This pauses all block jobs and disables external clients. It must
332 * be paired with bdrv_drain_all_end().
334 * NOTE: no new block jobs or BlockDriverStates can be created between
335 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
337 void bdrv_drain_all_begin(void)
339 /* Always run first iteration so any pending completion BHs run */
340 bool waited = true;
341 BlockDriverState *bs;
342 BdrvNextIterator it;
343 GSList *aio_ctxs = NULL, *ctx;
345 block_job_pause_all();
347 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
348 AioContext *aio_context = bdrv_get_aio_context(bs);
350 aio_context_acquire(aio_context);
351 bdrv_parent_drained_begin(bs);
352 aio_disable_external(aio_context);
353 aio_context_release(aio_context);
355 if (!g_slist_find(aio_ctxs, aio_context)) {
356 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
360 /* Note that completion of an asynchronous I/O operation can trigger any
361 * number of other I/O operations on other devices---for example a
362 * coroutine can submit an I/O request to another device in response to
363 * request completion. Therefore we must keep looping until there was no
364 * more activity rather than simply draining each device independently.
366 while (waited) {
367 waited = false;
369 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
370 AioContext *aio_context = ctx->data;
372 aio_context_acquire(aio_context);
373 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
374 if (aio_context == bdrv_get_aio_context(bs)) {
375 waited |= bdrv_drain_recurse(bs, true);
378 aio_context_release(aio_context);
382 g_slist_free(aio_ctxs);
385 void bdrv_drain_all_end(void)
387 BlockDriverState *bs;
388 BdrvNextIterator it;
390 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
391 AioContext *aio_context = bdrv_get_aio_context(bs);
393 aio_context_acquire(aio_context);
394 aio_enable_external(aio_context);
395 bdrv_parent_drained_end(bs);
396 bdrv_drain_recurse(bs, false);
397 aio_context_release(aio_context);
400 block_job_resume_all();
403 void bdrv_drain_all(void)
405 bdrv_drain_all_begin();
406 bdrv_drain_all_end();
410 * Remove an active request from the tracked requests list
412 * This function should be called when a tracked request is completing.
414 static void tracked_request_end(BdrvTrackedRequest *req)
416 if (req->serialising) {
417 atomic_dec(&req->bs->serialising_in_flight);
420 qemu_co_mutex_lock(&req->bs->reqs_lock);
421 QLIST_REMOVE(req, list);
422 qemu_co_queue_restart_all(&req->wait_queue);
423 qemu_co_mutex_unlock(&req->bs->reqs_lock);
427 * Add an active request to the tracked requests list
429 static void tracked_request_begin(BdrvTrackedRequest *req,
430 BlockDriverState *bs,
431 int64_t offset,
432 unsigned int bytes,
433 enum BdrvTrackedRequestType type)
435 *req = (BdrvTrackedRequest){
436 .bs = bs,
437 .offset = offset,
438 .bytes = bytes,
439 .type = type,
440 .co = qemu_coroutine_self(),
441 .serialising = false,
442 .overlap_offset = offset,
443 .overlap_bytes = bytes,
446 qemu_co_queue_init(&req->wait_queue);
448 qemu_co_mutex_lock(&bs->reqs_lock);
449 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
450 qemu_co_mutex_unlock(&bs->reqs_lock);
453 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
455 int64_t overlap_offset = req->offset & ~(align - 1);
456 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
457 - overlap_offset;
459 if (!req->serialising) {
460 atomic_inc(&req->bs->serialising_in_flight);
461 req->serialising = true;
464 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
465 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
469 * Round a region to cluster boundaries
471 void bdrv_round_to_clusters(BlockDriverState *bs,
472 int64_t offset, unsigned int bytes,
473 int64_t *cluster_offset,
474 unsigned int *cluster_bytes)
476 BlockDriverInfo bdi;
478 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
479 *cluster_offset = offset;
480 *cluster_bytes = bytes;
481 } else {
482 int64_t c = bdi.cluster_size;
483 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
484 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
488 static int bdrv_get_cluster_size(BlockDriverState *bs)
490 BlockDriverInfo bdi;
491 int ret;
493 ret = bdrv_get_info(bs, &bdi);
494 if (ret < 0 || bdi.cluster_size == 0) {
495 return bs->bl.request_alignment;
496 } else {
497 return bdi.cluster_size;
501 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
502 int64_t offset, unsigned int bytes)
504 /* aaaa bbbb */
505 if (offset >= req->overlap_offset + req->overlap_bytes) {
506 return false;
508 /* bbbb aaaa */
509 if (req->overlap_offset >= offset + bytes) {
510 return false;
512 return true;
515 void bdrv_inc_in_flight(BlockDriverState *bs)
517 atomic_inc(&bs->in_flight);
520 static void dummy_bh_cb(void *opaque)
524 void bdrv_wakeup(BlockDriverState *bs)
526 /* The barrier (or an atomic op) is in the caller. */
527 if (atomic_read(&bs->wakeup)) {
528 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
532 void bdrv_dec_in_flight(BlockDriverState *bs)
534 atomic_dec(&bs->in_flight);
535 bdrv_wakeup(bs);
538 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
540 BlockDriverState *bs = self->bs;
541 BdrvTrackedRequest *req;
542 bool retry;
543 bool waited = false;
545 if (!atomic_read(&bs->serialising_in_flight)) {
546 return false;
549 do {
550 retry = false;
551 qemu_co_mutex_lock(&bs->reqs_lock);
552 QLIST_FOREACH(req, &bs->tracked_requests, list) {
553 if (req == self || (!req->serialising && !self->serialising)) {
554 continue;
556 if (tracked_request_overlaps(req, self->overlap_offset,
557 self->overlap_bytes))
559 /* Hitting this means there was a reentrant request, for
560 * example, a block driver issuing nested requests. This must
561 * never happen since it means deadlock.
563 assert(qemu_coroutine_self() != req->co);
565 /* If the request is already (indirectly) waiting for us, or
566 * will wait for us as soon as it wakes up, then just go on
567 * (instead of producing a deadlock in the former case). */
568 if (!req->waiting_for) {
569 self->waiting_for = req;
570 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
571 self->waiting_for = NULL;
572 retry = true;
573 waited = true;
574 break;
578 qemu_co_mutex_unlock(&bs->reqs_lock);
579 } while (retry);
581 return waited;
584 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
585 size_t size)
587 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
588 return -EIO;
591 if (!bdrv_is_inserted(bs)) {
592 return -ENOMEDIUM;
595 if (offset < 0) {
596 return -EIO;
599 return 0;
602 typedef struct RwCo {
603 BdrvChild *child;
604 int64_t offset;
605 QEMUIOVector *qiov;
606 bool is_write;
607 int ret;
608 BdrvRequestFlags flags;
609 } RwCo;
611 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
613 RwCo *rwco = opaque;
615 if (!rwco->is_write) {
616 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
617 rwco->qiov->size, rwco->qiov,
618 rwco->flags);
619 } else {
620 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
621 rwco->qiov->size, rwco->qiov,
622 rwco->flags);
627 * Process a vectored synchronous request using coroutines
629 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
630 QEMUIOVector *qiov, bool is_write,
631 BdrvRequestFlags flags)
633 Coroutine *co;
634 RwCo rwco = {
635 .child = child,
636 .offset = offset,
637 .qiov = qiov,
638 .is_write = is_write,
639 .ret = NOT_DONE,
640 .flags = flags,
643 if (qemu_in_coroutine()) {
644 /* Fast-path if already in coroutine context */
645 bdrv_rw_co_entry(&rwco);
646 } else {
647 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
648 bdrv_coroutine_enter(child->bs, co);
649 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
651 return rwco.ret;
655 * Process a synchronous request using coroutines
657 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
658 int nb_sectors, bool is_write, BdrvRequestFlags flags)
660 QEMUIOVector qiov;
661 struct iovec iov = {
662 .iov_base = (void *)buf,
663 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
666 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
667 return -EINVAL;
670 qemu_iovec_init_external(&qiov, &iov, 1);
671 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
672 &qiov, is_write, flags);
675 /* return < 0 if error. See bdrv_write() for the return codes */
676 int bdrv_read(BdrvChild *child, int64_t sector_num,
677 uint8_t *buf, int nb_sectors)
679 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
682 /* Return < 0 if error. Important errors are:
683 -EIO generic I/O error (may happen for all errors)
684 -ENOMEDIUM No media inserted.
685 -EINVAL Invalid sector number or nb_sectors
686 -EACCES Trying to write a read-only device
688 int bdrv_write(BdrvChild *child, int64_t sector_num,
689 const uint8_t *buf, int nb_sectors)
691 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
694 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
695 int bytes, BdrvRequestFlags flags)
697 QEMUIOVector qiov;
698 struct iovec iov = {
699 .iov_base = NULL,
700 .iov_len = bytes,
703 qemu_iovec_init_external(&qiov, &iov, 1);
704 return bdrv_prwv_co(child, offset, &qiov, true,
705 BDRV_REQ_ZERO_WRITE | flags);
709 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
710 * The operation is sped up by checking the block status and only writing
711 * zeroes to the device if they currently do not return zeroes. Optional
712 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
713 * BDRV_REQ_FUA).
715 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
717 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
719 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
720 BlockDriverState *bs = child->bs;
721 BlockDriverState *file;
722 int n;
724 target_sectors = bdrv_nb_sectors(bs);
725 if (target_sectors < 0) {
726 return target_sectors;
729 for (;;) {
730 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
731 if (nb_sectors <= 0) {
732 return 0;
734 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
735 if (ret < 0) {
736 error_report("error getting block status at sector %" PRId64 ": %s",
737 sector_num, strerror(-ret));
738 return ret;
740 if (ret & BDRV_BLOCK_ZERO) {
741 sector_num += n;
742 continue;
744 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
745 n << BDRV_SECTOR_BITS, flags);
746 if (ret < 0) {
747 error_report("error writing zeroes at sector %" PRId64 ": %s",
748 sector_num, strerror(-ret));
749 return ret;
751 sector_num += n;
755 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
757 int ret;
759 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
760 if (ret < 0) {
761 return ret;
764 return qiov->size;
767 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
769 QEMUIOVector qiov;
770 struct iovec iov = {
771 .iov_base = (void *)buf,
772 .iov_len = bytes,
775 if (bytes < 0) {
776 return -EINVAL;
779 qemu_iovec_init_external(&qiov, &iov, 1);
780 return bdrv_preadv(child, offset, &qiov);
783 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
785 int ret;
787 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
788 if (ret < 0) {
789 return ret;
792 return qiov->size;
795 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
797 QEMUIOVector qiov;
798 struct iovec iov = {
799 .iov_base = (void *) buf,
800 .iov_len = bytes,
803 if (bytes < 0) {
804 return -EINVAL;
807 qemu_iovec_init_external(&qiov, &iov, 1);
808 return bdrv_pwritev(child, offset, &qiov);
812 * Writes to the file and ensures that no writes are reordered across this
813 * request (acts as a barrier)
815 * Returns 0 on success, -errno in error cases.
817 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
818 const void *buf, int count)
820 int ret;
822 ret = bdrv_pwrite(child, offset, buf, count);
823 if (ret < 0) {
824 return ret;
827 ret = bdrv_flush(child->bs);
828 if (ret < 0) {
829 return ret;
832 return 0;
835 typedef struct CoroutineIOCompletion {
836 Coroutine *coroutine;
837 int ret;
838 } CoroutineIOCompletion;
840 static void bdrv_co_io_em_complete(void *opaque, int ret)
842 CoroutineIOCompletion *co = opaque;
844 co->ret = ret;
845 aio_co_wake(co->coroutine);
848 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
849 uint64_t offset, uint64_t bytes,
850 QEMUIOVector *qiov, int flags)
852 BlockDriver *drv = bs->drv;
853 int64_t sector_num;
854 unsigned int nb_sectors;
856 assert(!(flags & ~BDRV_REQ_MASK));
858 if (drv->bdrv_co_preadv) {
859 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
862 sector_num = offset >> BDRV_SECTOR_BITS;
863 nb_sectors = bytes >> BDRV_SECTOR_BITS;
865 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
866 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
867 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
869 if (drv->bdrv_co_readv) {
870 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
871 } else {
872 BlockAIOCB *acb;
873 CoroutineIOCompletion co = {
874 .coroutine = qemu_coroutine_self(),
877 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
878 bdrv_co_io_em_complete, &co);
879 if (acb == NULL) {
880 return -EIO;
881 } else {
882 qemu_coroutine_yield();
883 return co.ret;
888 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
889 uint64_t offset, uint64_t bytes,
890 QEMUIOVector *qiov, int flags)
892 BlockDriver *drv = bs->drv;
893 int64_t sector_num;
894 unsigned int nb_sectors;
895 int ret;
897 assert(!(flags & ~BDRV_REQ_MASK));
899 if (drv->bdrv_co_pwritev) {
900 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
901 flags & bs->supported_write_flags);
902 flags &= ~bs->supported_write_flags;
903 goto emulate_flags;
906 sector_num = offset >> BDRV_SECTOR_BITS;
907 nb_sectors = bytes >> BDRV_SECTOR_BITS;
909 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
910 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
911 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
913 if (drv->bdrv_co_writev_flags) {
914 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
915 flags & bs->supported_write_flags);
916 flags &= ~bs->supported_write_flags;
917 } else if (drv->bdrv_co_writev) {
918 assert(!bs->supported_write_flags);
919 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
920 } else {
921 BlockAIOCB *acb;
922 CoroutineIOCompletion co = {
923 .coroutine = qemu_coroutine_self(),
926 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
927 bdrv_co_io_em_complete, &co);
928 if (acb == NULL) {
929 ret = -EIO;
930 } else {
931 qemu_coroutine_yield();
932 ret = co.ret;
936 emulate_flags:
937 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
938 ret = bdrv_co_flush(bs);
941 return ret;
944 static int coroutine_fn
945 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
946 uint64_t bytes, QEMUIOVector *qiov)
948 BlockDriver *drv = bs->drv;
950 if (!drv->bdrv_co_pwritev_compressed) {
951 return -ENOTSUP;
954 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
957 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
958 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
960 BlockDriverState *bs = child->bs;
962 /* Perform I/O through a temporary buffer so that users who scribble over
963 * their read buffer while the operation is in progress do not end up
964 * modifying the image file. This is critical for zero-copy guest I/O
965 * where anything might happen inside guest memory.
967 void *bounce_buffer;
969 BlockDriver *drv = bs->drv;
970 struct iovec iov;
971 QEMUIOVector local_qiov;
972 int64_t cluster_offset;
973 unsigned int cluster_bytes;
974 size_t skip_bytes;
975 int ret;
976 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
977 BDRV_REQUEST_MAX_BYTES);
978 unsigned int progress = 0;
980 /* FIXME We cannot require callers to have write permissions when all they
981 * are doing is a read request. If we did things right, write permissions
982 * would be obtained anyway, but internally by the copy-on-read code. As
983 * long as it is implemented here rather than in a separate filter driver,
984 * the copy-on-read code doesn't have its own BdrvChild, however, for which
985 * it could request permissions. Therefore we have to bypass the permission
986 * system for the moment. */
987 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
989 /* Cover entire cluster so no additional backing file I/O is required when
990 * allocating cluster in the image file. Note that this value may exceed
991 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
992 * is one reason we loop rather than doing it all at once.
994 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
995 skip_bytes = offset - cluster_offset;
997 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
998 cluster_offset, cluster_bytes);
1000 bounce_buffer = qemu_try_blockalign(bs,
1001 MIN(MIN(max_transfer, cluster_bytes),
1002 MAX_BOUNCE_BUFFER));
1003 if (bounce_buffer == NULL) {
1004 ret = -ENOMEM;
1005 goto err;
1008 while (cluster_bytes) {
1009 int64_t pnum;
1011 ret = bdrv_is_allocated(bs, cluster_offset,
1012 MIN(cluster_bytes, max_transfer), &pnum);
1013 if (ret < 0) {
1014 /* Safe to treat errors in querying allocation as if
1015 * unallocated; we'll probably fail again soon on the
1016 * read, but at least that will set a decent errno.
1018 pnum = MIN(cluster_bytes, max_transfer);
1021 assert(skip_bytes < pnum);
1023 if (ret <= 0) {
1024 /* Must copy-on-read; use the bounce buffer */
1025 iov.iov_base = bounce_buffer;
1026 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1027 qemu_iovec_init_external(&local_qiov, &iov, 1);
1029 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1030 &local_qiov, 0);
1031 if (ret < 0) {
1032 goto err;
1035 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1036 if (drv->bdrv_co_pwrite_zeroes &&
1037 buffer_is_zero(bounce_buffer, pnum)) {
1038 /* FIXME: Should we (perhaps conditionally) be setting
1039 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1040 * that still correctly reads as zero? */
1041 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0);
1042 } else {
1043 /* This does not change the data on the disk, it is not
1044 * necessary to flush even in cache=writethrough mode.
1046 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1047 &local_qiov, 0);
1050 if (ret < 0) {
1051 /* It might be okay to ignore write errors for guest
1052 * requests. If this is a deliberate copy-on-read
1053 * then we don't want to ignore the error. Simply
1054 * report it in all cases.
1056 goto err;
1059 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1060 pnum - skip_bytes);
1061 } else {
1062 /* Read directly into the destination */
1063 qemu_iovec_init(&local_qiov, qiov->niov);
1064 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1065 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1066 &local_qiov, 0);
1067 qemu_iovec_destroy(&local_qiov);
1068 if (ret < 0) {
1069 goto err;
1073 cluster_offset += pnum;
1074 cluster_bytes -= pnum;
1075 progress += pnum - skip_bytes;
1076 skip_bytes = 0;
1078 ret = 0;
1080 err:
1081 qemu_vfree(bounce_buffer);
1082 return ret;
1086 * Forwards an already correctly aligned request to the BlockDriver. This
1087 * handles copy on read, zeroing after EOF, and fragmentation of large
1088 * reads; any other features must be implemented by the caller.
1090 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1091 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1092 int64_t align, QEMUIOVector *qiov, int flags)
1094 BlockDriverState *bs = child->bs;
1095 int64_t total_bytes, max_bytes;
1096 int ret = 0;
1097 uint64_t bytes_remaining = bytes;
1098 int max_transfer;
1100 assert(is_power_of_2(align));
1101 assert((offset & (align - 1)) == 0);
1102 assert((bytes & (align - 1)) == 0);
1103 assert(!qiov || bytes == qiov->size);
1104 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1105 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1106 align);
1108 /* TODO: We would need a per-BDS .supported_read_flags and
1109 * potential fallback support, if we ever implement any read flags
1110 * to pass through to drivers. For now, there aren't any
1111 * passthrough flags. */
1112 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1114 /* Handle Copy on Read and associated serialisation */
1115 if (flags & BDRV_REQ_COPY_ON_READ) {
1116 /* If we touch the same cluster it counts as an overlap. This
1117 * guarantees that allocating writes will be serialized and not race
1118 * with each other for the same cluster. For example, in copy-on-read
1119 * it ensures that the CoR read and write operations are atomic and
1120 * guest writes cannot interleave between them. */
1121 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1124 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1125 wait_serialising_requests(req);
1128 if (flags & BDRV_REQ_COPY_ON_READ) {
1129 /* TODO: Simplify further once bdrv_is_allocated no longer
1130 * requires sector alignment */
1131 int64_t start = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
1132 int64_t end = QEMU_ALIGN_UP(offset + bytes, BDRV_SECTOR_SIZE);
1133 int64_t pnum;
1135 ret = bdrv_is_allocated(bs, start, end - start, &pnum);
1136 if (ret < 0) {
1137 goto out;
1140 if (!ret || pnum != end - start) {
1141 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1142 goto out;
1146 /* Forward the request to the BlockDriver, possibly fragmenting it */
1147 total_bytes = bdrv_getlength(bs);
1148 if (total_bytes < 0) {
1149 ret = total_bytes;
1150 goto out;
1153 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1154 if (bytes <= max_bytes && bytes <= max_transfer) {
1155 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1156 goto out;
1159 while (bytes_remaining) {
1160 int num;
1162 if (max_bytes) {
1163 QEMUIOVector local_qiov;
1165 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1166 assert(num);
1167 qemu_iovec_init(&local_qiov, qiov->niov);
1168 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1170 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1171 num, &local_qiov, 0);
1172 max_bytes -= num;
1173 qemu_iovec_destroy(&local_qiov);
1174 } else {
1175 num = bytes_remaining;
1176 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1177 bytes_remaining);
1179 if (ret < 0) {
1180 goto out;
1182 bytes_remaining -= num;
1185 out:
1186 return ret < 0 ? ret : 0;
1190 * Handle a read request in coroutine context
1192 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1193 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1194 BdrvRequestFlags flags)
1196 BlockDriverState *bs = child->bs;
1197 BlockDriver *drv = bs->drv;
1198 BdrvTrackedRequest req;
1200 uint64_t align = bs->bl.request_alignment;
1201 uint8_t *head_buf = NULL;
1202 uint8_t *tail_buf = NULL;
1203 QEMUIOVector local_qiov;
1204 bool use_local_qiov = false;
1205 int ret;
1207 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1209 if (!drv) {
1210 return -ENOMEDIUM;
1213 ret = bdrv_check_byte_request(bs, offset, bytes);
1214 if (ret < 0) {
1215 return ret;
1218 bdrv_inc_in_flight(bs);
1220 /* Don't do copy-on-read if we read data before write operation */
1221 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1222 flags |= BDRV_REQ_COPY_ON_READ;
1225 /* Align read if necessary by padding qiov */
1226 if (offset & (align - 1)) {
1227 head_buf = qemu_blockalign(bs, align);
1228 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1229 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1230 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1231 use_local_qiov = true;
1233 bytes += offset & (align - 1);
1234 offset = offset & ~(align - 1);
1237 if ((offset + bytes) & (align - 1)) {
1238 if (!use_local_qiov) {
1239 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1240 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1241 use_local_qiov = true;
1243 tail_buf = qemu_blockalign(bs, align);
1244 qemu_iovec_add(&local_qiov, tail_buf,
1245 align - ((offset + bytes) & (align - 1)));
1247 bytes = ROUND_UP(bytes, align);
1250 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1251 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1252 use_local_qiov ? &local_qiov : qiov,
1253 flags);
1254 tracked_request_end(&req);
1255 bdrv_dec_in_flight(bs);
1257 if (use_local_qiov) {
1258 qemu_iovec_destroy(&local_qiov);
1259 qemu_vfree(head_buf);
1260 qemu_vfree(tail_buf);
1263 return ret;
1266 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1267 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1268 BdrvRequestFlags flags)
1270 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1271 return -EINVAL;
1274 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1275 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1278 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1279 int nb_sectors, QEMUIOVector *qiov)
1281 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1284 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1285 int64_t offset, int bytes, BdrvRequestFlags flags)
1287 BlockDriver *drv = bs->drv;
1288 QEMUIOVector qiov;
1289 struct iovec iov = {0};
1290 int ret = 0;
1291 bool need_flush = false;
1292 int head = 0;
1293 int tail = 0;
1295 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1296 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1297 bs->bl.request_alignment);
1298 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1300 assert(alignment % bs->bl.request_alignment == 0);
1301 head = offset % alignment;
1302 tail = (offset + bytes) % alignment;
1303 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1304 assert(max_write_zeroes >= bs->bl.request_alignment);
1306 while (bytes > 0 && !ret) {
1307 int num = bytes;
1309 /* Align request. Block drivers can expect the "bulk" of the request
1310 * to be aligned, and that unaligned requests do not cross cluster
1311 * boundaries.
1313 if (head) {
1314 /* Make a small request up to the first aligned sector. For
1315 * convenience, limit this request to max_transfer even if
1316 * we don't need to fall back to writes. */
1317 num = MIN(MIN(bytes, max_transfer), alignment - head);
1318 head = (head + num) % alignment;
1319 assert(num < max_write_zeroes);
1320 } else if (tail && num > alignment) {
1321 /* Shorten the request to the last aligned sector. */
1322 num -= tail;
1325 /* limit request size */
1326 if (num > max_write_zeroes) {
1327 num = max_write_zeroes;
1330 ret = -ENOTSUP;
1331 /* First try the efficient write zeroes operation */
1332 if (drv->bdrv_co_pwrite_zeroes) {
1333 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1334 flags & bs->supported_zero_flags);
1335 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1336 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1337 need_flush = true;
1339 } else {
1340 assert(!bs->supported_zero_flags);
1343 if (ret == -ENOTSUP) {
1344 /* Fall back to bounce buffer if write zeroes is unsupported */
1345 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1347 if ((flags & BDRV_REQ_FUA) &&
1348 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1349 /* No need for bdrv_driver_pwrite() to do a fallback
1350 * flush on each chunk; use just one at the end */
1351 write_flags &= ~BDRV_REQ_FUA;
1352 need_flush = true;
1354 num = MIN(num, max_transfer);
1355 iov.iov_len = num;
1356 if (iov.iov_base == NULL) {
1357 iov.iov_base = qemu_try_blockalign(bs, num);
1358 if (iov.iov_base == NULL) {
1359 ret = -ENOMEM;
1360 goto fail;
1362 memset(iov.iov_base, 0, num);
1364 qemu_iovec_init_external(&qiov, &iov, 1);
1366 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1368 /* Keep bounce buffer around if it is big enough for all
1369 * all future requests.
1371 if (num < max_transfer) {
1372 qemu_vfree(iov.iov_base);
1373 iov.iov_base = NULL;
1377 offset += num;
1378 bytes -= num;
1381 fail:
1382 if (ret == 0 && need_flush) {
1383 ret = bdrv_co_flush(bs);
1385 qemu_vfree(iov.iov_base);
1386 return ret;
1390 * Forwards an already correctly aligned write request to the BlockDriver,
1391 * after possibly fragmenting it.
1393 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1394 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1395 int64_t align, QEMUIOVector *qiov, int flags)
1397 BlockDriverState *bs = child->bs;
1398 BlockDriver *drv = bs->drv;
1399 bool waited;
1400 int ret;
1402 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1403 uint64_t bytes_remaining = bytes;
1404 int max_transfer;
1406 if (bdrv_has_readonly_bitmaps(bs)) {
1407 return -EPERM;
1410 assert(is_power_of_2(align));
1411 assert((offset & (align - 1)) == 0);
1412 assert((bytes & (align - 1)) == 0);
1413 assert(!qiov || bytes == qiov->size);
1414 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1415 assert(!(flags & ~BDRV_REQ_MASK));
1416 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1417 align);
1419 waited = wait_serialising_requests(req);
1420 assert(!waited || !req->serialising);
1421 assert(req->overlap_offset <= offset);
1422 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1423 assert(child->perm & BLK_PERM_WRITE);
1424 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1426 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1428 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1429 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1430 qemu_iovec_is_zero(qiov)) {
1431 flags |= BDRV_REQ_ZERO_WRITE;
1432 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1433 flags |= BDRV_REQ_MAY_UNMAP;
1437 if (ret < 0) {
1438 /* Do nothing, write notifier decided to fail this request */
1439 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1440 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1441 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1442 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1443 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1444 } else if (bytes <= max_transfer) {
1445 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1446 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1447 } else {
1448 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1449 while (bytes_remaining) {
1450 int num = MIN(bytes_remaining, max_transfer);
1451 QEMUIOVector local_qiov;
1452 int local_flags = flags;
1454 assert(num);
1455 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1456 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1457 /* If FUA is going to be emulated by flush, we only
1458 * need to flush on the last iteration */
1459 local_flags &= ~BDRV_REQ_FUA;
1461 qemu_iovec_init(&local_qiov, qiov->niov);
1462 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1464 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1465 num, &local_qiov, local_flags);
1466 qemu_iovec_destroy(&local_qiov);
1467 if (ret < 0) {
1468 break;
1470 bytes_remaining -= num;
1473 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1475 atomic_inc(&bs->write_gen);
1476 bdrv_set_dirty(bs, offset, bytes);
1478 stat64_max(&bs->wr_highest_offset, offset + bytes);
1480 if (ret >= 0) {
1481 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1482 ret = 0;
1485 return ret;
1488 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1489 int64_t offset,
1490 unsigned int bytes,
1491 BdrvRequestFlags flags,
1492 BdrvTrackedRequest *req)
1494 BlockDriverState *bs = child->bs;
1495 uint8_t *buf = NULL;
1496 QEMUIOVector local_qiov;
1497 struct iovec iov;
1498 uint64_t align = bs->bl.request_alignment;
1499 unsigned int head_padding_bytes, tail_padding_bytes;
1500 int ret = 0;
1502 head_padding_bytes = offset & (align - 1);
1503 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1506 assert(flags & BDRV_REQ_ZERO_WRITE);
1507 if (head_padding_bytes || tail_padding_bytes) {
1508 buf = qemu_blockalign(bs, align);
1509 iov = (struct iovec) {
1510 .iov_base = buf,
1511 .iov_len = align,
1513 qemu_iovec_init_external(&local_qiov, &iov, 1);
1515 if (head_padding_bytes) {
1516 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1518 /* RMW the unaligned part before head. */
1519 mark_request_serialising(req, align);
1520 wait_serialising_requests(req);
1521 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1522 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1523 align, &local_qiov, 0);
1524 if (ret < 0) {
1525 goto fail;
1527 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1529 memset(buf + head_padding_bytes, 0, zero_bytes);
1530 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1531 align, &local_qiov,
1532 flags & ~BDRV_REQ_ZERO_WRITE);
1533 if (ret < 0) {
1534 goto fail;
1536 offset += zero_bytes;
1537 bytes -= zero_bytes;
1540 assert(!bytes || (offset & (align - 1)) == 0);
1541 if (bytes >= align) {
1542 /* Write the aligned part in the middle. */
1543 uint64_t aligned_bytes = bytes & ~(align - 1);
1544 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1545 NULL, flags);
1546 if (ret < 0) {
1547 goto fail;
1549 bytes -= aligned_bytes;
1550 offset += aligned_bytes;
1553 assert(!bytes || (offset & (align - 1)) == 0);
1554 if (bytes) {
1555 assert(align == tail_padding_bytes + bytes);
1556 /* RMW the unaligned part after tail. */
1557 mark_request_serialising(req, align);
1558 wait_serialising_requests(req);
1559 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1560 ret = bdrv_aligned_preadv(child, req, offset, align,
1561 align, &local_qiov, 0);
1562 if (ret < 0) {
1563 goto fail;
1565 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1567 memset(buf, 0, bytes);
1568 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1569 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1571 fail:
1572 qemu_vfree(buf);
1573 return ret;
1578 * Handle a write request in coroutine context
1580 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1581 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1582 BdrvRequestFlags flags)
1584 BlockDriverState *bs = child->bs;
1585 BdrvTrackedRequest req;
1586 uint64_t align = bs->bl.request_alignment;
1587 uint8_t *head_buf = NULL;
1588 uint8_t *tail_buf = NULL;
1589 QEMUIOVector local_qiov;
1590 bool use_local_qiov = false;
1591 int ret;
1593 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1595 if (!bs->drv) {
1596 return -ENOMEDIUM;
1598 if (bs->read_only) {
1599 return -EPERM;
1601 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1603 ret = bdrv_check_byte_request(bs, offset, bytes);
1604 if (ret < 0) {
1605 return ret;
1608 bdrv_inc_in_flight(bs);
1610 * Align write if necessary by performing a read-modify-write cycle.
1611 * Pad qiov with the read parts and be sure to have a tracked request not
1612 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1614 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1616 if (!qiov) {
1617 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1618 goto out;
1621 if (offset & (align - 1)) {
1622 QEMUIOVector head_qiov;
1623 struct iovec head_iov;
1625 mark_request_serialising(&req, align);
1626 wait_serialising_requests(&req);
1628 head_buf = qemu_blockalign(bs, align);
1629 head_iov = (struct iovec) {
1630 .iov_base = head_buf,
1631 .iov_len = align,
1633 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1635 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1636 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1637 align, &head_qiov, 0);
1638 if (ret < 0) {
1639 goto fail;
1641 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1643 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1644 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1645 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1646 use_local_qiov = true;
1648 bytes += offset & (align - 1);
1649 offset = offset & ~(align - 1);
1651 /* We have read the tail already if the request is smaller
1652 * than one aligned block.
1654 if (bytes < align) {
1655 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1656 bytes = align;
1660 if ((offset + bytes) & (align - 1)) {
1661 QEMUIOVector tail_qiov;
1662 struct iovec tail_iov;
1663 size_t tail_bytes;
1664 bool waited;
1666 mark_request_serialising(&req, align);
1667 waited = wait_serialising_requests(&req);
1668 assert(!waited || !use_local_qiov);
1670 tail_buf = qemu_blockalign(bs, align);
1671 tail_iov = (struct iovec) {
1672 .iov_base = tail_buf,
1673 .iov_len = align,
1675 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1677 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1678 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1679 align, align, &tail_qiov, 0);
1680 if (ret < 0) {
1681 goto fail;
1683 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1685 if (!use_local_qiov) {
1686 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1687 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1688 use_local_qiov = true;
1691 tail_bytes = (offset + bytes) & (align - 1);
1692 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1694 bytes = ROUND_UP(bytes, align);
1697 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1698 use_local_qiov ? &local_qiov : qiov,
1699 flags);
1701 fail:
1703 if (use_local_qiov) {
1704 qemu_iovec_destroy(&local_qiov);
1706 qemu_vfree(head_buf);
1707 qemu_vfree(tail_buf);
1708 out:
1709 tracked_request_end(&req);
1710 bdrv_dec_in_flight(bs);
1711 return ret;
1714 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1715 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1716 BdrvRequestFlags flags)
1718 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1719 return -EINVAL;
1722 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1723 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1726 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1727 int nb_sectors, QEMUIOVector *qiov)
1729 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1732 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1733 int bytes, BdrvRequestFlags flags)
1735 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1737 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1738 flags &= ~BDRV_REQ_MAY_UNMAP;
1741 return bdrv_co_pwritev(child, offset, bytes, NULL,
1742 BDRV_REQ_ZERO_WRITE | flags);
1746 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1748 int bdrv_flush_all(void)
1750 BdrvNextIterator it;
1751 BlockDriverState *bs = NULL;
1752 int result = 0;
1754 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1755 AioContext *aio_context = bdrv_get_aio_context(bs);
1756 int ret;
1758 aio_context_acquire(aio_context);
1759 ret = bdrv_flush(bs);
1760 if (ret < 0 && !result) {
1761 result = ret;
1763 aio_context_release(aio_context);
1766 return result;
1770 typedef struct BdrvCoGetBlockStatusData {
1771 BlockDriverState *bs;
1772 BlockDriverState *base;
1773 BlockDriverState **file;
1774 int64_t sector_num;
1775 int nb_sectors;
1776 int *pnum;
1777 int64_t ret;
1778 bool done;
1779 } BdrvCoGetBlockStatusData;
1781 int64_t coroutine_fn bdrv_co_get_block_status_from_file(BlockDriverState *bs,
1782 int64_t sector_num,
1783 int nb_sectors,
1784 int *pnum,
1785 BlockDriverState **file)
1787 assert(bs->file && bs->file->bs);
1788 *pnum = nb_sectors;
1789 *file = bs->file->bs;
1790 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1791 (sector_num << BDRV_SECTOR_BITS);
1794 int64_t coroutine_fn bdrv_co_get_block_status_from_backing(BlockDriverState *bs,
1795 int64_t sector_num,
1796 int nb_sectors,
1797 int *pnum,
1798 BlockDriverState **file)
1800 assert(bs->backing && bs->backing->bs);
1801 *pnum = nb_sectors;
1802 *file = bs->backing->bs;
1803 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1804 (sector_num << BDRV_SECTOR_BITS);
1808 * Returns the allocation status of the specified sectors.
1809 * Drivers not implementing the functionality are assumed to not support
1810 * backing files, hence all their sectors are reported as allocated.
1812 * If 'sector_num' is beyond the end of the disk image the return value is
1813 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1815 * 'pnum' is set to the number of sectors (including and immediately following
1816 * the specified sector) that are known to be in the same
1817 * allocated/unallocated state.
1819 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1820 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1821 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1823 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1824 * points to the BDS which the sector range is allocated in.
1826 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1827 int64_t sector_num,
1828 int nb_sectors, int *pnum,
1829 BlockDriverState **file)
1831 int64_t total_sectors;
1832 int64_t n;
1833 int64_t ret, ret2;
1835 *file = NULL;
1836 total_sectors = bdrv_nb_sectors(bs);
1837 if (total_sectors < 0) {
1838 return total_sectors;
1841 if (sector_num >= total_sectors) {
1842 *pnum = 0;
1843 return BDRV_BLOCK_EOF;
1845 if (!nb_sectors) {
1846 *pnum = 0;
1847 return 0;
1850 n = total_sectors - sector_num;
1851 if (n < nb_sectors) {
1852 nb_sectors = n;
1855 if (!bs->drv->bdrv_co_get_block_status) {
1856 *pnum = nb_sectors;
1857 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1858 if (sector_num + nb_sectors == total_sectors) {
1859 ret |= BDRV_BLOCK_EOF;
1861 if (bs->drv->protocol_name) {
1862 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1863 *file = bs;
1865 return ret;
1868 bdrv_inc_in_flight(bs);
1869 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1870 file);
1871 if (ret < 0) {
1872 *pnum = 0;
1873 goto out;
1876 if (ret & BDRV_BLOCK_RAW) {
1877 assert(ret & BDRV_BLOCK_OFFSET_VALID && *file);
1878 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1879 *pnum, pnum, file);
1880 goto out;
1883 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1884 ret |= BDRV_BLOCK_ALLOCATED;
1885 } else {
1886 if (bdrv_unallocated_blocks_are_zero(bs)) {
1887 ret |= BDRV_BLOCK_ZERO;
1888 } else if (bs->backing) {
1889 BlockDriverState *bs2 = bs->backing->bs;
1890 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1891 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1892 ret |= BDRV_BLOCK_ZERO;
1897 if (*file && *file != bs &&
1898 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1899 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1900 BlockDriverState *file2;
1901 int file_pnum;
1903 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1904 *pnum, &file_pnum, &file2);
1905 if (ret2 >= 0) {
1906 /* Ignore errors. This is just providing extra information, it
1907 * is useful but not necessary.
1909 if (ret2 & BDRV_BLOCK_EOF &&
1910 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
1912 * It is valid for the format block driver to read
1913 * beyond the end of the underlying file's current
1914 * size; such areas read as zero.
1916 ret |= BDRV_BLOCK_ZERO;
1917 } else {
1918 /* Limit request to the range reported by the protocol driver */
1919 *pnum = file_pnum;
1920 ret |= (ret2 & BDRV_BLOCK_ZERO);
1925 out:
1926 bdrv_dec_in_flight(bs);
1927 if (ret >= 0 && sector_num + *pnum == total_sectors) {
1928 ret |= BDRV_BLOCK_EOF;
1930 return ret;
1933 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1934 BlockDriverState *base,
1935 int64_t sector_num,
1936 int nb_sectors,
1937 int *pnum,
1938 BlockDriverState **file)
1940 BlockDriverState *p;
1941 int64_t ret = 0;
1942 bool first = true;
1944 assert(bs != base);
1945 for (p = bs; p != base; p = backing_bs(p)) {
1946 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1947 if (ret < 0) {
1948 break;
1950 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
1952 * Reading beyond the end of the file continues to read
1953 * zeroes, but we can only widen the result to the
1954 * unallocated length we learned from an earlier
1955 * iteration.
1957 *pnum = nb_sectors;
1959 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
1960 break;
1962 /* [sector_num, pnum] unallocated on this layer, which could be only
1963 * the first part of [sector_num, nb_sectors]. */
1964 nb_sectors = MIN(nb_sectors, *pnum);
1965 first = false;
1967 return ret;
1970 /* Coroutine wrapper for bdrv_get_block_status_above() */
1971 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1973 BdrvCoGetBlockStatusData *data = opaque;
1975 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1976 data->sector_num,
1977 data->nb_sectors,
1978 data->pnum,
1979 data->file);
1980 data->done = true;
1984 * Synchronous wrapper around bdrv_co_get_block_status_above().
1986 * See bdrv_co_get_block_status_above() for details.
1988 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1989 BlockDriverState *base,
1990 int64_t sector_num,
1991 int nb_sectors, int *pnum,
1992 BlockDriverState **file)
1994 Coroutine *co;
1995 BdrvCoGetBlockStatusData data = {
1996 .bs = bs,
1997 .base = base,
1998 .file = file,
1999 .sector_num = sector_num,
2000 .nb_sectors = nb_sectors,
2001 .pnum = pnum,
2002 .done = false,
2005 if (qemu_in_coroutine()) {
2006 /* Fast-path if already in coroutine context */
2007 bdrv_get_block_status_above_co_entry(&data);
2008 } else {
2009 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
2010 &data);
2011 bdrv_coroutine_enter(bs, co);
2012 BDRV_POLL_WHILE(bs, !data.done);
2014 return data.ret;
2017 int64_t bdrv_get_block_status(BlockDriverState *bs,
2018 int64_t sector_num,
2019 int nb_sectors, int *pnum,
2020 BlockDriverState **file)
2022 return bdrv_get_block_status_above(bs, backing_bs(bs),
2023 sector_num, nb_sectors, pnum, file);
2026 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2027 int64_t bytes, int64_t *pnum)
2029 BlockDriverState *file;
2030 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
2031 int nb_sectors = bytes >> BDRV_SECTOR_BITS;
2032 int64_t ret;
2033 int psectors;
2035 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
2036 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE) && bytes < INT_MAX);
2037 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &psectors,
2038 &file);
2039 if (ret < 0) {
2040 return ret;
2042 if (pnum) {
2043 *pnum = psectors * BDRV_SECTOR_SIZE;
2045 return !!(ret & BDRV_BLOCK_ALLOCATED);
2049 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2051 * Return true if (a prefix of) the given range is allocated in any image
2052 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2053 * offset is allocated in any image of the chain. Return false otherwise,
2054 * or negative errno on failure.
2056 * 'pnum' is set to the number of bytes (including and immediately
2057 * following the specified offset) that are known to be in the same
2058 * allocated/unallocated state. Note that a subsequent call starting
2059 * at 'offset + *pnum' may return the same allocation status (in other
2060 * words, the result is not necessarily the maximum possible range);
2061 * but 'pnum' will only be 0 when end of file is reached.
2064 int bdrv_is_allocated_above(BlockDriverState *top,
2065 BlockDriverState *base,
2066 int64_t offset, int64_t bytes, int64_t *pnum)
2068 BlockDriverState *intermediate;
2069 int ret;
2070 int64_t n = bytes;
2072 intermediate = top;
2073 while (intermediate && intermediate != base) {
2074 int64_t pnum_inter;
2075 int64_t size_inter;
2077 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2078 if (ret < 0) {
2079 return ret;
2081 if (ret) {
2082 *pnum = pnum_inter;
2083 return 1;
2086 size_inter = bdrv_getlength(intermediate);
2087 if (size_inter < 0) {
2088 return size_inter;
2090 if (n > pnum_inter &&
2091 (intermediate == top || offset + pnum_inter < size_inter)) {
2092 n = pnum_inter;
2095 intermediate = backing_bs(intermediate);
2098 *pnum = n;
2099 return 0;
2102 typedef struct BdrvVmstateCo {
2103 BlockDriverState *bs;
2104 QEMUIOVector *qiov;
2105 int64_t pos;
2106 bool is_read;
2107 int ret;
2108 } BdrvVmstateCo;
2110 static int coroutine_fn
2111 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2112 bool is_read)
2114 BlockDriver *drv = bs->drv;
2115 int ret = -ENOTSUP;
2117 bdrv_inc_in_flight(bs);
2119 if (!drv) {
2120 ret = -ENOMEDIUM;
2121 } else if (drv->bdrv_load_vmstate) {
2122 if (is_read) {
2123 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2124 } else {
2125 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2127 } else if (bs->file) {
2128 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2131 bdrv_dec_in_flight(bs);
2132 return ret;
2135 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2137 BdrvVmstateCo *co = opaque;
2138 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2141 static inline int
2142 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2143 bool is_read)
2145 if (qemu_in_coroutine()) {
2146 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2147 } else {
2148 BdrvVmstateCo data = {
2149 .bs = bs,
2150 .qiov = qiov,
2151 .pos = pos,
2152 .is_read = is_read,
2153 .ret = -EINPROGRESS,
2155 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2157 bdrv_coroutine_enter(bs, co);
2158 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2159 return data.ret;
2163 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2164 int64_t pos, int size)
2166 QEMUIOVector qiov;
2167 struct iovec iov = {
2168 .iov_base = (void *) buf,
2169 .iov_len = size,
2171 int ret;
2173 qemu_iovec_init_external(&qiov, &iov, 1);
2175 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2176 if (ret < 0) {
2177 return ret;
2180 return size;
2183 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2185 return bdrv_rw_vmstate(bs, qiov, pos, false);
2188 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2189 int64_t pos, int size)
2191 QEMUIOVector qiov;
2192 struct iovec iov = {
2193 .iov_base = buf,
2194 .iov_len = size,
2196 int ret;
2198 qemu_iovec_init_external(&qiov, &iov, 1);
2199 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2200 if (ret < 0) {
2201 return ret;
2204 return size;
2207 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2209 return bdrv_rw_vmstate(bs, qiov, pos, true);
2212 /**************************************************************/
2213 /* async I/Os */
2215 void bdrv_aio_cancel(BlockAIOCB *acb)
2217 qemu_aio_ref(acb);
2218 bdrv_aio_cancel_async(acb);
2219 while (acb->refcnt > 1) {
2220 if (acb->aiocb_info->get_aio_context) {
2221 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2222 } else if (acb->bs) {
2223 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2224 * assert that we're not using an I/O thread. Thread-safe
2225 * code should use bdrv_aio_cancel_async exclusively.
2227 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2228 aio_poll(bdrv_get_aio_context(acb->bs), true);
2229 } else {
2230 abort();
2233 qemu_aio_unref(acb);
2236 /* Async version of aio cancel. The caller is not blocked if the acb implements
2237 * cancel_async, otherwise we do nothing and let the request normally complete.
2238 * In either case the completion callback must be called. */
2239 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2241 if (acb->aiocb_info->cancel_async) {
2242 acb->aiocb_info->cancel_async(acb);
2246 /**************************************************************/
2247 /* Coroutine block device emulation */
2249 typedef struct FlushCo {
2250 BlockDriverState *bs;
2251 int ret;
2252 } FlushCo;
2255 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2257 FlushCo *rwco = opaque;
2259 rwco->ret = bdrv_co_flush(rwco->bs);
2262 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2264 int current_gen;
2265 int ret = 0;
2267 bdrv_inc_in_flight(bs);
2269 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2270 bdrv_is_sg(bs)) {
2271 goto early_exit;
2274 qemu_co_mutex_lock(&bs->reqs_lock);
2275 current_gen = atomic_read(&bs->write_gen);
2277 /* Wait until any previous flushes are completed */
2278 while (bs->active_flush_req) {
2279 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2282 /* Flushes reach this point in nondecreasing current_gen order. */
2283 bs->active_flush_req = true;
2284 qemu_co_mutex_unlock(&bs->reqs_lock);
2286 /* Write back all layers by calling one driver function */
2287 if (bs->drv->bdrv_co_flush) {
2288 ret = bs->drv->bdrv_co_flush(bs);
2289 goto out;
2292 /* Write back cached data to the OS even with cache=unsafe */
2293 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2294 if (bs->drv->bdrv_co_flush_to_os) {
2295 ret = bs->drv->bdrv_co_flush_to_os(bs);
2296 if (ret < 0) {
2297 goto out;
2301 /* But don't actually force it to the disk with cache=unsafe */
2302 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2303 goto flush_parent;
2306 /* Check if we really need to flush anything */
2307 if (bs->flushed_gen == current_gen) {
2308 goto flush_parent;
2311 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2312 if (bs->drv->bdrv_co_flush_to_disk) {
2313 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2314 } else if (bs->drv->bdrv_aio_flush) {
2315 BlockAIOCB *acb;
2316 CoroutineIOCompletion co = {
2317 .coroutine = qemu_coroutine_self(),
2320 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2321 if (acb == NULL) {
2322 ret = -EIO;
2323 } else {
2324 qemu_coroutine_yield();
2325 ret = co.ret;
2327 } else {
2329 * Some block drivers always operate in either writethrough or unsafe
2330 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2331 * know how the server works (because the behaviour is hardcoded or
2332 * depends on server-side configuration), so we can't ensure that
2333 * everything is safe on disk. Returning an error doesn't work because
2334 * that would break guests even if the server operates in writethrough
2335 * mode.
2337 * Let's hope the user knows what he's doing.
2339 ret = 0;
2342 if (ret < 0) {
2343 goto out;
2346 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2347 * in the case of cache=unsafe, so there are no useless flushes.
2349 flush_parent:
2350 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2351 out:
2352 /* Notify any pending flushes that we have completed */
2353 if (ret == 0) {
2354 bs->flushed_gen = current_gen;
2357 qemu_co_mutex_lock(&bs->reqs_lock);
2358 bs->active_flush_req = false;
2359 /* Return value is ignored - it's ok if wait queue is empty */
2360 qemu_co_queue_next(&bs->flush_queue);
2361 qemu_co_mutex_unlock(&bs->reqs_lock);
2363 early_exit:
2364 bdrv_dec_in_flight(bs);
2365 return ret;
2368 int bdrv_flush(BlockDriverState *bs)
2370 Coroutine *co;
2371 FlushCo flush_co = {
2372 .bs = bs,
2373 .ret = NOT_DONE,
2376 if (qemu_in_coroutine()) {
2377 /* Fast-path if already in coroutine context */
2378 bdrv_flush_co_entry(&flush_co);
2379 } else {
2380 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2381 bdrv_coroutine_enter(bs, co);
2382 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2385 return flush_co.ret;
2388 typedef struct DiscardCo {
2389 BlockDriverState *bs;
2390 int64_t offset;
2391 int bytes;
2392 int ret;
2393 } DiscardCo;
2394 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2396 DiscardCo *rwco = opaque;
2398 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2401 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2402 int bytes)
2404 BdrvTrackedRequest req;
2405 int max_pdiscard, ret;
2406 int head, tail, align;
2408 if (!bs->drv) {
2409 return -ENOMEDIUM;
2412 if (bdrv_has_readonly_bitmaps(bs)) {
2413 return -EPERM;
2416 ret = bdrv_check_byte_request(bs, offset, bytes);
2417 if (ret < 0) {
2418 return ret;
2419 } else if (bs->read_only) {
2420 return -EPERM;
2422 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2424 /* Do nothing if disabled. */
2425 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2426 return 0;
2429 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2430 return 0;
2433 /* Discard is advisory, but some devices track and coalesce
2434 * unaligned requests, so we must pass everything down rather than
2435 * round here. Still, most devices will just silently ignore
2436 * unaligned requests (by returning -ENOTSUP), so we must fragment
2437 * the request accordingly. */
2438 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2439 assert(align % bs->bl.request_alignment == 0);
2440 head = offset % align;
2441 tail = (offset + bytes) % align;
2443 bdrv_inc_in_flight(bs);
2444 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2446 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2447 if (ret < 0) {
2448 goto out;
2451 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2452 align);
2453 assert(max_pdiscard >= bs->bl.request_alignment);
2455 while (bytes > 0) {
2456 int num = bytes;
2458 if (head) {
2459 /* Make small requests to get to alignment boundaries. */
2460 num = MIN(bytes, align - head);
2461 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2462 num %= bs->bl.request_alignment;
2464 head = (head + num) % align;
2465 assert(num < max_pdiscard);
2466 } else if (tail) {
2467 if (num > align) {
2468 /* Shorten the request to the last aligned cluster. */
2469 num -= tail;
2470 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2471 tail > bs->bl.request_alignment) {
2472 tail %= bs->bl.request_alignment;
2473 num -= tail;
2476 /* limit request size */
2477 if (num > max_pdiscard) {
2478 num = max_pdiscard;
2481 if (bs->drv->bdrv_co_pdiscard) {
2482 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2483 } else {
2484 BlockAIOCB *acb;
2485 CoroutineIOCompletion co = {
2486 .coroutine = qemu_coroutine_self(),
2489 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2490 bdrv_co_io_em_complete, &co);
2491 if (acb == NULL) {
2492 ret = -EIO;
2493 goto out;
2494 } else {
2495 qemu_coroutine_yield();
2496 ret = co.ret;
2499 if (ret && ret != -ENOTSUP) {
2500 goto out;
2503 offset += num;
2504 bytes -= num;
2506 ret = 0;
2507 out:
2508 atomic_inc(&bs->write_gen);
2509 bdrv_set_dirty(bs, req.offset, req.bytes);
2510 tracked_request_end(&req);
2511 bdrv_dec_in_flight(bs);
2512 return ret;
2515 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2517 Coroutine *co;
2518 DiscardCo rwco = {
2519 .bs = bs,
2520 .offset = offset,
2521 .bytes = bytes,
2522 .ret = NOT_DONE,
2525 if (qemu_in_coroutine()) {
2526 /* Fast-path if already in coroutine context */
2527 bdrv_pdiscard_co_entry(&rwco);
2528 } else {
2529 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2530 bdrv_coroutine_enter(bs, co);
2531 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2534 return rwco.ret;
2537 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2539 BlockDriver *drv = bs->drv;
2540 CoroutineIOCompletion co = {
2541 .coroutine = qemu_coroutine_self(),
2543 BlockAIOCB *acb;
2545 bdrv_inc_in_flight(bs);
2546 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2547 co.ret = -ENOTSUP;
2548 goto out;
2551 if (drv->bdrv_co_ioctl) {
2552 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2553 } else {
2554 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2555 if (!acb) {
2556 co.ret = -ENOTSUP;
2557 goto out;
2559 qemu_coroutine_yield();
2561 out:
2562 bdrv_dec_in_flight(bs);
2563 return co.ret;
2566 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2568 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2571 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2573 return memset(qemu_blockalign(bs, size), 0, size);
2576 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2578 size_t align = bdrv_opt_mem_align(bs);
2580 /* Ensure that NULL is never returned on success */
2581 assert(align > 0);
2582 if (size == 0) {
2583 size = align;
2586 return qemu_try_memalign(align, size);
2589 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2591 void *mem = qemu_try_blockalign(bs, size);
2593 if (mem) {
2594 memset(mem, 0, size);
2597 return mem;
2601 * Check if all memory in this vector is sector aligned.
2603 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2605 int i;
2606 size_t alignment = bdrv_min_mem_align(bs);
2608 for (i = 0; i < qiov->niov; i++) {
2609 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2610 return false;
2612 if (qiov->iov[i].iov_len % alignment) {
2613 return false;
2617 return true;
2620 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2621 NotifierWithReturn *notifier)
2623 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2626 void bdrv_io_plug(BlockDriverState *bs)
2628 BdrvChild *child;
2630 QLIST_FOREACH(child, &bs->children, next) {
2631 bdrv_io_plug(child->bs);
2634 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2635 BlockDriver *drv = bs->drv;
2636 if (drv && drv->bdrv_io_plug) {
2637 drv->bdrv_io_plug(bs);
2642 void bdrv_io_unplug(BlockDriverState *bs)
2644 BdrvChild *child;
2646 assert(bs->io_plugged);
2647 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2648 BlockDriver *drv = bs->drv;
2649 if (drv && drv->bdrv_io_unplug) {
2650 drv->bdrv_io_unplug(bs);
2654 QLIST_FOREACH(child, &bs->children, next) {
2655 bdrv_io_unplug(child->bs);