Merge tag 'pull-aspeed-20240227' of https://github.com/legoater/qemu into staging
[qemu/kevin.git] / target / arm / debug_helper.c
blob7d856acddf2137e10602e279be1f5555ca49a956
1 /*
2 * ARM debug helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "qemu/log.h"
10 #include "cpu.h"
11 #include "internals.h"
12 #include "cpu-features.h"
13 #include "cpregs.h"
14 #include "exec/exec-all.h"
15 #include "exec/helper-proto.h"
16 #include "sysemu/tcg.h"
18 #ifdef CONFIG_TCG
19 /* Return the Exception Level targeted by debug exceptions. */
20 static int arm_debug_target_el(CPUARMState *env)
22 bool secure = arm_is_secure(env);
23 bool route_to_el2 = false;
25 if (arm_feature(env, ARM_FEATURE_M)) {
26 return 1;
29 if (arm_is_el2_enabled(env)) {
30 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
31 env->cp15.mdcr_el2 & MDCR_TDE;
34 if (route_to_el2) {
35 return 2;
36 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
37 !arm_el_is_aa64(env, 3) && secure) {
38 return 3;
39 } else {
40 return 1;
45 * Raise an exception to the debug target el.
46 * Modify syndrome to indicate when origin and target EL are the same.
48 G_NORETURN static void
49 raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
51 int debug_el = arm_debug_target_el(env);
52 int cur_el = arm_current_el(env);
55 * If singlestep is targeting a lower EL than the current one, then
56 * DisasContext.ss_active must be false and we can never get here.
57 * Similarly for watchpoint and breakpoint matches.
59 assert(debug_el >= cur_el);
60 syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
61 raise_exception(env, excp, syndrome, debug_el);
64 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
65 static bool aa64_generate_debug_exceptions(CPUARMState *env)
67 int cur_el = arm_current_el(env);
68 int debug_el;
70 if (cur_el == 3) {
71 return false;
74 /* MDCR_EL3.SDD disables debug events from Secure state */
75 if (arm_is_secure_below_el3(env)
76 && extract32(env->cp15.mdcr_el3, 16, 1)) {
77 return false;
81 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
82 * while not masking the (D)ebug bit in DAIF.
84 debug_el = arm_debug_target_el(env);
86 if (cur_el == debug_el) {
87 return extract32(env->cp15.mdscr_el1, 13, 1)
88 && !(env->daif & PSTATE_D);
91 /* Otherwise the debug target needs to be a higher EL */
92 return debug_el > cur_el;
95 static bool aa32_generate_debug_exceptions(CPUARMState *env)
97 int el = arm_current_el(env);
99 if (el == 0 && arm_el_is_aa64(env, 1)) {
100 return aa64_generate_debug_exceptions(env);
103 if (arm_is_secure(env)) {
104 int spd;
106 if (el == 0 && (env->cp15.sder & 1)) {
108 * SDER.SUIDEN means debug exceptions from Secure EL0
109 * are always enabled. Otherwise they are controlled by
110 * SDCR.SPD like those from other Secure ELs.
112 return true;
115 spd = extract32(env->cp15.mdcr_el3, 14, 2);
116 switch (spd) {
117 case 1:
118 /* SPD == 0b01 is reserved, but behaves as 0b00. */
119 case 0:
121 * For 0b00 we return true if external secure invasive debug
122 * is enabled. On real hardware this is controlled by external
123 * signals to the core. QEMU always permits debug, and behaves
124 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
126 return true;
127 case 2:
128 return false;
129 case 3:
130 return true;
134 return el != 2;
138 * Return true if debugging exceptions are currently enabled.
139 * This corresponds to what in ARM ARM pseudocode would be
140 * if UsingAArch32() then
141 * return AArch32.GenerateDebugExceptions()
142 * else
143 * return AArch64.GenerateDebugExceptions()
144 * We choose to push the if() down into this function for clarity,
145 * since the pseudocode has it at all callsites except for the one in
146 * CheckSoftwareStep(), where it is elided because both branches would
147 * always return the same value.
149 bool arm_generate_debug_exceptions(CPUARMState *env)
151 if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
152 return false;
154 if (is_a64(env)) {
155 return aa64_generate_debug_exceptions(env);
156 } else {
157 return aa32_generate_debug_exceptions(env);
162 * Is single-stepping active? (Note that the "is EL_D AArch64?" check
163 * implicitly means this always returns false in pre-v8 CPUs.)
165 bool arm_singlestep_active(CPUARMState *env)
167 return extract32(env->cp15.mdscr_el1, 0, 1)
168 && arm_el_is_aa64(env, arm_debug_target_el(env))
169 && arm_generate_debug_exceptions(env);
172 /* Return true if the linked breakpoint entry lbn passes its checks */
173 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
175 CPUARMState *env = &cpu->env;
176 uint64_t bcr = env->cp15.dbgbcr[lbn];
177 int brps = arm_num_brps(cpu);
178 int ctx_cmps = arm_num_ctx_cmps(cpu);
179 int bt;
180 uint32_t contextidr;
181 uint64_t hcr_el2;
184 * Links to unimplemented or non-context aware breakpoints are
185 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
186 * as if linked to an UNKNOWN context-aware breakpoint (in which
187 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
188 * We choose the former.
190 if (lbn >= brps || lbn < (brps - ctx_cmps)) {
191 return false;
194 bcr = env->cp15.dbgbcr[lbn];
196 if (extract64(bcr, 0, 1) == 0) {
197 /* Linked breakpoint disabled : generate no events */
198 return false;
201 bt = extract64(bcr, 20, 4);
202 hcr_el2 = arm_hcr_el2_eff(env);
204 switch (bt) {
205 case 3: /* linked context ID match */
206 switch (arm_current_el(env)) {
207 default:
208 /* Context matches never fire in AArch64 EL3 */
209 return false;
210 case 2:
211 if (!(hcr_el2 & HCR_E2H)) {
212 /* Context matches never fire in EL2 without E2H enabled. */
213 return false;
215 contextidr = env->cp15.contextidr_el[2];
216 break;
217 case 1:
218 contextidr = env->cp15.contextidr_el[1];
219 break;
220 case 0:
221 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
222 contextidr = env->cp15.contextidr_el[2];
223 } else {
224 contextidr = env->cp15.contextidr_el[1];
226 break;
228 break;
230 case 7: /* linked contextidr_el1 match */
231 contextidr = env->cp15.contextidr_el[1];
232 break;
233 case 13: /* linked contextidr_el2 match */
234 contextidr = env->cp15.contextidr_el[2];
235 break;
237 case 9: /* linked VMID match (reserved if no EL2) */
238 case 11: /* linked context ID and VMID match (reserved if no EL2) */
239 case 15: /* linked full context ID match */
240 default:
242 * Links to Unlinked context breakpoints must generate no
243 * events; we choose to do the same for reserved values too.
245 return false;
249 * We match the whole register even if this is AArch32 using the
250 * short descriptor format (in which case it holds both PROCID and ASID),
251 * since we don't implement the optional v7 context ID masking.
253 return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
256 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
258 CPUARMState *env = &cpu->env;
259 uint64_t cr;
260 int pac, hmc, ssc, wt, lbn;
262 * Note that for watchpoints the check is against the CPU security
263 * state, not the S/NS attribute on the offending data access.
265 bool is_secure = arm_is_secure(env);
266 int access_el = arm_current_el(env);
268 if (is_wp) {
269 CPUWatchpoint *wp = env->cpu_watchpoint[n];
271 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
272 return false;
274 cr = env->cp15.dbgwcr[n];
275 if (wp->hitattrs.user) {
277 * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
278 * match watchpoints as if they were accesses done at EL0, even if
279 * the CPU is at EL1 or higher.
281 access_el = 0;
283 } else {
284 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
286 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
287 return false;
289 cr = env->cp15.dbgbcr[n];
292 * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
293 * enabled and that the address and access type match; for breakpoints
294 * we know the address matched; check the remaining fields, including
295 * linked breakpoints. We rely on WCR and BCR having the same layout
296 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
297 * Note that some combinations of {PAC, HMC, SSC} are reserved and
298 * must act either like some valid combination or as if the watchpoint
299 * were disabled. We choose the former, and use this together with
300 * the fact that EL3 must always be Secure and EL2 must always be
301 * Non-Secure to simplify the code slightly compared to the full
302 * table in the ARM ARM.
304 pac = FIELD_EX64(cr, DBGWCR, PAC);
305 hmc = FIELD_EX64(cr, DBGWCR, HMC);
306 ssc = FIELD_EX64(cr, DBGWCR, SSC);
308 switch (ssc) {
309 case 0:
310 break;
311 case 1:
312 case 3:
313 if (is_secure) {
314 return false;
316 break;
317 case 2:
318 if (!is_secure) {
319 return false;
321 break;
324 switch (access_el) {
325 case 3:
326 case 2:
327 if (!hmc) {
328 return false;
330 break;
331 case 1:
332 if (extract32(pac, 0, 1) == 0) {
333 return false;
335 break;
336 case 0:
337 if (extract32(pac, 1, 1) == 0) {
338 return false;
340 break;
341 default:
342 g_assert_not_reached();
345 wt = FIELD_EX64(cr, DBGWCR, WT);
346 lbn = FIELD_EX64(cr, DBGWCR, LBN);
348 if (wt && !linked_bp_matches(cpu, lbn)) {
349 return false;
352 return true;
355 static bool check_watchpoints(ARMCPU *cpu)
357 CPUARMState *env = &cpu->env;
358 int n;
361 * If watchpoints are disabled globally or we can't take debug
362 * exceptions here then watchpoint firings are ignored.
364 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
365 || !arm_generate_debug_exceptions(env)) {
366 return false;
369 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
370 if (bp_wp_matches(cpu, n, true)) {
371 return true;
374 return false;
377 bool arm_debug_check_breakpoint(CPUState *cs)
379 ARMCPU *cpu = ARM_CPU(cs);
380 CPUARMState *env = &cpu->env;
381 target_ulong pc;
382 int n;
385 * If breakpoints are disabled globally or we can't take debug
386 * exceptions here then breakpoint firings are ignored.
388 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
389 || !arm_generate_debug_exceptions(env)) {
390 return false;
394 * Single-step exceptions have priority over breakpoint exceptions.
395 * If single-step state is active-pending, suppress the bp.
397 if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
398 return false;
402 * PC alignment faults have priority over breakpoint exceptions.
404 pc = is_a64(env) ? env->pc : env->regs[15];
405 if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
406 return false;
410 * Instruction aborts have priority over breakpoint exceptions.
411 * TODO: We would need to look up the page for PC and verify that
412 * it is present and executable.
415 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
416 if (bp_wp_matches(cpu, n, false)) {
417 return true;
420 return false;
423 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
426 * Called by core code when a CPU watchpoint fires; need to check if this
427 * is also an architectural watchpoint match.
429 ARMCPU *cpu = ARM_CPU(cs);
431 return check_watchpoints(cpu);
435 * Return the FSR value for a debug exception (watchpoint, hardware
436 * breakpoint or BKPT insn) targeting the specified exception level.
438 static uint32_t arm_debug_exception_fsr(CPUARMState *env)
440 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
441 int target_el = arm_debug_target_el(env);
442 bool using_lpae;
444 if (arm_feature(env, ARM_FEATURE_M)) {
445 using_lpae = false;
446 } else if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
447 using_lpae = true;
448 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
449 arm_feature(env, ARM_FEATURE_V8)) {
450 using_lpae = true;
451 } else if (arm_feature(env, ARM_FEATURE_LPAE) &&
452 (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
453 using_lpae = true;
454 } else {
455 using_lpae = false;
458 if (using_lpae) {
459 return arm_fi_to_lfsc(&fi);
460 } else {
461 return arm_fi_to_sfsc(&fi);
465 void arm_debug_excp_handler(CPUState *cs)
468 * Called by core code when a watchpoint or breakpoint fires;
469 * need to check which one and raise the appropriate exception.
471 ARMCPU *cpu = ARM_CPU(cs);
472 CPUARMState *env = &cpu->env;
473 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
475 if (wp_hit) {
476 if (wp_hit->flags & BP_CPU) {
477 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
479 cs->watchpoint_hit = NULL;
481 env->exception.fsr = arm_debug_exception_fsr(env);
482 env->exception.vaddress = wp_hit->hitaddr;
483 raise_exception_debug(env, EXCP_DATA_ABORT,
484 syn_watchpoint(0, 0, wnr));
486 } else {
487 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
490 * (1) GDB breakpoints should be handled first.
491 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
492 * since singlestep is also done by generating a debug internal
493 * exception.
495 if (cpu_breakpoint_test(cs, pc, BP_GDB)
496 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
497 return;
500 env->exception.fsr = arm_debug_exception_fsr(env);
502 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
503 * values to the guest that it shouldn't be able to see at its
504 * exception/security level.
506 env->exception.vaddress = 0;
507 raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
512 * Raise an EXCP_BKPT with the specified syndrome register value,
513 * targeting the correct exception level for debug exceptions.
515 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
517 int debug_el = arm_debug_target_el(env);
518 int cur_el = arm_current_el(env);
520 /* FSR will only be used if the debug target EL is AArch32. */
521 env->exception.fsr = arm_debug_exception_fsr(env);
523 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
524 * values to the guest that it shouldn't be able to see at its
525 * exception/security level.
527 env->exception.vaddress = 0;
529 * Other kinds of architectural debug exception are ignored if
530 * they target an exception level below the current one (in QEMU
531 * this is checked by arm_generate_debug_exceptions()). Breakpoint
532 * instructions are special because they always generate an exception
533 * to somewhere: if they can't go to the configured debug exception
534 * level they are taken to the current exception level.
536 if (debug_el < cur_el) {
537 debug_el = cur_el;
539 raise_exception(env, EXCP_BKPT, syndrome, debug_el);
542 void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
544 raise_exception_debug(env, EXCP_UDEF, syndrome);
547 void hw_watchpoint_update(ARMCPU *cpu, int n)
549 CPUARMState *env = &cpu->env;
550 vaddr len = 0;
551 vaddr wvr = env->cp15.dbgwvr[n];
552 uint64_t wcr = env->cp15.dbgwcr[n];
553 int mask;
554 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
556 if (env->cpu_watchpoint[n]) {
557 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
558 env->cpu_watchpoint[n] = NULL;
561 if (!FIELD_EX64(wcr, DBGWCR, E)) {
562 /* E bit clear : watchpoint disabled */
563 return;
566 switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
567 case 0:
568 /* LSC 00 is reserved and must behave as if the wp is disabled */
569 return;
570 case 1:
571 flags |= BP_MEM_READ;
572 break;
573 case 2:
574 flags |= BP_MEM_WRITE;
575 break;
576 case 3:
577 flags |= BP_MEM_ACCESS;
578 break;
582 * Attempts to use both MASK and BAS fields simultaneously are
583 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
584 * thus generating a watchpoint for every byte in the masked region.
586 mask = FIELD_EX64(wcr, DBGWCR, MASK);
587 if (mask == 1 || mask == 2) {
589 * Reserved values of MASK; we must act as if the mask value was
590 * some non-reserved value, or as if the watchpoint were disabled.
591 * We choose the latter.
593 return;
594 } else if (mask) {
595 /* Watchpoint covers an aligned area up to 2GB in size */
596 len = 1ULL << mask;
598 * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
599 * whether the watchpoint fires when the unmasked bits match; we opt
600 * to generate the exceptions.
602 wvr &= ~(len - 1);
603 } else {
604 /* Watchpoint covers bytes defined by the byte address select bits */
605 int bas = FIELD_EX64(wcr, DBGWCR, BAS);
606 int basstart;
608 if (extract64(wvr, 2, 1)) {
610 * Deprecated case of an only 4-aligned address. BAS[7:4] are
611 * ignored, and BAS[3:0] define which bytes to watch.
613 bas &= 0xf;
616 if (bas == 0) {
617 /* This must act as if the watchpoint is disabled */
618 return;
622 * The BAS bits are supposed to be programmed to indicate a contiguous
623 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
624 * we fire for each byte in the word/doubleword addressed by the WVR.
625 * We choose to ignore any non-zero bits after the first range of 1s.
627 basstart = ctz32(bas);
628 len = cto32(bas >> basstart);
629 wvr += basstart;
632 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
633 &env->cpu_watchpoint[n]);
636 void hw_watchpoint_update_all(ARMCPU *cpu)
638 int i;
639 CPUARMState *env = &cpu->env;
642 * Completely clear out existing QEMU watchpoints and our array, to
643 * avoid possible stale entries following migration load.
645 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
646 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
648 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
649 hw_watchpoint_update(cpu, i);
653 void hw_breakpoint_update(ARMCPU *cpu, int n)
655 CPUARMState *env = &cpu->env;
656 uint64_t bvr = env->cp15.dbgbvr[n];
657 uint64_t bcr = env->cp15.dbgbcr[n];
658 vaddr addr;
659 int bt;
660 int flags = BP_CPU;
662 if (env->cpu_breakpoint[n]) {
663 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
664 env->cpu_breakpoint[n] = NULL;
667 if (!extract64(bcr, 0, 1)) {
668 /* E bit clear : watchpoint disabled */
669 return;
672 bt = extract64(bcr, 20, 4);
674 switch (bt) {
675 case 4: /* unlinked address mismatch (reserved if AArch64) */
676 case 5: /* linked address mismatch (reserved if AArch64) */
677 qemu_log_mask(LOG_UNIMP,
678 "arm: address mismatch breakpoint types not implemented\n");
679 return;
680 case 0: /* unlinked address match */
681 case 1: /* linked address match */
684 * Bits [1:0] are RES0.
686 * It is IMPLEMENTATION DEFINED whether bits [63:49]
687 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
688 * of the VA field ([48] or [52] for FEAT_LVA), or whether the
689 * value is read as written. It is CONSTRAINED UNPREDICTABLE
690 * whether the RESS bits are ignored when comparing an address.
691 * Therefore we are allowed to compare the entire register, which
692 * lets us avoid considering whether FEAT_LVA is actually enabled.
694 * The BAS field is used to allow setting breakpoints on 16-bit
695 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
696 * a bp will fire if the addresses covered by the bp and the addresses
697 * covered by the insn overlap but the insn doesn't start at the
698 * start of the bp address range. We choose to require the insn and
699 * the bp to have the same address. The constraints on writing to
700 * BAS enforced in dbgbcr_write mean we have only four cases:
701 * 0b0000 => no breakpoint
702 * 0b0011 => breakpoint on addr
703 * 0b1100 => breakpoint on addr + 2
704 * 0b1111 => breakpoint on addr
705 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
707 int bas = extract64(bcr, 5, 4);
708 addr = bvr & ~3ULL;
709 if (bas == 0) {
710 return;
712 if (bas == 0xc) {
713 addr += 2;
715 break;
717 case 2: /* unlinked context ID match */
718 case 8: /* unlinked VMID match (reserved if no EL2) */
719 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
720 qemu_log_mask(LOG_UNIMP,
721 "arm: unlinked context breakpoint types not implemented\n");
722 return;
723 case 9: /* linked VMID match (reserved if no EL2) */
724 case 11: /* linked context ID and VMID match (reserved if no EL2) */
725 case 3: /* linked context ID match */
726 default:
728 * We must generate no events for Linked context matches (unless
729 * they are linked to by some other bp/wp, which is handled in
730 * updates for the linking bp/wp). We choose to also generate no events
731 * for reserved values.
733 return;
736 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
739 void hw_breakpoint_update_all(ARMCPU *cpu)
741 int i;
742 CPUARMState *env = &cpu->env;
745 * Completely clear out existing QEMU breakpoints and our array, to
746 * avoid possible stale entries following migration load.
748 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
749 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
751 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
752 hw_breakpoint_update(cpu, i);
756 #if !defined(CONFIG_USER_ONLY)
758 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
760 ARMCPU *cpu = ARM_CPU(cs);
761 CPUARMState *env = &cpu->env;
764 * In BE32 system mode, target memory is stored byteswapped (on a
765 * little-endian host system), and by the time we reach here (via an
766 * opcode helper) the addresses of subword accesses have been adjusted
767 * to account for that, which means that watchpoints will not match.
768 * Undo the adjustment here.
770 if (arm_sctlr_b(env)) {
771 if (len == 1) {
772 addr ^= 3;
773 } else if (len == 2) {
774 addr ^= 2;
778 return addr;
781 #endif /* !CONFIG_USER_ONLY */
782 #endif /* CONFIG_TCG */
785 * Check for traps to "powerdown debug" registers, which are controlled
786 * by MDCR.TDOSA
788 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
789 bool isread)
791 int el = arm_current_el(env);
792 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
793 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
794 (arm_hcr_el2_eff(env) & HCR_TGE);
796 if (el < 2 && mdcr_el2_tdosa) {
797 return CP_ACCESS_TRAP_EL2;
799 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
800 return CP_ACCESS_TRAP_EL3;
802 return CP_ACCESS_OK;
806 * Check for traps to "debug ROM" registers, which are controlled
807 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
809 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
810 bool isread)
812 int el = arm_current_el(env);
813 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
814 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
815 (arm_hcr_el2_eff(env) & HCR_TGE);
817 if (el < 2 && mdcr_el2_tdra) {
818 return CP_ACCESS_TRAP_EL2;
820 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
821 return CP_ACCESS_TRAP_EL3;
823 return CP_ACCESS_OK;
827 * Check for traps to general debug registers, which are controlled
828 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
830 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
831 bool isread)
833 int el = arm_current_el(env);
834 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
835 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
836 (arm_hcr_el2_eff(env) & HCR_TGE);
838 if (el < 2 && mdcr_el2_tda) {
839 return CP_ACCESS_TRAP_EL2;
841 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
842 return CP_ACCESS_TRAP_EL3;
844 return CP_ACCESS_OK;
847 static CPAccessResult access_dbgvcr32(CPUARMState *env, const ARMCPRegInfo *ri,
848 bool isread)
850 /* MCDR_EL3.TDMA doesn't apply for FEAT_NV traps */
851 if (arm_current_el(env) == 2 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
852 return CP_ACCESS_TRAP_EL3;
854 return CP_ACCESS_OK;
858 * Check for traps to Debug Comms Channel registers. If FEAT_FGT
859 * is implemented then these are controlled by MDCR_EL2.TDCC for
860 * EL2 and MDCR_EL3.TDCC for EL3. They are also controlled by
861 * the general debug access trap bits MDCR_EL2.TDA and MDCR_EL3.TDA.
862 * For EL0, they are also controlled by MDSCR_EL1.TDCC.
864 static CPAccessResult access_tdcc(CPUARMState *env, const ARMCPRegInfo *ri,
865 bool isread)
867 int el = arm_current_el(env);
868 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
869 bool mdscr_el1_tdcc = extract32(env->cp15.mdscr_el1, 12, 1);
870 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
871 (arm_hcr_el2_eff(env) & HCR_TGE);
872 bool mdcr_el2_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
873 (mdcr_el2 & MDCR_TDCC);
874 bool mdcr_el3_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
875 (env->cp15.mdcr_el3 & MDCR_TDCC);
877 if (el < 1 && mdscr_el1_tdcc) {
878 return CP_ACCESS_TRAP;
880 if (el < 2 && (mdcr_el2_tda || mdcr_el2_tdcc)) {
881 return CP_ACCESS_TRAP_EL2;
883 if (el < 3 && ((env->cp15.mdcr_el3 & MDCR_TDA) || mdcr_el3_tdcc)) {
884 return CP_ACCESS_TRAP_EL3;
886 return CP_ACCESS_OK;
889 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
890 uint64_t value)
893 * Writes to OSLAR_EL1 may update the OS lock status, which can be
894 * read via a bit in OSLSR_EL1.
896 int oslock;
898 if (ri->state == ARM_CP_STATE_AA32) {
899 oslock = (value == 0xC5ACCE55);
900 } else {
901 oslock = value & 1;
904 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
907 static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
908 uint64_t value)
910 ARMCPU *cpu = env_archcpu(env);
912 * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
913 * implemented this is RAZ/WI.
915 if(arm_feature(env, ARM_FEATURE_AARCH64)
916 ? cpu_isar_feature(aa64_doublelock, cpu)
917 : cpu_isar_feature(aa32_doublelock, cpu)) {
918 env->cp15.osdlr_el1 = value & 1;
922 static void dbgclaimset_write(CPUARMState *env, const ARMCPRegInfo *ri,
923 uint64_t value)
925 env->cp15.dbgclaim |= (value & 0xFF);
928 static uint64_t dbgclaimset_read(CPUARMState *env, const ARMCPRegInfo *ri)
930 /* CLAIM bits are RAO */
931 return 0xFF;
934 static void dbgclaimclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
935 uint64_t value)
937 env->cp15.dbgclaim &= ~(value & 0xFF);
940 static const ARMCPRegInfo debug_cp_reginfo[] = {
942 * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
943 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
944 * unlike DBGDRAR it is never accessible from EL0.
945 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
946 * accessor.
948 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
949 .access = PL0_R, .accessfn = access_tdra,
950 .type = ARM_CP_CONST | ARM_CP_NO_GDB, .resetvalue = 0 },
951 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
952 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
953 .access = PL1_R, .accessfn = access_tdra,
954 .type = ARM_CP_CONST, .resetvalue = 0 },
955 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
956 .access = PL0_R, .accessfn = access_tdra,
957 .type = ARM_CP_CONST | ARM_CP_NO_GDB, .resetvalue = 0 },
958 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
959 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
960 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
961 .access = PL1_RW, .accessfn = access_tda,
962 .fgt = FGT_MDSCR_EL1,
963 .nv2_redirect_offset = 0x158,
964 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
965 .resetvalue = 0 },
967 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
968 * Debug Communication Channel is not implemented.
970 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
971 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
972 .access = PL0_R, .accessfn = access_tdcc,
973 .type = ARM_CP_CONST, .resetvalue = 0 },
975 * These registers belong to the Debug Communications Channel,
976 * which is not implemented. However we implement RAZ/WI behaviour
977 * with trapping to prevent spurious SIGILLs if the guest OS does
978 * access them as the support cannot be probed for.
980 { .name = "OSDTRRX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
981 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 2,
982 .access = PL1_RW, .accessfn = access_tdcc,
983 .type = ARM_CP_CONST, .resetvalue = 0 },
984 { .name = "OSDTRTX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
985 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
986 .access = PL1_RW, .accessfn = access_tdcc,
987 .type = ARM_CP_CONST, .resetvalue = 0 },
988 /* DBGDTRTX_EL0/DBGDTRRX_EL0 depend on direction */
989 { .name = "DBGDTR_EL0", .state = ARM_CP_STATE_BOTH, .cp = 14,
990 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 5, .opc2 = 0,
991 .access = PL0_RW, .accessfn = access_tdcc,
992 .type = ARM_CP_CONST, .resetvalue = 0 },
994 * OSECCR_EL1 provides a mechanism for an operating system
995 * to access the contents of EDECCR. EDECCR is not implemented though,
996 * as is the rest of external device mechanism.
998 { .name = "OSECCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
999 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
1000 .access = PL1_RW, .accessfn = access_tda,
1001 .fgt = FGT_OSECCR_EL1,
1002 .type = ARM_CP_CONST, .resetvalue = 0 },
1004 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
1005 * it is unlikely a guest will care.
1006 * We don't implement the configurable EL0 access.
1008 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
1009 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
1010 .type = ARM_CP_ALIAS,
1011 .access = PL1_R, .accessfn = access_tda,
1012 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
1013 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
1014 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1015 .access = PL1_W, .type = ARM_CP_NO_RAW,
1016 .accessfn = access_tdosa,
1017 .fgt = FGT_OSLAR_EL1,
1018 .writefn = oslar_write },
1019 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
1020 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
1021 .access = PL1_R, .resetvalue = 10,
1022 .accessfn = access_tdosa,
1023 .fgt = FGT_OSLSR_EL1,
1024 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
1025 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
1026 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
1027 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
1028 .access = PL1_RW, .accessfn = access_tdosa,
1029 .fgt = FGT_OSDLR_EL1,
1030 .writefn = osdlr_write,
1031 .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
1033 * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
1034 * implement vector catch debug events yet.
1036 { .name = "DBGVCR",
1037 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
1038 .access = PL1_RW, .accessfn = access_tda,
1039 .type = ARM_CP_NOP },
1041 * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
1042 * Channel but Linux may try to access this register. The 32-bit
1043 * alias is DBGDCCINT.
1045 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
1046 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
1047 .access = PL1_RW, .accessfn = access_tdcc,
1048 .type = ARM_CP_NOP },
1050 * Dummy DBGCLAIM registers.
1051 * "The architecture does not define any functionality for the CLAIM tag bits.",
1052 * so we only keep the raw bits
1054 { .name = "DBGCLAIMSET_EL1", .state = ARM_CP_STATE_BOTH,
1055 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6,
1056 .type = ARM_CP_ALIAS,
1057 .access = PL1_RW, .accessfn = access_tda,
1058 .fgt = FGT_DBGCLAIM,
1059 .writefn = dbgclaimset_write, .readfn = dbgclaimset_read },
1060 { .name = "DBGCLAIMCLR_EL1", .state = ARM_CP_STATE_BOTH,
1061 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 6,
1062 .access = PL1_RW, .accessfn = access_tda,
1063 .fgt = FGT_DBGCLAIM,
1064 .writefn = dbgclaimclr_write, .raw_writefn = raw_write,
1065 .fieldoffset = offsetof(CPUARMState, cp15.dbgclaim) },
1068 /* These are present only when EL1 supports AArch32 */
1069 static const ARMCPRegInfo debug_aa32_el1_reginfo[] = {
1071 * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
1072 * to save and restore a 32-bit guest's DBGVCR)
1074 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
1075 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
1076 .access = PL2_RW, .accessfn = access_dbgvcr32,
1077 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
1080 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
1081 /* 64 bit access versions of the (dummy) debug registers */
1082 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1083 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT | ARM_CP_NO_GDB,
1084 .resetvalue = 0 },
1085 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1086 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT | ARM_CP_NO_GDB,
1087 .resetvalue = 0 },
1090 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091 uint64_t value)
1093 ARMCPU *cpu = env_archcpu(env);
1094 int i = ri->crm;
1097 * Bits [1:0] are RES0.
1099 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
1100 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
1101 * they contain the value written. It is CONSTRAINED UNPREDICTABLE
1102 * whether the RESS bits are ignored when comparing an address.
1104 * Therefore we are allowed to compare the entire register, which lets
1105 * us avoid considering whether or not FEAT_LVA is actually enabled.
1107 value &= ~3ULL;
1109 raw_write(env, ri, value);
1110 if (tcg_enabled()) {
1111 hw_watchpoint_update(cpu, i);
1115 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1116 uint64_t value)
1118 ARMCPU *cpu = env_archcpu(env);
1119 int i = ri->crm;
1121 raw_write(env, ri, value);
1122 if (tcg_enabled()) {
1123 hw_watchpoint_update(cpu, i);
1127 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1128 uint64_t value)
1130 ARMCPU *cpu = env_archcpu(env);
1131 int i = ri->crm;
1133 raw_write(env, ri, value);
1134 if (tcg_enabled()) {
1135 hw_breakpoint_update(cpu, i);
1139 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1140 uint64_t value)
1142 ARMCPU *cpu = env_archcpu(env);
1143 int i = ri->crm;
1146 * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
1147 * copy of BAS[0].
1149 value = deposit64(value, 6, 1, extract64(value, 5, 1));
1150 value = deposit64(value, 8, 1, extract64(value, 7, 1));
1152 raw_write(env, ri, value);
1153 if (tcg_enabled()) {
1154 hw_breakpoint_update(cpu, i);
1158 void define_debug_regs(ARMCPU *cpu)
1161 * Define v7 and v8 architectural debug registers.
1162 * These are just dummy implementations for now.
1164 int i;
1165 int wrps, brps, ctx_cmps;
1168 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1169 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
1170 * the register must not exist for this cpu.
1172 if (cpu->isar.dbgdidr != 0) {
1173 ARMCPRegInfo dbgdidr = {
1174 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
1175 .opc1 = 0, .opc2 = 0,
1176 .access = PL0_R, .accessfn = access_tda,
1177 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
1179 define_one_arm_cp_reg(cpu, &dbgdidr);
1183 * DBGDEVID is present in the v7 debug architecture if
1184 * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1185 * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1186 * from v7.1 of the debug architecture. Because no fields have yet
1187 * been defined in DBGDEVID2 (and quite possibly none will ever
1188 * be) we don't define an ARMISARegisters field for it.
1189 * These registers exist only if EL1 can use AArch32, but that
1190 * happens naturally because they are only PL1 accessible anyway.
1192 if (extract32(cpu->isar.dbgdidr, 15, 1)) {
1193 ARMCPRegInfo dbgdevid = {
1194 .name = "DBGDEVID",
1195 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
1196 .access = PL1_R, .accessfn = access_tda,
1197 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
1199 define_one_arm_cp_reg(cpu, &dbgdevid);
1201 if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
1202 ARMCPRegInfo dbgdevid12[] = {
1204 .name = "DBGDEVID1",
1205 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
1206 .access = PL1_R, .accessfn = access_tda,
1207 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
1208 }, {
1209 .name = "DBGDEVID2",
1210 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
1211 .access = PL1_R, .accessfn = access_tda,
1212 .type = ARM_CP_CONST, .resetvalue = 0,
1215 define_arm_cp_regs(cpu, dbgdevid12);
1218 brps = arm_num_brps(cpu);
1219 wrps = arm_num_wrps(cpu);
1220 ctx_cmps = arm_num_ctx_cmps(cpu);
1222 assert(ctx_cmps <= brps);
1224 define_arm_cp_regs(cpu, debug_cp_reginfo);
1225 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
1226 define_arm_cp_regs(cpu, debug_aa32_el1_reginfo);
1229 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
1230 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
1233 for (i = 0; i < brps; i++) {
1234 char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
1235 char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
1236 ARMCPRegInfo dbgregs[] = {
1237 { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
1238 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1239 .access = PL1_RW, .accessfn = access_tda,
1240 .fgt = FGT_DBGBVRN_EL1,
1241 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
1242 .writefn = dbgbvr_write, .raw_writefn = raw_write
1244 { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
1245 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1246 .access = PL1_RW, .accessfn = access_tda,
1247 .fgt = FGT_DBGBCRN_EL1,
1248 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
1249 .writefn = dbgbcr_write, .raw_writefn = raw_write
1252 define_arm_cp_regs(cpu, dbgregs);
1253 g_free(dbgbvr_el1_name);
1254 g_free(dbgbcr_el1_name);
1257 for (i = 0; i < wrps; i++) {
1258 char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
1259 char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
1260 ARMCPRegInfo dbgregs[] = {
1261 { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
1262 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1263 .access = PL1_RW, .accessfn = access_tda,
1264 .fgt = FGT_DBGWVRN_EL1,
1265 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
1266 .writefn = dbgwvr_write, .raw_writefn = raw_write
1268 { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
1269 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1270 .access = PL1_RW, .accessfn = access_tda,
1271 .fgt = FGT_DBGWCRN_EL1,
1272 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
1273 .writefn = dbgwcr_write, .raw_writefn = raw_write
1276 define_arm_cp_regs(cpu, dbgregs);
1277 g_free(dbgwvr_el1_name);
1278 g_free(dbgwcr_el1_name);