arm: Refactor get_phys_addr FSR return mechanism
[qemu/kevin.git] / target-arm / op_helper.c
blob7fa32c470752fbc90dab2e22451029e7599f7b1d
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "cpu.h"
20 #include "exec/helper-proto.h"
21 #include "internals.h"
22 #include "exec/cpu_ldst.h"
24 #define SIGNBIT (uint32_t)0x80000000
25 #define SIGNBIT64 ((uint64_t)1 << 63)
27 static void raise_exception(CPUARMState *env, uint32_t excp,
28 uint32_t syndrome, uint32_t target_el)
30 CPUState *cs = CPU(arm_env_get_cpu(env));
32 assert(!excp_is_internal(excp));
33 cs->exception_index = excp;
34 env->exception.syndrome = syndrome;
35 env->exception.target_el = target_el;
36 cpu_loop_exit(cs);
39 static int exception_target_el(CPUARMState *env)
41 int target_el = MAX(1, arm_current_el(env));
43 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
44 * to EL3 in this case.
46 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
47 target_el = 3;
50 return target_el;
53 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
54 uint32_t rn, uint32_t maxindex)
56 uint32_t val;
57 uint32_t tmp;
58 int index;
59 int shift;
60 uint64_t *table;
61 table = (uint64_t *)&env->vfp.regs[rn];
62 val = 0;
63 for (shift = 0; shift < 32; shift += 8) {
64 index = (ireg >> shift) & 0xff;
65 if (index < maxindex) {
66 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
67 val |= tmp << shift;
68 } else {
69 val |= def & (0xff << shift);
72 return val;
75 #if !defined(CONFIG_USER_ONLY)
77 /* try to fill the TLB and return an exception if error. If retaddr is
78 * NULL, it means that the function was called in C code (i.e. not
79 * from generated code or from helper.c)
81 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
82 uintptr_t retaddr)
84 bool ret;
85 uint32_t fsr = 0;
87 ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr);
88 if (unlikely(ret)) {
89 ARMCPU *cpu = ARM_CPU(cs);
90 CPUARMState *env = &cpu->env;
91 uint32_t syn, exc;
92 bool same_el = (arm_current_el(env) != 0);
94 if (retaddr) {
95 /* now we have a real cpu fault */
96 cpu_restore_state(cs, retaddr);
99 /* AArch64 syndrome does not have an LPAE bit */
100 syn = fsr & ~(1 << 9);
102 /* For insn and data aborts we assume there is no instruction syndrome
103 * information; this is always true for exceptions reported to EL1.
105 if (is_write == 2) {
106 syn = syn_insn_abort(same_el, 0, 0, syn);
107 exc = EXCP_PREFETCH_ABORT;
108 } else {
109 syn = syn_data_abort(same_el, 0, 0, 0, is_write == 1, syn);
110 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
111 fsr |= (1 << 11);
113 exc = EXCP_DATA_ABORT;
116 env->exception.vaddress = addr;
117 env->exception.fsr = fsr;
118 raise_exception(env, exc, syn, exception_target_el(env));
121 #endif
123 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
125 uint32_t res = a + b;
126 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
127 env->QF = 1;
128 return res;
131 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
133 uint32_t res = a + b;
134 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
135 env->QF = 1;
136 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
138 return res;
141 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
143 uint32_t res = a - b;
144 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
145 env->QF = 1;
146 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
148 return res;
151 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
153 uint32_t res;
154 if (val >= 0x40000000) {
155 res = ~SIGNBIT;
156 env->QF = 1;
157 } else if (val <= (int32_t)0xc0000000) {
158 res = SIGNBIT;
159 env->QF = 1;
160 } else {
161 res = val << 1;
163 return res;
166 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
168 uint32_t res = a + b;
169 if (res < a) {
170 env->QF = 1;
171 res = ~0;
173 return res;
176 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
178 uint32_t res = a - b;
179 if (res > a) {
180 env->QF = 1;
181 res = 0;
183 return res;
186 /* Signed saturation. */
187 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
189 int32_t top;
190 uint32_t mask;
192 top = val >> shift;
193 mask = (1u << shift) - 1;
194 if (top > 0) {
195 env->QF = 1;
196 return mask;
197 } else if (top < -1) {
198 env->QF = 1;
199 return ~mask;
201 return val;
204 /* Unsigned saturation. */
205 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
207 uint32_t max;
209 max = (1u << shift) - 1;
210 if (val < 0) {
211 env->QF = 1;
212 return 0;
213 } else if (val > max) {
214 env->QF = 1;
215 return max;
217 return val;
220 /* Signed saturate. */
221 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
223 return do_ssat(env, x, shift);
226 /* Dual halfword signed saturate. */
227 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
229 uint32_t res;
231 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
232 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
233 return res;
236 /* Unsigned saturate. */
237 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
239 return do_usat(env, x, shift);
242 /* Dual halfword unsigned saturate. */
243 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
245 uint32_t res;
247 res = (uint16_t)do_usat(env, (int16_t)x, shift);
248 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
249 return res;
252 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
253 * The function returns the target EL (1-3) if the instruction is to be trapped;
254 * otherwise it returns 0 indicating it is not trapped.
256 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
258 int cur_el = arm_current_el(env);
259 uint64_t mask;
261 /* If we are currently in EL0 then we need to check if SCTLR is set up for
262 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
264 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
265 int target_el;
267 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
268 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
269 /* Secure EL0 and Secure PL1 is at EL3 */
270 target_el = 3;
271 } else {
272 target_el = 1;
275 if (!(env->cp15.sctlr_el[target_el] & mask)) {
276 return target_el;
280 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
281 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
282 * bits will be zero indicating no trap.
284 if (cur_el < 2 && !arm_is_secure(env)) {
285 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
286 if (env->cp15.hcr_el2 & mask) {
287 return 2;
291 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
292 if (cur_el < 3) {
293 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
294 if (env->cp15.scr_el3 & mask) {
295 return 3;
299 return 0;
302 void HELPER(wfi)(CPUARMState *env)
304 CPUState *cs = CPU(arm_env_get_cpu(env));
305 int target_el = check_wfx_trap(env, false);
307 if (cpu_has_work(cs)) {
308 /* Don't bother to go into our "low power state" if
309 * we would just wake up immediately.
311 return;
314 if (target_el) {
315 env->pc -= 4;
316 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
319 cs->exception_index = EXCP_HLT;
320 cs->halted = 1;
321 cpu_loop_exit(cs);
324 void HELPER(wfe)(CPUARMState *env)
326 CPUState *cs = CPU(arm_env_get_cpu(env));
328 /* Don't actually halt the CPU, just yield back to top
329 * level loop. This is not going into a "low power state"
330 * (ie halting until some event occurs), so we never take
331 * a configurable trap to a different exception level.
333 cs->exception_index = EXCP_YIELD;
334 cpu_loop_exit(cs);
337 /* Raise an internal-to-QEMU exception. This is limited to only
338 * those EXCP values which are special cases for QEMU to interrupt
339 * execution and not to be used for exceptions which are passed to
340 * the guest (those must all have syndrome information and thus should
341 * use exception_with_syndrome).
343 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
345 CPUState *cs = CPU(arm_env_get_cpu(env));
347 assert(excp_is_internal(excp));
348 cs->exception_index = excp;
349 cpu_loop_exit(cs);
352 /* Raise an exception with the specified syndrome register value */
353 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
354 uint32_t syndrome, uint32_t target_el)
356 raise_exception(env, excp, syndrome, target_el);
359 uint32_t HELPER(cpsr_read)(CPUARMState *env)
361 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
364 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
366 cpsr_write(env, val, mask);
369 /* Access to user mode registers from privileged modes. */
370 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
372 uint32_t val;
374 if (regno == 13) {
375 val = env->banked_r13[0];
376 } else if (regno == 14) {
377 val = env->banked_r14[0];
378 } else if (regno >= 8
379 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
380 val = env->usr_regs[regno - 8];
381 } else {
382 val = env->regs[regno];
384 return val;
387 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
389 if (regno == 13) {
390 env->banked_r13[0] = val;
391 } else if (regno == 14) {
392 env->banked_r14[0] = val;
393 } else if (regno >= 8
394 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
395 env->usr_regs[regno - 8] = val;
396 } else {
397 env->regs[regno] = val;
401 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome)
403 const ARMCPRegInfo *ri = rip;
404 int target_el;
406 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
407 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
408 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
411 if (!ri->accessfn) {
412 return;
415 switch (ri->accessfn(env, ri)) {
416 case CP_ACCESS_OK:
417 return;
418 case CP_ACCESS_TRAP:
419 target_el = exception_target_el(env);
420 break;
421 case CP_ACCESS_TRAP_EL2:
422 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
423 * a bug in the access function.
425 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
426 target_el = 2;
427 break;
428 case CP_ACCESS_TRAP_EL3:
429 target_el = 3;
430 break;
431 case CP_ACCESS_TRAP_UNCATEGORIZED:
432 target_el = exception_target_el(env);
433 syndrome = syn_uncategorized();
434 break;
435 default:
436 g_assert_not_reached();
439 raise_exception(env, EXCP_UDEF, syndrome, target_el);
442 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
444 const ARMCPRegInfo *ri = rip;
446 ri->writefn(env, ri, value);
449 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
451 const ARMCPRegInfo *ri = rip;
453 return ri->readfn(env, ri);
456 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
458 const ARMCPRegInfo *ri = rip;
460 ri->writefn(env, ri, value);
463 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
465 const ARMCPRegInfo *ri = rip;
467 return ri->readfn(env, ri);
470 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
472 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
473 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
474 * to catch that case at translate time.
476 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
477 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
478 extract32(op, 3, 3), 4,
479 imm, 0x1f, 0);
480 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
483 switch (op) {
484 case 0x05: /* SPSel */
485 update_spsel(env, imm);
486 break;
487 case 0x1e: /* DAIFSet */
488 env->daif |= (imm << 6) & PSTATE_DAIF;
489 break;
490 case 0x1f: /* DAIFClear */
491 env->daif &= ~((imm << 6) & PSTATE_DAIF);
492 break;
493 default:
494 g_assert_not_reached();
498 void HELPER(clear_pstate_ss)(CPUARMState *env)
500 env->pstate &= ~PSTATE_SS;
503 void HELPER(pre_hvc)(CPUARMState *env)
505 ARMCPU *cpu = arm_env_get_cpu(env);
506 int cur_el = arm_current_el(env);
507 /* FIXME: Use actual secure state. */
508 bool secure = false;
509 bool undef;
511 if (arm_is_psci_call(cpu, EXCP_HVC)) {
512 /* If PSCI is enabled and this looks like a valid PSCI call then
513 * that overrides the architecturally mandated HVC behaviour.
515 return;
518 if (!arm_feature(env, ARM_FEATURE_EL2)) {
519 /* If EL2 doesn't exist, HVC always UNDEFs */
520 undef = true;
521 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
522 /* EL3.HCE has priority over EL2.HCD. */
523 undef = !(env->cp15.scr_el3 & SCR_HCE);
524 } else {
525 undef = env->cp15.hcr_el2 & HCR_HCD;
528 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
529 * For ARMv8/AArch64, HVC is allowed in EL3.
530 * Note that we've already trapped HVC from EL0 at translation
531 * time.
533 if (secure && (!is_a64(env) || cur_el == 1)) {
534 undef = true;
537 if (undef) {
538 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
539 exception_target_el(env));
543 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
545 ARMCPU *cpu = arm_env_get_cpu(env);
546 int cur_el = arm_current_el(env);
547 bool secure = arm_is_secure(env);
548 bool smd = env->cp15.scr_el3 & SCR_SMD;
549 /* On ARMv8 AArch32, SMD only applies to NS state.
550 * On ARMv7 SMD only applies to NS state and only if EL2 is available.
551 * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check
552 * the EL2 condition here.
554 bool undef = is_a64(env) ? smd : (!secure && smd);
556 if (arm_is_psci_call(cpu, EXCP_SMC)) {
557 /* If PSCI is enabled and this looks like a valid PSCI call then
558 * that overrides the architecturally mandated SMC behaviour.
560 return;
563 if (!arm_feature(env, ARM_FEATURE_EL3)) {
564 /* If we have no EL3 then SMC always UNDEFs */
565 undef = true;
566 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
567 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
568 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
571 if (undef) {
572 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
573 exception_target_el(env));
577 void HELPER(exception_return)(CPUARMState *env)
579 int cur_el = arm_current_el(env);
580 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
581 uint32_t spsr = env->banked_spsr[spsr_idx];
582 int new_el;
584 aarch64_save_sp(env, cur_el);
586 env->exclusive_addr = -1;
588 /* We must squash the PSTATE.SS bit to zero unless both of the
589 * following hold:
590 * 1. debug exceptions are currently disabled
591 * 2. singlestep will be active in the EL we return to
592 * We check 1 here and 2 after we've done the pstate/cpsr write() to
593 * transition to the EL we're going to.
595 if (arm_generate_debug_exceptions(env)) {
596 spsr &= ~PSTATE_SS;
599 if (spsr & PSTATE_nRW) {
600 /* TODO: We currently assume EL1/2/3 are running in AArch64. */
601 env->aarch64 = 0;
602 new_el = 0;
603 env->uncached_cpsr = 0x10;
604 cpsr_write(env, spsr, ~0);
605 if (!arm_singlestep_active(env)) {
606 env->uncached_cpsr &= ~PSTATE_SS;
608 aarch64_sync_64_to_32(env);
610 env->regs[15] = env->elr_el[1] & ~0x1;
611 } else {
612 new_el = extract32(spsr, 2, 2);
613 if (new_el > cur_el
614 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
615 /* Disallow return to an EL which is unimplemented or higher
616 * than the current one.
618 goto illegal_return;
620 if (extract32(spsr, 1, 1)) {
621 /* Return with reserved M[1] bit set */
622 goto illegal_return;
624 if (new_el == 0 && (spsr & PSTATE_SP)) {
625 /* Return to EL0 with M[0] bit set */
626 goto illegal_return;
628 env->aarch64 = 1;
629 pstate_write(env, spsr);
630 if (!arm_singlestep_active(env)) {
631 env->pstate &= ~PSTATE_SS;
633 aarch64_restore_sp(env, new_el);
634 env->pc = env->elr_el[cur_el];
637 return;
639 illegal_return:
640 /* Illegal return events of various kinds have architecturally
641 * mandated behaviour:
642 * restore NZCV and DAIF from SPSR_ELx
643 * set PSTATE.IL
644 * restore PC from ELR_ELx
645 * no change to exception level, execution state or stack pointer
647 env->pstate |= PSTATE_IL;
648 env->pc = env->elr_el[cur_el];
649 spsr &= PSTATE_NZCV | PSTATE_DAIF;
650 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
651 pstate_write(env, spsr);
652 if (!arm_singlestep_active(env)) {
653 env->pstate &= ~PSTATE_SS;
657 /* Return true if the linked breakpoint entry lbn passes its checks */
658 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
660 CPUARMState *env = &cpu->env;
661 uint64_t bcr = env->cp15.dbgbcr[lbn];
662 int brps = extract32(cpu->dbgdidr, 24, 4);
663 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
664 int bt;
665 uint32_t contextidr;
667 /* Links to unimplemented or non-context aware breakpoints are
668 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
669 * as if linked to an UNKNOWN context-aware breakpoint (in which
670 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
671 * We choose the former.
673 if (lbn > brps || lbn < (brps - ctx_cmps)) {
674 return false;
677 bcr = env->cp15.dbgbcr[lbn];
679 if (extract64(bcr, 0, 1) == 0) {
680 /* Linked breakpoint disabled : generate no events */
681 return false;
684 bt = extract64(bcr, 20, 4);
686 /* We match the whole register even if this is AArch32 using the
687 * short descriptor format (in which case it holds both PROCID and ASID),
688 * since we don't implement the optional v7 context ID masking.
690 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
692 switch (bt) {
693 case 3: /* linked context ID match */
694 if (arm_current_el(env) > 1) {
695 /* Context matches never fire in EL2 or (AArch64) EL3 */
696 return false;
698 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
699 case 5: /* linked address mismatch (reserved in AArch64) */
700 case 9: /* linked VMID match (reserved if no EL2) */
701 case 11: /* linked context ID and VMID match (reserved if no EL2) */
702 default:
703 /* Links to Unlinked context breakpoints must generate no
704 * events; we choose to do the same for reserved values too.
706 return false;
709 return false;
712 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
714 CPUARMState *env = &cpu->env;
715 uint64_t cr;
716 int pac, hmc, ssc, wt, lbn;
717 /* Note that for watchpoints the check is against the CPU security
718 * state, not the S/NS attribute on the offending data access.
720 bool is_secure = arm_is_secure(env);
721 int access_el = arm_current_el(env);
723 if (is_wp) {
724 CPUWatchpoint *wp = env->cpu_watchpoint[n];
726 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
727 return false;
729 cr = env->cp15.dbgwcr[n];
730 if (wp->hitattrs.user) {
731 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
732 * match watchpoints as if they were accesses done at EL0, even if
733 * the CPU is at EL1 or higher.
735 access_el = 0;
737 } else {
738 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
740 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
741 return false;
743 cr = env->cp15.dbgbcr[n];
745 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
746 * enabled and that the address and access type match; for breakpoints
747 * we know the address matched; check the remaining fields, including
748 * linked breakpoints. We rely on WCR and BCR having the same layout
749 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
750 * Note that some combinations of {PAC, HMC, SSC} are reserved and
751 * must act either like some valid combination or as if the watchpoint
752 * were disabled. We choose the former, and use this together with
753 * the fact that EL3 must always be Secure and EL2 must always be
754 * Non-Secure to simplify the code slightly compared to the full
755 * table in the ARM ARM.
757 pac = extract64(cr, 1, 2);
758 hmc = extract64(cr, 13, 1);
759 ssc = extract64(cr, 14, 2);
761 switch (ssc) {
762 case 0:
763 break;
764 case 1:
765 case 3:
766 if (is_secure) {
767 return false;
769 break;
770 case 2:
771 if (!is_secure) {
772 return false;
774 break;
777 switch (access_el) {
778 case 3:
779 case 2:
780 if (!hmc) {
781 return false;
783 break;
784 case 1:
785 if (extract32(pac, 0, 1) == 0) {
786 return false;
788 break;
789 case 0:
790 if (extract32(pac, 1, 1) == 0) {
791 return false;
793 break;
794 default:
795 g_assert_not_reached();
798 wt = extract64(cr, 20, 1);
799 lbn = extract64(cr, 16, 4);
801 if (wt && !linked_bp_matches(cpu, lbn)) {
802 return false;
805 return true;
808 static bool check_watchpoints(ARMCPU *cpu)
810 CPUARMState *env = &cpu->env;
811 int n;
813 /* If watchpoints are disabled globally or we can't take debug
814 * exceptions here then watchpoint firings are ignored.
816 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
817 || !arm_generate_debug_exceptions(env)) {
818 return false;
821 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
822 if (bp_wp_matches(cpu, n, true)) {
823 return true;
826 return false;
829 static bool check_breakpoints(ARMCPU *cpu)
831 CPUARMState *env = &cpu->env;
832 int n;
834 /* If breakpoints are disabled globally or we can't take debug
835 * exceptions here then breakpoint firings are ignored.
837 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
838 || !arm_generate_debug_exceptions(env)) {
839 return false;
842 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
843 if (bp_wp_matches(cpu, n, false)) {
844 return true;
847 return false;
850 void arm_debug_excp_handler(CPUState *cs)
852 /* Called by core code when a watchpoint or breakpoint fires;
853 * need to check which one and raise the appropriate exception.
855 ARMCPU *cpu = ARM_CPU(cs);
856 CPUARMState *env = &cpu->env;
857 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
859 if (wp_hit) {
860 if (wp_hit->flags & BP_CPU) {
861 cs->watchpoint_hit = NULL;
862 if (check_watchpoints(cpu)) {
863 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
864 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
866 if (extended_addresses_enabled(env)) {
867 env->exception.fsr = (1 << 9) | 0x22;
868 } else {
869 env->exception.fsr = 0x2;
871 env->exception.vaddress = wp_hit->hitaddr;
872 raise_exception(env, EXCP_DATA_ABORT,
873 syn_watchpoint(same_el, 0, wnr),
874 arm_debug_target_el(env));
875 } else {
876 cpu_resume_from_signal(cs, NULL);
879 } else {
880 if (check_breakpoints(cpu)) {
881 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
882 if (extended_addresses_enabled(env)) {
883 env->exception.fsr = (1 << 9) | 0x22;
884 } else {
885 env->exception.fsr = 0x2;
887 /* FAR is UNKNOWN, so doesn't need setting */
888 raise_exception(env, EXCP_PREFETCH_ABORT,
889 syn_breakpoint(same_el),
890 arm_debug_target_el(env));
895 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
896 The only way to do that in TCG is a conditional branch, which clobbers
897 all our temporaries. For now implement these as helper functions. */
899 /* Similarly for variable shift instructions. */
901 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
903 int shift = i & 0xff;
904 if (shift >= 32) {
905 if (shift == 32)
906 env->CF = x & 1;
907 else
908 env->CF = 0;
909 return 0;
910 } else if (shift != 0) {
911 env->CF = (x >> (32 - shift)) & 1;
912 return x << shift;
914 return x;
917 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
919 int shift = i & 0xff;
920 if (shift >= 32) {
921 if (shift == 32)
922 env->CF = (x >> 31) & 1;
923 else
924 env->CF = 0;
925 return 0;
926 } else if (shift != 0) {
927 env->CF = (x >> (shift - 1)) & 1;
928 return x >> shift;
930 return x;
933 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
935 int shift = i & 0xff;
936 if (shift >= 32) {
937 env->CF = (x >> 31) & 1;
938 return (int32_t)x >> 31;
939 } else if (shift != 0) {
940 env->CF = (x >> (shift - 1)) & 1;
941 return (int32_t)x >> shift;
943 return x;
946 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
948 int shift1, shift;
949 shift1 = i & 0xff;
950 shift = shift1 & 0x1f;
951 if (shift == 0) {
952 if (shift1 != 0)
953 env->CF = (x >> 31) & 1;
954 return x;
955 } else {
956 env->CF = (x >> (shift - 1)) & 1;
957 return ((uint32_t)x >> shift) | (x << (32 - shift));