block: Mark bdrv_refresh_filename() and callers GRAPH_RDLOCK
[qemu/kevin.git] / migration / rdma.c
blobf6fc226c9b8ba7b655220a4ce28071e5625c4cd9
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
52 * This is only for non-live state being migrated.
53 * Instead of RDMA_WRITE messages, we use RDMA_SEND
54 * messages for that state, which requires a different
55 * delivery design than main memory.
57 #define RDMA_SEND_INCREMENT 32768
60 * Maximum size infiniband SEND message
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
65 #define RDMA_CONTROL_VERSION_CURRENT 1
67 * Capabilities for negotiation.
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
72 * Add the other flags above to this list of known capabilities
73 * as they are introduced.
75 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
78 * A work request ID is 64-bits and we split up these bits
79 * into 3 parts:
81 * bits 0-15 : type of control message, 2^16
82 * bits 16-29: ram block index, 2^14
83 * bits 30-63: ram block chunk number, 2^34
85 * The last two bit ranges are only used for RDMA writes,
86 * in order to track their completion and potentially
87 * also track unregistration status of the message.
89 #define RDMA_WRID_TYPE_SHIFT 0UL
90 #define RDMA_WRID_BLOCK_SHIFT 16UL
91 #define RDMA_WRID_CHUNK_SHIFT 30UL
93 #define RDMA_WRID_TYPE_MASK \
94 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
96 #define RDMA_WRID_BLOCK_MASK \
97 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
99 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
102 * RDMA migration protocol:
103 * 1. RDMA Writes (data messages, i.e. RAM)
104 * 2. IB Send/Recv (control channel messages)
106 enum {
107 RDMA_WRID_NONE = 0,
108 RDMA_WRID_RDMA_WRITE = 1,
109 RDMA_WRID_SEND_CONTROL = 2000,
110 RDMA_WRID_RECV_CONTROL = 4000,
114 * Work request IDs for IB SEND messages only (not RDMA writes).
115 * This is used by the migration protocol to transmit
116 * control messages (such as device state and registration commands)
118 * We could use more WRs, but we have enough for now.
120 enum {
121 RDMA_WRID_READY = 0,
122 RDMA_WRID_DATA,
123 RDMA_WRID_CONTROL,
124 RDMA_WRID_MAX,
128 * SEND/RECV IB Control Messages.
130 enum {
131 RDMA_CONTROL_NONE = 0,
132 RDMA_CONTROL_ERROR,
133 RDMA_CONTROL_READY, /* ready to receive */
134 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
135 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
136 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
137 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
138 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
139 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
140 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
141 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
142 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
147 * Memory and MR structures used to represent an IB Send/Recv work request.
148 * This is *not* used for RDMA writes, only IB Send/Recv.
150 typedef struct {
151 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
152 struct ibv_mr *control_mr; /* registration metadata */
153 size_t control_len; /* length of the message */
154 uint8_t *control_curr; /* start of unconsumed bytes */
155 } RDMAWorkRequestData;
158 * Negotiate RDMA capabilities during connection-setup time.
160 typedef struct {
161 uint32_t version;
162 uint32_t flags;
163 } RDMACapabilities;
165 static void caps_to_network(RDMACapabilities *cap)
167 cap->version = htonl(cap->version);
168 cap->flags = htonl(cap->flags);
171 static void network_to_caps(RDMACapabilities *cap)
173 cap->version = ntohl(cap->version);
174 cap->flags = ntohl(cap->flags);
178 * Representation of a RAMBlock from an RDMA perspective.
179 * This is not transmitted, only local.
180 * This and subsequent structures cannot be linked lists
181 * because we're using a single IB message to transmit
182 * the information. It's small anyway, so a list is overkill.
184 typedef struct RDMALocalBlock {
185 char *block_name;
186 uint8_t *local_host_addr; /* local virtual address */
187 uint64_t remote_host_addr; /* remote virtual address */
188 uint64_t offset;
189 uint64_t length;
190 struct ibv_mr **pmr; /* MRs for chunk-level registration */
191 struct ibv_mr *mr; /* MR for non-chunk-level registration */
192 uint32_t *remote_keys; /* rkeys for chunk-level registration */
193 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
194 int index; /* which block are we */
195 unsigned int src_index; /* (Only used on dest) */
196 bool is_ram_block;
197 int nb_chunks;
198 unsigned long *transit_bitmap;
199 unsigned long *unregister_bitmap;
200 } RDMALocalBlock;
203 * Also represents a RAMblock, but only on the dest.
204 * This gets transmitted by the dest during connection-time
205 * to the source VM and then is used to populate the
206 * corresponding RDMALocalBlock with
207 * the information needed to perform the actual RDMA.
209 typedef struct QEMU_PACKED RDMADestBlock {
210 uint64_t remote_host_addr;
211 uint64_t offset;
212 uint64_t length;
213 uint32_t remote_rkey;
214 uint32_t padding;
215 } RDMADestBlock;
217 static const char *control_desc(unsigned int rdma_control)
219 static const char *strs[] = {
220 [RDMA_CONTROL_NONE] = "NONE",
221 [RDMA_CONTROL_ERROR] = "ERROR",
222 [RDMA_CONTROL_READY] = "READY",
223 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
224 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
225 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
226 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
227 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
228 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
229 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
230 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
231 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
234 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
235 return "??BAD CONTROL VALUE??";
238 return strs[rdma_control];
241 static uint64_t htonll(uint64_t v)
243 union { uint32_t lv[2]; uint64_t llv; } u;
244 u.lv[0] = htonl(v >> 32);
245 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
246 return u.llv;
249 static uint64_t ntohll(uint64_t v)
251 union { uint32_t lv[2]; uint64_t llv; } u;
252 u.llv = v;
253 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
256 static void dest_block_to_network(RDMADestBlock *db)
258 db->remote_host_addr = htonll(db->remote_host_addr);
259 db->offset = htonll(db->offset);
260 db->length = htonll(db->length);
261 db->remote_rkey = htonl(db->remote_rkey);
264 static void network_to_dest_block(RDMADestBlock *db)
266 db->remote_host_addr = ntohll(db->remote_host_addr);
267 db->offset = ntohll(db->offset);
268 db->length = ntohll(db->length);
269 db->remote_rkey = ntohl(db->remote_rkey);
273 * Virtual address of the above structures used for transmitting
274 * the RAMBlock descriptions at connection-time.
275 * This structure is *not* transmitted.
277 typedef struct RDMALocalBlocks {
278 int nb_blocks;
279 bool init; /* main memory init complete */
280 RDMALocalBlock *block;
281 } RDMALocalBlocks;
284 * Main data structure for RDMA state.
285 * While there is only one copy of this structure being allocated right now,
286 * this is the place where one would start if you wanted to consider
287 * having more than one RDMA connection open at the same time.
289 typedef struct RDMAContext {
290 char *host;
291 int port;
292 char *host_port;
294 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
297 * This is used by *_exchange_send() to figure out whether or not
298 * the initial "READY" message has already been received or not.
299 * This is because other functions may potentially poll() and detect
300 * the READY message before send() does, in which case we need to
301 * know if it completed.
303 int control_ready_expected;
305 /* number of outstanding writes */
306 int nb_sent;
308 /* store info about current buffer so that we can
309 merge it with future sends */
310 uint64_t current_addr;
311 uint64_t current_length;
312 /* index of ram block the current buffer belongs to */
313 int current_index;
314 /* index of the chunk in the current ram block */
315 int current_chunk;
317 bool pin_all;
320 * infiniband-specific variables for opening the device
321 * and maintaining connection state and so forth.
323 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
324 * cm_id->verbs, cm_id->channel, and cm_id->qp.
326 struct rdma_cm_id *cm_id; /* connection manager ID */
327 struct rdma_cm_id *listen_id;
328 bool connected;
330 struct ibv_context *verbs;
331 struct rdma_event_channel *channel;
332 struct ibv_qp *qp; /* queue pair */
333 struct ibv_comp_channel *recv_comp_channel; /* recv completion channel */
334 struct ibv_comp_channel *send_comp_channel; /* send completion channel */
335 struct ibv_pd *pd; /* protection domain */
336 struct ibv_cq *recv_cq; /* recvieve completion queue */
337 struct ibv_cq *send_cq; /* send completion queue */
340 * If a previous write failed (perhaps because of a failed
341 * memory registration, then do not attempt any future work
342 * and remember the error state.
344 bool errored;
345 bool error_reported;
346 bool received_error;
349 * Description of ram blocks used throughout the code.
351 RDMALocalBlocks local_ram_blocks;
352 RDMADestBlock *dest_blocks;
354 /* Index of the next RAMBlock received during block registration */
355 unsigned int next_src_index;
358 * Migration on *destination* started.
359 * Then use coroutine yield function.
360 * Source runs in a thread, so we don't care.
362 int migration_started_on_destination;
364 int total_registrations;
365 int total_writes;
367 int unregister_current, unregister_next;
368 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
370 GHashTable *blockmap;
372 /* the RDMAContext for return path */
373 struct RDMAContext *return_path;
374 bool is_return_path;
375 } RDMAContext;
377 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
378 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
382 struct QIOChannelRDMA {
383 QIOChannel parent;
384 RDMAContext *rdmain;
385 RDMAContext *rdmaout;
386 QEMUFile *file;
387 bool blocking; /* XXX we don't actually honour this yet */
391 * Main structure for IB Send/Recv control messages.
392 * This gets prepended at the beginning of every Send/Recv.
394 typedef struct QEMU_PACKED {
395 uint32_t len; /* Total length of data portion */
396 uint32_t type; /* which control command to perform */
397 uint32_t repeat; /* number of commands in data portion of same type */
398 uint32_t padding;
399 } RDMAControlHeader;
401 static void control_to_network(RDMAControlHeader *control)
403 control->type = htonl(control->type);
404 control->len = htonl(control->len);
405 control->repeat = htonl(control->repeat);
408 static void network_to_control(RDMAControlHeader *control)
410 control->type = ntohl(control->type);
411 control->len = ntohl(control->len);
412 control->repeat = ntohl(control->repeat);
416 * Register a single Chunk.
417 * Information sent by the source VM to inform the dest
418 * to register an single chunk of memory before we can perform
419 * the actual RDMA operation.
421 typedef struct QEMU_PACKED {
422 union QEMU_PACKED {
423 uint64_t current_addr; /* offset into the ram_addr_t space */
424 uint64_t chunk; /* chunk to lookup if unregistering */
425 } key;
426 uint32_t current_index; /* which ramblock the chunk belongs to */
427 uint32_t padding;
428 uint64_t chunks; /* how many sequential chunks to register */
429 } RDMARegister;
431 static bool rdma_errored(RDMAContext *rdma)
433 if (rdma->errored && !rdma->error_reported) {
434 error_report("RDMA is in an error state waiting migration"
435 " to abort!");
436 rdma->error_reported = true;
438 return rdma->errored;
441 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
443 RDMALocalBlock *local_block;
444 local_block = &rdma->local_ram_blocks.block[reg->current_index];
446 if (local_block->is_ram_block) {
448 * current_addr as passed in is an address in the local ram_addr_t
449 * space, we need to translate this for the destination
451 reg->key.current_addr -= local_block->offset;
452 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
454 reg->key.current_addr = htonll(reg->key.current_addr);
455 reg->current_index = htonl(reg->current_index);
456 reg->chunks = htonll(reg->chunks);
459 static void network_to_register(RDMARegister *reg)
461 reg->key.current_addr = ntohll(reg->key.current_addr);
462 reg->current_index = ntohl(reg->current_index);
463 reg->chunks = ntohll(reg->chunks);
466 typedef struct QEMU_PACKED {
467 uint32_t value; /* if zero, we will madvise() */
468 uint32_t block_idx; /* which ram block index */
469 uint64_t offset; /* Address in remote ram_addr_t space */
470 uint64_t length; /* length of the chunk */
471 } RDMACompress;
473 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
475 comp->value = htonl(comp->value);
477 * comp->offset as passed in is an address in the local ram_addr_t
478 * space, we need to translate this for the destination
480 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
481 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
482 comp->block_idx = htonl(comp->block_idx);
483 comp->offset = htonll(comp->offset);
484 comp->length = htonll(comp->length);
487 static void network_to_compress(RDMACompress *comp)
489 comp->value = ntohl(comp->value);
490 comp->block_idx = ntohl(comp->block_idx);
491 comp->offset = ntohll(comp->offset);
492 comp->length = ntohll(comp->length);
496 * The result of the dest's memory registration produces an "rkey"
497 * which the source VM must reference in order to perform
498 * the RDMA operation.
500 typedef struct QEMU_PACKED {
501 uint32_t rkey;
502 uint32_t padding;
503 uint64_t host_addr;
504 } RDMARegisterResult;
506 static void result_to_network(RDMARegisterResult *result)
508 result->rkey = htonl(result->rkey);
509 result->host_addr = htonll(result->host_addr);
512 static void network_to_result(RDMARegisterResult *result)
514 result->rkey = ntohl(result->rkey);
515 result->host_addr = ntohll(result->host_addr);
518 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
519 uint8_t *data, RDMAControlHeader *resp,
520 int *resp_idx,
521 int (*callback)(RDMAContext *rdma,
522 Error **errp),
523 Error **errp);
525 static inline uint64_t ram_chunk_index(const uint8_t *start,
526 const uint8_t *host)
528 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
531 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
532 uint64_t i)
534 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
535 (i << RDMA_REG_CHUNK_SHIFT));
538 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
539 uint64_t i)
541 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
542 (1UL << RDMA_REG_CHUNK_SHIFT);
544 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
545 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
548 return result;
551 static void rdma_add_block(RDMAContext *rdma, const char *block_name,
552 void *host_addr,
553 ram_addr_t block_offset, uint64_t length)
555 RDMALocalBlocks *local = &rdma->local_ram_blocks;
556 RDMALocalBlock *block;
557 RDMALocalBlock *old = local->block;
559 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
561 if (local->nb_blocks) {
562 int x;
564 if (rdma->blockmap) {
565 for (x = 0; x < local->nb_blocks; x++) {
566 g_hash_table_remove(rdma->blockmap,
567 (void *)(uintptr_t)old[x].offset);
568 g_hash_table_insert(rdma->blockmap,
569 (void *)(uintptr_t)old[x].offset,
570 &local->block[x]);
573 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
574 g_free(old);
577 block = &local->block[local->nb_blocks];
579 block->block_name = g_strdup(block_name);
580 block->local_host_addr = host_addr;
581 block->offset = block_offset;
582 block->length = length;
583 block->index = local->nb_blocks;
584 block->src_index = ~0U; /* Filled in by the receipt of the block list */
585 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
586 block->transit_bitmap = bitmap_new(block->nb_chunks);
587 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
588 block->unregister_bitmap = bitmap_new(block->nb_chunks);
589 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
590 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
592 block->is_ram_block = local->init ? false : true;
594 if (rdma->blockmap) {
595 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
598 trace_rdma_add_block(block_name, local->nb_blocks,
599 (uintptr_t) block->local_host_addr,
600 block->offset, block->length,
601 (uintptr_t) (block->local_host_addr + block->length),
602 BITS_TO_LONGS(block->nb_chunks) *
603 sizeof(unsigned long) * 8,
604 block->nb_chunks);
606 local->nb_blocks++;
610 * Memory regions need to be registered with the device and queue pairs setup
611 * in advanced before the migration starts. This tells us where the RAM blocks
612 * are so that we can register them individually.
614 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
616 const char *block_name = qemu_ram_get_idstr(rb);
617 void *host_addr = qemu_ram_get_host_addr(rb);
618 ram_addr_t block_offset = qemu_ram_get_offset(rb);
619 ram_addr_t length = qemu_ram_get_used_length(rb);
620 rdma_add_block(opaque, block_name, host_addr, block_offset, length);
621 return 0;
625 * Identify the RAMBlocks and their quantity. They will be references to
626 * identify chunk boundaries inside each RAMBlock and also be referenced
627 * during dynamic page registration.
629 static void qemu_rdma_init_ram_blocks(RDMAContext *rdma)
631 RDMALocalBlocks *local = &rdma->local_ram_blocks;
632 int ret;
634 assert(rdma->blockmap == NULL);
635 memset(local, 0, sizeof *local);
636 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
637 assert(!ret);
638 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
639 rdma->dest_blocks = g_new0(RDMADestBlock,
640 rdma->local_ram_blocks.nb_blocks);
641 local->init = true;
645 * Note: If used outside of cleanup, the caller must ensure that the destination
646 * block structures are also updated
648 static void rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
650 RDMALocalBlocks *local = &rdma->local_ram_blocks;
651 RDMALocalBlock *old = local->block;
652 int x;
654 if (rdma->blockmap) {
655 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
657 if (block->pmr) {
658 int j;
660 for (j = 0; j < block->nb_chunks; j++) {
661 if (!block->pmr[j]) {
662 continue;
664 ibv_dereg_mr(block->pmr[j]);
665 rdma->total_registrations--;
667 g_free(block->pmr);
668 block->pmr = NULL;
671 if (block->mr) {
672 ibv_dereg_mr(block->mr);
673 rdma->total_registrations--;
674 block->mr = NULL;
677 g_free(block->transit_bitmap);
678 block->transit_bitmap = NULL;
680 g_free(block->unregister_bitmap);
681 block->unregister_bitmap = NULL;
683 g_free(block->remote_keys);
684 block->remote_keys = NULL;
686 g_free(block->block_name);
687 block->block_name = NULL;
689 if (rdma->blockmap) {
690 for (x = 0; x < local->nb_blocks; x++) {
691 g_hash_table_remove(rdma->blockmap,
692 (void *)(uintptr_t)old[x].offset);
696 if (local->nb_blocks > 1) {
698 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
700 if (block->index) {
701 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
704 if (block->index < (local->nb_blocks - 1)) {
705 memcpy(local->block + block->index, old + (block->index + 1),
706 sizeof(RDMALocalBlock) *
707 (local->nb_blocks - (block->index + 1)));
708 for (x = block->index; x < local->nb_blocks - 1; x++) {
709 local->block[x].index--;
712 } else {
713 assert(block == local->block);
714 local->block = NULL;
717 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
718 block->offset, block->length,
719 (uintptr_t)(block->local_host_addr + block->length),
720 BITS_TO_LONGS(block->nb_chunks) *
721 sizeof(unsigned long) * 8, block->nb_chunks);
723 g_free(old);
725 local->nb_blocks--;
727 if (local->nb_blocks && rdma->blockmap) {
728 for (x = 0; x < local->nb_blocks; x++) {
729 g_hash_table_insert(rdma->blockmap,
730 (void *)(uintptr_t)local->block[x].offset,
731 &local->block[x]);
737 * Trace RDMA device open, with device details.
739 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
741 struct ibv_port_attr port;
743 if (ibv_query_port(verbs, 1, &port)) {
744 trace_qemu_rdma_dump_id_failed(who);
745 return;
748 trace_qemu_rdma_dump_id(who,
749 verbs->device->name,
750 verbs->device->dev_name,
751 verbs->device->dev_path,
752 verbs->device->ibdev_path,
753 port.link_layer,
754 port.link_layer == IBV_LINK_LAYER_INFINIBAND ? "Infiniband"
755 : port.link_layer == IBV_LINK_LAYER_ETHERNET ? "Ethernet"
756 : "Unknown");
760 * Trace RDMA gid addressing information.
761 * Useful for understanding the RDMA device hierarchy in the kernel.
763 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
765 char sgid[33];
766 char dgid[33];
767 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
768 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
769 trace_qemu_rdma_dump_gid(who, sgid, dgid);
773 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
774 * We will try the next addrinfo struct, and fail if there are
775 * no other valid addresses to bind against.
777 * If user is listening on '[::]', then we will not have a opened a device
778 * yet and have no way of verifying if the device is RoCE or not.
780 * In this case, the source VM will throw an error for ALL types of
781 * connections (both IPv4 and IPv6) if the destination machine does not have
782 * a regular infiniband network available for use.
784 * The only way to guarantee that an error is thrown for broken kernels is
785 * for the management software to choose a *specific* interface at bind time
786 * and validate what time of hardware it is.
788 * Unfortunately, this puts the user in a fix:
790 * If the source VM connects with an IPv4 address without knowing that the
791 * destination has bound to '[::]' the migration will unconditionally fail
792 * unless the management software is explicitly listening on the IPv4
793 * address while using a RoCE-based device.
795 * If the source VM connects with an IPv6 address, then we're OK because we can
796 * throw an error on the source (and similarly on the destination).
798 * But in mixed environments, this will be broken for a while until it is fixed
799 * inside linux.
801 * We do provide a *tiny* bit of help in this function: We can list all of the
802 * devices in the system and check to see if all the devices are RoCE or
803 * Infiniband.
805 * If we detect that we have a *pure* RoCE environment, then we can safely
806 * thrown an error even if the management software has specified '[::]' as the
807 * bind address.
809 * However, if there is are multiple hetergeneous devices, then we cannot make
810 * this assumption and the user just has to be sure they know what they are
811 * doing.
813 * Patches are being reviewed on linux-rdma.
815 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
817 /* This bug only exists in linux, to our knowledge. */
818 #ifdef CONFIG_LINUX
819 struct ibv_port_attr port_attr;
822 * Verbs are only NULL if management has bound to '[::]'.
824 * Let's iterate through all the devices and see if there any pure IB
825 * devices (non-ethernet).
827 * If not, then we can safely proceed with the migration.
828 * Otherwise, there are no guarantees until the bug is fixed in linux.
830 if (!verbs) {
831 int num_devices, x;
832 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
833 bool roce_found = false;
834 bool ib_found = false;
836 for (x = 0; x < num_devices; x++) {
837 verbs = ibv_open_device(dev_list[x]);
839 * ibv_open_device() is not documented to set errno. If
840 * it does, it's somebody else's doc bug. If it doesn't,
841 * the use of errno below is wrong.
842 * TODO Find out whether ibv_open_device() sets errno.
844 if (!verbs) {
845 if (errno == EPERM) {
846 continue;
847 } else {
848 error_setg_errno(errp, errno,
849 "could not open RDMA device context");
850 return -1;
854 if (ibv_query_port(verbs, 1, &port_attr)) {
855 ibv_close_device(verbs);
856 error_setg(errp,
857 "RDMA ERROR: Could not query initial IB port");
858 return -1;
861 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
862 ib_found = true;
863 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
864 roce_found = true;
867 ibv_close_device(verbs);
871 if (roce_found) {
872 if (ib_found) {
873 warn_report("migrations may fail:"
874 " IPv6 over RoCE / iWARP in linux"
875 " is broken. But since you appear to have a"
876 " mixed RoCE / IB environment, be sure to only"
877 " migrate over the IB fabric until the kernel "
878 " fixes the bug.");
879 } else {
880 error_setg(errp, "RDMA ERROR: "
881 "You only have RoCE / iWARP devices in your systems"
882 " and your management software has specified '[::]'"
883 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
884 return -1;
888 return 0;
892 * If we have a verbs context, that means that some other than '[::]' was
893 * used by the management software for binding. In which case we can
894 * actually warn the user about a potentially broken kernel.
897 /* IB ports start with 1, not 0 */
898 if (ibv_query_port(verbs, 1, &port_attr)) {
899 error_setg(errp, "RDMA ERROR: Could not query initial IB port");
900 return -1;
903 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
904 error_setg(errp, "RDMA ERROR: "
905 "Linux kernel's RoCE / iWARP does not support IPv6 "
906 "(but patches on linux-rdma in progress)");
907 return -1;
910 #endif
912 return 0;
916 * Figure out which RDMA device corresponds to the requested IP hostname
917 * Also create the initial connection manager identifiers for opening
918 * the connection.
920 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
922 Error *err = NULL;
923 int ret;
924 struct rdma_addrinfo *res;
925 char port_str[16];
926 struct rdma_cm_event *cm_event;
927 char ip[40] = "unknown";
928 struct rdma_addrinfo *e;
930 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
931 error_setg(errp, "RDMA ERROR: RDMA hostname has not been set");
932 return -1;
935 /* create CM channel */
936 rdma->channel = rdma_create_event_channel();
937 if (!rdma->channel) {
938 error_setg(errp, "RDMA ERROR: could not create CM channel");
939 return -1;
942 /* create CM id */
943 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
944 if (ret < 0) {
945 error_setg(errp, "RDMA ERROR: could not create channel id");
946 goto err_resolve_create_id;
949 snprintf(port_str, 16, "%d", rdma->port);
950 port_str[15] = '\0';
952 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
953 if (ret) {
954 error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
955 rdma->host);
956 goto err_resolve_get_addr;
959 /* Try all addresses, saving the first error in @err */
960 for (e = res; e != NULL; e = e->ai_next) {
961 Error **local_errp = err ? NULL : &err;
963 inet_ntop(e->ai_family,
964 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
965 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
967 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
968 RDMA_RESOLVE_TIMEOUT_MS);
969 if (ret >= 0) {
970 if (e->ai_family == AF_INET6) {
971 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs,
972 local_errp);
973 if (ret < 0) {
974 continue;
977 error_free(err);
978 goto route;
982 rdma_freeaddrinfo(res);
983 if (err) {
984 error_propagate(errp, err);
985 } else {
986 error_setg(errp, "RDMA ERROR: could not resolve address %s",
987 rdma->host);
989 goto err_resolve_get_addr;
991 route:
992 rdma_freeaddrinfo(res);
993 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
995 ret = rdma_get_cm_event(rdma->channel, &cm_event);
996 if (ret < 0) {
997 error_setg(errp, "RDMA ERROR: could not perform event_addr_resolved");
998 goto err_resolve_get_addr;
1001 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1002 error_setg(errp,
1003 "RDMA ERROR: result not equal to event_addr_resolved %s",
1004 rdma_event_str(cm_event->event));
1005 rdma_ack_cm_event(cm_event);
1006 goto err_resolve_get_addr;
1008 rdma_ack_cm_event(cm_event);
1010 /* resolve route */
1011 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1012 if (ret < 0) {
1013 error_setg(errp, "RDMA ERROR: could not resolve rdma route");
1014 goto err_resolve_get_addr;
1017 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1018 if (ret < 0) {
1019 error_setg(errp, "RDMA ERROR: could not perform event_route_resolved");
1020 goto err_resolve_get_addr;
1022 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1023 error_setg(errp, "RDMA ERROR: "
1024 "result not equal to event_route_resolved: %s",
1025 rdma_event_str(cm_event->event));
1026 rdma_ack_cm_event(cm_event);
1027 goto err_resolve_get_addr;
1029 rdma_ack_cm_event(cm_event);
1030 rdma->verbs = rdma->cm_id->verbs;
1031 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1032 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1033 return 0;
1035 err_resolve_get_addr:
1036 rdma_destroy_id(rdma->cm_id);
1037 rdma->cm_id = NULL;
1038 err_resolve_create_id:
1039 rdma_destroy_event_channel(rdma->channel);
1040 rdma->channel = NULL;
1041 return -1;
1045 * Create protection domain and completion queues
1047 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma, Error **errp)
1049 /* allocate pd */
1050 rdma->pd = ibv_alloc_pd(rdma->verbs);
1051 if (!rdma->pd) {
1052 error_setg(errp, "failed to allocate protection domain");
1053 return -1;
1056 /* create receive completion channel */
1057 rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1058 if (!rdma->recv_comp_channel) {
1059 error_setg(errp, "failed to allocate receive completion channel");
1060 goto err_alloc_pd_cq;
1064 * Completion queue can be filled by read work requests.
1066 rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1067 NULL, rdma->recv_comp_channel, 0);
1068 if (!rdma->recv_cq) {
1069 error_setg(errp, "failed to allocate receive completion queue");
1070 goto err_alloc_pd_cq;
1073 /* create send completion channel */
1074 rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1075 if (!rdma->send_comp_channel) {
1076 error_setg(errp, "failed to allocate send completion channel");
1077 goto err_alloc_pd_cq;
1080 rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1081 NULL, rdma->send_comp_channel, 0);
1082 if (!rdma->send_cq) {
1083 error_setg(errp, "failed to allocate send completion queue");
1084 goto err_alloc_pd_cq;
1087 return 0;
1089 err_alloc_pd_cq:
1090 if (rdma->pd) {
1091 ibv_dealloc_pd(rdma->pd);
1093 if (rdma->recv_comp_channel) {
1094 ibv_destroy_comp_channel(rdma->recv_comp_channel);
1096 if (rdma->send_comp_channel) {
1097 ibv_destroy_comp_channel(rdma->send_comp_channel);
1099 if (rdma->recv_cq) {
1100 ibv_destroy_cq(rdma->recv_cq);
1101 rdma->recv_cq = NULL;
1103 rdma->pd = NULL;
1104 rdma->recv_comp_channel = NULL;
1105 rdma->send_comp_channel = NULL;
1106 return -1;
1111 * Create queue pairs.
1113 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1115 struct ibv_qp_init_attr attr = { 0 };
1116 int ret;
1118 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1119 attr.cap.max_recv_wr = 3;
1120 attr.cap.max_send_sge = 1;
1121 attr.cap.max_recv_sge = 1;
1122 attr.send_cq = rdma->send_cq;
1123 attr.recv_cq = rdma->recv_cq;
1124 attr.qp_type = IBV_QPT_RC;
1126 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1127 if (ret < 0) {
1128 return -1;
1131 rdma->qp = rdma->cm_id->qp;
1132 return 0;
1135 /* Check whether On-Demand Paging is supported by RDAM device */
1136 static bool rdma_support_odp(struct ibv_context *dev)
1138 struct ibv_device_attr_ex attr = {0};
1139 int ret = ibv_query_device_ex(dev, NULL, &attr);
1140 if (ret) {
1141 return false;
1144 if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1145 return true;
1148 return false;
1152 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1153 * The responder mr registering with ODP will sent RNR NAK back to
1154 * the requester in the face of the page fault.
1156 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1157 uint32_t len, uint32_t lkey,
1158 const char *name, bool wr)
1160 #ifdef HAVE_IBV_ADVISE_MR
1161 int ret;
1162 int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1163 IBV_ADVISE_MR_ADVICE_PREFETCH;
1164 struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1166 ret = ibv_advise_mr(pd, advice,
1167 IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1168 /* ignore the error */
1169 trace_qemu_rdma_advise_mr(name, len, addr, strerror(ret));
1170 #endif
1173 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma, Error **errp)
1175 int i;
1176 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1178 for (i = 0; i < local->nb_blocks; i++) {
1179 int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1181 local->block[i].mr =
1182 ibv_reg_mr(rdma->pd,
1183 local->block[i].local_host_addr,
1184 local->block[i].length, access
1187 * ibv_reg_mr() is not documented to set errno. If it does,
1188 * it's somebody else's doc bug. If it doesn't, the use of
1189 * errno below is wrong.
1190 * TODO Find out whether ibv_reg_mr() sets errno.
1192 if (!local->block[i].mr &&
1193 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1194 access |= IBV_ACCESS_ON_DEMAND;
1195 /* register ODP mr */
1196 local->block[i].mr =
1197 ibv_reg_mr(rdma->pd,
1198 local->block[i].local_host_addr,
1199 local->block[i].length, access);
1200 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1202 if (local->block[i].mr) {
1203 qemu_rdma_advise_prefetch_mr(rdma->pd,
1204 (uintptr_t)local->block[i].local_host_addr,
1205 local->block[i].length,
1206 local->block[i].mr->lkey,
1207 local->block[i].block_name,
1208 true);
1212 if (!local->block[i].mr) {
1213 error_setg_errno(errp, errno,
1214 "Failed to register local dest ram block!");
1215 goto err;
1217 rdma->total_registrations++;
1220 return 0;
1222 err:
1223 for (i--; i >= 0; i--) {
1224 ibv_dereg_mr(local->block[i].mr);
1225 local->block[i].mr = NULL;
1226 rdma->total_registrations--;
1229 return -1;
1234 * Find the ram block that corresponds to the page requested to be
1235 * transmitted by QEMU.
1237 * Once the block is found, also identify which 'chunk' within that
1238 * block that the page belongs to.
1240 static void qemu_rdma_search_ram_block(RDMAContext *rdma,
1241 uintptr_t block_offset,
1242 uint64_t offset,
1243 uint64_t length,
1244 uint64_t *block_index,
1245 uint64_t *chunk_index)
1247 uint64_t current_addr = block_offset + offset;
1248 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1249 (void *) block_offset);
1250 assert(block);
1251 assert(current_addr >= block->offset);
1252 assert((current_addr + length) <= (block->offset + block->length));
1254 *block_index = block->index;
1255 *chunk_index = ram_chunk_index(block->local_host_addr,
1256 block->local_host_addr + (current_addr - block->offset));
1260 * Register a chunk with IB. If the chunk was already registered
1261 * previously, then skip.
1263 * Also return the keys associated with the registration needed
1264 * to perform the actual RDMA operation.
1266 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1267 RDMALocalBlock *block, uintptr_t host_addr,
1268 uint32_t *lkey, uint32_t *rkey, int chunk,
1269 uint8_t *chunk_start, uint8_t *chunk_end)
1271 if (block->mr) {
1272 if (lkey) {
1273 *lkey = block->mr->lkey;
1275 if (rkey) {
1276 *rkey = block->mr->rkey;
1278 return 0;
1281 /* allocate memory to store chunk MRs */
1282 if (!block->pmr) {
1283 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1287 * If 'rkey', then we're the destination, so grant access to the source.
1289 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1291 if (!block->pmr[chunk]) {
1292 uint64_t len = chunk_end - chunk_start;
1293 int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1296 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1298 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1300 * ibv_reg_mr() is not documented to set errno. If it does,
1301 * it's somebody else's doc bug. If it doesn't, the use of
1302 * errno below is wrong.
1303 * TODO Find out whether ibv_reg_mr() sets errno.
1305 if (!block->pmr[chunk] &&
1306 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1307 access |= IBV_ACCESS_ON_DEMAND;
1308 /* register ODP mr */
1309 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1310 trace_qemu_rdma_register_odp_mr(block->block_name);
1312 if (block->pmr[chunk]) {
1313 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1314 len, block->pmr[chunk]->lkey,
1315 block->block_name, rkey);
1320 if (!block->pmr[chunk]) {
1321 return -1;
1323 rdma->total_registrations++;
1325 if (lkey) {
1326 *lkey = block->pmr[chunk]->lkey;
1328 if (rkey) {
1329 *rkey = block->pmr[chunk]->rkey;
1331 return 0;
1335 * Register (at connection time) the memory used for control
1336 * channel messages.
1338 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1340 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1341 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1342 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1343 if (rdma->wr_data[idx].control_mr) {
1344 rdma->total_registrations++;
1345 return 0;
1347 return -1;
1351 * Perform a non-optimized memory unregistration after every transfer
1352 * for demonstration purposes, only if pin-all is not requested.
1354 * Potential optimizations:
1355 * 1. Start a new thread to run this function continuously
1356 - for bit clearing
1357 - and for receipt of unregister messages
1358 * 2. Use an LRU.
1359 * 3. Use workload hints.
1361 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1363 Error *err = NULL;
1365 while (rdma->unregistrations[rdma->unregister_current]) {
1366 int ret;
1367 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1368 uint64_t chunk =
1369 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1370 uint64_t index =
1371 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1372 RDMALocalBlock *block =
1373 &(rdma->local_ram_blocks.block[index]);
1374 RDMARegister reg = { .current_index = index };
1375 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1377 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1378 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1379 .repeat = 1,
1382 trace_qemu_rdma_unregister_waiting_proc(chunk,
1383 rdma->unregister_current);
1385 rdma->unregistrations[rdma->unregister_current] = 0;
1386 rdma->unregister_current++;
1388 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1389 rdma->unregister_current = 0;
1394 * Unregistration is speculative (because migration is single-threaded
1395 * and we cannot break the protocol's inifinband message ordering).
1396 * Thus, if the memory is currently being used for transmission,
1397 * then abort the attempt to unregister and try again
1398 * later the next time a completion is received for this memory.
1400 clear_bit(chunk, block->unregister_bitmap);
1402 if (test_bit(chunk, block->transit_bitmap)) {
1403 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1404 continue;
1407 trace_qemu_rdma_unregister_waiting_send(chunk);
1409 ret = ibv_dereg_mr(block->pmr[chunk]);
1410 block->pmr[chunk] = NULL;
1411 block->remote_keys[chunk] = 0;
1413 if (ret != 0) {
1414 error_report("unregistration chunk failed: %s",
1415 strerror(ret));
1416 return -1;
1418 rdma->total_registrations--;
1420 reg.key.chunk = chunk;
1421 register_to_network(rdma, &reg);
1422 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1423 &resp, NULL, NULL, &err);
1424 if (ret < 0) {
1425 error_report_err(err);
1426 return -1;
1429 trace_qemu_rdma_unregister_waiting_complete(chunk);
1432 return 0;
1435 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1436 uint64_t chunk)
1438 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1440 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1441 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1443 return result;
1447 * Consult the connection manager to see a work request
1448 * (of any kind) has completed.
1449 * Return the work request ID that completed.
1451 static int qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1452 uint64_t *wr_id_out, uint32_t *byte_len)
1454 int ret;
1455 struct ibv_wc wc;
1456 uint64_t wr_id;
1458 ret = ibv_poll_cq(cq, 1, &wc);
1460 if (!ret) {
1461 *wr_id_out = RDMA_WRID_NONE;
1462 return 0;
1465 if (ret < 0) {
1466 return -1;
1469 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1471 if (wc.status != IBV_WC_SUCCESS) {
1472 return -1;
1475 if (rdma->control_ready_expected &&
1476 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1477 trace_qemu_rdma_poll_recv(wr_id - RDMA_WRID_RECV_CONTROL, wr_id,
1478 rdma->nb_sent);
1479 rdma->control_ready_expected = 0;
1482 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1483 uint64_t chunk =
1484 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1485 uint64_t index =
1486 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1487 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1489 trace_qemu_rdma_poll_write(wr_id, rdma->nb_sent,
1490 index, chunk, block->local_host_addr,
1491 (void *)(uintptr_t)block->remote_host_addr);
1493 clear_bit(chunk, block->transit_bitmap);
1495 if (rdma->nb_sent > 0) {
1496 rdma->nb_sent--;
1498 } else {
1499 trace_qemu_rdma_poll_other(wr_id, rdma->nb_sent);
1502 *wr_id_out = wc.wr_id;
1503 if (byte_len) {
1504 *byte_len = wc.byte_len;
1507 return 0;
1510 /* Wait for activity on the completion channel.
1511 * Returns 0 on success, none-0 on error.
1513 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1514 struct ibv_comp_channel *comp_channel)
1516 struct rdma_cm_event *cm_event;
1517 int ret;
1520 * Coroutine doesn't start until migration_fd_process_incoming()
1521 * so don't yield unless we know we're running inside of a coroutine.
1523 if (rdma->migration_started_on_destination &&
1524 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1525 yield_until_fd_readable(comp_channel->fd);
1526 } else {
1527 /* This is the source side, we're in a separate thread
1528 * or destination prior to migration_fd_process_incoming()
1529 * after postcopy, the destination also in a separate thread.
1530 * we can't yield; so we have to poll the fd.
1531 * But we need to be able to handle 'cancel' or an error
1532 * without hanging forever.
1534 while (!rdma->errored && !rdma->received_error) {
1535 GPollFD pfds[2];
1536 pfds[0].fd = comp_channel->fd;
1537 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1538 pfds[0].revents = 0;
1540 pfds[1].fd = rdma->channel->fd;
1541 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1542 pfds[1].revents = 0;
1544 /* 0.1s timeout, should be fine for a 'cancel' */
1545 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1546 case 2:
1547 case 1: /* fd active */
1548 if (pfds[0].revents) {
1549 return 0;
1552 if (pfds[1].revents) {
1553 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1554 if (ret < 0) {
1555 return -1;
1558 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1559 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1560 rdma_ack_cm_event(cm_event);
1561 return -1;
1563 rdma_ack_cm_event(cm_event);
1565 break;
1567 case 0: /* Timeout, go around again */
1568 break;
1570 default: /* Error of some type -
1571 * I don't trust errno from qemu_poll_ns
1573 return -1;
1576 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1577 /* Bail out and let the cancellation happen */
1578 return -1;
1583 if (rdma->received_error) {
1584 return -1;
1586 return -rdma->errored;
1589 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, uint64_t wrid)
1591 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1592 rdma->recv_comp_channel;
1595 static struct ibv_cq *to_cq(RDMAContext *rdma, uint64_t wrid)
1597 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1601 * Block until the next work request has completed.
1603 * First poll to see if a work request has already completed,
1604 * otherwise block.
1606 * If we encounter completed work requests for IDs other than
1607 * the one we're interested in, then that's generally an error.
1609 * The only exception is actual RDMA Write completions. These
1610 * completions only need to be recorded, but do not actually
1611 * need further processing.
1613 static int qemu_rdma_block_for_wrid(RDMAContext *rdma,
1614 uint64_t wrid_requested,
1615 uint32_t *byte_len)
1617 int num_cq_events = 0, ret;
1618 struct ibv_cq *cq;
1619 void *cq_ctx;
1620 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1621 struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1622 struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1624 if (ibv_req_notify_cq(poll_cq, 0)) {
1625 return -1;
1627 /* poll cq first */
1628 while (wr_id != wrid_requested) {
1629 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1630 if (ret < 0) {
1631 return -1;
1634 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1636 if (wr_id == RDMA_WRID_NONE) {
1637 break;
1639 if (wr_id != wrid_requested) {
1640 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1644 if (wr_id == wrid_requested) {
1645 return 0;
1648 while (1) {
1649 ret = qemu_rdma_wait_comp_channel(rdma, ch);
1650 if (ret < 0) {
1651 goto err_block_for_wrid;
1654 ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1655 if (ret < 0) {
1656 goto err_block_for_wrid;
1659 num_cq_events++;
1661 if (ibv_req_notify_cq(cq, 0)) {
1662 goto err_block_for_wrid;
1665 while (wr_id != wrid_requested) {
1666 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1667 if (ret < 0) {
1668 goto err_block_for_wrid;
1671 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1673 if (wr_id == RDMA_WRID_NONE) {
1674 break;
1676 if (wr_id != wrid_requested) {
1677 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1681 if (wr_id == wrid_requested) {
1682 goto success_block_for_wrid;
1686 success_block_for_wrid:
1687 if (num_cq_events) {
1688 ibv_ack_cq_events(cq, num_cq_events);
1690 return 0;
1692 err_block_for_wrid:
1693 if (num_cq_events) {
1694 ibv_ack_cq_events(cq, num_cq_events);
1697 rdma->errored = true;
1698 return -1;
1702 * Post a SEND message work request for the control channel
1703 * containing some data and block until the post completes.
1705 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1706 RDMAControlHeader *head,
1707 Error **errp)
1709 int ret;
1710 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1711 struct ibv_send_wr *bad_wr;
1712 struct ibv_sge sge = {
1713 .addr = (uintptr_t)(wr->control),
1714 .length = head->len + sizeof(RDMAControlHeader),
1715 .lkey = wr->control_mr->lkey,
1717 struct ibv_send_wr send_wr = {
1718 .wr_id = RDMA_WRID_SEND_CONTROL,
1719 .opcode = IBV_WR_SEND,
1720 .send_flags = IBV_SEND_SIGNALED,
1721 .sg_list = &sge,
1722 .num_sge = 1,
1725 trace_qemu_rdma_post_send_control(control_desc(head->type));
1728 * We don't actually need to do a memcpy() in here if we used
1729 * the "sge" properly, but since we're only sending control messages
1730 * (not RAM in a performance-critical path), then its OK for now.
1732 * The copy makes the RDMAControlHeader simpler to manipulate
1733 * for the time being.
1735 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1736 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1737 control_to_network((void *) wr->control);
1739 if (buf) {
1740 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1744 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1746 if (ret > 0) {
1747 error_setg(errp, "Failed to use post IB SEND for control");
1748 return -1;
1751 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1752 if (ret < 0) {
1753 error_setg(errp, "rdma migration: send polling control error");
1754 return -1;
1757 return 0;
1761 * Post a RECV work request in anticipation of some future receipt
1762 * of data on the control channel.
1764 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx,
1765 Error **errp)
1767 struct ibv_recv_wr *bad_wr;
1768 struct ibv_sge sge = {
1769 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1770 .length = RDMA_CONTROL_MAX_BUFFER,
1771 .lkey = rdma->wr_data[idx].control_mr->lkey,
1774 struct ibv_recv_wr recv_wr = {
1775 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1776 .sg_list = &sge,
1777 .num_sge = 1,
1781 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1782 error_setg(errp, "error posting control recv");
1783 return -1;
1786 return 0;
1790 * Block and wait for a RECV control channel message to arrive.
1792 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1793 RDMAControlHeader *head, uint32_t expecting, int idx,
1794 Error **errp)
1796 uint32_t byte_len;
1797 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1798 &byte_len);
1800 if (ret < 0) {
1801 error_setg(errp, "rdma migration: recv polling control error!");
1802 return -1;
1805 network_to_control((void *) rdma->wr_data[idx].control);
1806 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1808 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1810 if (expecting == RDMA_CONTROL_NONE) {
1811 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1812 head->type);
1813 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1814 error_setg(errp, "Was expecting a %s (%d) control message"
1815 ", but got: %s (%d), length: %d",
1816 control_desc(expecting), expecting,
1817 control_desc(head->type), head->type, head->len);
1818 if (head->type == RDMA_CONTROL_ERROR) {
1819 rdma->received_error = true;
1821 return -1;
1823 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1824 error_setg(errp, "too long length: %d", head->len);
1825 return -1;
1827 if (sizeof(*head) + head->len != byte_len) {
1828 error_setg(errp, "Malformed length: %d byte_len %d",
1829 head->len, byte_len);
1830 return -1;
1833 return 0;
1837 * When a RECV work request has completed, the work request's
1838 * buffer is pointed at the header.
1840 * This will advance the pointer to the data portion
1841 * of the control message of the work request's buffer that
1842 * was populated after the work request finished.
1844 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1845 RDMAControlHeader *head)
1847 rdma->wr_data[idx].control_len = head->len;
1848 rdma->wr_data[idx].control_curr =
1849 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1853 * This is an 'atomic' high-level operation to deliver a single, unified
1854 * control-channel message.
1856 * Additionally, if the user is expecting some kind of reply to this message,
1857 * they can request a 'resp' response message be filled in by posting an
1858 * additional work request on behalf of the user and waiting for an additional
1859 * completion.
1861 * The extra (optional) response is used during registration to us from having
1862 * to perform an *additional* exchange of message just to provide a response by
1863 * instead piggy-backing on the acknowledgement.
1865 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1866 uint8_t *data, RDMAControlHeader *resp,
1867 int *resp_idx,
1868 int (*callback)(RDMAContext *rdma,
1869 Error **errp),
1870 Error **errp)
1872 int ret;
1875 * Wait until the dest is ready before attempting to deliver the message
1876 * by waiting for a READY message.
1878 if (rdma->control_ready_expected) {
1879 RDMAControlHeader resp_ignored;
1881 ret = qemu_rdma_exchange_get_response(rdma, &resp_ignored,
1882 RDMA_CONTROL_READY,
1883 RDMA_WRID_READY, errp);
1884 if (ret < 0) {
1885 return -1;
1890 * If the user is expecting a response, post a WR in anticipation of it.
1892 if (resp) {
1893 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA, errp);
1894 if (ret < 0) {
1895 return -1;
1900 * Post a WR to replace the one we just consumed for the READY message.
1902 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
1903 if (ret < 0) {
1904 return -1;
1908 * Deliver the control message that was requested.
1910 ret = qemu_rdma_post_send_control(rdma, data, head, errp);
1912 if (ret < 0) {
1913 return -1;
1917 * If we're expecting a response, block and wait for it.
1919 if (resp) {
1920 if (callback) {
1921 trace_qemu_rdma_exchange_send_issue_callback();
1922 ret = callback(rdma, errp);
1923 if (ret < 0) {
1924 return -1;
1928 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1929 ret = qemu_rdma_exchange_get_response(rdma, resp,
1930 resp->type, RDMA_WRID_DATA,
1931 errp);
1933 if (ret < 0) {
1934 return -1;
1937 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1938 if (resp_idx) {
1939 *resp_idx = RDMA_WRID_DATA;
1941 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1944 rdma->control_ready_expected = 1;
1946 return 0;
1950 * This is an 'atomic' high-level operation to receive a single, unified
1951 * control-channel message.
1953 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1954 uint32_t expecting, Error **errp)
1956 RDMAControlHeader ready = {
1957 .len = 0,
1958 .type = RDMA_CONTROL_READY,
1959 .repeat = 1,
1961 int ret;
1964 * Inform the source that we're ready to receive a message.
1966 ret = qemu_rdma_post_send_control(rdma, NULL, &ready, errp);
1968 if (ret < 0) {
1969 return -1;
1973 * Block and wait for the message.
1975 ret = qemu_rdma_exchange_get_response(rdma, head,
1976 expecting, RDMA_WRID_READY, errp);
1978 if (ret < 0) {
1979 return -1;
1982 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1985 * Post a new RECV work request to replace the one we just consumed.
1987 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
1988 if (ret < 0) {
1989 return -1;
1992 return 0;
1996 * Write an actual chunk of memory using RDMA.
1998 * If we're using dynamic registration on the dest-side, we have to
1999 * send a registration command first.
2001 static int qemu_rdma_write_one(RDMAContext *rdma,
2002 int current_index, uint64_t current_addr,
2003 uint64_t length, Error **errp)
2005 struct ibv_sge sge;
2006 struct ibv_send_wr send_wr = { 0 };
2007 struct ibv_send_wr *bad_wr;
2008 int reg_result_idx, ret, count = 0;
2009 uint64_t chunk, chunks;
2010 uint8_t *chunk_start, *chunk_end;
2011 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2012 RDMARegister reg;
2013 RDMARegisterResult *reg_result;
2014 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2015 RDMAControlHeader head = { .len = sizeof(RDMARegister),
2016 .type = RDMA_CONTROL_REGISTER_REQUEST,
2017 .repeat = 1,
2020 retry:
2021 sge.addr = (uintptr_t)(block->local_host_addr +
2022 (current_addr - block->offset));
2023 sge.length = length;
2025 chunk = ram_chunk_index(block->local_host_addr,
2026 (uint8_t *)(uintptr_t)sge.addr);
2027 chunk_start = ram_chunk_start(block, chunk);
2029 if (block->is_ram_block) {
2030 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2032 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2033 chunks--;
2035 } else {
2036 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2038 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2039 chunks--;
2043 trace_qemu_rdma_write_one_top(chunks + 1,
2044 (chunks + 1) *
2045 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2047 chunk_end = ram_chunk_end(block, chunk + chunks);
2050 while (test_bit(chunk, block->transit_bitmap)) {
2051 (void)count;
2052 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2053 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2055 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2057 if (ret < 0) {
2058 error_setg(errp, "Failed to Wait for previous write to complete "
2059 "block %d chunk %" PRIu64
2060 " current %" PRIu64 " len %" PRIu64 " %d",
2061 current_index, chunk, sge.addr, length, rdma->nb_sent);
2062 return -1;
2066 if (!rdma->pin_all || !block->is_ram_block) {
2067 if (!block->remote_keys[chunk]) {
2069 * This chunk has not yet been registered, so first check to see
2070 * if the entire chunk is zero. If so, tell the other size to
2071 * memset() + madvise() the entire chunk without RDMA.
2074 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2075 RDMACompress comp = {
2076 .offset = current_addr,
2077 .value = 0,
2078 .block_idx = current_index,
2079 .length = length,
2082 head.len = sizeof(comp);
2083 head.type = RDMA_CONTROL_COMPRESS;
2085 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2086 current_index, current_addr);
2088 compress_to_network(rdma, &comp);
2089 ret = qemu_rdma_exchange_send(rdma, &head,
2090 (uint8_t *) &comp, NULL, NULL, NULL, errp);
2092 if (ret < 0) {
2093 return -1;
2097 * TODO: Here we are sending something, but we are not
2098 * accounting for anything transferred. The following is wrong:
2100 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2102 * because we are using some kind of compression. I
2103 * would think that head.len would be the more similar
2104 * thing to a correct value.
2106 stat64_add(&mig_stats.zero_pages,
2107 sge.length / qemu_target_page_size());
2108 return 1;
2112 * Otherwise, tell other side to register.
2114 reg.current_index = current_index;
2115 if (block->is_ram_block) {
2116 reg.key.current_addr = current_addr;
2117 } else {
2118 reg.key.chunk = chunk;
2120 reg.chunks = chunks;
2122 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2123 current_addr);
2125 register_to_network(rdma, &reg);
2126 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2127 &resp, &reg_result_idx, NULL, errp);
2128 if (ret < 0) {
2129 return -1;
2132 /* try to overlap this single registration with the one we sent. */
2133 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2134 &sge.lkey, NULL, chunk,
2135 chunk_start, chunk_end)) {
2136 error_setg(errp, "cannot get lkey");
2137 return -1;
2140 reg_result = (RDMARegisterResult *)
2141 rdma->wr_data[reg_result_idx].control_curr;
2143 network_to_result(reg_result);
2145 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2146 reg_result->rkey, chunk);
2148 block->remote_keys[chunk] = reg_result->rkey;
2149 block->remote_host_addr = reg_result->host_addr;
2150 } else {
2151 /* already registered before */
2152 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2153 &sge.lkey, NULL, chunk,
2154 chunk_start, chunk_end)) {
2155 error_setg(errp, "cannot get lkey!");
2156 return -1;
2160 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2161 } else {
2162 send_wr.wr.rdma.rkey = block->remote_rkey;
2164 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2165 &sge.lkey, NULL, chunk,
2166 chunk_start, chunk_end)) {
2167 error_setg(errp, "cannot get lkey!");
2168 return -1;
2173 * Encode the ram block index and chunk within this wrid.
2174 * We will use this information at the time of completion
2175 * to figure out which bitmap to check against and then which
2176 * chunk in the bitmap to look for.
2178 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2179 current_index, chunk);
2181 send_wr.opcode = IBV_WR_RDMA_WRITE;
2182 send_wr.send_flags = IBV_SEND_SIGNALED;
2183 send_wr.sg_list = &sge;
2184 send_wr.num_sge = 1;
2185 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2186 (current_addr - block->offset);
2188 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2189 sge.length);
2192 * ibv_post_send() does not return negative error numbers,
2193 * per the specification they are positive - no idea why.
2195 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2197 if (ret == ENOMEM) {
2198 trace_qemu_rdma_write_one_queue_full();
2199 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2200 if (ret < 0) {
2201 error_setg(errp, "rdma migration: failed to make "
2202 "room in full send queue!");
2203 return -1;
2206 goto retry;
2208 } else if (ret > 0) {
2209 error_setg_errno(errp, ret,
2210 "rdma migration: post rdma write failed");
2211 return -1;
2214 set_bit(chunk, block->transit_bitmap);
2215 stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2217 * We are adding to transferred the amount of data written, but no
2218 * overhead at all. I will asume that RDMA is magicaly and don't
2219 * need to transfer (at least) the addresses where it wants to
2220 * write the pages. Here it looks like it should be something
2221 * like:
2222 * sizeof(send_wr) + sge.length
2223 * but this being RDMA, who knows.
2225 stat64_add(&mig_stats.rdma_bytes, sge.length);
2226 ram_transferred_add(sge.length);
2227 rdma->total_writes++;
2229 return 0;
2233 * Push out any unwritten RDMA operations.
2235 * We support sending out multiple chunks at the same time.
2236 * Not all of them need to get signaled in the completion queue.
2238 static int qemu_rdma_write_flush(RDMAContext *rdma, Error **errp)
2240 int ret;
2242 if (!rdma->current_length) {
2243 return 0;
2246 ret = qemu_rdma_write_one(rdma, rdma->current_index, rdma->current_addr,
2247 rdma->current_length, errp);
2249 if (ret < 0) {
2250 return -1;
2253 if (ret == 0) {
2254 rdma->nb_sent++;
2255 trace_qemu_rdma_write_flush(rdma->nb_sent);
2258 rdma->current_length = 0;
2259 rdma->current_addr = 0;
2261 return 0;
2264 static inline bool qemu_rdma_buffer_mergeable(RDMAContext *rdma,
2265 uint64_t offset, uint64_t len)
2267 RDMALocalBlock *block;
2268 uint8_t *host_addr;
2269 uint8_t *chunk_end;
2271 if (rdma->current_index < 0) {
2272 return false;
2275 if (rdma->current_chunk < 0) {
2276 return false;
2279 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2280 host_addr = block->local_host_addr + (offset - block->offset);
2281 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2283 if (rdma->current_length == 0) {
2284 return false;
2288 * Only merge into chunk sequentially.
2290 if (offset != (rdma->current_addr + rdma->current_length)) {
2291 return false;
2294 if (offset < block->offset) {
2295 return false;
2298 if ((offset + len) > (block->offset + block->length)) {
2299 return false;
2302 if ((host_addr + len) > chunk_end) {
2303 return false;
2306 return true;
2310 * We're not actually writing here, but doing three things:
2312 * 1. Identify the chunk the buffer belongs to.
2313 * 2. If the chunk is full or the buffer doesn't belong to the current
2314 * chunk, then start a new chunk and flush() the old chunk.
2315 * 3. To keep the hardware busy, we also group chunks into batches
2316 * and only require that a batch gets acknowledged in the completion
2317 * queue instead of each individual chunk.
2319 static int qemu_rdma_write(RDMAContext *rdma,
2320 uint64_t block_offset, uint64_t offset,
2321 uint64_t len, Error **errp)
2323 uint64_t current_addr = block_offset + offset;
2324 uint64_t index = rdma->current_index;
2325 uint64_t chunk = rdma->current_chunk;
2326 int ret;
2328 /* If we cannot merge it, we flush the current buffer first. */
2329 if (!qemu_rdma_buffer_mergeable(rdma, current_addr, len)) {
2330 ret = qemu_rdma_write_flush(rdma, errp);
2331 if (ret < 0) {
2332 return -1;
2334 rdma->current_length = 0;
2335 rdma->current_addr = current_addr;
2337 qemu_rdma_search_ram_block(rdma, block_offset,
2338 offset, len, &index, &chunk);
2339 rdma->current_index = index;
2340 rdma->current_chunk = chunk;
2343 /* merge it */
2344 rdma->current_length += len;
2346 /* flush it if buffer is too large */
2347 if (rdma->current_length >= RDMA_MERGE_MAX) {
2348 return qemu_rdma_write_flush(rdma, errp);
2351 return 0;
2354 static void qemu_rdma_cleanup(RDMAContext *rdma)
2356 Error *err = NULL;
2357 int idx;
2359 if (rdma->cm_id && rdma->connected) {
2360 if ((rdma->errored ||
2361 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2362 !rdma->received_error) {
2363 RDMAControlHeader head = { .len = 0,
2364 .type = RDMA_CONTROL_ERROR,
2365 .repeat = 1,
2367 warn_report("Early error. Sending error.");
2368 if (qemu_rdma_post_send_control(rdma, NULL, &head, &err) < 0) {
2369 warn_report_err(err);
2373 rdma_disconnect(rdma->cm_id);
2374 trace_qemu_rdma_cleanup_disconnect();
2375 rdma->connected = false;
2378 if (rdma->channel) {
2379 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2381 g_free(rdma->dest_blocks);
2382 rdma->dest_blocks = NULL;
2384 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2385 if (rdma->wr_data[idx].control_mr) {
2386 rdma->total_registrations--;
2387 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2389 rdma->wr_data[idx].control_mr = NULL;
2392 if (rdma->local_ram_blocks.block) {
2393 while (rdma->local_ram_blocks.nb_blocks) {
2394 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2398 if (rdma->qp) {
2399 rdma_destroy_qp(rdma->cm_id);
2400 rdma->qp = NULL;
2402 if (rdma->recv_cq) {
2403 ibv_destroy_cq(rdma->recv_cq);
2404 rdma->recv_cq = NULL;
2406 if (rdma->send_cq) {
2407 ibv_destroy_cq(rdma->send_cq);
2408 rdma->send_cq = NULL;
2410 if (rdma->recv_comp_channel) {
2411 ibv_destroy_comp_channel(rdma->recv_comp_channel);
2412 rdma->recv_comp_channel = NULL;
2414 if (rdma->send_comp_channel) {
2415 ibv_destroy_comp_channel(rdma->send_comp_channel);
2416 rdma->send_comp_channel = NULL;
2418 if (rdma->pd) {
2419 ibv_dealloc_pd(rdma->pd);
2420 rdma->pd = NULL;
2422 if (rdma->cm_id) {
2423 rdma_destroy_id(rdma->cm_id);
2424 rdma->cm_id = NULL;
2427 /* the destination side, listen_id and channel is shared */
2428 if (rdma->listen_id) {
2429 if (!rdma->is_return_path) {
2430 rdma_destroy_id(rdma->listen_id);
2432 rdma->listen_id = NULL;
2434 if (rdma->channel) {
2435 if (!rdma->is_return_path) {
2436 rdma_destroy_event_channel(rdma->channel);
2438 rdma->channel = NULL;
2442 if (rdma->channel) {
2443 rdma_destroy_event_channel(rdma->channel);
2444 rdma->channel = NULL;
2446 g_free(rdma->host);
2447 g_free(rdma->host_port);
2448 rdma->host = NULL;
2449 rdma->host_port = NULL;
2453 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2455 int ret, idx;
2458 * Will be validated against destination's actual capabilities
2459 * after the connect() completes.
2461 rdma->pin_all = pin_all;
2463 ret = qemu_rdma_resolve_host(rdma, errp);
2464 if (ret < 0) {
2465 goto err_rdma_source_init;
2468 ret = qemu_rdma_alloc_pd_cq(rdma, errp);
2469 if (ret < 0) {
2470 goto err_rdma_source_init;
2473 ret = qemu_rdma_alloc_qp(rdma);
2474 if (ret < 0) {
2475 error_setg(errp, "RDMA ERROR: rdma migration: error allocating qp!");
2476 goto err_rdma_source_init;
2479 qemu_rdma_init_ram_blocks(rdma);
2481 /* Build the hash that maps from offset to RAMBlock */
2482 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2483 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2484 g_hash_table_insert(rdma->blockmap,
2485 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2486 &rdma->local_ram_blocks.block[idx]);
2489 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2490 ret = qemu_rdma_reg_control(rdma, idx);
2491 if (ret < 0) {
2492 error_setg(errp,
2493 "RDMA ERROR: rdma migration: error registering %d control!",
2494 idx);
2495 goto err_rdma_source_init;
2499 return 0;
2501 err_rdma_source_init:
2502 qemu_rdma_cleanup(rdma);
2503 return -1;
2506 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2507 struct rdma_cm_event **cm_event,
2508 long msec, Error **errp)
2510 int ret;
2511 struct pollfd poll_fd = {
2512 .fd = rdma->channel->fd,
2513 .events = POLLIN,
2514 .revents = 0
2517 do {
2518 ret = poll(&poll_fd, 1, msec);
2519 } while (ret < 0 && errno == EINTR);
2521 if (ret == 0) {
2522 error_setg(errp, "RDMA ERROR: poll cm event timeout");
2523 return -1;
2524 } else if (ret < 0) {
2525 error_setg(errp, "RDMA ERROR: failed to poll cm event, errno=%i",
2526 errno);
2527 return -1;
2528 } else if (poll_fd.revents & POLLIN) {
2529 if (rdma_get_cm_event(rdma->channel, cm_event) < 0) {
2530 error_setg(errp, "RDMA ERROR: failed to get cm event");
2531 return -1;
2533 return 0;
2534 } else {
2535 error_setg(errp, "RDMA ERROR: no POLLIN event, revent=%x",
2536 poll_fd.revents);
2537 return -1;
2541 static int qemu_rdma_connect(RDMAContext *rdma, bool return_path,
2542 Error **errp)
2544 RDMACapabilities cap = {
2545 .version = RDMA_CONTROL_VERSION_CURRENT,
2546 .flags = 0,
2548 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2549 .retry_count = 5,
2550 .private_data = &cap,
2551 .private_data_len = sizeof(cap),
2553 struct rdma_cm_event *cm_event;
2554 int ret;
2557 * Only negotiate the capability with destination if the user
2558 * on the source first requested the capability.
2560 if (rdma->pin_all) {
2561 trace_qemu_rdma_connect_pin_all_requested();
2562 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2565 caps_to_network(&cap);
2567 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
2568 if (ret < 0) {
2569 goto err_rdma_source_connect;
2572 ret = rdma_connect(rdma->cm_id, &conn_param);
2573 if (ret < 0) {
2574 error_setg_errno(errp, errno,
2575 "RDMA ERROR: connecting to destination!");
2576 goto err_rdma_source_connect;
2579 if (return_path) {
2580 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2581 } else {
2582 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2583 if (ret < 0) {
2584 error_setg_errno(errp, errno,
2585 "RDMA ERROR: failed to get cm event");
2588 if (ret < 0) {
2589 goto err_rdma_source_connect;
2592 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2593 error_setg(errp, "RDMA ERROR: connecting to destination!");
2594 rdma_ack_cm_event(cm_event);
2595 goto err_rdma_source_connect;
2597 rdma->connected = true;
2599 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2600 network_to_caps(&cap);
2603 * Verify that the *requested* capabilities are supported by the destination
2604 * and disable them otherwise.
2606 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2607 warn_report("RDMA: Server cannot support pinning all memory. "
2608 "Will register memory dynamically.");
2609 rdma->pin_all = false;
2612 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2614 rdma_ack_cm_event(cm_event);
2616 rdma->control_ready_expected = 1;
2617 rdma->nb_sent = 0;
2618 return 0;
2620 err_rdma_source_connect:
2621 qemu_rdma_cleanup(rdma);
2622 return -1;
2625 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2627 Error *err = NULL;
2628 int ret, idx;
2629 struct rdma_cm_id *listen_id;
2630 char ip[40] = "unknown";
2631 struct rdma_addrinfo *res, *e;
2632 char port_str[16];
2633 int reuse = 1;
2635 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2636 rdma->wr_data[idx].control_len = 0;
2637 rdma->wr_data[idx].control_curr = NULL;
2640 if (!rdma->host || !rdma->host[0]) {
2641 error_setg(errp, "RDMA ERROR: RDMA host is not set!");
2642 rdma->errored = true;
2643 return -1;
2645 /* create CM channel */
2646 rdma->channel = rdma_create_event_channel();
2647 if (!rdma->channel) {
2648 error_setg(errp, "RDMA ERROR: could not create rdma event channel");
2649 rdma->errored = true;
2650 return -1;
2653 /* create CM id */
2654 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2655 if (ret < 0) {
2656 error_setg(errp, "RDMA ERROR: could not create cm_id!");
2657 goto err_dest_init_create_listen_id;
2660 snprintf(port_str, 16, "%d", rdma->port);
2661 port_str[15] = '\0';
2663 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2664 if (ret) {
2665 error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
2666 rdma->host);
2667 goto err_dest_init_bind_addr;
2670 ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2671 &reuse, sizeof reuse);
2672 if (ret < 0) {
2673 error_setg(errp, "RDMA ERROR: Error: could not set REUSEADDR option");
2674 goto err_dest_init_bind_addr;
2677 /* Try all addresses, saving the first error in @err */
2678 for (e = res; e != NULL; e = e->ai_next) {
2679 Error **local_errp = err ? NULL : &err;
2681 inet_ntop(e->ai_family,
2682 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2683 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2684 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2685 if (ret < 0) {
2686 continue;
2688 if (e->ai_family == AF_INET6) {
2689 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs,
2690 local_errp);
2691 if (ret < 0) {
2692 continue;
2695 error_free(err);
2696 break;
2699 rdma_freeaddrinfo(res);
2700 if (!e) {
2701 if (err) {
2702 error_propagate(errp, err);
2703 } else {
2704 error_setg(errp, "RDMA ERROR: Error: could not rdma_bind_addr!");
2706 goto err_dest_init_bind_addr;
2709 rdma->listen_id = listen_id;
2710 qemu_rdma_dump_gid("dest_init", listen_id);
2711 return 0;
2713 err_dest_init_bind_addr:
2714 rdma_destroy_id(listen_id);
2715 err_dest_init_create_listen_id:
2716 rdma_destroy_event_channel(rdma->channel);
2717 rdma->channel = NULL;
2718 rdma->errored = true;
2719 return -1;
2723 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2724 RDMAContext *rdma)
2726 int idx;
2728 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2729 rdma_return_path->wr_data[idx].control_len = 0;
2730 rdma_return_path->wr_data[idx].control_curr = NULL;
2733 /*the CM channel and CM id is shared*/
2734 rdma_return_path->channel = rdma->channel;
2735 rdma_return_path->listen_id = rdma->listen_id;
2737 rdma->return_path = rdma_return_path;
2738 rdma_return_path->return_path = rdma;
2739 rdma_return_path->is_return_path = true;
2742 static RDMAContext *qemu_rdma_data_init(const char *host_port, Error **errp)
2744 RDMAContext *rdma = NULL;
2745 InetSocketAddress *addr;
2747 rdma = g_new0(RDMAContext, 1);
2748 rdma->current_index = -1;
2749 rdma->current_chunk = -1;
2751 addr = g_new(InetSocketAddress, 1);
2752 if (!inet_parse(addr, host_port, NULL)) {
2753 rdma->port = atoi(addr->port);
2754 rdma->host = g_strdup(addr->host);
2755 rdma->host_port = g_strdup(host_port);
2756 } else {
2757 error_setg(errp, "RDMA ERROR: bad RDMA migration address '%s'",
2758 host_port);
2759 g_free(rdma);
2760 rdma = NULL;
2763 qapi_free_InetSocketAddress(addr);
2764 return rdma;
2768 * QEMUFile interface to the control channel.
2769 * SEND messages for control only.
2770 * VM's ram is handled with regular RDMA messages.
2772 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2773 const struct iovec *iov,
2774 size_t niov,
2775 int *fds,
2776 size_t nfds,
2777 int flags,
2778 Error **errp)
2780 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2781 RDMAContext *rdma;
2782 int ret;
2783 ssize_t done = 0;
2784 size_t i, len;
2786 RCU_READ_LOCK_GUARD();
2787 rdma = qatomic_rcu_read(&rioc->rdmaout);
2789 if (!rdma) {
2790 error_setg(errp, "RDMA control channel output is not set");
2791 return -1;
2794 if (rdma->errored) {
2795 error_setg(errp,
2796 "RDMA is in an error state waiting migration to abort!");
2797 return -1;
2801 * Push out any writes that
2802 * we're queued up for VM's ram.
2804 ret = qemu_rdma_write_flush(rdma, errp);
2805 if (ret < 0) {
2806 rdma->errored = true;
2807 return -1;
2810 for (i = 0; i < niov; i++) {
2811 size_t remaining = iov[i].iov_len;
2812 uint8_t * data = (void *)iov[i].iov_base;
2813 while (remaining) {
2814 RDMAControlHeader head = {};
2816 len = MIN(remaining, RDMA_SEND_INCREMENT);
2817 remaining -= len;
2819 head.len = len;
2820 head.type = RDMA_CONTROL_QEMU_FILE;
2822 ret = qemu_rdma_exchange_send(rdma, &head,
2823 data, NULL, NULL, NULL, errp);
2825 if (ret < 0) {
2826 rdma->errored = true;
2827 return -1;
2830 data += len;
2831 done += len;
2835 return done;
2838 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2839 size_t size, int idx)
2841 size_t len = 0;
2843 if (rdma->wr_data[idx].control_len) {
2844 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2846 len = MIN(size, rdma->wr_data[idx].control_len);
2847 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2848 rdma->wr_data[idx].control_curr += len;
2849 rdma->wr_data[idx].control_len -= len;
2852 return len;
2856 * QEMUFile interface to the control channel.
2857 * RDMA links don't use bytestreams, so we have to
2858 * return bytes to QEMUFile opportunistically.
2860 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2861 const struct iovec *iov,
2862 size_t niov,
2863 int **fds,
2864 size_t *nfds,
2865 int flags,
2866 Error **errp)
2868 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2869 RDMAContext *rdma;
2870 RDMAControlHeader head;
2871 int ret;
2872 ssize_t done = 0;
2873 size_t i, len;
2875 RCU_READ_LOCK_GUARD();
2876 rdma = qatomic_rcu_read(&rioc->rdmain);
2878 if (!rdma) {
2879 error_setg(errp, "RDMA control channel input is not set");
2880 return -1;
2883 if (rdma->errored) {
2884 error_setg(errp,
2885 "RDMA is in an error state waiting migration to abort!");
2886 return -1;
2889 for (i = 0; i < niov; i++) {
2890 size_t want = iov[i].iov_len;
2891 uint8_t *data = (void *)iov[i].iov_base;
2894 * First, we hold on to the last SEND message we
2895 * were given and dish out the bytes until we run
2896 * out of bytes.
2898 len = qemu_rdma_fill(rdma, data, want, 0);
2899 done += len;
2900 want -= len;
2901 /* Got what we needed, so go to next iovec */
2902 if (want == 0) {
2903 continue;
2906 /* If we got any data so far, then don't wait
2907 * for more, just return what we have */
2908 if (done > 0) {
2909 break;
2913 /* We've got nothing at all, so lets wait for
2914 * more to arrive
2916 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE,
2917 errp);
2919 if (ret < 0) {
2920 rdma->errored = true;
2921 return -1;
2925 * SEND was received with new bytes, now try again.
2927 len = qemu_rdma_fill(rdma, data, want, 0);
2928 done += len;
2929 want -= len;
2931 /* Still didn't get enough, so lets just return */
2932 if (want) {
2933 if (done == 0) {
2934 return QIO_CHANNEL_ERR_BLOCK;
2935 } else {
2936 break;
2940 return done;
2944 * Block until all the outstanding chunks have been delivered by the hardware.
2946 static int qemu_rdma_drain_cq(RDMAContext *rdma)
2948 Error *err = NULL;
2949 int ret;
2951 if (qemu_rdma_write_flush(rdma, &err) < 0) {
2952 error_report_err(err);
2953 return -1;
2956 while (rdma->nb_sent) {
2957 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2958 if (ret < 0) {
2959 error_report("rdma migration: complete polling error!");
2960 return -1;
2964 qemu_rdma_unregister_waiting(rdma);
2966 return 0;
2970 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2971 bool blocking,
2972 Error **errp)
2974 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2975 /* XXX we should make readv/writev actually honour this :-) */
2976 rioc->blocking = blocking;
2977 return 0;
2981 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2982 struct QIOChannelRDMASource {
2983 GSource parent;
2984 QIOChannelRDMA *rioc;
2985 GIOCondition condition;
2988 static gboolean
2989 qio_channel_rdma_source_prepare(GSource *source,
2990 gint *timeout)
2992 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2993 RDMAContext *rdma;
2994 GIOCondition cond = 0;
2995 *timeout = -1;
2997 RCU_READ_LOCK_GUARD();
2998 if (rsource->condition == G_IO_IN) {
2999 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3000 } else {
3001 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3004 if (!rdma) {
3005 error_report("RDMAContext is NULL when prepare Gsource");
3006 return FALSE;
3009 if (rdma->wr_data[0].control_len) {
3010 cond |= G_IO_IN;
3012 cond |= G_IO_OUT;
3014 return cond & rsource->condition;
3017 static gboolean
3018 qio_channel_rdma_source_check(GSource *source)
3020 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3021 RDMAContext *rdma;
3022 GIOCondition cond = 0;
3024 RCU_READ_LOCK_GUARD();
3025 if (rsource->condition == G_IO_IN) {
3026 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3027 } else {
3028 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3031 if (!rdma) {
3032 error_report("RDMAContext is NULL when check Gsource");
3033 return FALSE;
3036 if (rdma->wr_data[0].control_len) {
3037 cond |= G_IO_IN;
3039 cond |= G_IO_OUT;
3041 return cond & rsource->condition;
3044 static gboolean
3045 qio_channel_rdma_source_dispatch(GSource *source,
3046 GSourceFunc callback,
3047 gpointer user_data)
3049 QIOChannelFunc func = (QIOChannelFunc)callback;
3050 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3051 RDMAContext *rdma;
3052 GIOCondition cond = 0;
3054 RCU_READ_LOCK_GUARD();
3055 if (rsource->condition == G_IO_IN) {
3056 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3057 } else {
3058 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3061 if (!rdma) {
3062 error_report("RDMAContext is NULL when dispatch Gsource");
3063 return FALSE;
3066 if (rdma->wr_data[0].control_len) {
3067 cond |= G_IO_IN;
3069 cond |= G_IO_OUT;
3071 return (*func)(QIO_CHANNEL(rsource->rioc),
3072 (cond & rsource->condition),
3073 user_data);
3076 static void
3077 qio_channel_rdma_source_finalize(GSource *source)
3079 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3081 object_unref(OBJECT(ssource->rioc));
3084 static GSourceFuncs qio_channel_rdma_source_funcs = {
3085 qio_channel_rdma_source_prepare,
3086 qio_channel_rdma_source_check,
3087 qio_channel_rdma_source_dispatch,
3088 qio_channel_rdma_source_finalize
3091 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3092 GIOCondition condition)
3094 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3095 QIOChannelRDMASource *ssource;
3096 GSource *source;
3098 source = g_source_new(&qio_channel_rdma_source_funcs,
3099 sizeof(QIOChannelRDMASource));
3100 ssource = (QIOChannelRDMASource *)source;
3102 ssource->rioc = rioc;
3103 object_ref(OBJECT(rioc));
3105 ssource->condition = condition;
3107 return source;
3110 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3111 AioContext *read_ctx,
3112 IOHandler *io_read,
3113 AioContext *write_ctx,
3114 IOHandler *io_write,
3115 void *opaque)
3117 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3118 if (io_read) {
3119 aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3120 io_read, io_write, NULL, NULL, opaque);
3121 aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3122 io_read, io_write, NULL, NULL, opaque);
3123 } else {
3124 aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3125 io_read, io_write, NULL, NULL, opaque);
3126 aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3127 io_read, io_write, NULL, NULL, opaque);
3131 struct rdma_close_rcu {
3132 struct rcu_head rcu;
3133 RDMAContext *rdmain;
3134 RDMAContext *rdmaout;
3137 /* callback from qio_channel_rdma_close via call_rcu */
3138 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3140 if (rcu->rdmain) {
3141 qemu_rdma_cleanup(rcu->rdmain);
3144 if (rcu->rdmaout) {
3145 qemu_rdma_cleanup(rcu->rdmaout);
3148 g_free(rcu->rdmain);
3149 g_free(rcu->rdmaout);
3150 g_free(rcu);
3153 static int qio_channel_rdma_close(QIOChannel *ioc,
3154 Error **errp)
3156 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3157 RDMAContext *rdmain, *rdmaout;
3158 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3160 trace_qemu_rdma_close();
3162 rdmain = rioc->rdmain;
3163 if (rdmain) {
3164 qatomic_rcu_set(&rioc->rdmain, NULL);
3167 rdmaout = rioc->rdmaout;
3168 if (rdmaout) {
3169 qatomic_rcu_set(&rioc->rdmaout, NULL);
3172 rcu->rdmain = rdmain;
3173 rcu->rdmaout = rdmaout;
3174 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3176 return 0;
3179 static int
3180 qio_channel_rdma_shutdown(QIOChannel *ioc,
3181 QIOChannelShutdown how,
3182 Error **errp)
3184 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3185 RDMAContext *rdmain, *rdmaout;
3187 RCU_READ_LOCK_GUARD();
3189 rdmain = qatomic_rcu_read(&rioc->rdmain);
3190 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3192 switch (how) {
3193 case QIO_CHANNEL_SHUTDOWN_READ:
3194 if (rdmain) {
3195 rdmain->errored = true;
3197 break;
3198 case QIO_CHANNEL_SHUTDOWN_WRITE:
3199 if (rdmaout) {
3200 rdmaout->errored = true;
3202 break;
3203 case QIO_CHANNEL_SHUTDOWN_BOTH:
3204 default:
3205 if (rdmain) {
3206 rdmain->errored = true;
3208 if (rdmaout) {
3209 rdmaout->errored = true;
3211 break;
3214 return 0;
3218 * Parameters:
3219 * @offset == 0 :
3220 * This means that 'block_offset' is a full virtual address that does not
3221 * belong to a RAMBlock of the virtual machine and instead
3222 * represents a private malloc'd memory area that the caller wishes to
3223 * transfer.
3225 * @offset != 0 :
3226 * Offset is an offset to be added to block_offset and used
3227 * to also lookup the corresponding RAMBlock.
3229 * @size : Number of bytes to transfer
3231 * @pages_sent : User-specificed pointer to indicate how many pages were
3232 * sent. Usually, this will not be more than a few bytes of
3233 * the protocol because most transfers are sent asynchronously.
3235 static int qemu_rdma_save_page(QEMUFile *f, ram_addr_t block_offset,
3236 ram_addr_t offset, size_t size)
3238 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3239 Error *err = NULL;
3240 RDMAContext *rdma;
3241 int ret;
3243 if (migration_in_postcopy()) {
3244 return RAM_SAVE_CONTROL_NOT_SUPP;
3247 RCU_READ_LOCK_GUARD();
3248 rdma = qatomic_rcu_read(&rioc->rdmaout);
3250 if (!rdma) {
3251 return -1;
3254 if (rdma_errored(rdma)) {
3255 return -1;
3258 qemu_fflush(f);
3261 * Add this page to the current 'chunk'. If the chunk
3262 * is full, or the page doesn't belong to the current chunk,
3263 * an actual RDMA write will occur and a new chunk will be formed.
3265 ret = qemu_rdma_write(rdma, block_offset, offset, size, &err);
3266 if (ret < 0) {
3267 error_report_err(err);
3268 goto err;
3272 * Drain the Completion Queue if possible, but do not block,
3273 * just poll.
3275 * If nothing to poll, the end of the iteration will do this
3276 * again to make sure we don't overflow the request queue.
3278 while (1) {
3279 uint64_t wr_id, wr_id_in;
3280 ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3282 if (ret < 0) {
3283 error_report("rdma migration: polling error");
3284 goto err;
3287 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3289 if (wr_id == RDMA_WRID_NONE) {
3290 break;
3294 while (1) {
3295 uint64_t wr_id, wr_id_in;
3296 ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3298 if (ret < 0) {
3299 error_report("rdma migration: polling error");
3300 goto err;
3303 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3305 if (wr_id == RDMA_WRID_NONE) {
3306 break;
3310 return RAM_SAVE_CONTROL_DELAYED;
3312 err:
3313 rdma->errored = true;
3314 return -1;
3317 static void rdma_accept_incoming_migration(void *opaque);
3319 static void rdma_cm_poll_handler(void *opaque)
3321 RDMAContext *rdma = opaque;
3322 int ret;
3323 struct rdma_cm_event *cm_event;
3324 MigrationIncomingState *mis = migration_incoming_get_current();
3326 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3327 if (ret < 0) {
3328 error_report("get_cm_event failed %d", errno);
3329 return;
3332 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3333 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3334 if (!rdma->errored &&
3335 migration_incoming_get_current()->state !=
3336 MIGRATION_STATUS_COMPLETED) {
3337 error_report("receive cm event, cm event is %d", cm_event->event);
3338 rdma->errored = true;
3339 if (rdma->return_path) {
3340 rdma->return_path->errored = true;
3343 rdma_ack_cm_event(cm_event);
3344 if (mis->loadvm_co) {
3345 qemu_coroutine_enter(mis->loadvm_co);
3347 return;
3349 rdma_ack_cm_event(cm_event);
3352 static int qemu_rdma_accept(RDMAContext *rdma)
3354 Error *err = NULL;
3355 RDMACapabilities cap;
3356 struct rdma_conn_param conn_param = {
3357 .responder_resources = 2,
3358 .private_data = &cap,
3359 .private_data_len = sizeof(cap),
3361 RDMAContext *rdma_return_path = NULL;
3362 struct rdma_cm_event *cm_event;
3363 struct ibv_context *verbs;
3364 int ret;
3365 int idx;
3367 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3368 if (ret < 0) {
3369 goto err_rdma_dest_wait;
3372 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3373 rdma_ack_cm_event(cm_event);
3374 goto err_rdma_dest_wait;
3378 * initialize the RDMAContext for return path for postcopy after first
3379 * connection request reached.
3381 if ((migrate_postcopy() || migrate_return_path())
3382 && !rdma->is_return_path) {
3383 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3384 if (rdma_return_path == NULL) {
3385 rdma_ack_cm_event(cm_event);
3386 goto err_rdma_dest_wait;
3389 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3392 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3394 network_to_caps(&cap);
3396 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3397 error_report("Unknown source RDMA version: %d, bailing...",
3398 cap.version);
3399 rdma_ack_cm_event(cm_event);
3400 goto err_rdma_dest_wait;
3404 * Respond with only the capabilities this version of QEMU knows about.
3406 cap.flags &= known_capabilities;
3409 * Enable the ones that we do know about.
3410 * Add other checks here as new ones are introduced.
3412 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3413 rdma->pin_all = true;
3416 rdma->cm_id = cm_event->id;
3417 verbs = cm_event->id->verbs;
3419 rdma_ack_cm_event(cm_event);
3421 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3423 caps_to_network(&cap);
3425 trace_qemu_rdma_accept_pin_verbsc(verbs);
3427 if (!rdma->verbs) {
3428 rdma->verbs = verbs;
3429 } else if (rdma->verbs != verbs) {
3430 error_report("ibv context not matching %p, %p!", rdma->verbs,
3431 verbs);
3432 goto err_rdma_dest_wait;
3435 qemu_rdma_dump_id("dest_init", verbs);
3437 ret = qemu_rdma_alloc_pd_cq(rdma, &err);
3438 if (ret < 0) {
3439 error_report_err(err);
3440 goto err_rdma_dest_wait;
3443 ret = qemu_rdma_alloc_qp(rdma);
3444 if (ret < 0) {
3445 error_report("rdma migration: error allocating qp!");
3446 goto err_rdma_dest_wait;
3449 qemu_rdma_init_ram_blocks(rdma);
3451 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3452 ret = qemu_rdma_reg_control(rdma, idx);
3453 if (ret < 0) {
3454 error_report("rdma: error registering %d control", idx);
3455 goto err_rdma_dest_wait;
3459 /* Accept the second connection request for return path */
3460 if ((migrate_postcopy() || migrate_return_path())
3461 && !rdma->is_return_path) {
3462 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3463 NULL,
3464 (void *)(intptr_t)rdma->return_path);
3465 } else {
3466 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3467 NULL, rdma);
3470 ret = rdma_accept(rdma->cm_id, &conn_param);
3471 if (ret < 0) {
3472 error_report("rdma_accept failed");
3473 goto err_rdma_dest_wait;
3476 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3477 if (ret < 0) {
3478 error_report("rdma_accept get_cm_event failed");
3479 goto err_rdma_dest_wait;
3482 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3483 error_report("rdma_accept not event established");
3484 rdma_ack_cm_event(cm_event);
3485 goto err_rdma_dest_wait;
3488 rdma_ack_cm_event(cm_event);
3489 rdma->connected = true;
3491 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, &err);
3492 if (ret < 0) {
3493 error_report_err(err);
3494 goto err_rdma_dest_wait;
3497 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3499 return 0;
3501 err_rdma_dest_wait:
3502 rdma->errored = true;
3503 qemu_rdma_cleanup(rdma);
3504 g_free(rdma_return_path);
3505 return -1;
3508 static int dest_ram_sort_func(const void *a, const void *b)
3510 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3511 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3513 return (a_index < b_index) ? -1 : (a_index != b_index);
3517 * During each iteration of the migration, we listen for instructions
3518 * by the source VM to perform dynamic page registrations before they
3519 * can perform RDMA operations.
3521 * We respond with the 'rkey'.
3523 * Keep doing this until the source tells us to stop.
3525 static int qemu_rdma_registration_handle(QEMUFile *f)
3527 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3528 .type = RDMA_CONTROL_REGISTER_RESULT,
3529 .repeat = 0,
3531 RDMAControlHeader unreg_resp = { .len = 0,
3532 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3533 .repeat = 0,
3535 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3536 .repeat = 1 };
3537 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3538 Error *err = NULL;
3539 RDMAContext *rdma;
3540 RDMALocalBlocks *local;
3541 RDMAControlHeader head;
3542 RDMARegister *reg, *registers;
3543 RDMACompress *comp;
3544 RDMARegisterResult *reg_result;
3545 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3546 RDMALocalBlock *block;
3547 void *host_addr;
3548 int ret;
3549 int idx = 0;
3550 int count = 0;
3551 int i = 0;
3553 RCU_READ_LOCK_GUARD();
3554 rdma = qatomic_rcu_read(&rioc->rdmain);
3556 if (!rdma) {
3557 return -1;
3560 if (rdma_errored(rdma)) {
3561 return -1;
3564 local = &rdma->local_ram_blocks;
3565 do {
3566 trace_qemu_rdma_registration_handle_wait();
3568 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE, &err);
3570 if (ret < 0) {
3571 error_report_err(err);
3572 break;
3575 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3576 error_report("rdma: Too many requests in this message (%d)."
3577 "Bailing.", head.repeat);
3578 break;
3581 switch (head.type) {
3582 case RDMA_CONTROL_COMPRESS:
3583 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3584 network_to_compress(comp);
3586 trace_qemu_rdma_registration_handle_compress(comp->length,
3587 comp->block_idx,
3588 comp->offset);
3589 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3590 error_report("rdma: 'compress' bad block index %u (vs %d)",
3591 (unsigned int)comp->block_idx,
3592 rdma->local_ram_blocks.nb_blocks);
3593 goto err;
3595 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3597 host_addr = block->local_host_addr +
3598 (comp->offset - block->offset);
3600 ram_handle_compressed(host_addr, comp->value, comp->length);
3601 break;
3603 case RDMA_CONTROL_REGISTER_FINISHED:
3604 trace_qemu_rdma_registration_handle_finished();
3605 return 0;
3607 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3608 trace_qemu_rdma_registration_handle_ram_blocks();
3610 /* Sort our local RAM Block list so it's the same as the source,
3611 * we can do this since we've filled in a src_index in the list
3612 * as we received the RAMBlock list earlier.
3614 qsort(rdma->local_ram_blocks.block,
3615 rdma->local_ram_blocks.nb_blocks,
3616 sizeof(RDMALocalBlock), dest_ram_sort_func);
3617 for (i = 0; i < local->nb_blocks; i++) {
3618 local->block[i].index = i;
3621 if (rdma->pin_all) {
3622 ret = qemu_rdma_reg_whole_ram_blocks(rdma, &err);
3623 if (ret < 0) {
3624 error_report_err(err);
3625 goto err;
3630 * Dest uses this to prepare to transmit the RAMBlock descriptions
3631 * to the source VM after connection setup.
3632 * Both sides use the "remote" structure to communicate and update
3633 * their "local" descriptions with what was sent.
3635 for (i = 0; i < local->nb_blocks; i++) {
3636 rdma->dest_blocks[i].remote_host_addr =
3637 (uintptr_t)(local->block[i].local_host_addr);
3639 if (rdma->pin_all) {
3640 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3643 rdma->dest_blocks[i].offset = local->block[i].offset;
3644 rdma->dest_blocks[i].length = local->block[i].length;
3646 dest_block_to_network(&rdma->dest_blocks[i]);
3647 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3648 local->block[i].block_name,
3649 local->block[i].offset,
3650 local->block[i].length,
3651 local->block[i].local_host_addr,
3652 local->block[i].src_index);
3655 blocks.len = rdma->local_ram_blocks.nb_blocks
3656 * sizeof(RDMADestBlock);
3659 ret = qemu_rdma_post_send_control(rdma,
3660 (uint8_t *) rdma->dest_blocks, &blocks,
3661 &err);
3663 if (ret < 0) {
3664 error_report_err(err);
3665 goto err;
3668 break;
3669 case RDMA_CONTROL_REGISTER_REQUEST:
3670 trace_qemu_rdma_registration_handle_register(head.repeat);
3672 reg_resp.repeat = head.repeat;
3673 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3675 for (count = 0; count < head.repeat; count++) {
3676 uint64_t chunk;
3677 uint8_t *chunk_start, *chunk_end;
3679 reg = &registers[count];
3680 network_to_register(reg);
3682 reg_result = &results[count];
3684 trace_qemu_rdma_registration_handle_register_loop(count,
3685 reg->current_index, reg->key.current_addr, reg->chunks);
3687 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3688 error_report("rdma: 'register' bad block index %u (vs %d)",
3689 (unsigned int)reg->current_index,
3690 rdma->local_ram_blocks.nb_blocks);
3691 goto err;
3693 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3694 if (block->is_ram_block) {
3695 if (block->offset > reg->key.current_addr) {
3696 error_report("rdma: bad register address for block %s"
3697 " offset: %" PRIx64 " current_addr: %" PRIx64,
3698 block->block_name, block->offset,
3699 reg->key.current_addr);
3700 goto err;
3702 host_addr = (block->local_host_addr +
3703 (reg->key.current_addr - block->offset));
3704 chunk = ram_chunk_index(block->local_host_addr,
3705 (uint8_t *) host_addr);
3706 } else {
3707 chunk = reg->key.chunk;
3708 host_addr = block->local_host_addr +
3709 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3710 /* Check for particularly bad chunk value */
3711 if (host_addr < (void *)block->local_host_addr) {
3712 error_report("rdma: bad chunk for block %s"
3713 " chunk: %" PRIx64,
3714 block->block_name, reg->key.chunk);
3715 goto err;
3718 chunk_start = ram_chunk_start(block, chunk);
3719 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3720 /* avoid "-Waddress-of-packed-member" warning */
3721 uint32_t tmp_rkey = 0;
3722 if (qemu_rdma_register_and_get_keys(rdma, block,
3723 (uintptr_t)host_addr, NULL, &tmp_rkey,
3724 chunk, chunk_start, chunk_end)) {
3725 error_report("cannot get rkey");
3726 goto err;
3728 reg_result->rkey = tmp_rkey;
3730 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3732 trace_qemu_rdma_registration_handle_register_rkey(
3733 reg_result->rkey);
3735 result_to_network(reg_result);
3738 ret = qemu_rdma_post_send_control(rdma,
3739 (uint8_t *) results, &reg_resp, &err);
3741 if (ret < 0) {
3742 error_report_err(err);
3743 goto err;
3745 break;
3746 case RDMA_CONTROL_UNREGISTER_REQUEST:
3747 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3748 unreg_resp.repeat = head.repeat;
3749 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3751 for (count = 0; count < head.repeat; count++) {
3752 reg = &registers[count];
3753 network_to_register(reg);
3755 trace_qemu_rdma_registration_handle_unregister_loop(count,
3756 reg->current_index, reg->key.chunk);
3758 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3760 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3761 block->pmr[reg->key.chunk] = NULL;
3763 if (ret != 0) {
3764 error_report("rdma unregistration chunk failed: %s",
3765 strerror(errno));
3766 goto err;
3769 rdma->total_registrations--;
3771 trace_qemu_rdma_registration_handle_unregister_success(
3772 reg->key.chunk);
3775 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp, &err);
3777 if (ret < 0) {
3778 error_report_err(err);
3779 goto err;
3781 break;
3782 case RDMA_CONTROL_REGISTER_RESULT:
3783 error_report("Invalid RESULT message at dest.");
3784 goto err;
3785 default:
3786 error_report("Unknown control message %s", control_desc(head.type));
3787 goto err;
3789 } while (1);
3791 err:
3792 rdma->errored = true;
3793 return -1;
3796 /* Destination:
3797 * Called via a ram_control_load_hook during the initial RAM load section which
3798 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3799 * on the source.
3800 * We've already built our local RAMBlock list, but not yet sent the list to
3801 * the source.
3803 static int
3804 rdma_block_notification_handle(QEMUFile *f, const char *name)
3806 RDMAContext *rdma;
3807 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3808 int curr;
3809 int found = -1;
3811 RCU_READ_LOCK_GUARD();
3812 rdma = qatomic_rcu_read(&rioc->rdmain);
3814 if (!rdma) {
3815 return -1;
3818 /* Find the matching RAMBlock in our local list */
3819 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3820 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3821 found = curr;
3822 break;
3826 if (found == -1) {
3827 error_report("RAMBlock '%s' not found on destination", name);
3828 return -1;
3831 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3832 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3833 rdma->next_src_index++;
3835 return 0;
3838 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3840 switch (flags) {
3841 case RAM_CONTROL_BLOCK_REG:
3842 return rdma_block_notification_handle(f, data);
3844 case RAM_CONTROL_HOOK:
3845 return qemu_rdma_registration_handle(f);
3847 default:
3848 /* Shouldn't be called with any other values */
3849 abort();
3853 static int qemu_rdma_registration_start(QEMUFile *f,
3854 uint64_t flags, void *data)
3856 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3857 RDMAContext *rdma;
3859 if (migration_in_postcopy()) {
3860 return 0;
3863 RCU_READ_LOCK_GUARD();
3864 rdma = qatomic_rcu_read(&rioc->rdmaout);
3865 if (!rdma) {
3866 return -1;
3869 if (rdma_errored(rdma)) {
3870 return -1;
3873 trace_qemu_rdma_registration_start(flags);
3874 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3875 qemu_fflush(f);
3877 return 0;
3881 * Inform dest that dynamic registrations are done for now.
3882 * First, flush writes, if any.
3884 static int qemu_rdma_registration_stop(QEMUFile *f,
3885 uint64_t flags, void *data)
3887 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3888 Error *err = NULL;
3889 RDMAContext *rdma;
3890 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3891 int ret;
3893 if (migration_in_postcopy()) {
3894 return 0;
3897 RCU_READ_LOCK_GUARD();
3898 rdma = qatomic_rcu_read(&rioc->rdmaout);
3899 if (!rdma) {
3900 return -1;
3903 if (rdma_errored(rdma)) {
3904 return -1;
3907 qemu_fflush(f);
3908 ret = qemu_rdma_drain_cq(rdma);
3910 if (ret < 0) {
3911 goto err;
3914 if (flags == RAM_CONTROL_SETUP) {
3915 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3916 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3917 int reg_result_idx, i, nb_dest_blocks;
3919 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3920 trace_qemu_rdma_registration_stop_ram();
3923 * Make sure that we parallelize the pinning on both sides.
3924 * For very large guests, doing this serially takes a really
3925 * long time, so we have to 'interleave' the pinning locally
3926 * with the control messages by performing the pinning on this
3927 * side before we receive the control response from the other
3928 * side that the pinning has completed.
3930 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3931 &reg_result_idx, rdma->pin_all ?
3932 qemu_rdma_reg_whole_ram_blocks : NULL,
3933 &err);
3934 if (ret < 0) {
3935 error_report_err(err);
3936 return -1;
3939 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3942 * The protocol uses two different sets of rkeys (mutually exclusive):
3943 * 1. One key to represent the virtual address of the entire ram block.
3944 * (dynamic chunk registration disabled - pin everything with one rkey.)
3945 * 2. One to represent individual chunks within a ram block.
3946 * (dynamic chunk registration enabled - pin individual chunks.)
3948 * Once the capability is successfully negotiated, the destination transmits
3949 * the keys to use (or sends them later) including the virtual addresses
3950 * and then propagates the remote ram block descriptions to his local copy.
3953 if (local->nb_blocks != nb_dest_blocks) {
3954 error_report("ram blocks mismatch (Number of blocks %d vs %d)",
3955 local->nb_blocks, nb_dest_blocks);
3956 error_printf("Your QEMU command line parameters are probably "
3957 "not identical on both the source and destination.");
3958 rdma->errored = true;
3959 return -1;
3962 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3963 memcpy(rdma->dest_blocks,
3964 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3965 for (i = 0; i < nb_dest_blocks; i++) {
3966 network_to_dest_block(&rdma->dest_blocks[i]);
3968 /* We require that the blocks are in the same order */
3969 if (rdma->dest_blocks[i].length != local->block[i].length) {
3970 error_report("Block %s/%d has a different length %" PRIu64
3971 "vs %" PRIu64,
3972 local->block[i].block_name, i,
3973 local->block[i].length,
3974 rdma->dest_blocks[i].length);
3975 rdma->errored = true;
3976 return -1;
3978 local->block[i].remote_host_addr =
3979 rdma->dest_blocks[i].remote_host_addr;
3980 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3984 trace_qemu_rdma_registration_stop(flags);
3986 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3987 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL, &err);
3989 if (ret < 0) {
3990 error_report_err(err);
3991 goto err;
3994 return 0;
3995 err:
3996 rdma->errored = true;
3997 return -1;
4000 static const QEMUFileHooks rdma_read_hooks = {
4001 .hook_ram_load = rdma_load_hook,
4004 static const QEMUFileHooks rdma_write_hooks = {
4005 .before_ram_iterate = qemu_rdma_registration_start,
4006 .after_ram_iterate = qemu_rdma_registration_stop,
4007 .save_page = qemu_rdma_save_page,
4011 static void qio_channel_rdma_finalize(Object *obj)
4013 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4014 if (rioc->rdmain) {
4015 qemu_rdma_cleanup(rioc->rdmain);
4016 g_free(rioc->rdmain);
4017 rioc->rdmain = NULL;
4019 if (rioc->rdmaout) {
4020 qemu_rdma_cleanup(rioc->rdmaout);
4021 g_free(rioc->rdmaout);
4022 rioc->rdmaout = NULL;
4026 static void qio_channel_rdma_class_init(ObjectClass *klass,
4027 void *class_data G_GNUC_UNUSED)
4029 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4031 ioc_klass->io_writev = qio_channel_rdma_writev;
4032 ioc_klass->io_readv = qio_channel_rdma_readv;
4033 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4034 ioc_klass->io_close = qio_channel_rdma_close;
4035 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4036 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4037 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4040 static const TypeInfo qio_channel_rdma_info = {
4041 .parent = TYPE_QIO_CHANNEL,
4042 .name = TYPE_QIO_CHANNEL_RDMA,
4043 .instance_size = sizeof(QIOChannelRDMA),
4044 .instance_finalize = qio_channel_rdma_finalize,
4045 .class_init = qio_channel_rdma_class_init,
4048 static void qio_channel_rdma_register_types(void)
4050 type_register_static(&qio_channel_rdma_info);
4053 type_init(qio_channel_rdma_register_types);
4055 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4057 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4059 rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4060 rioc->rdmain = rdma;
4061 rioc->rdmaout = rdma->return_path;
4062 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4064 return rioc->file;
4067 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4069 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4071 rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4072 rioc->rdmaout = rdma;
4073 rioc->rdmain = rdma->return_path;
4074 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4076 return rioc->file;
4079 static void rdma_accept_incoming_migration(void *opaque)
4081 RDMAContext *rdma = opaque;
4082 int ret;
4083 QEMUFile *f;
4084 Error *local_err = NULL;
4086 trace_qemu_rdma_accept_incoming_migration();
4087 ret = qemu_rdma_accept(rdma);
4089 if (ret < 0) {
4090 error_report("RDMA ERROR: Migration initialization failed");
4091 return;
4094 trace_qemu_rdma_accept_incoming_migration_accepted();
4096 if (rdma->is_return_path) {
4097 return;
4100 f = rdma_new_input(rdma);
4101 if (f == NULL) {
4102 error_report("RDMA ERROR: could not open RDMA for input");
4103 qemu_rdma_cleanup(rdma);
4104 return;
4107 rdma->migration_started_on_destination = 1;
4108 migration_fd_process_incoming(f, &local_err);
4109 if (local_err) {
4110 error_reportf_err(local_err, "RDMA ERROR:");
4114 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4116 int ret;
4117 RDMAContext *rdma;
4119 trace_rdma_start_incoming_migration();
4121 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4122 if (ram_block_discard_is_required()) {
4123 error_setg(errp, "RDMA: cannot disable RAM discard");
4124 return;
4127 rdma = qemu_rdma_data_init(host_port, errp);
4128 if (rdma == NULL) {
4129 goto err;
4132 ret = qemu_rdma_dest_init(rdma, errp);
4133 if (ret < 0) {
4134 goto err;
4137 trace_rdma_start_incoming_migration_after_dest_init();
4139 ret = rdma_listen(rdma->listen_id, 5);
4141 if (ret < 0) {
4142 error_setg(errp, "RDMA ERROR: listening on socket!");
4143 goto cleanup_rdma;
4146 trace_rdma_start_incoming_migration_after_rdma_listen();
4148 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4149 NULL, (void *)(intptr_t)rdma);
4150 return;
4152 cleanup_rdma:
4153 qemu_rdma_cleanup(rdma);
4154 err:
4155 if (rdma) {
4156 g_free(rdma->host);
4157 g_free(rdma->host_port);
4159 g_free(rdma);
4162 void rdma_start_outgoing_migration(void *opaque,
4163 const char *host_port, Error **errp)
4165 MigrationState *s = opaque;
4166 RDMAContext *rdma_return_path = NULL;
4167 RDMAContext *rdma;
4168 int ret;
4170 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4171 if (ram_block_discard_is_required()) {
4172 error_setg(errp, "RDMA: cannot disable RAM discard");
4173 return;
4176 rdma = qemu_rdma_data_init(host_port, errp);
4177 if (rdma == NULL) {
4178 goto err;
4181 ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4183 if (ret < 0) {
4184 goto err;
4187 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4188 ret = qemu_rdma_connect(rdma, false, errp);
4190 if (ret < 0) {
4191 goto err;
4194 /* RDMA postcopy need a separate queue pair for return path */
4195 if (migrate_postcopy() || migrate_return_path()) {
4196 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4198 if (rdma_return_path == NULL) {
4199 goto return_path_err;
4202 ret = qemu_rdma_source_init(rdma_return_path,
4203 migrate_rdma_pin_all(), errp);
4205 if (ret < 0) {
4206 goto return_path_err;
4209 ret = qemu_rdma_connect(rdma_return_path, true, errp);
4211 if (ret < 0) {
4212 goto return_path_err;
4215 rdma->return_path = rdma_return_path;
4216 rdma_return_path->return_path = rdma;
4217 rdma_return_path->is_return_path = true;
4220 trace_rdma_start_outgoing_migration_after_rdma_connect();
4222 s->to_dst_file = rdma_new_output(rdma);
4223 migrate_fd_connect(s, NULL);
4224 return;
4225 return_path_err:
4226 qemu_rdma_cleanup(rdma);
4227 err:
4228 g_free(rdma);
4229 g_free(rdma_return_path);