tcg: Add reachable_code_pass
[qemu/kevin.git] / tcg / tcg.c
blobd2be550ab424b9bf5bbfdfb04d7cf9d28d816105
1 /*
2 * Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* define it to use liveness analysis (better code) */
26 #define USE_TCG_OPTIMIZATIONS
28 #include "qemu/osdep.h"
30 /* Define to jump the ELF file used to communicate with GDB. */
31 #undef DEBUG_JIT
33 #include "qemu/error-report.h"
34 #include "qemu/cutils.h"
35 #include "qemu/host-utils.h"
36 #include "qemu/timer.h"
38 /* Note: the long term plan is to reduce the dependencies on the QEMU
39 CPU definitions. Currently they are used for qemu_ld/st
40 instructions */
41 #define NO_CPU_IO_DEFS
42 #include "cpu.h"
44 #include "exec/cpu-common.h"
45 #include "exec/exec-all.h"
47 #include "tcg-op.h"
49 #if UINTPTR_MAX == UINT32_MAX
50 # define ELF_CLASS ELFCLASS32
51 #else
52 # define ELF_CLASS ELFCLASS64
53 #endif
54 #ifdef HOST_WORDS_BIGENDIAN
55 # define ELF_DATA ELFDATA2MSB
56 #else
57 # define ELF_DATA ELFDATA2LSB
58 #endif
60 #include "elf.h"
61 #include "exec/log.h"
62 #include "sysemu/sysemu.h"
64 /* Forward declarations for functions declared in tcg-target.inc.c and
65 used here. */
66 static void tcg_target_init(TCGContext *s);
67 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode);
68 static void tcg_target_qemu_prologue(TCGContext *s);
69 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
70 intptr_t value, intptr_t addend);
72 /* The CIE and FDE header definitions will be common to all hosts. */
73 typedef struct {
74 uint32_t len __attribute__((aligned((sizeof(void *)))));
75 uint32_t id;
76 uint8_t version;
77 char augmentation[1];
78 uint8_t code_align;
79 uint8_t data_align;
80 uint8_t return_column;
81 } DebugFrameCIE;
83 typedef struct QEMU_PACKED {
84 uint32_t len __attribute__((aligned((sizeof(void *)))));
85 uint32_t cie_offset;
86 uintptr_t func_start;
87 uintptr_t func_len;
88 } DebugFrameFDEHeader;
90 typedef struct QEMU_PACKED {
91 DebugFrameCIE cie;
92 DebugFrameFDEHeader fde;
93 } DebugFrameHeader;
95 static void tcg_register_jit_int(void *buf, size_t size,
96 const void *debug_frame,
97 size_t debug_frame_size)
98 __attribute__((unused));
100 /* Forward declarations for functions declared and used in tcg-target.inc.c. */
101 static const char *target_parse_constraint(TCGArgConstraint *ct,
102 const char *ct_str, TCGType type);
103 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1,
104 intptr_t arg2);
105 static void tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg);
106 static void tcg_out_movi(TCGContext *s, TCGType type,
107 TCGReg ret, tcg_target_long arg);
108 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args,
109 const int *const_args);
110 #if TCG_TARGET_MAYBE_vec
111 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
112 unsigned vece, const TCGArg *args,
113 const int *const_args);
114 #else
115 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
116 unsigned vece, const TCGArg *args,
117 const int *const_args)
119 g_assert_not_reached();
121 #endif
122 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1,
123 intptr_t arg2);
124 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
125 TCGReg base, intptr_t ofs);
126 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target);
127 static int tcg_target_const_match(tcg_target_long val, TCGType type,
128 const TCGArgConstraint *arg_ct);
129 #ifdef TCG_TARGET_NEED_LDST_LABELS
130 static bool tcg_out_ldst_finalize(TCGContext *s);
131 #endif
133 #define TCG_HIGHWATER 1024
135 static TCGContext **tcg_ctxs;
136 static unsigned int n_tcg_ctxs;
137 TCGv_env cpu_env = 0;
139 struct tcg_region_tree {
140 QemuMutex lock;
141 GTree *tree;
142 /* padding to avoid false sharing is computed at run-time */
146 * We divide code_gen_buffer into equally-sized "regions" that TCG threads
147 * dynamically allocate from as demand dictates. Given appropriate region
148 * sizing, this minimizes flushes even when some TCG threads generate a lot
149 * more code than others.
151 struct tcg_region_state {
152 QemuMutex lock;
154 /* fields set at init time */
155 void *start;
156 void *start_aligned;
157 void *end;
158 size_t n;
159 size_t size; /* size of one region */
160 size_t stride; /* .size + guard size */
162 /* fields protected by the lock */
163 size_t current; /* current region index */
164 size_t agg_size_full; /* aggregate size of full regions */
167 static struct tcg_region_state region;
169 * This is an array of struct tcg_region_tree's, with padding.
170 * We use void * to simplify the computation of region_trees[i]; each
171 * struct is found every tree_size bytes.
173 static void *region_trees;
174 static size_t tree_size;
175 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT];
176 static TCGRegSet tcg_target_call_clobber_regs;
178 #if TCG_TARGET_INSN_UNIT_SIZE == 1
179 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v)
181 *s->code_ptr++ = v;
184 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p,
185 uint8_t v)
187 *p = v;
189 #endif
191 #if TCG_TARGET_INSN_UNIT_SIZE <= 2
192 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v)
194 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
195 *s->code_ptr++ = v;
196 } else {
197 tcg_insn_unit *p = s->code_ptr;
198 memcpy(p, &v, sizeof(v));
199 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE);
203 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p,
204 uint16_t v)
206 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
207 *p = v;
208 } else {
209 memcpy(p, &v, sizeof(v));
212 #endif
214 #if TCG_TARGET_INSN_UNIT_SIZE <= 4
215 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v)
217 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
218 *s->code_ptr++ = v;
219 } else {
220 tcg_insn_unit *p = s->code_ptr;
221 memcpy(p, &v, sizeof(v));
222 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE);
226 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p,
227 uint32_t v)
229 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
230 *p = v;
231 } else {
232 memcpy(p, &v, sizeof(v));
235 #endif
237 #if TCG_TARGET_INSN_UNIT_SIZE <= 8
238 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v)
240 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
241 *s->code_ptr++ = v;
242 } else {
243 tcg_insn_unit *p = s->code_ptr;
244 memcpy(p, &v, sizeof(v));
245 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE);
249 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p,
250 uint64_t v)
252 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
253 *p = v;
254 } else {
255 memcpy(p, &v, sizeof(v));
258 #endif
260 /* label relocation processing */
262 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type,
263 TCGLabel *l, intptr_t addend)
265 TCGRelocation *r;
267 if (l->has_value) {
268 /* FIXME: This may break relocations on RISC targets that
269 modify instruction fields in place. The caller may not have
270 written the initial value. */
271 bool ok = patch_reloc(code_ptr, type, l->u.value, addend);
272 tcg_debug_assert(ok);
273 } else {
274 /* add a new relocation entry */
275 r = tcg_malloc(sizeof(TCGRelocation));
276 r->type = type;
277 r->ptr = code_ptr;
278 r->addend = addend;
279 r->next = l->u.first_reloc;
280 l->u.first_reloc = r;
284 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr)
286 intptr_t value = (intptr_t)ptr;
287 TCGRelocation *r;
289 tcg_debug_assert(!l->has_value);
291 for (r = l->u.first_reloc; r != NULL; r = r->next) {
292 bool ok = patch_reloc(r->ptr, r->type, value, r->addend);
293 tcg_debug_assert(ok);
296 l->has_value = 1;
297 l->u.value_ptr = ptr;
300 TCGLabel *gen_new_label(void)
302 TCGContext *s = tcg_ctx;
303 TCGLabel *l = tcg_malloc(sizeof(TCGLabel));
305 *l = (TCGLabel){
306 .id = s->nb_labels++
309 return l;
312 static void set_jmp_reset_offset(TCGContext *s, int which)
314 size_t off = tcg_current_code_size(s);
315 s->tb_jmp_reset_offset[which] = off;
316 /* Make sure that we didn't overflow the stored offset. */
317 assert(s->tb_jmp_reset_offset[which] == off);
320 #include "tcg-target.inc.c"
322 /* compare a pointer @ptr and a tb_tc @s */
323 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s)
325 if (ptr >= s->ptr + s->size) {
326 return 1;
327 } else if (ptr < s->ptr) {
328 return -1;
330 return 0;
333 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp)
335 const struct tb_tc *a = ap;
336 const struct tb_tc *b = bp;
339 * When both sizes are set, we know this isn't a lookup.
340 * This is the most likely case: every TB must be inserted; lookups
341 * are a lot less frequent.
343 if (likely(a->size && b->size)) {
344 if (a->ptr > b->ptr) {
345 return 1;
346 } else if (a->ptr < b->ptr) {
347 return -1;
349 /* a->ptr == b->ptr should happen only on deletions */
350 g_assert(a->size == b->size);
351 return 0;
354 * All lookups have either .size field set to 0.
355 * From the glib sources we see that @ap is always the lookup key. However
356 * the docs provide no guarantee, so we just mark this case as likely.
358 if (likely(a->size == 0)) {
359 return ptr_cmp_tb_tc(a->ptr, b);
361 return ptr_cmp_tb_tc(b->ptr, a);
364 static void tcg_region_trees_init(void)
366 size_t i;
368 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize);
369 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size);
370 for (i = 0; i < region.n; i++) {
371 struct tcg_region_tree *rt = region_trees + i * tree_size;
373 qemu_mutex_init(&rt->lock);
374 rt->tree = g_tree_new(tb_tc_cmp);
378 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p)
380 size_t region_idx;
382 if (p < region.start_aligned) {
383 region_idx = 0;
384 } else {
385 ptrdiff_t offset = p - region.start_aligned;
387 if (offset > region.stride * (region.n - 1)) {
388 region_idx = region.n - 1;
389 } else {
390 region_idx = offset / region.stride;
393 return region_trees + region_idx * tree_size;
396 void tcg_tb_insert(TranslationBlock *tb)
398 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
400 qemu_mutex_lock(&rt->lock);
401 g_tree_insert(rt->tree, &tb->tc, tb);
402 qemu_mutex_unlock(&rt->lock);
405 void tcg_tb_remove(TranslationBlock *tb)
407 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
409 qemu_mutex_lock(&rt->lock);
410 g_tree_remove(rt->tree, &tb->tc);
411 qemu_mutex_unlock(&rt->lock);
415 * Find the TB 'tb' such that
416 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size
417 * Return NULL if not found.
419 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr)
421 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr);
422 TranslationBlock *tb;
423 struct tb_tc s = { .ptr = (void *)tc_ptr };
425 qemu_mutex_lock(&rt->lock);
426 tb = g_tree_lookup(rt->tree, &s);
427 qemu_mutex_unlock(&rt->lock);
428 return tb;
431 static void tcg_region_tree_lock_all(void)
433 size_t i;
435 for (i = 0; i < region.n; i++) {
436 struct tcg_region_tree *rt = region_trees + i * tree_size;
438 qemu_mutex_lock(&rt->lock);
442 static void tcg_region_tree_unlock_all(void)
444 size_t i;
446 for (i = 0; i < region.n; i++) {
447 struct tcg_region_tree *rt = region_trees + i * tree_size;
449 qemu_mutex_unlock(&rt->lock);
453 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data)
455 size_t i;
457 tcg_region_tree_lock_all();
458 for (i = 0; i < region.n; i++) {
459 struct tcg_region_tree *rt = region_trees + i * tree_size;
461 g_tree_foreach(rt->tree, func, user_data);
463 tcg_region_tree_unlock_all();
466 size_t tcg_nb_tbs(void)
468 size_t nb_tbs = 0;
469 size_t i;
471 tcg_region_tree_lock_all();
472 for (i = 0; i < region.n; i++) {
473 struct tcg_region_tree *rt = region_trees + i * tree_size;
475 nb_tbs += g_tree_nnodes(rt->tree);
477 tcg_region_tree_unlock_all();
478 return nb_tbs;
481 static void tcg_region_tree_reset_all(void)
483 size_t i;
485 tcg_region_tree_lock_all();
486 for (i = 0; i < region.n; i++) {
487 struct tcg_region_tree *rt = region_trees + i * tree_size;
489 /* Increment the refcount first so that destroy acts as a reset */
490 g_tree_ref(rt->tree);
491 g_tree_destroy(rt->tree);
493 tcg_region_tree_unlock_all();
496 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend)
498 void *start, *end;
500 start = region.start_aligned + curr_region * region.stride;
501 end = start + region.size;
503 if (curr_region == 0) {
504 start = region.start;
506 if (curr_region == region.n - 1) {
507 end = region.end;
510 *pstart = start;
511 *pend = end;
514 static void tcg_region_assign(TCGContext *s, size_t curr_region)
516 void *start, *end;
518 tcg_region_bounds(curr_region, &start, &end);
520 s->code_gen_buffer = start;
521 s->code_gen_ptr = start;
522 s->code_gen_buffer_size = end - start;
523 s->code_gen_highwater = end - TCG_HIGHWATER;
526 static bool tcg_region_alloc__locked(TCGContext *s)
528 if (region.current == region.n) {
529 return true;
531 tcg_region_assign(s, region.current);
532 region.current++;
533 return false;
537 * Request a new region once the one in use has filled up.
538 * Returns true on error.
540 static bool tcg_region_alloc(TCGContext *s)
542 bool err;
543 /* read the region size now; alloc__locked will overwrite it on success */
544 size_t size_full = s->code_gen_buffer_size;
546 qemu_mutex_lock(&region.lock);
547 err = tcg_region_alloc__locked(s);
548 if (!err) {
549 region.agg_size_full += size_full - TCG_HIGHWATER;
551 qemu_mutex_unlock(&region.lock);
552 return err;
556 * Perform a context's first region allocation.
557 * This function does _not_ increment region.agg_size_full.
559 static inline bool tcg_region_initial_alloc__locked(TCGContext *s)
561 return tcg_region_alloc__locked(s);
564 /* Call from a safe-work context */
565 void tcg_region_reset_all(void)
567 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
568 unsigned int i;
570 qemu_mutex_lock(&region.lock);
571 region.current = 0;
572 region.agg_size_full = 0;
574 for (i = 0; i < n_ctxs; i++) {
575 TCGContext *s = atomic_read(&tcg_ctxs[i]);
576 bool err = tcg_region_initial_alloc__locked(s);
578 g_assert(!err);
580 qemu_mutex_unlock(&region.lock);
582 tcg_region_tree_reset_all();
585 #ifdef CONFIG_USER_ONLY
586 static size_t tcg_n_regions(void)
588 return 1;
590 #else
592 * It is likely that some vCPUs will translate more code than others, so we
593 * first try to set more regions than max_cpus, with those regions being of
594 * reasonable size. If that's not possible we make do by evenly dividing
595 * the code_gen_buffer among the vCPUs.
597 static size_t tcg_n_regions(void)
599 size_t i;
601 /* Use a single region if all we have is one vCPU thread */
602 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) {
603 return 1;
606 /* Try to have more regions than max_cpus, with each region being >= 2 MB */
607 for (i = 8; i > 0; i--) {
608 size_t regions_per_thread = i;
609 size_t region_size;
611 region_size = tcg_init_ctx.code_gen_buffer_size;
612 region_size /= max_cpus * regions_per_thread;
614 if (region_size >= 2 * 1024u * 1024) {
615 return max_cpus * regions_per_thread;
618 /* If we can't, then just allocate one region per vCPU thread */
619 return max_cpus;
621 #endif
624 * Initializes region partitioning.
626 * Called at init time from the parent thread (i.e. the one calling
627 * tcg_context_init), after the target's TCG globals have been set.
629 * Region partitioning works by splitting code_gen_buffer into separate regions,
630 * and then assigning regions to TCG threads so that the threads can translate
631 * code in parallel without synchronization.
633 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at
634 * least max_cpus regions in MTTCG. In !MTTCG we use a single region.
635 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...])
636 * must have been parsed before calling this function, since it calls
637 * qemu_tcg_mttcg_enabled().
639 * In user-mode we use a single region. Having multiple regions in user-mode
640 * is not supported, because the number of vCPU threads (recall that each thread
641 * spawned by the guest corresponds to a vCPU thread) is only bounded by the
642 * OS, and usually this number is huge (tens of thousands is not uncommon).
643 * Thus, given this large bound on the number of vCPU threads and the fact
644 * that code_gen_buffer is allocated at compile-time, we cannot guarantee
645 * that the availability of at least one region per vCPU thread.
647 * However, this user-mode limitation is unlikely to be a significant problem
648 * in practice. Multi-threaded guests share most if not all of their translated
649 * code, which makes parallel code generation less appealing than in softmmu.
651 void tcg_region_init(void)
653 void *buf = tcg_init_ctx.code_gen_buffer;
654 void *aligned;
655 size_t size = tcg_init_ctx.code_gen_buffer_size;
656 size_t page_size = qemu_real_host_page_size;
657 size_t region_size;
658 size_t n_regions;
659 size_t i;
661 n_regions = tcg_n_regions();
663 /* The first region will be 'aligned - buf' bytes larger than the others */
664 aligned = QEMU_ALIGN_PTR_UP(buf, page_size);
665 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size);
667 * Make region_size a multiple of page_size, using aligned as the start.
668 * As a result of this we might end up with a few extra pages at the end of
669 * the buffer; we will assign those to the last region.
671 region_size = (size - (aligned - buf)) / n_regions;
672 region_size = QEMU_ALIGN_DOWN(region_size, page_size);
674 /* A region must have at least 2 pages; one code, one guard */
675 g_assert(region_size >= 2 * page_size);
677 /* init the region struct */
678 qemu_mutex_init(&region.lock);
679 region.n = n_regions;
680 region.size = region_size - page_size;
681 region.stride = region_size;
682 region.start = buf;
683 region.start_aligned = aligned;
684 /* page-align the end, since its last page will be a guard page */
685 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size);
686 /* account for that last guard page */
687 region.end -= page_size;
689 /* set guard pages */
690 for (i = 0; i < region.n; i++) {
691 void *start, *end;
692 int rc;
694 tcg_region_bounds(i, &start, &end);
695 rc = qemu_mprotect_none(end, page_size);
696 g_assert(!rc);
699 tcg_region_trees_init();
701 /* In user-mode we support only one ctx, so do the initial allocation now */
702 #ifdef CONFIG_USER_ONLY
704 bool err = tcg_region_initial_alloc__locked(tcg_ctx);
706 g_assert(!err);
708 #endif
712 * All TCG threads except the parent (i.e. the one that called tcg_context_init
713 * and registered the target's TCG globals) must register with this function
714 * before initiating translation.
716 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation
717 * of tcg_region_init() for the reasoning behind this.
719 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in
720 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context
721 * is not used anymore for translation once this function is called.
723 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates
724 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode.
726 #ifdef CONFIG_USER_ONLY
727 void tcg_register_thread(void)
729 tcg_ctx = &tcg_init_ctx;
731 #else
732 void tcg_register_thread(void)
734 TCGContext *s = g_malloc(sizeof(*s));
735 unsigned int i, n;
736 bool err;
738 *s = tcg_init_ctx;
740 /* Relink mem_base. */
741 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) {
742 if (tcg_init_ctx.temps[i].mem_base) {
743 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps;
744 tcg_debug_assert(b >= 0 && b < n);
745 s->temps[i].mem_base = &s->temps[b];
749 /* Claim an entry in tcg_ctxs */
750 n = atomic_fetch_inc(&n_tcg_ctxs);
751 g_assert(n < max_cpus);
752 atomic_set(&tcg_ctxs[n], s);
754 tcg_ctx = s;
755 qemu_mutex_lock(&region.lock);
756 err = tcg_region_initial_alloc__locked(tcg_ctx);
757 g_assert(!err);
758 qemu_mutex_unlock(&region.lock);
760 #endif /* !CONFIG_USER_ONLY */
763 * Returns the size (in bytes) of all translated code (i.e. from all regions)
764 * currently in the cache.
765 * See also: tcg_code_capacity()
766 * Do not confuse with tcg_current_code_size(); that one applies to a single
767 * TCG context.
769 size_t tcg_code_size(void)
771 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
772 unsigned int i;
773 size_t total;
775 qemu_mutex_lock(&region.lock);
776 total = region.agg_size_full;
777 for (i = 0; i < n_ctxs; i++) {
778 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
779 size_t size;
781 size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer;
782 g_assert(size <= s->code_gen_buffer_size);
783 total += size;
785 qemu_mutex_unlock(&region.lock);
786 return total;
790 * Returns the code capacity (in bytes) of the entire cache, i.e. including all
791 * regions.
792 * See also: tcg_code_size()
794 size_t tcg_code_capacity(void)
796 size_t guard_size, capacity;
798 /* no need for synchronization; these variables are set at init time */
799 guard_size = region.stride - region.size;
800 capacity = region.end + guard_size - region.start;
801 capacity -= region.n * (guard_size + TCG_HIGHWATER);
802 return capacity;
805 size_t tcg_tb_phys_invalidate_count(void)
807 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
808 unsigned int i;
809 size_t total = 0;
811 for (i = 0; i < n_ctxs; i++) {
812 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
814 total += atomic_read(&s->tb_phys_invalidate_count);
816 return total;
819 /* pool based memory allocation */
820 void *tcg_malloc_internal(TCGContext *s, int size)
822 TCGPool *p;
823 int pool_size;
825 if (size > TCG_POOL_CHUNK_SIZE) {
826 /* big malloc: insert a new pool (XXX: could optimize) */
827 p = g_malloc(sizeof(TCGPool) + size);
828 p->size = size;
829 p->next = s->pool_first_large;
830 s->pool_first_large = p;
831 return p->data;
832 } else {
833 p = s->pool_current;
834 if (!p) {
835 p = s->pool_first;
836 if (!p)
837 goto new_pool;
838 } else {
839 if (!p->next) {
840 new_pool:
841 pool_size = TCG_POOL_CHUNK_SIZE;
842 p = g_malloc(sizeof(TCGPool) + pool_size);
843 p->size = pool_size;
844 p->next = NULL;
845 if (s->pool_current)
846 s->pool_current->next = p;
847 else
848 s->pool_first = p;
849 } else {
850 p = p->next;
854 s->pool_current = p;
855 s->pool_cur = p->data + size;
856 s->pool_end = p->data + p->size;
857 return p->data;
860 void tcg_pool_reset(TCGContext *s)
862 TCGPool *p, *t;
863 for (p = s->pool_first_large; p; p = t) {
864 t = p->next;
865 g_free(p);
867 s->pool_first_large = NULL;
868 s->pool_cur = s->pool_end = NULL;
869 s->pool_current = NULL;
872 typedef struct TCGHelperInfo {
873 void *func;
874 const char *name;
875 unsigned flags;
876 unsigned sizemask;
877 } TCGHelperInfo;
879 #include "exec/helper-proto.h"
881 static const TCGHelperInfo all_helpers[] = {
882 #include "exec/helper-tcg.h"
884 static GHashTable *helper_table;
886 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)];
887 static void process_op_defs(TCGContext *s);
888 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
889 TCGReg reg, const char *name);
891 void tcg_context_init(TCGContext *s)
893 int op, total_args, n, i;
894 TCGOpDef *def;
895 TCGArgConstraint *args_ct;
896 int *sorted_args;
897 TCGTemp *ts;
899 memset(s, 0, sizeof(*s));
900 s->nb_globals = 0;
902 /* Count total number of arguments and allocate the corresponding
903 space */
904 total_args = 0;
905 for(op = 0; op < NB_OPS; op++) {
906 def = &tcg_op_defs[op];
907 n = def->nb_iargs + def->nb_oargs;
908 total_args += n;
911 args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args);
912 sorted_args = g_malloc(sizeof(int) * total_args);
914 for(op = 0; op < NB_OPS; op++) {
915 def = &tcg_op_defs[op];
916 def->args_ct = args_ct;
917 def->sorted_args = sorted_args;
918 n = def->nb_iargs + def->nb_oargs;
919 sorted_args += n;
920 args_ct += n;
923 /* Register helpers. */
924 /* Use g_direct_hash/equal for direct pointer comparisons on func. */
925 helper_table = g_hash_table_new(NULL, NULL);
927 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) {
928 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func,
929 (gpointer)&all_helpers[i]);
932 tcg_target_init(s);
933 process_op_defs(s);
935 /* Reverse the order of the saved registers, assuming they're all at
936 the start of tcg_target_reg_alloc_order. */
937 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) {
938 int r = tcg_target_reg_alloc_order[n];
939 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) {
940 break;
943 for (i = 0; i < n; ++i) {
944 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i];
946 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) {
947 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i];
950 tcg_ctx = s;
952 * In user-mode we simply share the init context among threads, since we
953 * use a single region. See the documentation tcg_region_init() for the
954 * reasoning behind this.
955 * In softmmu we will have at most max_cpus TCG threads.
957 #ifdef CONFIG_USER_ONLY
958 tcg_ctxs = &tcg_ctx;
959 n_tcg_ctxs = 1;
960 #else
961 tcg_ctxs = g_new(TCGContext *, max_cpus);
962 #endif
964 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0));
965 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env");
966 cpu_env = temp_tcgv_ptr(ts);
970 * Allocate TBs right before their corresponding translated code, making
971 * sure that TBs and code are on different cache lines.
973 TranslationBlock *tcg_tb_alloc(TCGContext *s)
975 uintptr_t align = qemu_icache_linesize;
976 TranslationBlock *tb;
977 void *next;
979 retry:
980 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align);
981 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align);
983 if (unlikely(next > s->code_gen_highwater)) {
984 if (tcg_region_alloc(s)) {
985 return NULL;
987 goto retry;
989 atomic_set(&s->code_gen_ptr, next);
990 s->data_gen_ptr = NULL;
991 return tb;
994 void tcg_prologue_init(TCGContext *s)
996 size_t prologue_size, total_size;
997 void *buf0, *buf1;
999 /* Put the prologue at the beginning of code_gen_buffer. */
1000 buf0 = s->code_gen_buffer;
1001 total_size = s->code_gen_buffer_size;
1002 s->code_ptr = buf0;
1003 s->code_buf = buf0;
1004 s->data_gen_ptr = NULL;
1005 s->code_gen_prologue = buf0;
1007 /* Compute a high-water mark, at which we voluntarily flush the buffer
1008 and start over. The size here is arbitrary, significantly larger
1009 than we expect the code generation for any one opcode to require. */
1010 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER);
1012 #ifdef TCG_TARGET_NEED_POOL_LABELS
1013 s->pool_labels = NULL;
1014 #endif
1016 /* Generate the prologue. */
1017 tcg_target_qemu_prologue(s);
1019 #ifdef TCG_TARGET_NEED_POOL_LABELS
1020 /* Allow the prologue to put e.g. guest_base into a pool entry. */
1022 bool ok = tcg_out_pool_finalize(s);
1023 tcg_debug_assert(ok);
1025 #endif
1027 buf1 = s->code_ptr;
1028 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1);
1030 /* Deduct the prologue from the buffer. */
1031 prologue_size = tcg_current_code_size(s);
1032 s->code_gen_ptr = buf1;
1033 s->code_gen_buffer = buf1;
1034 s->code_buf = buf1;
1035 total_size -= prologue_size;
1036 s->code_gen_buffer_size = total_size;
1038 tcg_register_jit(s->code_gen_buffer, total_size);
1040 #ifdef DEBUG_DISAS
1041 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1042 qemu_log_lock();
1043 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size);
1044 if (s->data_gen_ptr) {
1045 size_t code_size = s->data_gen_ptr - buf0;
1046 size_t data_size = prologue_size - code_size;
1047 size_t i;
1049 log_disas(buf0, code_size);
1051 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1052 if (sizeof(tcg_target_ulong) == 8) {
1053 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1054 (uintptr_t)s->data_gen_ptr + i,
1055 *(uint64_t *)(s->data_gen_ptr + i));
1056 } else {
1057 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1058 (uintptr_t)s->data_gen_ptr + i,
1059 *(uint32_t *)(s->data_gen_ptr + i));
1062 } else {
1063 log_disas(buf0, prologue_size);
1065 qemu_log("\n");
1066 qemu_log_flush();
1067 qemu_log_unlock();
1069 #endif
1071 /* Assert that goto_ptr is implemented completely. */
1072 if (TCG_TARGET_HAS_goto_ptr) {
1073 tcg_debug_assert(s->code_gen_epilogue != NULL);
1077 void tcg_func_start(TCGContext *s)
1079 tcg_pool_reset(s);
1080 s->nb_temps = s->nb_globals;
1082 /* No temps have been previously allocated for size or locality. */
1083 memset(s->free_temps, 0, sizeof(s->free_temps));
1085 s->nb_ops = 0;
1086 s->nb_labels = 0;
1087 s->current_frame_offset = s->frame_start;
1089 #ifdef CONFIG_DEBUG_TCG
1090 s->goto_tb_issue_mask = 0;
1091 #endif
1093 QTAILQ_INIT(&s->ops);
1094 QTAILQ_INIT(&s->free_ops);
1097 static inline TCGTemp *tcg_temp_alloc(TCGContext *s)
1099 int n = s->nb_temps++;
1100 tcg_debug_assert(n < TCG_MAX_TEMPS);
1101 return memset(&s->temps[n], 0, sizeof(TCGTemp));
1104 static inline TCGTemp *tcg_global_alloc(TCGContext *s)
1106 TCGTemp *ts;
1108 tcg_debug_assert(s->nb_globals == s->nb_temps);
1109 s->nb_globals++;
1110 ts = tcg_temp_alloc(s);
1111 ts->temp_global = 1;
1113 return ts;
1116 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
1117 TCGReg reg, const char *name)
1119 TCGTemp *ts;
1121 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) {
1122 tcg_abort();
1125 ts = tcg_global_alloc(s);
1126 ts->base_type = type;
1127 ts->type = type;
1128 ts->fixed_reg = 1;
1129 ts->reg = reg;
1130 ts->name = name;
1131 tcg_regset_set_reg(s->reserved_regs, reg);
1133 return ts;
1136 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size)
1138 s->frame_start = start;
1139 s->frame_end = start + size;
1140 s->frame_temp
1141 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame");
1144 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base,
1145 intptr_t offset, const char *name)
1147 TCGContext *s = tcg_ctx;
1148 TCGTemp *base_ts = tcgv_ptr_temp(base);
1149 TCGTemp *ts = tcg_global_alloc(s);
1150 int indirect_reg = 0, bigendian = 0;
1151 #ifdef HOST_WORDS_BIGENDIAN
1152 bigendian = 1;
1153 #endif
1155 if (!base_ts->fixed_reg) {
1156 /* We do not support double-indirect registers. */
1157 tcg_debug_assert(!base_ts->indirect_reg);
1158 base_ts->indirect_base = 1;
1159 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64
1160 ? 2 : 1);
1161 indirect_reg = 1;
1164 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1165 TCGTemp *ts2 = tcg_global_alloc(s);
1166 char buf[64];
1168 ts->base_type = TCG_TYPE_I64;
1169 ts->type = TCG_TYPE_I32;
1170 ts->indirect_reg = indirect_reg;
1171 ts->mem_allocated = 1;
1172 ts->mem_base = base_ts;
1173 ts->mem_offset = offset + bigendian * 4;
1174 pstrcpy(buf, sizeof(buf), name);
1175 pstrcat(buf, sizeof(buf), "_0");
1176 ts->name = strdup(buf);
1178 tcg_debug_assert(ts2 == ts + 1);
1179 ts2->base_type = TCG_TYPE_I64;
1180 ts2->type = TCG_TYPE_I32;
1181 ts2->indirect_reg = indirect_reg;
1182 ts2->mem_allocated = 1;
1183 ts2->mem_base = base_ts;
1184 ts2->mem_offset = offset + (1 - bigendian) * 4;
1185 pstrcpy(buf, sizeof(buf), name);
1186 pstrcat(buf, sizeof(buf), "_1");
1187 ts2->name = strdup(buf);
1188 } else {
1189 ts->base_type = type;
1190 ts->type = type;
1191 ts->indirect_reg = indirect_reg;
1192 ts->mem_allocated = 1;
1193 ts->mem_base = base_ts;
1194 ts->mem_offset = offset;
1195 ts->name = name;
1197 return ts;
1200 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local)
1202 TCGContext *s = tcg_ctx;
1203 TCGTemp *ts;
1204 int idx, k;
1206 k = type + (temp_local ? TCG_TYPE_COUNT : 0);
1207 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS);
1208 if (idx < TCG_MAX_TEMPS) {
1209 /* There is already an available temp with the right type. */
1210 clear_bit(idx, s->free_temps[k].l);
1212 ts = &s->temps[idx];
1213 ts->temp_allocated = 1;
1214 tcg_debug_assert(ts->base_type == type);
1215 tcg_debug_assert(ts->temp_local == temp_local);
1216 } else {
1217 ts = tcg_temp_alloc(s);
1218 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1219 TCGTemp *ts2 = tcg_temp_alloc(s);
1221 ts->base_type = type;
1222 ts->type = TCG_TYPE_I32;
1223 ts->temp_allocated = 1;
1224 ts->temp_local = temp_local;
1226 tcg_debug_assert(ts2 == ts + 1);
1227 ts2->base_type = TCG_TYPE_I64;
1228 ts2->type = TCG_TYPE_I32;
1229 ts2->temp_allocated = 1;
1230 ts2->temp_local = temp_local;
1231 } else {
1232 ts->base_type = type;
1233 ts->type = type;
1234 ts->temp_allocated = 1;
1235 ts->temp_local = temp_local;
1239 #if defined(CONFIG_DEBUG_TCG)
1240 s->temps_in_use++;
1241 #endif
1242 return ts;
1245 TCGv_vec tcg_temp_new_vec(TCGType type)
1247 TCGTemp *t;
1249 #ifdef CONFIG_DEBUG_TCG
1250 switch (type) {
1251 case TCG_TYPE_V64:
1252 assert(TCG_TARGET_HAS_v64);
1253 break;
1254 case TCG_TYPE_V128:
1255 assert(TCG_TARGET_HAS_v128);
1256 break;
1257 case TCG_TYPE_V256:
1258 assert(TCG_TARGET_HAS_v256);
1259 break;
1260 default:
1261 g_assert_not_reached();
1263 #endif
1265 t = tcg_temp_new_internal(type, 0);
1266 return temp_tcgv_vec(t);
1269 /* Create a new temp of the same type as an existing temp. */
1270 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match)
1272 TCGTemp *t = tcgv_vec_temp(match);
1274 tcg_debug_assert(t->temp_allocated != 0);
1276 t = tcg_temp_new_internal(t->base_type, 0);
1277 return temp_tcgv_vec(t);
1280 void tcg_temp_free_internal(TCGTemp *ts)
1282 TCGContext *s = tcg_ctx;
1283 int k, idx;
1285 #if defined(CONFIG_DEBUG_TCG)
1286 s->temps_in_use--;
1287 if (s->temps_in_use < 0) {
1288 fprintf(stderr, "More temporaries freed than allocated!\n");
1290 #endif
1292 tcg_debug_assert(ts->temp_global == 0);
1293 tcg_debug_assert(ts->temp_allocated != 0);
1294 ts->temp_allocated = 0;
1296 idx = temp_idx(ts);
1297 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0);
1298 set_bit(idx, s->free_temps[k].l);
1301 TCGv_i32 tcg_const_i32(int32_t val)
1303 TCGv_i32 t0;
1304 t0 = tcg_temp_new_i32();
1305 tcg_gen_movi_i32(t0, val);
1306 return t0;
1309 TCGv_i64 tcg_const_i64(int64_t val)
1311 TCGv_i64 t0;
1312 t0 = tcg_temp_new_i64();
1313 tcg_gen_movi_i64(t0, val);
1314 return t0;
1317 TCGv_i32 tcg_const_local_i32(int32_t val)
1319 TCGv_i32 t0;
1320 t0 = tcg_temp_local_new_i32();
1321 tcg_gen_movi_i32(t0, val);
1322 return t0;
1325 TCGv_i64 tcg_const_local_i64(int64_t val)
1327 TCGv_i64 t0;
1328 t0 = tcg_temp_local_new_i64();
1329 tcg_gen_movi_i64(t0, val);
1330 return t0;
1333 #if defined(CONFIG_DEBUG_TCG)
1334 void tcg_clear_temp_count(void)
1336 TCGContext *s = tcg_ctx;
1337 s->temps_in_use = 0;
1340 int tcg_check_temp_count(void)
1342 TCGContext *s = tcg_ctx;
1343 if (s->temps_in_use) {
1344 /* Clear the count so that we don't give another
1345 * warning immediately next time around.
1347 s->temps_in_use = 0;
1348 return 1;
1350 return 0;
1352 #endif
1354 /* Return true if OP may appear in the opcode stream.
1355 Test the runtime variable that controls each opcode. */
1356 bool tcg_op_supported(TCGOpcode op)
1358 const bool have_vec
1359 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256;
1361 switch (op) {
1362 case INDEX_op_discard:
1363 case INDEX_op_set_label:
1364 case INDEX_op_call:
1365 case INDEX_op_br:
1366 case INDEX_op_mb:
1367 case INDEX_op_insn_start:
1368 case INDEX_op_exit_tb:
1369 case INDEX_op_goto_tb:
1370 case INDEX_op_qemu_ld_i32:
1371 case INDEX_op_qemu_st_i32:
1372 case INDEX_op_qemu_ld_i64:
1373 case INDEX_op_qemu_st_i64:
1374 return true;
1376 case INDEX_op_goto_ptr:
1377 return TCG_TARGET_HAS_goto_ptr;
1379 case INDEX_op_mov_i32:
1380 case INDEX_op_movi_i32:
1381 case INDEX_op_setcond_i32:
1382 case INDEX_op_brcond_i32:
1383 case INDEX_op_ld8u_i32:
1384 case INDEX_op_ld8s_i32:
1385 case INDEX_op_ld16u_i32:
1386 case INDEX_op_ld16s_i32:
1387 case INDEX_op_ld_i32:
1388 case INDEX_op_st8_i32:
1389 case INDEX_op_st16_i32:
1390 case INDEX_op_st_i32:
1391 case INDEX_op_add_i32:
1392 case INDEX_op_sub_i32:
1393 case INDEX_op_mul_i32:
1394 case INDEX_op_and_i32:
1395 case INDEX_op_or_i32:
1396 case INDEX_op_xor_i32:
1397 case INDEX_op_shl_i32:
1398 case INDEX_op_shr_i32:
1399 case INDEX_op_sar_i32:
1400 return true;
1402 case INDEX_op_movcond_i32:
1403 return TCG_TARGET_HAS_movcond_i32;
1404 case INDEX_op_div_i32:
1405 case INDEX_op_divu_i32:
1406 return TCG_TARGET_HAS_div_i32;
1407 case INDEX_op_rem_i32:
1408 case INDEX_op_remu_i32:
1409 return TCG_TARGET_HAS_rem_i32;
1410 case INDEX_op_div2_i32:
1411 case INDEX_op_divu2_i32:
1412 return TCG_TARGET_HAS_div2_i32;
1413 case INDEX_op_rotl_i32:
1414 case INDEX_op_rotr_i32:
1415 return TCG_TARGET_HAS_rot_i32;
1416 case INDEX_op_deposit_i32:
1417 return TCG_TARGET_HAS_deposit_i32;
1418 case INDEX_op_extract_i32:
1419 return TCG_TARGET_HAS_extract_i32;
1420 case INDEX_op_sextract_i32:
1421 return TCG_TARGET_HAS_sextract_i32;
1422 case INDEX_op_add2_i32:
1423 return TCG_TARGET_HAS_add2_i32;
1424 case INDEX_op_sub2_i32:
1425 return TCG_TARGET_HAS_sub2_i32;
1426 case INDEX_op_mulu2_i32:
1427 return TCG_TARGET_HAS_mulu2_i32;
1428 case INDEX_op_muls2_i32:
1429 return TCG_TARGET_HAS_muls2_i32;
1430 case INDEX_op_muluh_i32:
1431 return TCG_TARGET_HAS_muluh_i32;
1432 case INDEX_op_mulsh_i32:
1433 return TCG_TARGET_HAS_mulsh_i32;
1434 case INDEX_op_ext8s_i32:
1435 return TCG_TARGET_HAS_ext8s_i32;
1436 case INDEX_op_ext16s_i32:
1437 return TCG_TARGET_HAS_ext16s_i32;
1438 case INDEX_op_ext8u_i32:
1439 return TCG_TARGET_HAS_ext8u_i32;
1440 case INDEX_op_ext16u_i32:
1441 return TCG_TARGET_HAS_ext16u_i32;
1442 case INDEX_op_bswap16_i32:
1443 return TCG_TARGET_HAS_bswap16_i32;
1444 case INDEX_op_bswap32_i32:
1445 return TCG_TARGET_HAS_bswap32_i32;
1446 case INDEX_op_not_i32:
1447 return TCG_TARGET_HAS_not_i32;
1448 case INDEX_op_neg_i32:
1449 return TCG_TARGET_HAS_neg_i32;
1450 case INDEX_op_andc_i32:
1451 return TCG_TARGET_HAS_andc_i32;
1452 case INDEX_op_orc_i32:
1453 return TCG_TARGET_HAS_orc_i32;
1454 case INDEX_op_eqv_i32:
1455 return TCG_TARGET_HAS_eqv_i32;
1456 case INDEX_op_nand_i32:
1457 return TCG_TARGET_HAS_nand_i32;
1458 case INDEX_op_nor_i32:
1459 return TCG_TARGET_HAS_nor_i32;
1460 case INDEX_op_clz_i32:
1461 return TCG_TARGET_HAS_clz_i32;
1462 case INDEX_op_ctz_i32:
1463 return TCG_TARGET_HAS_ctz_i32;
1464 case INDEX_op_ctpop_i32:
1465 return TCG_TARGET_HAS_ctpop_i32;
1467 case INDEX_op_brcond2_i32:
1468 case INDEX_op_setcond2_i32:
1469 return TCG_TARGET_REG_BITS == 32;
1471 case INDEX_op_mov_i64:
1472 case INDEX_op_movi_i64:
1473 case INDEX_op_setcond_i64:
1474 case INDEX_op_brcond_i64:
1475 case INDEX_op_ld8u_i64:
1476 case INDEX_op_ld8s_i64:
1477 case INDEX_op_ld16u_i64:
1478 case INDEX_op_ld16s_i64:
1479 case INDEX_op_ld32u_i64:
1480 case INDEX_op_ld32s_i64:
1481 case INDEX_op_ld_i64:
1482 case INDEX_op_st8_i64:
1483 case INDEX_op_st16_i64:
1484 case INDEX_op_st32_i64:
1485 case INDEX_op_st_i64:
1486 case INDEX_op_add_i64:
1487 case INDEX_op_sub_i64:
1488 case INDEX_op_mul_i64:
1489 case INDEX_op_and_i64:
1490 case INDEX_op_or_i64:
1491 case INDEX_op_xor_i64:
1492 case INDEX_op_shl_i64:
1493 case INDEX_op_shr_i64:
1494 case INDEX_op_sar_i64:
1495 case INDEX_op_ext_i32_i64:
1496 case INDEX_op_extu_i32_i64:
1497 return TCG_TARGET_REG_BITS == 64;
1499 case INDEX_op_movcond_i64:
1500 return TCG_TARGET_HAS_movcond_i64;
1501 case INDEX_op_div_i64:
1502 case INDEX_op_divu_i64:
1503 return TCG_TARGET_HAS_div_i64;
1504 case INDEX_op_rem_i64:
1505 case INDEX_op_remu_i64:
1506 return TCG_TARGET_HAS_rem_i64;
1507 case INDEX_op_div2_i64:
1508 case INDEX_op_divu2_i64:
1509 return TCG_TARGET_HAS_div2_i64;
1510 case INDEX_op_rotl_i64:
1511 case INDEX_op_rotr_i64:
1512 return TCG_TARGET_HAS_rot_i64;
1513 case INDEX_op_deposit_i64:
1514 return TCG_TARGET_HAS_deposit_i64;
1515 case INDEX_op_extract_i64:
1516 return TCG_TARGET_HAS_extract_i64;
1517 case INDEX_op_sextract_i64:
1518 return TCG_TARGET_HAS_sextract_i64;
1519 case INDEX_op_extrl_i64_i32:
1520 return TCG_TARGET_HAS_extrl_i64_i32;
1521 case INDEX_op_extrh_i64_i32:
1522 return TCG_TARGET_HAS_extrh_i64_i32;
1523 case INDEX_op_ext8s_i64:
1524 return TCG_TARGET_HAS_ext8s_i64;
1525 case INDEX_op_ext16s_i64:
1526 return TCG_TARGET_HAS_ext16s_i64;
1527 case INDEX_op_ext32s_i64:
1528 return TCG_TARGET_HAS_ext32s_i64;
1529 case INDEX_op_ext8u_i64:
1530 return TCG_TARGET_HAS_ext8u_i64;
1531 case INDEX_op_ext16u_i64:
1532 return TCG_TARGET_HAS_ext16u_i64;
1533 case INDEX_op_ext32u_i64:
1534 return TCG_TARGET_HAS_ext32u_i64;
1535 case INDEX_op_bswap16_i64:
1536 return TCG_TARGET_HAS_bswap16_i64;
1537 case INDEX_op_bswap32_i64:
1538 return TCG_TARGET_HAS_bswap32_i64;
1539 case INDEX_op_bswap64_i64:
1540 return TCG_TARGET_HAS_bswap64_i64;
1541 case INDEX_op_not_i64:
1542 return TCG_TARGET_HAS_not_i64;
1543 case INDEX_op_neg_i64:
1544 return TCG_TARGET_HAS_neg_i64;
1545 case INDEX_op_andc_i64:
1546 return TCG_TARGET_HAS_andc_i64;
1547 case INDEX_op_orc_i64:
1548 return TCG_TARGET_HAS_orc_i64;
1549 case INDEX_op_eqv_i64:
1550 return TCG_TARGET_HAS_eqv_i64;
1551 case INDEX_op_nand_i64:
1552 return TCG_TARGET_HAS_nand_i64;
1553 case INDEX_op_nor_i64:
1554 return TCG_TARGET_HAS_nor_i64;
1555 case INDEX_op_clz_i64:
1556 return TCG_TARGET_HAS_clz_i64;
1557 case INDEX_op_ctz_i64:
1558 return TCG_TARGET_HAS_ctz_i64;
1559 case INDEX_op_ctpop_i64:
1560 return TCG_TARGET_HAS_ctpop_i64;
1561 case INDEX_op_add2_i64:
1562 return TCG_TARGET_HAS_add2_i64;
1563 case INDEX_op_sub2_i64:
1564 return TCG_TARGET_HAS_sub2_i64;
1565 case INDEX_op_mulu2_i64:
1566 return TCG_TARGET_HAS_mulu2_i64;
1567 case INDEX_op_muls2_i64:
1568 return TCG_TARGET_HAS_muls2_i64;
1569 case INDEX_op_muluh_i64:
1570 return TCG_TARGET_HAS_muluh_i64;
1571 case INDEX_op_mulsh_i64:
1572 return TCG_TARGET_HAS_mulsh_i64;
1574 case INDEX_op_mov_vec:
1575 case INDEX_op_dup_vec:
1576 case INDEX_op_dupi_vec:
1577 case INDEX_op_ld_vec:
1578 case INDEX_op_st_vec:
1579 case INDEX_op_add_vec:
1580 case INDEX_op_sub_vec:
1581 case INDEX_op_and_vec:
1582 case INDEX_op_or_vec:
1583 case INDEX_op_xor_vec:
1584 case INDEX_op_cmp_vec:
1585 return have_vec;
1586 case INDEX_op_dup2_vec:
1587 return have_vec && TCG_TARGET_REG_BITS == 32;
1588 case INDEX_op_not_vec:
1589 return have_vec && TCG_TARGET_HAS_not_vec;
1590 case INDEX_op_neg_vec:
1591 return have_vec && TCG_TARGET_HAS_neg_vec;
1592 case INDEX_op_andc_vec:
1593 return have_vec && TCG_TARGET_HAS_andc_vec;
1594 case INDEX_op_orc_vec:
1595 return have_vec && TCG_TARGET_HAS_orc_vec;
1596 case INDEX_op_mul_vec:
1597 return have_vec && TCG_TARGET_HAS_mul_vec;
1598 case INDEX_op_shli_vec:
1599 case INDEX_op_shri_vec:
1600 case INDEX_op_sari_vec:
1601 return have_vec && TCG_TARGET_HAS_shi_vec;
1602 case INDEX_op_shls_vec:
1603 case INDEX_op_shrs_vec:
1604 case INDEX_op_sars_vec:
1605 return have_vec && TCG_TARGET_HAS_shs_vec;
1606 case INDEX_op_shlv_vec:
1607 case INDEX_op_shrv_vec:
1608 case INDEX_op_sarv_vec:
1609 return have_vec && TCG_TARGET_HAS_shv_vec;
1611 default:
1612 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS);
1613 return true;
1617 /* Note: we convert the 64 bit args to 32 bit and do some alignment
1618 and endian swap. Maybe it would be better to do the alignment
1619 and endian swap in tcg_reg_alloc_call(). */
1620 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args)
1622 int i, real_args, nb_rets, pi;
1623 unsigned sizemask, flags;
1624 TCGHelperInfo *info;
1625 TCGOp *op;
1627 info = g_hash_table_lookup(helper_table, (gpointer)func);
1628 flags = info->flags;
1629 sizemask = info->sizemask;
1631 #if defined(__sparc__) && !defined(__arch64__) \
1632 && !defined(CONFIG_TCG_INTERPRETER)
1633 /* We have 64-bit values in one register, but need to pass as two
1634 separate parameters. Split them. */
1635 int orig_sizemask = sizemask;
1636 int orig_nargs = nargs;
1637 TCGv_i64 retl, reth;
1638 TCGTemp *split_args[MAX_OPC_PARAM];
1640 retl = NULL;
1641 reth = NULL;
1642 if (sizemask != 0) {
1643 for (i = real_args = 0; i < nargs; ++i) {
1644 int is_64bit = sizemask & (1 << (i+1)*2);
1645 if (is_64bit) {
1646 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1647 TCGv_i32 h = tcg_temp_new_i32();
1648 TCGv_i32 l = tcg_temp_new_i32();
1649 tcg_gen_extr_i64_i32(l, h, orig);
1650 split_args[real_args++] = tcgv_i32_temp(h);
1651 split_args[real_args++] = tcgv_i32_temp(l);
1652 } else {
1653 split_args[real_args++] = args[i];
1656 nargs = real_args;
1657 args = split_args;
1658 sizemask = 0;
1660 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1661 for (i = 0; i < nargs; ++i) {
1662 int is_64bit = sizemask & (1 << (i+1)*2);
1663 int is_signed = sizemask & (2 << (i+1)*2);
1664 if (!is_64bit) {
1665 TCGv_i64 temp = tcg_temp_new_i64();
1666 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1667 if (is_signed) {
1668 tcg_gen_ext32s_i64(temp, orig);
1669 } else {
1670 tcg_gen_ext32u_i64(temp, orig);
1672 args[i] = tcgv_i64_temp(temp);
1675 #endif /* TCG_TARGET_EXTEND_ARGS */
1677 op = tcg_emit_op(INDEX_op_call);
1679 pi = 0;
1680 if (ret != NULL) {
1681 #if defined(__sparc__) && !defined(__arch64__) \
1682 && !defined(CONFIG_TCG_INTERPRETER)
1683 if (orig_sizemask & 1) {
1684 /* The 32-bit ABI is going to return the 64-bit value in
1685 the %o0/%o1 register pair. Prepare for this by using
1686 two return temporaries, and reassemble below. */
1687 retl = tcg_temp_new_i64();
1688 reth = tcg_temp_new_i64();
1689 op->args[pi++] = tcgv_i64_arg(reth);
1690 op->args[pi++] = tcgv_i64_arg(retl);
1691 nb_rets = 2;
1692 } else {
1693 op->args[pi++] = temp_arg(ret);
1694 nb_rets = 1;
1696 #else
1697 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) {
1698 #ifdef HOST_WORDS_BIGENDIAN
1699 op->args[pi++] = temp_arg(ret + 1);
1700 op->args[pi++] = temp_arg(ret);
1701 #else
1702 op->args[pi++] = temp_arg(ret);
1703 op->args[pi++] = temp_arg(ret + 1);
1704 #endif
1705 nb_rets = 2;
1706 } else {
1707 op->args[pi++] = temp_arg(ret);
1708 nb_rets = 1;
1710 #endif
1711 } else {
1712 nb_rets = 0;
1714 TCGOP_CALLO(op) = nb_rets;
1716 real_args = 0;
1717 for (i = 0; i < nargs; i++) {
1718 int is_64bit = sizemask & (1 << (i+1)*2);
1719 if (TCG_TARGET_REG_BITS < 64 && is_64bit) {
1720 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
1721 /* some targets want aligned 64 bit args */
1722 if (real_args & 1) {
1723 op->args[pi++] = TCG_CALL_DUMMY_ARG;
1724 real_args++;
1726 #endif
1727 /* If stack grows up, then we will be placing successive
1728 arguments at lower addresses, which means we need to
1729 reverse the order compared to how we would normally
1730 treat either big or little-endian. For those arguments
1731 that will wind up in registers, this still works for
1732 HPPA (the only current STACK_GROWSUP target) since the
1733 argument registers are *also* allocated in decreasing
1734 order. If another such target is added, this logic may
1735 have to get more complicated to differentiate between
1736 stack arguments and register arguments. */
1737 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP)
1738 op->args[pi++] = temp_arg(args[i] + 1);
1739 op->args[pi++] = temp_arg(args[i]);
1740 #else
1741 op->args[pi++] = temp_arg(args[i]);
1742 op->args[pi++] = temp_arg(args[i] + 1);
1743 #endif
1744 real_args += 2;
1745 continue;
1748 op->args[pi++] = temp_arg(args[i]);
1749 real_args++;
1751 op->args[pi++] = (uintptr_t)func;
1752 op->args[pi++] = flags;
1753 TCGOP_CALLI(op) = real_args;
1755 /* Make sure the fields didn't overflow. */
1756 tcg_debug_assert(TCGOP_CALLI(op) == real_args);
1757 tcg_debug_assert(pi <= ARRAY_SIZE(op->args));
1759 #if defined(__sparc__) && !defined(__arch64__) \
1760 && !defined(CONFIG_TCG_INTERPRETER)
1761 /* Free all of the parts we allocated above. */
1762 for (i = real_args = 0; i < orig_nargs; ++i) {
1763 int is_64bit = orig_sizemask & (1 << (i+1)*2);
1764 if (is_64bit) {
1765 tcg_temp_free_internal(args[real_args++]);
1766 tcg_temp_free_internal(args[real_args++]);
1767 } else {
1768 real_args++;
1771 if (orig_sizemask & 1) {
1772 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them.
1773 Note that describing these as TCGv_i64 eliminates an unnecessary
1774 zero-extension that tcg_gen_concat_i32_i64 would create. */
1775 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth);
1776 tcg_temp_free_i64(retl);
1777 tcg_temp_free_i64(reth);
1779 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1780 for (i = 0; i < nargs; ++i) {
1781 int is_64bit = sizemask & (1 << (i+1)*2);
1782 if (!is_64bit) {
1783 tcg_temp_free_internal(args[i]);
1786 #endif /* TCG_TARGET_EXTEND_ARGS */
1789 static void tcg_reg_alloc_start(TCGContext *s)
1791 int i, n;
1792 TCGTemp *ts;
1794 for (i = 0, n = s->nb_globals; i < n; i++) {
1795 ts = &s->temps[i];
1796 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM);
1798 for (n = s->nb_temps; i < n; i++) {
1799 ts = &s->temps[i];
1800 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
1801 ts->mem_allocated = 0;
1802 ts->fixed_reg = 0;
1805 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp));
1808 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size,
1809 TCGTemp *ts)
1811 int idx = temp_idx(ts);
1813 if (ts->temp_global) {
1814 pstrcpy(buf, buf_size, ts->name);
1815 } else if (ts->temp_local) {
1816 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals);
1817 } else {
1818 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals);
1820 return buf;
1823 static char *tcg_get_arg_str(TCGContext *s, char *buf,
1824 int buf_size, TCGArg arg)
1826 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg));
1829 /* Find helper name. */
1830 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val)
1832 const char *ret = NULL;
1833 if (helper_table) {
1834 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val);
1835 if (info) {
1836 ret = info->name;
1839 return ret;
1842 static const char * const cond_name[] =
1844 [TCG_COND_NEVER] = "never",
1845 [TCG_COND_ALWAYS] = "always",
1846 [TCG_COND_EQ] = "eq",
1847 [TCG_COND_NE] = "ne",
1848 [TCG_COND_LT] = "lt",
1849 [TCG_COND_GE] = "ge",
1850 [TCG_COND_LE] = "le",
1851 [TCG_COND_GT] = "gt",
1852 [TCG_COND_LTU] = "ltu",
1853 [TCG_COND_GEU] = "geu",
1854 [TCG_COND_LEU] = "leu",
1855 [TCG_COND_GTU] = "gtu"
1858 static const char * const ldst_name[] =
1860 [MO_UB] = "ub",
1861 [MO_SB] = "sb",
1862 [MO_LEUW] = "leuw",
1863 [MO_LESW] = "lesw",
1864 [MO_LEUL] = "leul",
1865 [MO_LESL] = "lesl",
1866 [MO_LEQ] = "leq",
1867 [MO_BEUW] = "beuw",
1868 [MO_BESW] = "besw",
1869 [MO_BEUL] = "beul",
1870 [MO_BESL] = "besl",
1871 [MO_BEQ] = "beq",
1874 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = {
1875 #ifdef ALIGNED_ONLY
1876 [MO_UNALN >> MO_ASHIFT] = "un+",
1877 [MO_ALIGN >> MO_ASHIFT] = "",
1878 #else
1879 [MO_UNALN >> MO_ASHIFT] = "",
1880 [MO_ALIGN >> MO_ASHIFT] = "al+",
1881 #endif
1882 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+",
1883 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+",
1884 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+",
1885 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+",
1886 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+",
1887 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+",
1890 void tcg_dump_ops(TCGContext *s)
1892 char buf[128];
1893 TCGOp *op;
1895 QTAILQ_FOREACH(op, &s->ops, link) {
1896 int i, k, nb_oargs, nb_iargs, nb_cargs;
1897 const TCGOpDef *def;
1898 TCGOpcode c;
1899 int col = 0;
1901 c = op->opc;
1902 def = &tcg_op_defs[c];
1904 if (c == INDEX_op_insn_start) {
1905 col += qemu_log("\n ----");
1907 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
1908 target_ulong a;
1909 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
1910 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
1911 #else
1912 a = op->args[i];
1913 #endif
1914 col += qemu_log(" " TARGET_FMT_lx, a);
1916 } else if (c == INDEX_op_call) {
1917 /* variable number of arguments */
1918 nb_oargs = TCGOP_CALLO(op);
1919 nb_iargs = TCGOP_CALLI(op);
1920 nb_cargs = def->nb_cargs;
1922 /* function name, flags, out args */
1923 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name,
1924 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]),
1925 op->args[nb_oargs + nb_iargs + 1], nb_oargs);
1926 for (i = 0; i < nb_oargs; i++) {
1927 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf),
1928 op->args[i]));
1930 for (i = 0; i < nb_iargs; i++) {
1931 TCGArg arg = op->args[nb_oargs + i];
1932 const char *t = "<dummy>";
1933 if (arg != TCG_CALL_DUMMY_ARG) {
1934 t = tcg_get_arg_str(s, buf, sizeof(buf), arg);
1936 col += qemu_log(",%s", t);
1938 } else {
1939 col += qemu_log(" %s ", def->name);
1941 nb_oargs = def->nb_oargs;
1942 nb_iargs = def->nb_iargs;
1943 nb_cargs = def->nb_cargs;
1945 if (def->flags & TCG_OPF_VECTOR) {
1946 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op),
1947 8 << TCGOP_VECE(op));
1950 k = 0;
1951 for (i = 0; i < nb_oargs; i++) {
1952 if (k != 0) {
1953 col += qemu_log(",");
1955 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
1956 op->args[k++]));
1958 for (i = 0; i < nb_iargs; i++) {
1959 if (k != 0) {
1960 col += qemu_log(",");
1962 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
1963 op->args[k++]));
1965 switch (c) {
1966 case INDEX_op_brcond_i32:
1967 case INDEX_op_setcond_i32:
1968 case INDEX_op_movcond_i32:
1969 case INDEX_op_brcond2_i32:
1970 case INDEX_op_setcond2_i32:
1971 case INDEX_op_brcond_i64:
1972 case INDEX_op_setcond_i64:
1973 case INDEX_op_movcond_i64:
1974 case INDEX_op_cmp_vec:
1975 if (op->args[k] < ARRAY_SIZE(cond_name)
1976 && cond_name[op->args[k]]) {
1977 col += qemu_log(",%s", cond_name[op->args[k++]]);
1978 } else {
1979 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]);
1981 i = 1;
1982 break;
1983 case INDEX_op_qemu_ld_i32:
1984 case INDEX_op_qemu_st_i32:
1985 case INDEX_op_qemu_ld_i64:
1986 case INDEX_op_qemu_st_i64:
1988 TCGMemOpIdx oi = op->args[k++];
1989 TCGMemOp op = get_memop(oi);
1990 unsigned ix = get_mmuidx(oi);
1992 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) {
1993 col += qemu_log(",$0x%x,%u", op, ix);
1994 } else {
1995 const char *s_al, *s_op;
1996 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT];
1997 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)];
1998 col += qemu_log(",%s%s,%u", s_al, s_op, ix);
2000 i = 1;
2002 break;
2003 default:
2004 i = 0;
2005 break;
2007 switch (c) {
2008 case INDEX_op_set_label:
2009 case INDEX_op_br:
2010 case INDEX_op_brcond_i32:
2011 case INDEX_op_brcond_i64:
2012 case INDEX_op_brcond2_i32:
2013 col += qemu_log("%s$L%d", k ? "," : "",
2014 arg_label(op->args[k])->id);
2015 i++, k++;
2016 break;
2017 default:
2018 break;
2020 for (; i < nb_cargs; i++, k++) {
2021 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]);
2024 if (op->life) {
2025 unsigned life = op->life;
2027 for (; col < 48; ++col) {
2028 putc(' ', qemu_logfile);
2031 if (life & (SYNC_ARG * 3)) {
2032 qemu_log(" sync:");
2033 for (i = 0; i < 2; ++i) {
2034 if (life & (SYNC_ARG << i)) {
2035 qemu_log(" %d", i);
2039 life /= DEAD_ARG;
2040 if (life) {
2041 qemu_log(" dead:");
2042 for (i = 0; life; ++i, life >>= 1) {
2043 if (life & 1) {
2044 qemu_log(" %d", i);
2049 qemu_log("\n");
2053 /* we give more priority to constraints with less registers */
2054 static int get_constraint_priority(const TCGOpDef *def, int k)
2056 const TCGArgConstraint *arg_ct;
2058 int i, n;
2059 arg_ct = &def->args_ct[k];
2060 if (arg_ct->ct & TCG_CT_ALIAS) {
2061 /* an alias is equivalent to a single register */
2062 n = 1;
2063 } else {
2064 if (!(arg_ct->ct & TCG_CT_REG))
2065 return 0;
2066 n = 0;
2067 for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
2068 if (tcg_regset_test_reg(arg_ct->u.regs, i))
2069 n++;
2072 return TCG_TARGET_NB_REGS - n + 1;
2075 /* sort from highest priority to lowest */
2076 static void sort_constraints(TCGOpDef *def, int start, int n)
2078 int i, j, p1, p2, tmp;
2080 for(i = 0; i < n; i++)
2081 def->sorted_args[start + i] = start + i;
2082 if (n <= 1)
2083 return;
2084 for(i = 0; i < n - 1; i++) {
2085 for(j = i + 1; j < n; j++) {
2086 p1 = get_constraint_priority(def, def->sorted_args[start + i]);
2087 p2 = get_constraint_priority(def, def->sorted_args[start + j]);
2088 if (p1 < p2) {
2089 tmp = def->sorted_args[start + i];
2090 def->sorted_args[start + i] = def->sorted_args[start + j];
2091 def->sorted_args[start + j] = tmp;
2097 static void process_op_defs(TCGContext *s)
2099 TCGOpcode op;
2101 for (op = 0; op < NB_OPS; op++) {
2102 TCGOpDef *def = &tcg_op_defs[op];
2103 const TCGTargetOpDef *tdefs;
2104 TCGType type;
2105 int i, nb_args;
2107 if (def->flags & TCG_OPF_NOT_PRESENT) {
2108 continue;
2111 nb_args = def->nb_iargs + def->nb_oargs;
2112 if (nb_args == 0) {
2113 continue;
2116 tdefs = tcg_target_op_def(op);
2117 /* Missing TCGTargetOpDef entry. */
2118 tcg_debug_assert(tdefs != NULL);
2120 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32);
2121 for (i = 0; i < nb_args; i++) {
2122 const char *ct_str = tdefs->args_ct_str[i];
2123 /* Incomplete TCGTargetOpDef entry. */
2124 tcg_debug_assert(ct_str != NULL);
2126 def->args_ct[i].u.regs = 0;
2127 def->args_ct[i].ct = 0;
2128 while (*ct_str != '\0') {
2129 switch(*ct_str) {
2130 case '0' ... '9':
2132 int oarg = *ct_str - '0';
2133 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]);
2134 tcg_debug_assert(oarg < def->nb_oargs);
2135 tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG);
2136 /* TCG_CT_ALIAS is for the output arguments.
2137 The input is tagged with TCG_CT_IALIAS. */
2138 def->args_ct[i] = def->args_ct[oarg];
2139 def->args_ct[oarg].ct |= TCG_CT_ALIAS;
2140 def->args_ct[oarg].alias_index = i;
2141 def->args_ct[i].ct |= TCG_CT_IALIAS;
2142 def->args_ct[i].alias_index = oarg;
2144 ct_str++;
2145 break;
2146 case '&':
2147 def->args_ct[i].ct |= TCG_CT_NEWREG;
2148 ct_str++;
2149 break;
2150 case 'i':
2151 def->args_ct[i].ct |= TCG_CT_CONST;
2152 ct_str++;
2153 break;
2154 default:
2155 ct_str = target_parse_constraint(&def->args_ct[i],
2156 ct_str, type);
2157 /* Typo in TCGTargetOpDef constraint. */
2158 tcg_debug_assert(ct_str != NULL);
2163 /* TCGTargetOpDef entry with too much information? */
2164 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL);
2166 /* sort the constraints (XXX: this is just an heuristic) */
2167 sort_constraints(def, 0, def->nb_oargs);
2168 sort_constraints(def, def->nb_oargs, def->nb_iargs);
2172 void tcg_op_remove(TCGContext *s, TCGOp *op)
2174 TCGLabel *label;
2176 switch (op->opc) {
2177 case INDEX_op_br:
2178 label = arg_label(op->args[0]);
2179 label->refs--;
2180 break;
2181 case INDEX_op_brcond_i32:
2182 case INDEX_op_brcond_i64:
2183 label = arg_label(op->args[3]);
2184 label->refs--;
2185 break;
2186 case INDEX_op_brcond2_i32:
2187 label = arg_label(op->args[5]);
2188 label->refs--;
2189 break;
2190 default:
2191 break;
2194 QTAILQ_REMOVE(&s->ops, op, link);
2195 QTAILQ_INSERT_TAIL(&s->free_ops, op, link);
2196 s->nb_ops--;
2198 #ifdef CONFIG_PROFILER
2199 atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1);
2200 #endif
2203 static TCGOp *tcg_op_alloc(TCGOpcode opc)
2205 TCGContext *s = tcg_ctx;
2206 TCGOp *op;
2208 if (likely(QTAILQ_EMPTY(&s->free_ops))) {
2209 op = tcg_malloc(sizeof(TCGOp));
2210 } else {
2211 op = QTAILQ_FIRST(&s->free_ops);
2212 QTAILQ_REMOVE(&s->free_ops, op, link);
2214 memset(op, 0, offsetof(TCGOp, link));
2215 op->opc = opc;
2216 s->nb_ops++;
2218 return op;
2221 TCGOp *tcg_emit_op(TCGOpcode opc)
2223 TCGOp *op = tcg_op_alloc(opc);
2224 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link);
2225 return op;
2228 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc)
2230 TCGOp *new_op = tcg_op_alloc(opc);
2231 QTAILQ_INSERT_BEFORE(old_op, new_op, link);
2232 return new_op;
2235 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc)
2237 TCGOp *new_op = tcg_op_alloc(opc);
2238 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link);
2239 return new_op;
2242 /* Reachable analysis : remove unreachable code. */
2243 static void reachable_code_pass(TCGContext *s)
2245 TCGOp *op, *op_next;
2246 bool dead = false;
2248 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2249 bool remove = dead;
2250 TCGLabel *label;
2251 int call_flags;
2253 switch (op->opc) {
2254 case INDEX_op_set_label:
2255 label = arg_label(op->args[0]);
2256 if (label->refs == 0) {
2258 * While there is an occasional backward branch, virtually
2259 * all branches generated by the translators are forward.
2260 * Which means that generally we will have already removed
2261 * all references to the label that will be, and there is
2262 * little to be gained by iterating.
2264 remove = true;
2265 } else {
2266 /* Once we see a label, insns become live again. */
2267 dead = false;
2268 remove = false;
2271 * Optimization can fold conditional branches to unconditional.
2272 * If we find a label with one reference which is preceded by
2273 * an unconditional branch to it, remove both. This needed to
2274 * wait until the dead code in between them was removed.
2276 if (label->refs == 1) {
2277 TCGOp *op_prev = QTAILQ_PREV(op, TCGOpHead, link);
2278 if (op_prev->opc == INDEX_op_br &&
2279 label == arg_label(op_prev->args[0])) {
2280 tcg_op_remove(s, op_prev);
2281 remove = true;
2285 break;
2287 case INDEX_op_br:
2288 case INDEX_op_exit_tb:
2289 case INDEX_op_goto_ptr:
2290 /* Unconditional branches; everything following is dead. */
2291 dead = true;
2292 break;
2294 case INDEX_op_call:
2295 /* Notice noreturn helper calls, raising exceptions. */
2296 call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1];
2297 if (call_flags & TCG_CALL_NO_RETURN) {
2298 dead = true;
2300 break;
2302 case INDEX_op_insn_start:
2303 /* Never remove -- we need to keep these for unwind. */
2304 remove = false;
2305 break;
2307 default:
2308 break;
2311 if (remove) {
2312 tcg_op_remove(s, op);
2317 #define TS_DEAD 1
2318 #define TS_MEM 2
2320 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n)))
2321 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n)))
2323 /* liveness analysis: end of function: all temps are dead, and globals
2324 should be in memory. */
2325 static void tcg_la_func_end(TCGContext *s)
2327 int ng = s->nb_globals;
2328 int nt = s->nb_temps;
2329 int i;
2331 for (i = 0; i < ng; ++i) {
2332 s->temps[i].state = TS_DEAD | TS_MEM;
2334 for (i = ng; i < nt; ++i) {
2335 s->temps[i].state = TS_DEAD;
2339 /* liveness analysis: end of basic block: all temps are dead, globals
2340 and local temps should be in memory. */
2341 static void tcg_la_bb_end(TCGContext *s)
2343 int ng = s->nb_globals;
2344 int nt = s->nb_temps;
2345 int i;
2347 for (i = 0; i < ng; ++i) {
2348 s->temps[i].state = TS_DEAD | TS_MEM;
2350 for (i = ng; i < nt; ++i) {
2351 s->temps[i].state = (s->temps[i].temp_local
2352 ? TS_DEAD | TS_MEM
2353 : TS_DEAD);
2357 /* Liveness analysis : update the opc_arg_life array to tell if a
2358 given input arguments is dead. Instructions updating dead
2359 temporaries are removed. */
2360 static void liveness_pass_1(TCGContext *s)
2362 int nb_globals = s->nb_globals;
2363 TCGOp *op, *op_prev;
2365 tcg_la_func_end(s);
2367 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, TCGOpHead, link, op_prev) {
2368 int i, nb_iargs, nb_oargs;
2369 TCGOpcode opc_new, opc_new2;
2370 bool have_opc_new2;
2371 TCGLifeData arg_life = 0;
2372 TCGTemp *arg_ts;
2373 TCGOpcode opc = op->opc;
2374 const TCGOpDef *def = &tcg_op_defs[opc];
2376 switch (opc) {
2377 case INDEX_op_call:
2379 int call_flags;
2381 nb_oargs = TCGOP_CALLO(op);
2382 nb_iargs = TCGOP_CALLI(op);
2383 call_flags = op->args[nb_oargs + nb_iargs + 1];
2385 /* pure functions can be removed if their result is unused */
2386 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) {
2387 for (i = 0; i < nb_oargs; i++) {
2388 arg_ts = arg_temp(op->args[i]);
2389 if (arg_ts->state != TS_DEAD) {
2390 goto do_not_remove_call;
2393 goto do_remove;
2394 } else {
2395 do_not_remove_call:
2397 /* output args are dead */
2398 for (i = 0; i < nb_oargs; i++) {
2399 arg_ts = arg_temp(op->args[i]);
2400 if (arg_ts->state & TS_DEAD) {
2401 arg_life |= DEAD_ARG << i;
2403 if (arg_ts->state & TS_MEM) {
2404 arg_life |= SYNC_ARG << i;
2406 arg_ts->state = TS_DEAD;
2409 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS |
2410 TCG_CALL_NO_READ_GLOBALS))) {
2411 /* globals should go back to memory */
2412 for (i = 0; i < nb_globals; i++) {
2413 s->temps[i].state = TS_DEAD | TS_MEM;
2415 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) {
2416 /* globals should be synced to memory */
2417 for (i = 0; i < nb_globals; i++) {
2418 s->temps[i].state |= TS_MEM;
2422 /* record arguments that die in this helper */
2423 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2424 arg_ts = arg_temp(op->args[i]);
2425 if (arg_ts && arg_ts->state & TS_DEAD) {
2426 arg_life |= DEAD_ARG << i;
2429 /* input arguments are live for preceding opcodes */
2430 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2431 arg_ts = arg_temp(op->args[i]);
2432 if (arg_ts) {
2433 arg_ts->state &= ~TS_DEAD;
2438 break;
2439 case INDEX_op_insn_start:
2440 break;
2441 case INDEX_op_discard:
2442 /* mark the temporary as dead */
2443 arg_temp(op->args[0])->state = TS_DEAD;
2444 break;
2446 case INDEX_op_add2_i32:
2447 opc_new = INDEX_op_add_i32;
2448 goto do_addsub2;
2449 case INDEX_op_sub2_i32:
2450 opc_new = INDEX_op_sub_i32;
2451 goto do_addsub2;
2452 case INDEX_op_add2_i64:
2453 opc_new = INDEX_op_add_i64;
2454 goto do_addsub2;
2455 case INDEX_op_sub2_i64:
2456 opc_new = INDEX_op_sub_i64;
2457 do_addsub2:
2458 nb_iargs = 4;
2459 nb_oargs = 2;
2460 /* Test if the high part of the operation is dead, but not
2461 the low part. The result can be optimized to a simple
2462 add or sub. This happens often for x86_64 guest when the
2463 cpu mode is set to 32 bit. */
2464 if (arg_temp(op->args[1])->state == TS_DEAD) {
2465 if (arg_temp(op->args[0])->state == TS_DEAD) {
2466 goto do_remove;
2468 /* Replace the opcode and adjust the args in place,
2469 leaving 3 unused args at the end. */
2470 op->opc = opc = opc_new;
2471 op->args[1] = op->args[2];
2472 op->args[2] = op->args[4];
2473 /* Fall through and mark the single-word operation live. */
2474 nb_iargs = 2;
2475 nb_oargs = 1;
2477 goto do_not_remove;
2479 case INDEX_op_mulu2_i32:
2480 opc_new = INDEX_op_mul_i32;
2481 opc_new2 = INDEX_op_muluh_i32;
2482 have_opc_new2 = TCG_TARGET_HAS_muluh_i32;
2483 goto do_mul2;
2484 case INDEX_op_muls2_i32:
2485 opc_new = INDEX_op_mul_i32;
2486 opc_new2 = INDEX_op_mulsh_i32;
2487 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32;
2488 goto do_mul2;
2489 case INDEX_op_mulu2_i64:
2490 opc_new = INDEX_op_mul_i64;
2491 opc_new2 = INDEX_op_muluh_i64;
2492 have_opc_new2 = TCG_TARGET_HAS_muluh_i64;
2493 goto do_mul2;
2494 case INDEX_op_muls2_i64:
2495 opc_new = INDEX_op_mul_i64;
2496 opc_new2 = INDEX_op_mulsh_i64;
2497 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64;
2498 goto do_mul2;
2499 do_mul2:
2500 nb_iargs = 2;
2501 nb_oargs = 2;
2502 if (arg_temp(op->args[1])->state == TS_DEAD) {
2503 if (arg_temp(op->args[0])->state == TS_DEAD) {
2504 /* Both parts of the operation are dead. */
2505 goto do_remove;
2507 /* The high part of the operation is dead; generate the low. */
2508 op->opc = opc = opc_new;
2509 op->args[1] = op->args[2];
2510 op->args[2] = op->args[3];
2511 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) {
2512 /* The low part of the operation is dead; generate the high. */
2513 op->opc = opc = opc_new2;
2514 op->args[0] = op->args[1];
2515 op->args[1] = op->args[2];
2516 op->args[2] = op->args[3];
2517 } else {
2518 goto do_not_remove;
2520 /* Mark the single-word operation live. */
2521 nb_oargs = 1;
2522 goto do_not_remove;
2524 default:
2525 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */
2526 nb_iargs = def->nb_iargs;
2527 nb_oargs = def->nb_oargs;
2529 /* Test if the operation can be removed because all
2530 its outputs are dead. We assume that nb_oargs == 0
2531 implies side effects */
2532 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) {
2533 for (i = 0; i < nb_oargs; i++) {
2534 if (arg_temp(op->args[i])->state != TS_DEAD) {
2535 goto do_not_remove;
2538 do_remove:
2539 tcg_op_remove(s, op);
2540 } else {
2541 do_not_remove:
2542 /* output args are dead */
2543 for (i = 0; i < nb_oargs; i++) {
2544 arg_ts = arg_temp(op->args[i]);
2545 if (arg_ts->state & TS_DEAD) {
2546 arg_life |= DEAD_ARG << i;
2548 if (arg_ts->state & TS_MEM) {
2549 arg_life |= SYNC_ARG << i;
2551 arg_ts->state = TS_DEAD;
2554 /* if end of basic block, update */
2555 if (def->flags & TCG_OPF_BB_END) {
2556 tcg_la_bb_end(s);
2557 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2558 /* globals should be synced to memory */
2559 for (i = 0; i < nb_globals; i++) {
2560 s->temps[i].state |= TS_MEM;
2564 /* record arguments that die in this opcode */
2565 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2566 arg_ts = arg_temp(op->args[i]);
2567 if (arg_ts->state & TS_DEAD) {
2568 arg_life |= DEAD_ARG << i;
2571 /* input arguments are live for preceding opcodes */
2572 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2573 arg_temp(op->args[i])->state &= ~TS_DEAD;
2576 break;
2578 op->life = arg_life;
2582 /* Liveness analysis: Convert indirect regs to direct temporaries. */
2583 static bool liveness_pass_2(TCGContext *s)
2585 int nb_globals = s->nb_globals;
2586 int nb_temps, i;
2587 bool changes = false;
2588 TCGOp *op, *op_next;
2590 /* Create a temporary for each indirect global. */
2591 for (i = 0; i < nb_globals; ++i) {
2592 TCGTemp *its = &s->temps[i];
2593 if (its->indirect_reg) {
2594 TCGTemp *dts = tcg_temp_alloc(s);
2595 dts->type = its->type;
2596 dts->base_type = its->base_type;
2597 its->state_ptr = dts;
2598 } else {
2599 its->state_ptr = NULL;
2601 /* All globals begin dead. */
2602 its->state = TS_DEAD;
2604 for (nb_temps = s->nb_temps; i < nb_temps; ++i) {
2605 TCGTemp *its = &s->temps[i];
2606 its->state_ptr = NULL;
2607 its->state = TS_DEAD;
2610 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2611 TCGOpcode opc = op->opc;
2612 const TCGOpDef *def = &tcg_op_defs[opc];
2613 TCGLifeData arg_life = op->life;
2614 int nb_iargs, nb_oargs, call_flags;
2615 TCGTemp *arg_ts, *dir_ts;
2617 if (opc == INDEX_op_call) {
2618 nb_oargs = TCGOP_CALLO(op);
2619 nb_iargs = TCGOP_CALLI(op);
2620 call_flags = op->args[nb_oargs + nb_iargs + 1];
2621 } else {
2622 nb_iargs = def->nb_iargs;
2623 nb_oargs = def->nb_oargs;
2625 /* Set flags similar to how calls require. */
2626 if (def->flags & TCG_OPF_BB_END) {
2627 /* Like writing globals: save_globals */
2628 call_flags = 0;
2629 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2630 /* Like reading globals: sync_globals */
2631 call_flags = TCG_CALL_NO_WRITE_GLOBALS;
2632 } else {
2633 /* No effect on globals. */
2634 call_flags = (TCG_CALL_NO_READ_GLOBALS |
2635 TCG_CALL_NO_WRITE_GLOBALS);
2639 /* Make sure that input arguments are available. */
2640 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2641 arg_ts = arg_temp(op->args[i]);
2642 if (arg_ts) {
2643 dir_ts = arg_ts->state_ptr;
2644 if (dir_ts && arg_ts->state == TS_DEAD) {
2645 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32
2646 ? INDEX_op_ld_i32
2647 : INDEX_op_ld_i64);
2648 TCGOp *lop = tcg_op_insert_before(s, op, lopc);
2650 lop->args[0] = temp_arg(dir_ts);
2651 lop->args[1] = temp_arg(arg_ts->mem_base);
2652 lop->args[2] = arg_ts->mem_offset;
2654 /* Loaded, but synced with memory. */
2655 arg_ts->state = TS_MEM;
2660 /* Perform input replacement, and mark inputs that became dead.
2661 No action is required except keeping temp_state up to date
2662 so that we reload when needed. */
2663 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2664 arg_ts = arg_temp(op->args[i]);
2665 if (arg_ts) {
2666 dir_ts = arg_ts->state_ptr;
2667 if (dir_ts) {
2668 op->args[i] = temp_arg(dir_ts);
2669 changes = true;
2670 if (IS_DEAD_ARG(i)) {
2671 arg_ts->state = TS_DEAD;
2677 /* Liveness analysis should ensure that the following are
2678 all correct, for call sites and basic block end points. */
2679 if (call_flags & TCG_CALL_NO_READ_GLOBALS) {
2680 /* Nothing to do */
2681 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) {
2682 for (i = 0; i < nb_globals; ++i) {
2683 /* Liveness should see that globals are synced back,
2684 that is, either TS_DEAD or TS_MEM. */
2685 arg_ts = &s->temps[i];
2686 tcg_debug_assert(arg_ts->state_ptr == 0
2687 || arg_ts->state != 0);
2689 } else {
2690 for (i = 0; i < nb_globals; ++i) {
2691 /* Liveness should see that globals are saved back,
2692 that is, TS_DEAD, waiting to be reloaded. */
2693 arg_ts = &s->temps[i];
2694 tcg_debug_assert(arg_ts->state_ptr == 0
2695 || arg_ts->state == TS_DEAD);
2699 /* Outputs become available. */
2700 for (i = 0; i < nb_oargs; i++) {
2701 arg_ts = arg_temp(op->args[i]);
2702 dir_ts = arg_ts->state_ptr;
2703 if (!dir_ts) {
2704 continue;
2706 op->args[i] = temp_arg(dir_ts);
2707 changes = true;
2709 /* The output is now live and modified. */
2710 arg_ts->state = 0;
2712 /* Sync outputs upon their last write. */
2713 if (NEED_SYNC_ARG(i)) {
2714 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32
2715 ? INDEX_op_st_i32
2716 : INDEX_op_st_i64);
2717 TCGOp *sop = tcg_op_insert_after(s, op, sopc);
2719 sop->args[0] = temp_arg(dir_ts);
2720 sop->args[1] = temp_arg(arg_ts->mem_base);
2721 sop->args[2] = arg_ts->mem_offset;
2723 arg_ts->state = TS_MEM;
2725 /* Drop outputs that are dead. */
2726 if (IS_DEAD_ARG(i)) {
2727 arg_ts->state = TS_DEAD;
2732 return changes;
2735 #ifdef CONFIG_DEBUG_TCG
2736 static void dump_regs(TCGContext *s)
2738 TCGTemp *ts;
2739 int i;
2740 char buf[64];
2742 for(i = 0; i < s->nb_temps; i++) {
2743 ts = &s->temps[i];
2744 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
2745 switch(ts->val_type) {
2746 case TEMP_VAL_REG:
2747 printf("%s", tcg_target_reg_names[ts->reg]);
2748 break;
2749 case TEMP_VAL_MEM:
2750 printf("%d(%s)", (int)ts->mem_offset,
2751 tcg_target_reg_names[ts->mem_base->reg]);
2752 break;
2753 case TEMP_VAL_CONST:
2754 printf("$0x%" TCG_PRIlx, ts->val);
2755 break;
2756 case TEMP_VAL_DEAD:
2757 printf("D");
2758 break;
2759 default:
2760 printf("???");
2761 break;
2763 printf("\n");
2766 for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
2767 if (s->reg_to_temp[i] != NULL) {
2768 printf("%s: %s\n",
2769 tcg_target_reg_names[i],
2770 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i]));
2775 static void check_regs(TCGContext *s)
2777 int reg;
2778 int k;
2779 TCGTemp *ts;
2780 char buf[64];
2782 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) {
2783 ts = s->reg_to_temp[reg];
2784 if (ts != NULL) {
2785 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) {
2786 printf("Inconsistency for register %s:\n",
2787 tcg_target_reg_names[reg]);
2788 goto fail;
2792 for (k = 0; k < s->nb_temps; k++) {
2793 ts = &s->temps[k];
2794 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg
2795 && s->reg_to_temp[ts->reg] != ts) {
2796 printf("Inconsistency for temp %s:\n",
2797 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
2798 fail:
2799 printf("reg state:\n");
2800 dump_regs(s);
2801 tcg_abort();
2805 #endif
2807 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts)
2809 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64)
2810 /* Sparc64 stack is accessed with offset of 2047 */
2811 s->current_frame_offset = (s->current_frame_offset +
2812 (tcg_target_long)sizeof(tcg_target_long) - 1) &
2813 ~(sizeof(tcg_target_long) - 1);
2814 #endif
2815 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) >
2816 s->frame_end) {
2817 tcg_abort();
2819 ts->mem_offset = s->current_frame_offset;
2820 ts->mem_base = s->frame_temp;
2821 ts->mem_allocated = 1;
2822 s->current_frame_offset += sizeof(tcg_target_long);
2825 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet);
2827 /* Mark a temporary as free or dead. If 'free_or_dead' is negative,
2828 mark it free; otherwise mark it dead. */
2829 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead)
2831 if (ts->fixed_reg) {
2832 return;
2834 if (ts->val_type == TEMP_VAL_REG) {
2835 s->reg_to_temp[ts->reg] = NULL;
2837 ts->val_type = (free_or_dead < 0
2838 || ts->temp_local
2839 || ts->temp_global
2840 ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
2843 /* Mark a temporary as dead. */
2844 static inline void temp_dead(TCGContext *s, TCGTemp *ts)
2846 temp_free_or_dead(s, ts, 1);
2849 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary
2850 registers needs to be allocated to store a constant. If 'free_or_dead'
2851 is non-zero, subsequently release the temporary; if it is positive, the
2852 temp is dead; if it is negative, the temp is free. */
2853 static void temp_sync(TCGContext *s, TCGTemp *ts,
2854 TCGRegSet allocated_regs, int free_or_dead)
2856 if (ts->fixed_reg) {
2857 return;
2859 if (!ts->mem_coherent) {
2860 if (!ts->mem_allocated) {
2861 temp_allocate_frame(s, ts);
2863 switch (ts->val_type) {
2864 case TEMP_VAL_CONST:
2865 /* If we're going to free the temp immediately, then we won't
2866 require it later in a register, so attempt to store the
2867 constant to memory directly. */
2868 if (free_or_dead
2869 && tcg_out_sti(s, ts->type, ts->val,
2870 ts->mem_base->reg, ts->mem_offset)) {
2871 break;
2873 temp_load(s, ts, tcg_target_available_regs[ts->type],
2874 allocated_regs);
2875 /* fallthrough */
2877 case TEMP_VAL_REG:
2878 tcg_out_st(s, ts->type, ts->reg,
2879 ts->mem_base->reg, ts->mem_offset);
2880 break;
2882 case TEMP_VAL_MEM:
2883 break;
2885 case TEMP_VAL_DEAD:
2886 default:
2887 tcg_abort();
2889 ts->mem_coherent = 1;
2891 if (free_or_dead) {
2892 temp_free_or_dead(s, ts, free_or_dead);
2896 /* free register 'reg' by spilling the corresponding temporary if necessary */
2897 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs)
2899 TCGTemp *ts = s->reg_to_temp[reg];
2900 if (ts != NULL) {
2901 temp_sync(s, ts, allocated_regs, -1);
2905 /* Allocate a register belonging to reg1 & ~reg2 */
2906 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet desired_regs,
2907 TCGRegSet allocated_regs, bool rev)
2909 int i, n = ARRAY_SIZE(tcg_target_reg_alloc_order);
2910 const int *order;
2911 TCGReg reg;
2912 TCGRegSet reg_ct;
2914 reg_ct = desired_regs & ~allocated_regs;
2915 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order;
2917 /* first try free registers */
2918 for(i = 0; i < n; i++) {
2919 reg = order[i];
2920 if (tcg_regset_test_reg(reg_ct, reg) && s->reg_to_temp[reg] == NULL)
2921 return reg;
2924 /* XXX: do better spill choice */
2925 for(i = 0; i < n; i++) {
2926 reg = order[i];
2927 if (tcg_regset_test_reg(reg_ct, reg)) {
2928 tcg_reg_free(s, reg, allocated_regs);
2929 return reg;
2933 tcg_abort();
2936 /* Make sure the temporary is in a register. If needed, allocate the register
2937 from DESIRED while avoiding ALLOCATED. */
2938 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs,
2939 TCGRegSet allocated_regs)
2941 TCGReg reg;
2943 switch (ts->val_type) {
2944 case TEMP_VAL_REG:
2945 return;
2946 case TEMP_VAL_CONST:
2947 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, ts->indirect_base);
2948 tcg_out_movi(s, ts->type, reg, ts->val);
2949 ts->mem_coherent = 0;
2950 break;
2951 case TEMP_VAL_MEM:
2952 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, ts->indirect_base);
2953 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset);
2954 ts->mem_coherent = 1;
2955 break;
2956 case TEMP_VAL_DEAD:
2957 default:
2958 tcg_abort();
2960 ts->reg = reg;
2961 ts->val_type = TEMP_VAL_REG;
2962 s->reg_to_temp[reg] = ts;
2965 /* Save a temporary to memory. 'allocated_regs' is used in case a
2966 temporary registers needs to be allocated to store a constant. */
2967 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs)
2969 /* The liveness analysis already ensures that globals are back
2970 in memory. Keep an tcg_debug_assert for safety. */
2971 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg);
2974 /* save globals to their canonical location and assume they can be
2975 modified be the following code. 'allocated_regs' is used in case a
2976 temporary registers needs to be allocated to store a constant. */
2977 static void save_globals(TCGContext *s, TCGRegSet allocated_regs)
2979 int i, n;
2981 for (i = 0, n = s->nb_globals; i < n; i++) {
2982 temp_save(s, &s->temps[i], allocated_regs);
2986 /* sync globals to their canonical location and assume they can be
2987 read by the following code. 'allocated_regs' is used in case a
2988 temporary registers needs to be allocated to store a constant. */
2989 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs)
2991 int i, n;
2993 for (i = 0, n = s->nb_globals; i < n; i++) {
2994 TCGTemp *ts = &s->temps[i];
2995 tcg_debug_assert(ts->val_type != TEMP_VAL_REG
2996 || ts->fixed_reg
2997 || ts->mem_coherent);
3001 /* at the end of a basic block, we assume all temporaries are dead and
3002 all globals are stored at their canonical location. */
3003 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs)
3005 int i;
3007 for (i = s->nb_globals; i < s->nb_temps; i++) {
3008 TCGTemp *ts = &s->temps[i];
3009 if (ts->temp_local) {
3010 temp_save(s, ts, allocated_regs);
3011 } else {
3012 /* The liveness analysis already ensures that temps are dead.
3013 Keep an tcg_debug_assert for safety. */
3014 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD);
3018 save_globals(s, allocated_regs);
3021 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots,
3022 tcg_target_ulong val, TCGLifeData arg_life)
3024 if (ots->fixed_reg) {
3025 /* For fixed registers, we do not do any constant propagation. */
3026 tcg_out_movi(s, ots->type, ots->reg, val);
3027 return;
3030 /* The movi is not explicitly generated here. */
3031 if (ots->val_type == TEMP_VAL_REG) {
3032 s->reg_to_temp[ots->reg] = NULL;
3034 ots->val_type = TEMP_VAL_CONST;
3035 ots->val = val;
3036 ots->mem_coherent = 0;
3037 if (NEED_SYNC_ARG(0)) {
3038 temp_sync(s, ots, s->reserved_regs, IS_DEAD_ARG(0));
3039 } else if (IS_DEAD_ARG(0)) {
3040 temp_dead(s, ots);
3044 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op)
3046 TCGTemp *ots = arg_temp(op->args[0]);
3047 tcg_target_ulong val = op->args[1];
3049 tcg_reg_alloc_do_movi(s, ots, val, op->life);
3052 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op)
3054 const TCGLifeData arg_life = op->life;
3055 TCGRegSet allocated_regs;
3056 TCGTemp *ts, *ots;
3057 TCGType otype, itype;
3059 allocated_regs = s->reserved_regs;
3060 ots = arg_temp(op->args[0]);
3061 ts = arg_temp(op->args[1]);
3063 /* Note that otype != itype for no-op truncation. */
3064 otype = ots->type;
3065 itype = ts->type;
3067 if (ts->val_type == TEMP_VAL_CONST) {
3068 /* propagate constant or generate sti */
3069 tcg_target_ulong val = ts->val;
3070 if (IS_DEAD_ARG(1)) {
3071 temp_dead(s, ts);
3073 tcg_reg_alloc_do_movi(s, ots, val, arg_life);
3074 return;
3077 /* If the source value is in memory we're going to be forced
3078 to have it in a register in order to perform the copy. Copy
3079 the SOURCE value into its own register first, that way we
3080 don't have to reload SOURCE the next time it is used. */
3081 if (ts->val_type == TEMP_VAL_MEM) {
3082 temp_load(s, ts, tcg_target_available_regs[itype], allocated_regs);
3085 tcg_debug_assert(ts->val_type == TEMP_VAL_REG);
3086 if (IS_DEAD_ARG(0) && !ots->fixed_reg) {
3087 /* mov to a non-saved dead register makes no sense (even with
3088 liveness analysis disabled). */
3089 tcg_debug_assert(NEED_SYNC_ARG(0));
3090 if (!ots->mem_allocated) {
3091 temp_allocate_frame(s, ots);
3093 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset);
3094 if (IS_DEAD_ARG(1)) {
3095 temp_dead(s, ts);
3097 temp_dead(s, ots);
3098 } else {
3099 if (IS_DEAD_ARG(1) && !ts->fixed_reg && !ots->fixed_reg) {
3100 /* the mov can be suppressed */
3101 if (ots->val_type == TEMP_VAL_REG) {
3102 s->reg_to_temp[ots->reg] = NULL;
3104 ots->reg = ts->reg;
3105 temp_dead(s, ts);
3106 } else {
3107 if (ots->val_type != TEMP_VAL_REG) {
3108 /* When allocating a new register, make sure to not spill the
3109 input one. */
3110 tcg_regset_set_reg(allocated_regs, ts->reg);
3111 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype],
3112 allocated_regs, ots->indirect_base);
3114 tcg_out_mov(s, otype, ots->reg, ts->reg);
3116 ots->val_type = TEMP_VAL_REG;
3117 ots->mem_coherent = 0;
3118 s->reg_to_temp[ots->reg] = ots;
3119 if (NEED_SYNC_ARG(0)) {
3120 temp_sync(s, ots, allocated_regs, 0);
3125 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op)
3127 const TCGLifeData arg_life = op->life;
3128 const TCGOpDef * const def = &tcg_op_defs[op->opc];
3129 TCGRegSet i_allocated_regs;
3130 TCGRegSet o_allocated_regs;
3131 int i, k, nb_iargs, nb_oargs;
3132 TCGReg reg;
3133 TCGArg arg;
3134 const TCGArgConstraint *arg_ct;
3135 TCGTemp *ts;
3136 TCGArg new_args[TCG_MAX_OP_ARGS];
3137 int const_args[TCG_MAX_OP_ARGS];
3139 nb_oargs = def->nb_oargs;
3140 nb_iargs = def->nb_iargs;
3142 /* copy constants */
3143 memcpy(new_args + nb_oargs + nb_iargs,
3144 op->args + nb_oargs + nb_iargs,
3145 sizeof(TCGArg) * def->nb_cargs);
3147 i_allocated_regs = s->reserved_regs;
3148 o_allocated_regs = s->reserved_regs;
3150 /* satisfy input constraints */
3151 for (k = 0; k < nb_iargs; k++) {
3152 i = def->sorted_args[nb_oargs + k];
3153 arg = op->args[i];
3154 arg_ct = &def->args_ct[i];
3155 ts = arg_temp(arg);
3157 if (ts->val_type == TEMP_VAL_CONST
3158 && tcg_target_const_match(ts->val, ts->type, arg_ct)) {
3159 /* constant is OK for instruction */
3160 const_args[i] = 1;
3161 new_args[i] = ts->val;
3162 goto iarg_end;
3165 temp_load(s, ts, arg_ct->u.regs, i_allocated_regs);
3167 if (arg_ct->ct & TCG_CT_IALIAS) {
3168 if (ts->fixed_reg) {
3169 /* if fixed register, we must allocate a new register
3170 if the alias is not the same register */
3171 if (arg != op->args[arg_ct->alias_index])
3172 goto allocate_in_reg;
3173 } else {
3174 /* if the input is aliased to an output and if it is
3175 not dead after the instruction, we must allocate
3176 a new register and move it */
3177 if (!IS_DEAD_ARG(i)) {
3178 goto allocate_in_reg;
3180 /* check if the current register has already been allocated
3181 for another input aliased to an output */
3182 int k2, i2;
3183 for (k2 = 0 ; k2 < k ; k2++) {
3184 i2 = def->sorted_args[nb_oargs + k2];
3185 if ((def->args_ct[i2].ct & TCG_CT_IALIAS) &&
3186 (new_args[i2] == ts->reg)) {
3187 goto allocate_in_reg;
3192 reg = ts->reg;
3193 if (tcg_regset_test_reg(arg_ct->u.regs, reg)) {
3194 /* nothing to do : the constraint is satisfied */
3195 } else {
3196 allocate_in_reg:
3197 /* allocate a new register matching the constraint
3198 and move the temporary register into it */
3199 reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs,
3200 ts->indirect_base);
3201 tcg_out_mov(s, ts->type, reg, ts->reg);
3203 new_args[i] = reg;
3204 const_args[i] = 0;
3205 tcg_regset_set_reg(i_allocated_regs, reg);
3206 iarg_end: ;
3209 /* mark dead temporaries and free the associated registers */
3210 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
3211 if (IS_DEAD_ARG(i)) {
3212 temp_dead(s, arg_temp(op->args[i]));
3216 if (def->flags & TCG_OPF_BB_END) {
3217 tcg_reg_alloc_bb_end(s, i_allocated_regs);
3218 } else {
3219 if (def->flags & TCG_OPF_CALL_CLOBBER) {
3220 /* XXX: permit generic clobber register list ? */
3221 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3222 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3223 tcg_reg_free(s, i, i_allocated_regs);
3227 if (def->flags & TCG_OPF_SIDE_EFFECTS) {
3228 /* sync globals if the op has side effects and might trigger
3229 an exception. */
3230 sync_globals(s, i_allocated_regs);
3233 /* satisfy the output constraints */
3234 for(k = 0; k < nb_oargs; k++) {
3235 i = def->sorted_args[k];
3236 arg = op->args[i];
3237 arg_ct = &def->args_ct[i];
3238 ts = arg_temp(arg);
3239 if ((arg_ct->ct & TCG_CT_ALIAS)
3240 && !const_args[arg_ct->alias_index]) {
3241 reg = new_args[arg_ct->alias_index];
3242 } else if (arg_ct->ct & TCG_CT_NEWREG) {
3243 reg = tcg_reg_alloc(s, arg_ct->u.regs,
3244 i_allocated_regs | o_allocated_regs,
3245 ts->indirect_base);
3246 } else {
3247 /* if fixed register, we try to use it */
3248 reg = ts->reg;
3249 if (ts->fixed_reg &&
3250 tcg_regset_test_reg(arg_ct->u.regs, reg)) {
3251 goto oarg_end;
3253 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs,
3254 ts->indirect_base);
3256 tcg_regset_set_reg(o_allocated_regs, reg);
3257 /* if a fixed register is used, then a move will be done afterwards */
3258 if (!ts->fixed_reg) {
3259 if (ts->val_type == TEMP_VAL_REG) {
3260 s->reg_to_temp[ts->reg] = NULL;
3262 ts->val_type = TEMP_VAL_REG;
3263 ts->reg = reg;
3264 /* temp value is modified, so the value kept in memory is
3265 potentially not the same */
3266 ts->mem_coherent = 0;
3267 s->reg_to_temp[reg] = ts;
3269 oarg_end:
3270 new_args[i] = reg;
3274 /* emit instruction */
3275 if (def->flags & TCG_OPF_VECTOR) {
3276 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op),
3277 new_args, const_args);
3278 } else {
3279 tcg_out_op(s, op->opc, new_args, const_args);
3282 /* move the outputs in the correct register if needed */
3283 for(i = 0; i < nb_oargs; i++) {
3284 ts = arg_temp(op->args[i]);
3285 reg = new_args[i];
3286 if (ts->fixed_reg && ts->reg != reg) {
3287 tcg_out_mov(s, ts->type, ts->reg, reg);
3289 if (NEED_SYNC_ARG(i)) {
3290 temp_sync(s, ts, o_allocated_regs, IS_DEAD_ARG(i));
3291 } else if (IS_DEAD_ARG(i)) {
3292 temp_dead(s, ts);
3297 #ifdef TCG_TARGET_STACK_GROWSUP
3298 #define STACK_DIR(x) (-(x))
3299 #else
3300 #define STACK_DIR(x) (x)
3301 #endif
3303 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op)
3305 const int nb_oargs = TCGOP_CALLO(op);
3306 const int nb_iargs = TCGOP_CALLI(op);
3307 const TCGLifeData arg_life = op->life;
3308 int flags, nb_regs, i;
3309 TCGReg reg;
3310 TCGArg arg;
3311 TCGTemp *ts;
3312 intptr_t stack_offset;
3313 size_t call_stack_size;
3314 tcg_insn_unit *func_addr;
3315 int allocate_args;
3316 TCGRegSet allocated_regs;
3318 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs];
3319 flags = op->args[nb_oargs + nb_iargs + 1];
3321 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs);
3322 if (nb_regs > nb_iargs) {
3323 nb_regs = nb_iargs;
3326 /* assign stack slots first */
3327 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long);
3328 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) &
3329 ~(TCG_TARGET_STACK_ALIGN - 1);
3330 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE);
3331 if (allocate_args) {
3332 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed,
3333 preallocate call stack */
3334 tcg_abort();
3337 stack_offset = TCG_TARGET_CALL_STACK_OFFSET;
3338 for (i = nb_regs; i < nb_iargs; i++) {
3339 arg = op->args[nb_oargs + i];
3340 #ifdef TCG_TARGET_STACK_GROWSUP
3341 stack_offset -= sizeof(tcg_target_long);
3342 #endif
3343 if (arg != TCG_CALL_DUMMY_ARG) {
3344 ts = arg_temp(arg);
3345 temp_load(s, ts, tcg_target_available_regs[ts->type],
3346 s->reserved_regs);
3347 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset);
3349 #ifndef TCG_TARGET_STACK_GROWSUP
3350 stack_offset += sizeof(tcg_target_long);
3351 #endif
3354 /* assign input registers */
3355 allocated_regs = s->reserved_regs;
3356 for (i = 0; i < nb_regs; i++) {
3357 arg = op->args[nb_oargs + i];
3358 if (arg != TCG_CALL_DUMMY_ARG) {
3359 ts = arg_temp(arg);
3360 reg = tcg_target_call_iarg_regs[i];
3361 tcg_reg_free(s, reg, allocated_regs);
3363 if (ts->val_type == TEMP_VAL_REG) {
3364 if (ts->reg != reg) {
3365 tcg_out_mov(s, ts->type, reg, ts->reg);
3367 } else {
3368 TCGRegSet arg_set = 0;
3370 tcg_regset_set_reg(arg_set, reg);
3371 temp_load(s, ts, arg_set, allocated_regs);
3374 tcg_regset_set_reg(allocated_regs, reg);
3378 /* mark dead temporaries and free the associated registers */
3379 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
3380 if (IS_DEAD_ARG(i)) {
3381 temp_dead(s, arg_temp(op->args[i]));
3385 /* clobber call registers */
3386 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3387 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3388 tcg_reg_free(s, i, allocated_regs);
3392 /* Save globals if they might be written by the helper, sync them if
3393 they might be read. */
3394 if (flags & TCG_CALL_NO_READ_GLOBALS) {
3395 /* Nothing to do */
3396 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) {
3397 sync_globals(s, allocated_regs);
3398 } else {
3399 save_globals(s, allocated_regs);
3402 tcg_out_call(s, func_addr);
3404 /* assign output registers and emit moves if needed */
3405 for(i = 0; i < nb_oargs; i++) {
3406 arg = op->args[i];
3407 ts = arg_temp(arg);
3408 reg = tcg_target_call_oarg_regs[i];
3409 tcg_debug_assert(s->reg_to_temp[reg] == NULL);
3411 if (ts->fixed_reg) {
3412 if (ts->reg != reg) {
3413 tcg_out_mov(s, ts->type, ts->reg, reg);
3415 } else {
3416 if (ts->val_type == TEMP_VAL_REG) {
3417 s->reg_to_temp[ts->reg] = NULL;
3419 ts->val_type = TEMP_VAL_REG;
3420 ts->reg = reg;
3421 ts->mem_coherent = 0;
3422 s->reg_to_temp[reg] = ts;
3423 if (NEED_SYNC_ARG(i)) {
3424 temp_sync(s, ts, allocated_regs, IS_DEAD_ARG(i));
3425 } else if (IS_DEAD_ARG(i)) {
3426 temp_dead(s, ts);
3432 #ifdef CONFIG_PROFILER
3434 /* avoid copy/paste errors */
3435 #define PROF_ADD(to, from, field) \
3436 do { \
3437 (to)->field += atomic_read(&((from)->field)); \
3438 } while (0)
3440 #define PROF_MAX(to, from, field) \
3441 do { \
3442 typeof((from)->field) val__ = atomic_read(&((from)->field)); \
3443 if (val__ > (to)->field) { \
3444 (to)->field = val__; \
3446 } while (0)
3448 /* Pass in a zero'ed @prof */
3449 static inline
3450 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table)
3452 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
3453 unsigned int i;
3455 for (i = 0; i < n_ctxs; i++) {
3456 TCGContext *s = atomic_read(&tcg_ctxs[i]);
3457 const TCGProfile *orig = &s->prof;
3459 if (counters) {
3460 PROF_ADD(prof, orig, cpu_exec_time);
3461 PROF_ADD(prof, orig, tb_count1);
3462 PROF_ADD(prof, orig, tb_count);
3463 PROF_ADD(prof, orig, op_count);
3464 PROF_MAX(prof, orig, op_count_max);
3465 PROF_ADD(prof, orig, temp_count);
3466 PROF_MAX(prof, orig, temp_count_max);
3467 PROF_ADD(prof, orig, del_op_count);
3468 PROF_ADD(prof, orig, code_in_len);
3469 PROF_ADD(prof, orig, code_out_len);
3470 PROF_ADD(prof, orig, search_out_len);
3471 PROF_ADD(prof, orig, interm_time);
3472 PROF_ADD(prof, orig, code_time);
3473 PROF_ADD(prof, orig, la_time);
3474 PROF_ADD(prof, orig, opt_time);
3475 PROF_ADD(prof, orig, restore_count);
3476 PROF_ADD(prof, orig, restore_time);
3478 if (table) {
3479 int i;
3481 for (i = 0; i < NB_OPS; i++) {
3482 PROF_ADD(prof, orig, table_op_count[i]);
3488 #undef PROF_ADD
3489 #undef PROF_MAX
3491 static void tcg_profile_snapshot_counters(TCGProfile *prof)
3493 tcg_profile_snapshot(prof, true, false);
3496 static void tcg_profile_snapshot_table(TCGProfile *prof)
3498 tcg_profile_snapshot(prof, false, true);
3501 void tcg_dump_op_count(FILE *f, fprintf_function cpu_fprintf)
3503 TCGProfile prof = {};
3504 int i;
3506 tcg_profile_snapshot_table(&prof);
3507 for (i = 0; i < NB_OPS; i++) {
3508 cpu_fprintf(f, "%s %" PRId64 "\n", tcg_op_defs[i].name,
3509 prof.table_op_count[i]);
3513 int64_t tcg_cpu_exec_time(void)
3515 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
3516 unsigned int i;
3517 int64_t ret = 0;
3519 for (i = 0; i < n_ctxs; i++) {
3520 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
3521 const TCGProfile *prof = &s->prof;
3523 ret += atomic_read(&prof->cpu_exec_time);
3525 return ret;
3527 #else
3528 void tcg_dump_op_count(FILE *f, fprintf_function cpu_fprintf)
3530 cpu_fprintf(f, "[TCG profiler not compiled]\n");
3533 int64_t tcg_cpu_exec_time(void)
3535 error_report("%s: TCG profiler not compiled", __func__);
3536 exit(EXIT_FAILURE);
3538 #endif
3541 int tcg_gen_code(TCGContext *s, TranslationBlock *tb)
3543 #ifdef CONFIG_PROFILER
3544 TCGProfile *prof = &s->prof;
3545 #endif
3546 int i, num_insns;
3547 TCGOp *op;
3549 #ifdef CONFIG_PROFILER
3551 int n = 0;
3553 QTAILQ_FOREACH(op, &s->ops, link) {
3554 n++;
3556 atomic_set(&prof->op_count, prof->op_count + n);
3557 if (n > prof->op_count_max) {
3558 atomic_set(&prof->op_count_max, n);
3561 n = s->nb_temps;
3562 atomic_set(&prof->temp_count, prof->temp_count + n);
3563 if (n > prof->temp_count_max) {
3564 atomic_set(&prof->temp_count_max, n);
3567 #endif
3569 #ifdef DEBUG_DISAS
3570 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP)
3571 && qemu_log_in_addr_range(tb->pc))) {
3572 qemu_log_lock();
3573 qemu_log("OP:\n");
3574 tcg_dump_ops(s);
3575 qemu_log("\n");
3576 qemu_log_unlock();
3578 #endif
3580 #ifdef CONFIG_PROFILER
3581 atomic_set(&prof->opt_time, prof->opt_time - profile_getclock());
3582 #endif
3584 #ifdef USE_TCG_OPTIMIZATIONS
3585 tcg_optimize(s);
3586 #endif
3588 #ifdef CONFIG_PROFILER
3589 atomic_set(&prof->opt_time, prof->opt_time + profile_getclock());
3590 atomic_set(&prof->la_time, prof->la_time - profile_getclock());
3591 #endif
3593 reachable_code_pass(s);
3594 liveness_pass_1(s);
3596 if (s->nb_indirects > 0) {
3597 #ifdef DEBUG_DISAS
3598 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND)
3599 && qemu_log_in_addr_range(tb->pc))) {
3600 qemu_log_lock();
3601 qemu_log("OP before indirect lowering:\n");
3602 tcg_dump_ops(s);
3603 qemu_log("\n");
3604 qemu_log_unlock();
3606 #endif
3607 /* Replace indirect temps with direct temps. */
3608 if (liveness_pass_2(s)) {
3609 /* If changes were made, re-run liveness. */
3610 liveness_pass_1(s);
3614 #ifdef CONFIG_PROFILER
3615 atomic_set(&prof->la_time, prof->la_time + profile_getclock());
3616 #endif
3618 #ifdef DEBUG_DISAS
3619 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT)
3620 && qemu_log_in_addr_range(tb->pc))) {
3621 qemu_log_lock();
3622 qemu_log("OP after optimization and liveness analysis:\n");
3623 tcg_dump_ops(s);
3624 qemu_log("\n");
3625 qemu_log_unlock();
3627 #endif
3629 tcg_reg_alloc_start(s);
3631 s->code_buf = tb->tc.ptr;
3632 s->code_ptr = tb->tc.ptr;
3634 #ifdef TCG_TARGET_NEED_LDST_LABELS
3635 QSIMPLEQ_INIT(&s->ldst_labels);
3636 #endif
3637 #ifdef TCG_TARGET_NEED_POOL_LABELS
3638 s->pool_labels = NULL;
3639 #endif
3641 num_insns = -1;
3642 QTAILQ_FOREACH(op, &s->ops, link) {
3643 TCGOpcode opc = op->opc;
3645 #ifdef CONFIG_PROFILER
3646 atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1);
3647 #endif
3649 switch (opc) {
3650 case INDEX_op_mov_i32:
3651 case INDEX_op_mov_i64:
3652 case INDEX_op_mov_vec:
3653 tcg_reg_alloc_mov(s, op);
3654 break;
3655 case INDEX_op_movi_i32:
3656 case INDEX_op_movi_i64:
3657 case INDEX_op_dupi_vec:
3658 tcg_reg_alloc_movi(s, op);
3659 break;
3660 case INDEX_op_insn_start:
3661 if (num_insns >= 0) {
3662 size_t off = tcg_current_code_size(s);
3663 s->gen_insn_end_off[num_insns] = off;
3664 /* Assert that we do not overflow our stored offset. */
3665 assert(s->gen_insn_end_off[num_insns] == off);
3667 num_insns++;
3668 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
3669 target_ulong a;
3670 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
3671 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
3672 #else
3673 a = op->args[i];
3674 #endif
3675 s->gen_insn_data[num_insns][i] = a;
3677 break;
3678 case INDEX_op_discard:
3679 temp_dead(s, arg_temp(op->args[0]));
3680 break;
3681 case INDEX_op_set_label:
3682 tcg_reg_alloc_bb_end(s, s->reserved_regs);
3683 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr);
3684 break;
3685 case INDEX_op_call:
3686 tcg_reg_alloc_call(s, op);
3687 break;
3688 default:
3689 /* Sanity check that we've not introduced any unhandled opcodes. */
3690 tcg_debug_assert(tcg_op_supported(opc));
3691 /* Note: in order to speed up the code, it would be much
3692 faster to have specialized register allocator functions for
3693 some common argument patterns */
3694 tcg_reg_alloc_op(s, op);
3695 break;
3697 #ifdef CONFIG_DEBUG_TCG
3698 check_regs(s);
3699 #endif
3700 /* Test for (pending) buffer overflow. The assumption is that any
3701 one operation beginning below the high water mark cannot overrun
3702 the buffer completely. Thus we can test for overflow after
3703 generating code without having to check during generation. */
3704 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) {
3705 return -1;
3708 tcg_debug_assert(num_insns >= 0);
3709 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s);
3711 /* Generate TB finalization at the end of block */
3712 #ifdef TCG_TARGET_NEED_LDST_LABELS
3713 if (!tcg_out_ldst_finalize(s)) {
3714 return -1;
3716 #endif
3717 #ifdef TCG_TARGET_NEED_POOL_LABELS
3718 if (!tcg_out_pool_finalize(s)) {
3719 return -1;
3721 #endif
3723 /* flush instruction cache */
3724 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr);
3726 return tcg_current_code_size(s);
3729 #ifdef CONFIG_PROFILER
3730 void tcg_dump_info(FILE *f, fprintf_function cpu_fprintf)
3732 TCGProfile prof = {};
3733 const TCGProfile *s;
3734 int64_t tb_count;
3735 int64_t tb_div_count;
3736 int64_t tot;
3738 tcg_profile_snapshot_counters(&prof);
3739 s = &prof;
3740 tb_count = s->tb_count;
3741 tb_div_count = tb_count ? tb_count : 1;
3742 tot = s->interm_time + s->code_time;
3744 cpu_fprintf(f, "JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n",
3745 tot, tot / 2.4e9);
3746 cpu_fprintf(f, "translated TBs %" PRId64 " (aborted=%" PRId64 " %0.1f%%)\n",
3747 tb_count, s->tb_count1 - tb_count,
3748 (double)(s->tb_count1 - s->tb_count)
3749 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0);
3750 cpu_fprintf(f, "avg ops/TB %0.1f max=%d\n",
3751 (double)s->op_count / tb_div_count, s->op_count_max);
3752 cpu_fprintf(f, "deleted ops/TB %0.2f\n",
3753 (double)s->del_op_count / tb_div_count);
3754 cpu_fprintf(f, "avg temps/TB %0.2f max=%d\n",
3755 (double)s->temp_count / tb_div_count, s->temp_count_max);
3756 cpu_fprintf(f, "avg host code/TB %0.1f\n",
3757 (double)s->code_out_len / tb_div_count);
3758 cpu_fprintf(f, "avg search data/TB %0.1f\n",
3759 (double)s->search_out_len / tb_div_count);
3761 cpu_fprintf(f, "cycles/op %0.1f\n",
3762 s->op_count ? (double)tot / s->op_count : 0);
3763 cpu_fprintf(f, "cycles/in byte %0.1f\n",
3764 s->code_in_len ? (double)tot / s->code_in_len : 0);
3765 cpu_fprintf(f, "cycles/out byte %0.1f\n",
3766 s->code_out_len ? (double)tot / s->code_out_len : 0);
3767 cpu_fprintf(f, "cycles/search byte %0.1f\n",
3768 s->search_out_len ? (double)tot / s->search_out_len : 0);
3769 if (tot == 0) {
3770 tot = 1;
3772 cpu_fprintf(f, " gen_interm time %0.1f%%\n",
3773 (double)s->interm_time / tot * 100.0);
3774 cpu_fprintf(f, " gen_code time %0.1f%%\n",
3775 (double)s->code_time / tot * 100.0);
3776 cpu_fprintf(f, "optim./code time %0.1f%%\n",
3777 (double)s->opt_time / (s->code_time ? s->code_time : 1)
3778 * 100.0);
3779 cpu_fprintf(f, "liveness/code time %0.1f%%\n",
3780 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0);
3781 cpu_fprintf(f, "cpu_restore count %" PRId64 "\n",
3782 s->restore_count);
3783 cpu_fprintf(f, " avg cycles %0.1f\n",
3784 s->restore_count ? (double)s->restore_time / s->restore_count : 0);
3786 #else
3787 void tcg_dump_info(FILE *f, fprintf_function cpu_fprintf)
3789 cpu_fprintf(f, "[TCG profiler not compiled]\n");
3791 #endif
3793 #ifdef ELF_HOST_MACHINE
3794 /* In order to use this feature, the backend needs to do three things:
3796 (1) Define ELF_HOST_MACHINE to indicate both what value to
3797 put into the ELF image and to indicate support for the feature.
3799 (2) Define tcg_register_jit. This should create a buffer containing
3800 the contents of a .debug_frame section that describes the post-
3801 prologue unwind info for the tcg machine.
3803 (3) Call tcg_register_jit_int, with the constructed .debug_frame.
3806 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */
3807 typedef enum {
3808 JIT_NOACTION = 0,
3809 JIT_REGISTER_FN,
3810 JIT_UNREGISTER_FN
3811 } jit_actions_t;
3813 struct jit_code_entry {
3814 struct jit_code_entry *next_entry;
3815 struct jit_code_entry *prev_entry;
3816 const void *symfile_addr;
3817 uint64_t symfile_size;
3820 struct jit_descriptor {
3821 uint32_t version;
3822 uint32_t action_flag;
3823 struct jit_code_entry *relevant_entry;
3824 struct jit_code_entry *first_entry;
3827 void __jit_debug_register_code(void) __attribute__((noinline));
3828 void __jit_debug_register_code(void)
3830 asm("");
3833 /* Must statically initialize the version, because GDB may check
3834 the version before we can set it. */
3835 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
3837 /* End GDB interface. */
3839 static int find_string(const char *strtab, const char *str)
3841 const char *p = strtab + 1;
3843 while (1) {
3844 if (strcmp(p, str) == 0) {
3845 return p - strtab;
3847 p += strlen(p) + 1;
3851 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size,
3852 const void *debug_frame,
3853 size_t debug_frame_size)
3855 struct __attribute__((packed)) DebugInfo {
3856 uint32_t len;
3857 uint16_t version;
3858 uint32_t abbrev;
3859 uint8_t ptr_size;
3860 uint8_t cu_die;
3861 uint16_t cu_lang;
3862 uintptr_t cu_low_pc;
3863 uintptr_t cu_high_pc;
3864 uint8_t fn_die;
3865 char fn_name[16];
3866 uintptr_t fn_low_pc;
3867 uintptr_t fn_high_pc;
3868 uint8_t cu_eoc;
3871 struct ElfImage {
3872 ElfW(Ehdr) ehdr;
3873 ElfW(Phdr) phdr;
3874 ElfW(Shdr) shdr[7];
3875 ElfW(Sym) sym[2];
3876 struct DebugInfo di;
3877 uint8_t da[24];
3878 char str[80];
3881 struct ElfImage *img;
3883 static const struct ElfImage img_template = {
3884 .ehdr = {
3885 .e_ident[EI_MAG0] = ELFMAG0,
3886 .e_ident[EI_MAG1] = ELFMAG1,
3887 .e_ident[EI_MAG2] = ELFMAG2,
3888 .e_ident[EI_MAG3] = ELFMAG3,
3889 .e_ident[EI_CLASS] = ELF_CLASS,
3890 .e_ident[EI_DATA] = ELF_DATA,
3891 .e_ident[EI_VERSION] = EV_CURRENT,
3892 .e_type = ET_EXEC,
3893 .e_machine = ELF_HOST_MACHINE,
3894 .e_version = EV_CURRENT,
3895 .e_phoff = offsetof(struct ElfImage, phdr),
3896 .e_shoff = offsetof(struct ElfImage, shdr),
3897 .e_ehsize = sizeof(ElfW(Shdr)),
3898 .e_phentsize = sizeof(ElfW(Phdr)),
3899 .e_phnum = 1,
3900 .e_shentsize = sizeof(ElfW(Shdr)),
3901 .e_shnum = ARRAY_SIZE(img->shdr),
3902 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1,
3903 #ifdef ELF_HOST_FLAGS
3904 .e_flags = ELF_HOST_FLAGS,
3905 #endif
3906 #ifdef ELF_OSABI
3907 .e_ident[EI_OSABI] = ELF_OSABI,
3908 #endif
3910 .phdr = {
3911 .p_type = PT_LOAD,
3912 .p_flags = PF_X,
3914 .shdr = {
3915 [0] = { .sh_type = SHT_NULL },
3916 /* Trick: The contents of code_gen_buffer are not present in
3917 this fake ELF file; that got allocated elsewhere. Therefore
3918 we mark .text as SHT_NOBITS (similar to .bss) so that readers
3919 will not look for contents. We can record any address. */
3920 [1] = { /* .text */
3921 .sh_type = SHT_NOBITS,
3922 .sh_flags = SHF_EXECINSTR | SHF_ALLOC,
3924 [2] = { /* .debug_info */
3925 .sh_type = SHT_PROGBITS,
3926 .sh_offset = offsetof(struct ElfImage, di),
3927 .sh_size = sizeof(struct DebugInfo),
3929 [3] = { /* .debug_abbrev */
3930 .sh_type = SHT_PROGBITS,
3931 .sh_offset = offsetof(struct ElfImage, da),
3932 .sh_size = sizeof(img->da),
3934 [4] = { /* .debug_frame */
3935 .sh_type = SHT_PROGBITS,
3936 .sh_offset = sizeof(struct ElfImage),
3938 [5] = { /* .symtab */
3939 .sh_type = SHT_SYMTAB,
3940 .sh_offset = offsetof(struct ElfImage, sym),
3941 .sh_size = sizeof(img->sym),
3942 .sh_info = 1,
3943 .sh_link = ARRAY_SIZE(img->shdr) - 1,
3944 .sh_entsize = sizeof(ElfW(Sym)),
3946 [6] = { /* .strtab */
3947 .sh_type = SHT_STRTAB,
3948 .sh_offset = offsetof(struct ElfImage, str),
3949 .sh_size = sizeof(img->str),
3952 .sym = {
3953 [1] = { /* code_gen_buffer */
3954 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC),
3955 .st_shndx = 1,
3958 .di = {
3959 .len = sizeof(struct DebugInfo) - 4,
3960 .version = 2,
3961 .ptr_size = sizeof(void *),
3962 .cu_die = 1,
3963 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */
3964 .fn_die = 2,
3965 .fn_name = "code_gen_buffer"
3967 .da = {
3968 1, /* abbrev number (the cu) */
3969 0x11, 1, /* DW_TAG_compile_unit, has children */
3970 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */
3971 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
3972 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
3973 0, 0, /* end of abbrev */
3974 2, /* abbrev number (the fn) */
3975 0x2e, 0, /* DW_TAG_subprogram, no children */
3976 0x3, 0x8, /* DW_AT_name, DW_FORM_string */
3977 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
3978 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
3979 0, 0, /* end of abbrev */
3980 0 /* no more abbrev */
3982 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0"
3983 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer",
3986 /* We only need a single jit entry; statically allocate it. */
3987 static struct jit_code_entry one_entry;
3989 uintptr_t buf = (uintptr_t)buf_ptr;
3990 size_t img_size = sizeof(struct ElfImage) + debug_frame_size;
3991 DebugFrameHeader *dfh;
3993 img = g_malloc(img_size);
3994 *img = img_template;
3996 img->phdr.p_vaddr = buf;
3997 img->phdr.p_paddr = buf;
3998 img->phdr.p_memsz = buf_size;
4000 img->shdr[1].sh_name = find_string(img->str, ".text");
4001 img->shdr[1].sh_addr = buf;
4002 img->shdr[1].sh_size = buf_size;
4004 img->shdr[2].sh_name = find_string(img->str, ".debug_info");
4005 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev");
4007 img->shdr[4].sh_name = find_string(img->str, ".debug_frame");
4008 img->shdr[4].sh_size = debug_frame_size;
4010 img->shdr[5].sh_name = find_string(img->str, ".symtab");
4011 img->shdr[6].sh_name = find_string(img->str, ".strtab");
4013 img->sym[1].st_name = find_string(img->str, "code_gen_buffer");
4014 img->sym[1].st_value = buf;
4015 img->sym[1].st_size = buf_size;
4017 img->di.cu_low_pc = buf;
4018 img->di.cu_high_pc = buf + buf_size;
4019 img->di.fn_low_pc = buf;
4020 img->di.fn_high_pc = buf + buf_size;
4022 dfh = (DebugFrameHeader *)(img + 1);
4023 memcpy(dfh, debug_frame, debug_frame_size);
4024 dfh->fde.func_start = buf;
4025 dfh->fde.func_len = buf_size;
4027 #ifdef DEBUG_JIT
4028 /* Enable this block to be able to debug the ELF image file creation.
4029 One can use readelf, objdump, or other inspection utilities. */
4031 FILE *f = fopen("/tmp/qemu.jit", "w+b");
4032 if (f) {
4033 if (fwrite(img, img_size, 1, f) != img_size) {
4034 /* Avoid stupid unused return value warning for fwrite. */
4036 fclose(f);
4039 #endif
4041 one_entry.symfile_addr = img;
4042 one_entry.symfile_size = img_size;
4044 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN;
4045 __jit_debug_descriptor.relevant_entry = &one_entry;
4046 __jit_debug_descriptor.first_entry = &one_entry;
4047 __jit_debug_register_code();
4049 #else
4050 /* No support for the feature. Provide the entry point expected by exec.c,
4051 and implement the internal function we declared earlier. */
4053 static void tcg_register_jit_int(void *buf, size_t size,
4054 const void *debug_frame,
4055 size_t debug_frame_size)
4059 void tcg_register_jit(void *buf, size_t buf_size)
4062 #endif /* ELF_HOST_MACHINE */
4064 #if !TCG_TARGET_MAYBE_vec
4065 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...)
4067 g_assert_not_reached();
4069 #endif