util/mmap-alloc: Pass flags instead of separate bools to qemu_ram_mmap()
[qemu/kevin.git] / softmmu / physmem.c
bloba110aa67fd28494df5b5cbd36430dfd1c5a46bbb
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
27 #ifdef CONFIG_TCG
28 #include "hw/core/tcg-cpu-ops.h"
29 #endif /* CONFIG_TCG */
31 #include "exec/exec-all.h"
32 #include "exec/target_page.h"
33 #include "hw/qdev-core.h"
34 #include "hw/qdev-properties.h"
35 #include "hw/boards.h"
36 #include "hw/xen/xen.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "qemu/timer.h"
41 #include "qemu/config-file.h"
42 #include "qemu/error-report.h"
43 #include "qemu/qemu-print.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/hw_accel.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace/trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
54 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "exec/translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "qemu/pmem.h"
67 #include "migration/vmstate.h"
69 #include "qemu/range.h"
70 #ifndef _WIN32
71 #include "qemu/mmap-alloc.h"
72 #endif
74 #include "monitor/monitor.h"
76 #ifdef CONFIG_LIBDAXCTL
77 #include <daxctl/libdaxctl.h>
78 #endif
80 //#define DEBUG_SUBPAGE
82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
85 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
87 static MemoryRegion *system_memory;
88 static MemoryRegion *system_io;
90 AddressSpace address_space_io;
91 AddressSpace address_space_memory;
93 static MemoryRegion io_mem_unassigned;
95 typedef struct PhysPageEntry PhysPageEntry;
97 struct PhysPageEntry {
98 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
99 uint32_t skip : 6;
100 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
101 uint32_t ptr : 26;
104 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
106 /* Size of the L2 (and L3, etc) page tables. */
107 #define ADDR_SPACE_BITS 64
109 #define P_L2_BITS 9
110 #define P_L2_SIZE (1 << P_L2_BITS)
112 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
114 typedef PhysPageEntry Node[P_L2_SIZE];
116 typedef struct PhysPageMap {
117 struct rcu_head rcu;
119 unsigned sections_nb;
120 unsigned sections_nb_alloc;
121 unsigned nodes_nb;
122 unsigned nodes_nb_alloc;
123 Node *nodes;
124 MemoryRegionSection *sections;
125 } PhysPageMap;
127 struct AddressSpaceDispatch {
128 MemoryRegionSection *mru_section;
129 /* This is a multi-level map on the physical address space.
130 * The bottom level has pointers to MemoryRegionSections.
132 PhysPageEntry phys_map;
133 PhysPageMap map;
136 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
137 typedef struct subpage_t {
138 MemoryRegion iomem;
139 FlatView *fv;
140 hwaddr base;
141 uint16_t sub_section[];
142 } subpage_t;
144 #define PHYS_SECTION_UNASSIGNED 0
146 static void io_mem_init(void);
147 static void memory_map_init(void);
148 static void tcg_log_global_after_sync(MemoryListener *listener);
149 static void tcg_commit(MemoryListener *listener);
152 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
153 * @cpu: the CPU whose AddressSpace this is
154 * @as: the AddressSpace itself
155 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
156 * @tcg_as_listener: listener for tracking changes to the AddressSpace
158 struct CPUAddressSpace {
159 CPUState *cpu;
160 AddressSpace *as;
161 struct AddressSpaceDispatch *memory_dispatch;
162 MemoryListener tcg_as_listener;
165 struct DirtyBitmapSnapshot {
166 ram_addr_t start;
167 ram_addr_t end;
168 unsigned long dirty[];
171 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
173 static unsigned alloc_hint = 16;
174 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
175 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
176 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
177 alloc_hint = map->nodes_nb_alloc;
181 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
183 unsigned i;
184 uint32_t ret;
185 PhysPageEntry e;
186 PhysPageEntry *p;
188 ret = map->nodes_nb++;
189 p = map->nodes[ret];
190 assert(ret != PHYS_MAP_NODE_NIL);
191 assert(ret != map->nodes_nb_alloc);
193 e.skip = leaf ? 0 : 1;
194 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
195 for (i = 0; i < P_L2_SIZE; ++i) {
196 memcpy(&p[i], &e, sizeof(e));
198 return ret;
201 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
202 hwaddr *index, uint64_t *nb, uint16_t leaf,
203 int level)
205 PhysPageEntry *p;
206 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
208 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
209 lp->ptr = phys_map_node_alloc(map, level == 0);
211 p = map->nodes[lp->ptr];
212 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
214 while (*nb && lp < &p[P_L2_SIZE]) {
215 if ((*index & (step - 1)) == 0 && *nb >= step) {
216 lp->skip = 0;
217 lp->ptr = leaf;
218 *index += step;
219 *nb -= step;
220 } else {
221 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
223 ++lp;
227 static void phys_page_set(AddressSpaceDispatch *d,
228 hwaddr index, uint64_t nb,
229 uint16_t leaf)
231 /* Wildly overreserve - it doesn't matter much. */
232 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
234 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
237 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
238 * and update our entry so we can skip it and go directly to the destination.
240 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
242 unsigned valid_ptr = P_L2_SIZE;
243 int valid = 0;
244 PhysPageEntry *p;
245 int i;
247 if (lp->ptr == PHYS_MAP_NODE_NIL) {
248 return;
251 p = nodes[lp->ptr];
252 for (i = 0; i < P_L2_SIZE; i++) {
253 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
254 continue;
257 valid_ptr = i;
258 valid++;
259 if (p[i].skip) {
260 phys_page_compact(&p[i], nodes);
264 /* We can only compress if there's only one child. */
265 if (valid != 1) {
266 return;
269 assert(valid_ptr < P_L2_SIZE);
271 /* Don't compress if it won't fit in the # of bits we have. */
272 if (P_L2_LEVELS >= (1 << 6) &&
273 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
274 return;
277 lp->ptr = p[valid_ptr].ptr;
278 if (!p[valid_ptr].skip) {
279 /* If our only child is a leaf, make this a leaf. */
280 /* By design, we should have made this node a leaf to begin with so we
281 * should never reach here.
282 * But since it's so simple to handle this, let's do it just in case we
283 * change this rule.
285 lp->skip = 0;
286 } else {
287 lp->skip += p[valid_ptr].skip;
291 void address_space_dispatch_compact(AddressSpaceDispatch *d)
293 if (d->phys_map.skip) {
294 phys_page_compact(&d->phys_map, d->map.nodes);
298 static inline bool section_covers_addr(const MemoryRegionSection *section,
299 hwaddr addr)
301 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
302 * the section must cover the entire address space.
304 return int128_gethi(section->size) ||
305 range_covers_byte(section->offset_within_address_space,
306 int128_getlo(section->size), addr);
309 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
311 PhysPageEntry lp = d->phys_map, *p;
312 Node *nodes = d->map.nodes;
313 MemoryRegionSection *sections = d->map.sections;
314 hwaddr index = addr >> TARGET_PAGE_BITS;
315 int i;
317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
319 return &sections[PHYS_SECTION_UNASSIGNED];
321 p = nodes[lp.ptr];
322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
325 if (section_covers_addr(&sections[lp.ptr], addr)) {
326 return &sections[lp.ptr];
327 } else {
328 return &sections[PHYS_SECTION_UNASSIGNED];
332 /* Called from RCU critical section */
333 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
334 hwaddr addr,
335 bool resolve_subpage)
337 MemoryRegionSection *section = qatomic_read(&d->mru_section);
338 subpage_t *subpage;
340 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
341 !section_covers_addr(section, addr)) {
342 section = phys_page_find(d, addr);
343 qatomic_set(&d->mru_section, section);
345 if (resolve_subpage && section->mr->subpage) {
346 subpage = container_of(section->mr, subpage_t, iomem);
347 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
349 return section;
352 /* Called from RCU critical section */
353 static MemoryRegionSection *
354 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
355 hwaddr *plen, bool resolve_subpage)
357 MemoryRegionSection *section;
358 MemoryRegion *mr;
359 Int128 diff;
361 section = address_space_lookup_region(d, addr, resolve_subpage);
362 /* Compute offset within MemoryRegionSection */
363 addr -= section->offset_within_address_space;
365 /* Compute offset within MemoryRegion */
366 *xlat = addr + section->offset_within_region;
368 mr = section->mr;
370 /* MMIO registers can be expected to perform full-width accesses based only
371 * on their address, without considering adjacent registers that could
372 * decode to completely different MemoryRegions. When such registers
373 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
374 * regions overlap wildly. For this reason we cannot clamp the accesses
375 * here.
377 * If the length is small (as is the case for address_space_ldl/stl),
378 * everything works fine. If the incoming length is large, however,
379 * the caller really has to do the clamping through memory_access_size.
381 if (memory_region_is_ram(mr)) {
382 diff = int128_sub(section->size, int128_make64(addr));
383 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
385 return section;
389 * address_space_translate_iommu - translate an address through an IOMMU
390 * memory region and then through the target address space.
392 * @iommu_mr: the IOMMU memory region that we start the translation from
393 * @addr: the address to be translated through the MMU
394 * @xlat: the translated address offset within the destination memory region.
395 * It cannot be %NULL.
396 * @plen_out: valid read/write length of the translated address. It
397 * cannot be %NULL.
398 * @page_mask_out: page mask for the translated address. This
399 * should only be meaningful for IOMMU translated
400 * addresses, since there may be huge pages that this bit
401 * would tell. It can be %NULL if we don't care about it.
402 * @is_write: whether the translation operation is for write
403 * @is_mmio: whether this can be MMIO, set true if it can
404 * @target_as: the address space targeted by the IOMMU
405 * @attrs: transaction attributes
407 * This function is called from RCU critical section. It is the common
408 * part of flatview_do_translate and address_space_translate_cached.
410 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
411 hwaddr *xlat,
412 hwaddr *plen_out,
413 hwaddr *page_mask_out,
414 bool is_write,
415 bool is_mmio,
416 AddressSpace **target_as,
417 MemTxAttrs attrs)
419 MemoryRegionSection *section;
420 hwaddr page_mask = (hwaddr)-1;
422 do {
423 hwaddr addr = *xlat;
424 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
425 int iommu_idx = 0;
426 IOMMUTLBEntry iotlb;
428 if (imrc->attrs_to_index) {
429 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
432 iotlb = imrc->translate(iommu_mr, addr, is_write ?
433 IOMMU_WO : IOMMU_RO, iommu_idx);
435 if (!(iotlb.perm & (1 << is_write))) {
436 goto unassigned;
439 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
440 | (addr & iotlb.addr_mask));
441 page_mask &= iotlb.addr_mask;
442 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
443 *target_as = iotlb.target_as;
445 section = address_space_translate_internal(
446 address_space_to_dispatch(iotlb.target_as), addr, xlat,
447 plen_out, is_mmio);
449 iommu_mr = memory_region_get_iommu(section->mr);
450 } while (unlikely(iommu_mr));
452 if (page_mask_out) {
453 *page_mask_out = page_mask;
455 return *section;
457 unassigned:
458 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 * flatview_do_translate - translate an address in FlatView
464 * @fv: the flat view that we want to translate on
465 * @addr: the address to be translated in above address space
466 * @xlat: the translated address offset within memory region. It
467 * cannot be @NULL.
468 * @plen_out: valid read/write length of the translated address. It
469 * can be @NULL when we don't care about it.
470 * @page_mask_out: page mask for the translated address. This
471 * should only be meaningful for IOMMU translated
472 * addresses, since there may be huge pages that this bit
473 * would tell. It can be @NULL if we don't care about it.
474 * @is_write: whether the translation operation is for write
475 * @is_mmio: whether this can be MMIO, set true if it can
476 * @target_as: the address space targeted by the IOMMU
477 * @attrs: memory transaction attributes
479 * This function is called from RCU critical section
481 static MemoryRegionSection flatview_do_translate(FlatView *fv,
482 hwaddr addr,
483 hwaddr *xlat,
484 hwaddr *plen_out,
485 hwaddr *page_mask_out,
486 bool is_write,
487 bool is_mmio,
488 AddressSpace **target_as,
489 MemTxAttrs attrs)
491 MemoryRegionSection *section;
492 IOMMUMemoryRegion *iommu_mr;
493 hwaddr plen = (hwaddr)(-1);
495 if (!plen_out) {
496 plen_out = &plen;
499 section = address_space_translate_internal(
500 flatview_to_dispatch(fv), addr, xlat,
501 plen_out, is_mmio);
503 iommu_mr = memory_region_get_iommu(section->mr);
504 if (unlikely(iommu_mr)) {
505 return address_space_translate_iommu(iommu_mr, xlat,
506 plen_out, page_mask_out,
507 is_write, is_mmio,
508 target_as, attrs);
510 if (page_mask_out) {
511 /* Not behind an IOMMU, use default page size. */
512 *page_mask_out = ~TARGET_PAGE_MASK;
515 return *section;
518 /* Called from RCU critical section */
519 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
520 bool is_write, MemTxAttrs attrs)
522 MemoryRegionSection section;
523 hwaddr xlat, page_mask;
526 * This can never be MMIO, and we don't really care about plen,
527 * but page mask.
529 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
530 NULL, &page_mask, is_write, false, &as,
531 attrs);
533 /* Illegal translation */
534 if (section.mr == &io_mem_unassigned) {
535 goto iotlb_fail;
538 /* Convert memory region offset into address space offset */
539 xlat += section.offset_within_address_space -
540 section.offset_within_region;
542 return (IOMMUTLBEntry) {
543 .target_as = as,
544 .iova = addr & ~page_mask,
545 .translated_addr = xlat & ~page_mask,
546 .addr_mask = page_mask,
547 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
548 .perm = IOMMU_RW,
551 iotlb_fail:
552 return (IOMMUTLBEntry) {0};
555 /* Called from RCU critical section */
556 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
557 hwaddr *plen, bool is_write,
558 MemTxAttrs attrs)
560 MemoryRegion *mr;
561 MemoryRegionSection section;
562 AddressSpace *as = NULL;
564 /* This can be MMIO, so setup MMIO bit. */
565 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
566 is_write, true, &as, attrs);
567 mr = section.mr;
569 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
570 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
571 *plen = MIN(page, *plen);
574 return mr;
577 typedef struct TCGIOMMUNotifier {
578 IOMMUNotifier n;
579 MemoryRegion *mr;
580 CPUState *cpu;
581 int iommu_idx;
582 bool active;
583 } TCGIOMMUNotifier;
585 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
587 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
589 if (!notifier->active) {
590 return;
592 tlb_flush(notifier->cpu);
593 notifier->active = false;
594 /* We leave the notifier struct on the list to avoid reallocating it later.
595 * Generally the number of IOMMUs a CPU deals with will be small.
596 * In any case we can't unregister the iommu notifier from a notify
597 * callback.
601 static void tcg_register_iommu_notifier(CPUState *cpu,
602 IOMMUMemoryRegion *iommu_mr,
603 int iommu_idx)
605 /* Make sure this CPU has an IOMMU notifier registered for this
606 * IOMMU/IOMMU index combination, so that we can flush its TLB
607 * when the IOMMU tells us the mappings we've cached have changed.
609 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
610 TCGIOMMUNotifier *notifier = NULL;
611 int i;
613 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
614 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
615 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
616 break;
619 if (i == cpu->iommu_notifiers->len) {
620 /* Not found, add a new entry at the end of the array */
621 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
622 notifier = g_new0(TCGIOMMUNotifier, 1);
623 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
625 notifier->mr = mr;
626 notifier->iommu_idx = iommu_idx;
627 notifier->cpu = cpu;
628 /* Rather than trying to register interest in the specific part
629 * of the iommu's address space that we've accessed and then
630 * expand it later as subsequent accesses touch more of it, we
631 * just register interest in the whole thing, on the assumption
632 * that iommu reconfiguration will be rare.
634 iommu_notifier_init(&notifier->n,
635 tcg_iommu_unmap_notify,
636 IOMMU_NOTIFIER_UNMAP,
638 HWADDR_MAX,
639 iommu_idx);
640 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
641 &error_fatal);
644 if (!notifier->active) {
645 notifier->active = true;
649 void tcg_iommu_free_notifier_list(CPUState *cpu)
651 /* Destroy the CPU's notifier list */
652 int i;
653 TCGIOMMUNotifier *notifier;
655 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
656 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
657 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
658 g_free(notifier);
660 g_array_free(cpu->iommu_notifiers, true);
663 void tcg_iommu_init_notifier_list(CPUState *cpu)
665 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
668 /* Called from RCU critical section */
669 MemoryRegionSection *
670 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
671 hwaddr *xlat, hwaddr *plen,
672 MemTxAttrs attrs, int *prot)
674 MemoryRegionSection *section;
675 IOMMUMemoryRegion *iommu_mr;
676 IOMMUMemoryRegionClass *imrc;
677 IOMMUTLBEntry iotlb;
678 int iommu_idx;
679 AddressSpaceDispatch *d =
680 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
682 for (;;) {
683 section = address_space_translate_internal(d, addr, &addr, plen, false);
685 iommu_mr = memory_region_get_iommu(section->mr);
686 if (!iommu_mr) {
687 break;
690 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
692 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
693 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
694 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
695 * doesn't short-cut its translation table walk.
697 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
698 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
699 | (addr & iotlb.addr_mask));
700 /* Update the caller's prot bits to remove permissions the IOMMU
701 * is giving us a failure response for. If we get down to no
702 * permissions left at all we can give up now.
704 if (!(iotlb.perm & IOMMU_RO)) {
705 *prot &= ~(PAGE_READ | PAGE_EXEC);
707 if (!(iotlb.perm & IOMMU_WO)) {
708 *prot &= ~PAGE_WRITE;
711 if (!*prot) {
712 goto translate_fail;
715 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
718 assert(!memory_region_is_iommu(section->mr));
719 *xlat = addr;
720 return section;
722 translate_fail:
723 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
726 void cpu_address_space_init(CPUState *cpu, int asidx,
727 const char *prefix, MemoryRegion *mr)
729 CPUAddressSpace *newas;
730 AddressSpace *as = g_new0(AddressSpace, 1);
731 char *as_name;
733 assert(mr);
734 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
735 address_space_init(as, mr, as_name);
736 g_free(as_name);
738 /* Target code should have set num_ases before calling us */
739 assert(asidx < cpu->num_ases);
741 if (asidx == 0) {
742 /* address space 0 gets the convenience alias */
743 cpu->as = as;
746 /* KVM cannot currently support multiple address spaces. */
747 assert(asidx == 0 || !kvm_enabled());
749 if (!cpu->cpu_ases) {
750 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
753 newas = &cpu->cpu_ases[asidx];
754 newas->cpu = cpu;
755 newas->as = as;
756 if (tcg_enabled()) {
757 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
758 newas->tcg_as_listener.commit = tcg_commit;
759 memory_listener_register(&newas->tcg_as_listener, as);
763 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
765 /* Return the AddressSpace corresponding to the specified index */
766 return cpu->cpu_ases[asidx].as;
769 /* Add a watchpoint. */
770 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
771 int flags, CPUWatchpoint **watchpoint)
773 CPUWatchpoint *wp;
774 vaddr in_page;
776 /* forbid ranges which are empty or run off the end of the address space */
777 if (len == 0 || (addr + len - 1) < addr) {
778 error_report("tried to set invalid watchpoint at %"
779 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
780 return -EINVAL;
782 wp = g_malloc(sizeof(*wp));
784 wp->vaddr = addr;
785 wp->len = len;
786 wp->flags = flags;
788 /* keep all GDB-injected watchpoints in front */
789 if (flags & BP_GDB) {
790 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
791 } else {
792 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
795 in_page = -(addr | TARGET_PAGE_MASK);
796 if (len <= in_page) {
797 tlb_flush_page(cpu, addr);
798 } else {
799 tlb_flush(cpu);
802 if (watchpoint)
803 *watchpoint = wp;
804 return 0;
807 /* Remove a specific watchpoint. */
808 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
809 int flags)
811 CPUWatchpoint *wp;
813 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
814 if (addr == wp->vaddr && len == wp->len
815 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
816 cpu_watchpoint_remove_by_ref(cpu, wp);
817 return 0;
820 return -ENOENT;
823 /* Remove a specific watchpoint by reference. */
824 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
826 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
828 tlb_flush_page(cpu, watchpoint->vaddr);
830 g_free(watchpoint);
833 /* Remove all matching watchpoints. */
834 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
836 CPUWatchpoint *wp, *next;
838 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
839 if (wp->flags & mask) {
840 cpu_watchpoint_remove_by_ref(cpu, wp);
845 #ifdef CONFIG_TCG
846 /* Return true if this watchpoint address matches the specified
847 * access (ie the address range covered by the watchpoint overlaps
848 * partially or completely with the address range covered by the
849 * access).
851 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
852 vaddr addr, vaddr len)
854 /* We know the lengths are non-zero, but a little caution is
855 * required to avoid errors in the case where the range ends
856 * exactly at the top of the address space and so addr + len
857 * wraps round to zero.
859 vaddr wpend = wp->vaddr + wp->len - 1;
860 vaddr addrend = addr + len - 1;
862 return !(addr > wpend || wp->vaddr > addrend);
865 /* Return flags for watchpoints that match addr + prot. */
866 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
868 CPUWatchpoint *wp;
869 int ret = 0;
871 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
872 if (watchpoint_address_matches(wp, addr, len)) {
873 ret |= wp->flags;
876 return ret;
879 /* Generate a debug exception if a watchpoint has been hit. */
880 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
881 MemTxAttrs attrs, int flags, uintptr_t ra)
883 CPUClass *cc = CPU_GET_CLASS(cpu);
884 CPUWatchpoint *wp;
886 assert(tcg_enabled());
887 if (cpu->watchpoint_hit) {
889 * We re-entered the check after replacing the TB.
890 * Now raise the debug interrupt so that it will
891 * trigger after the current instruction.
893 qemu_mutex_lock_iothread();
894 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
895 qemu_mutex_unlock_iothread();
896 return;
899 if (cc->tcg_ops->adjust_watchpoint_address) {
900 /* this is currently used only by ARM BE32 */
901 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
903 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
904 if (watchpoint_address_matches(wp, addr, len)
905 && (wp->flags & flags)) {
906 if (replay_running_debug()) {
908 * replay_breakpoint reads icount.
909 * Force recompile to succeed, because icount may
910 * be read only at the end of the block.
912 if (!cpu->can_do_io) {
913 /* Force execution of one insn next time. */
914 cpu->cflags_next_tb = 1 | CF_LAST_IO | curr_cflags(cpu);
915 cpu_loop_exit_restore(cpu, ra);
918 * Don't process the watchpoints when we are
919 * in a reverse debugging operation.
921 replay_breakpoint();
922 return;
924 if (flags == BP_MEM_READ) {
925 wp->flags |= BP_WATCHPOINT_HIT_READ;
926 } else {
927 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
929 wp->hitaddr = MAX(addr, wp->vaddr);
930 wp->hitattrs = attrs;
931 if (!cpu->watchpoint_hit) {
932 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
933 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
934 wp->flags &= ~BP_WATCHPOINT_HIT;
935 continue;
937 cpu->watchpoint_hit = wp;
939 mmap_lock();
940 tb_check_watchpoint(cpu, ra);
941 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
942 cpu->exception_index = EXCP_DEBUG;
943 mmap_unlock();
944 cpu_loop_exit_restore(cpu, ra);
945 } else {
946 /* Force execution of one insn next time. */
947 cpu->cflags_next_tb = 1 | curr_cflags(cpu);
948 mmap_unlock();
949 if (ra) {
950 cpu_restore_state(cpu, ra, true);
952 cpu_loop_exit_noexc(cpu);
955 } else {
956 wp->flags &= ~BP_WATCHPOINT_HIT;
961 #endif /* CONFIG_TCG */
963 /* Called from RCU critical section */
964 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
966 RAMBlock *block;
968 block = qatomic_rcu_read(&ram_list.mru_block);
969 if (block && addr - block->offset < block->max_length) {
970 return block;
972 RAMBLOCK_FOREACH(block) {
973 if (addr - block->offset < block->max_length) {
974 goto found;
978 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
979 abort();
981 found:
982 /* It is safe to write mru_block outside the iothread lock. This
983 * is what happens:
985 * mru_block = xxx
986 * rcu_read_unlock()
987 * xxx removed from list
988 * rcu_read_lock()
989 * read mru_block
990 * mru_block = NULL;
991 * call_rcu(reclaim_ramblock, xxx);
992 * rcu_read_unlock()
994 * qatomic_rcu_set is not needed here. The block was already published
995 * when it was placed into the list. Here we're just making an extra
996 * copy of the pointer.
998 ram_list.mru_block = block;
999 return block;
1002 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1004 CPUState *cpu;
1005 ram_addr_t start1;
1006 RAMBlock *block;
1007 ram_addr_t end;
1009 assert(tcg_enabled());
1010 end = TARGET_PAGE_ALIGN(start + length);
1011 start &= TARGET_PAGE_MASK;
1013 RCU_READ_LOCK_GUARD();
1014 block = qemu_get_ram_block(start);
1015 assert(block == qemu_get_ram_block(end - 1));
1016 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1017 CPU_FOREACH(cpu) {
1018 tlb_reset_dirty(cpu, start1, length);
1022 /* Note: start and end must be within the same ram block. */
1023 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1024 ram_addr_t length,
1025 unsigned client)
1027 DirtyMemoryBlocks *blocks;
1028 unsigned long end, page, start_page;
1029 bool dirty = false;
1030 RAMBlock *ramblock;
1031 uint64_t mr_offset, mr_size;
1033 if (length == 0) {
1034 return false;
1037 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1038 start_page = start >> TARGET_PAGE_BITS;
1039 page = start_page;
1041 WITH_RCU_READ_LOCK_GUARD() {
1042 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1043 ramblock = qemu_get_ram_block(start);
1044 /* Range sanity check on the ramblock */
1045 assert(start >= ramblock->offset &&
1046 start + length <= ramblock->offset + ramblock->used_length);
1048 while (page < end) {
1049 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1050 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1051 unsigned long num = MIN(end - page,
1052 DIRTY_MEMORY_BLOCK_SIZE - offset);
1054 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1055 offset, num);
1056 page += num;
1059 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1060 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1061 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1064 if (dirty && tcg_enabled()) {
1065 tlb_reset_dirty_range_all(start, length);
1068 return dirty;
1071 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1072 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1074 DirtyMemoryBlocks *blocks;
1075 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1076 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1077 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1078 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1079 DirtyBitmapSnapshot *snap;
1080 unsigned long page, end, dest;
1082 snap = g_malloc0(sizeof(*snap) +
1083 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1084 snap->start = first;
1085 snap->end = last;
1087 page = first >> TARGET_PAGE_BITS;
1088 end = last >> TARGET_PAGE_BITS;
1089 dest = 0;
1091 WITH_RCU_READ_LOCK_GUARD() {
1092 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1094 while (page < end) {
1095 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1096 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1097 unsigned long num = MIN(end - page,
1098 DIRTY_MEMORY_BLOCK_SIZE - offset);
1100 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1101 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1102 offset >>= BITS_PER_LEVEL;
1104 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1105 blocks->blocks[idx] + offset,
1106 num);
1107 page += num;
1108 dest += num >> BITS_PER_LEVEL;
1112 if (tcg_enabled()) {
1113 tlb_reset_dirty_range_all(start, length);
1116 memory_region_clear_dirty_bitmap(mr, offset, length);
1118 return snap;
1121 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1122 ram_addr_t start,
1123 ram_addr_t length)
1125 unsigned long page, end;
1127 assert(start >= snap->start);
1128 assert(start + length <= snap->end);
1130 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1131 page = (start - snap->start) >> TARGET_PAGE_BITS;
1133 while (page < end) {
1134 if (test_bit(page, snap->dirty)) {
1135 return true;
1137 page++;
1139 return false;
1142 /* Called from RCU critical section */
1143 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1144 MemoryRegionSection *section)
1146 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1147 return section - d->map.sections;
1150 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1151 uint16_t section);
1152 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1154 static uint16_t phys_section_add(PhysPageMap *map,
1155 MemoryRegionSection *section)
1157 /* The physical section number is ORed with a page-aligned
1158 * pointer to produce the iotlb entries. Thus it should
1159 * never overflow into the page-aligned value.
1161 assert(map->sections_nb < TARGET_PAGE_SIZE);
1163 if (map->sections_nb == map->sections_nb_alloc) {
1164 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1165 map->sections = g_renew(MemoryRegionSection, map->sections,
1166 map->sections_nb_alloc);
1168 map->sections[map->sections_nb] = *section;
1169 memory_region_ref(section->mr);
1170 return map->sections_nb++;
1173 static void phys_section_destroy(MemoryRegion *mr)
1175 bool have_sub_page = mr->subpage;
1177 memory_region_unref(mr);
1179 if (have_sub_page) {
1180 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1181 object_unref(OBJECT(&subpage->iomem));
1182 g_free(subpage);
1186 static void phys_sections_free(PhysPageMap *map)
1188 while (map->sections_nb > 0) {
1189 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1190 phys_section_destroy(section->mr);
1192 g_free(map->sections);
1193 g_free(map->nodes);
1196 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1198 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1199 subpage_t *subpage;
1200 hwaddr base = section->offset_within_address_space
1201 & TARGET_PAGE_MASK;
1202 MemoryRegionSection *existing = phys_page_find(d, base);
1203 MemoryRegionSection subsection = {
1204 .offset_within_address_space = base,
1205 .size = int128_make64(TARGET_PAGE_SIZE),
1207 hwaddr start, end;
1209 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1211 if (!(existing->mr->subpage)) {
1212 subpage = subpage_init(fv, base);
1213 subsection.fv = fv;
1214 subsection.mr = &subpage->iomem;
1215 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1216 phys_section_add(&d->map, &subsection));
1217 } else {
1218 subpage = container_of(existing->mr, subpage_t, iomem);
1220 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1221 end = start + int128_get64(section->size) - 1;
1222 subpage_register(subpage, start, end,
1223 phys_section_add(&d->map, section));
1227 static void register_multipage(FlatView *fv,
1228 MemoryRegionSection *section)
1230 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1231 hwaddr start_addr = section->offset_within_address_space;
1232 uint16_t section_index = phys_section_add(&d->map, section);
1233 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1234 TARGET_PAGE_BITS));
1236 assert(num_pages);
1237 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1241 * The range in *section* may look like this:
1243 * |s|PPPPPPP|s|
1245 * where s stands for subpage and P for page.
1247 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1249 MemoryRegionSection remain = *section;
1250 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1252 /* register first subpage */
1253 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1254 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1255 - remain.offset_within_address_space;
1257 MemoryRegionSection now = remain;
1258 now.size = int128_min(int128_make64(left), now.size);
1259 register_subpage(fv, &now);
1260 if (int128_eq(remain.size, now.size)) {
1261 return;
1263 remain.size = int128_sub(remain.size, now.size);
1264 remain.offset_within_address_space += int128_get64(now.size);
1265 remain.offset_within_region += int128_get64(now.size);
1268 /* register whole pages */
1269 if (int128_ge(remain.size, page_size)) {
1270 MemoryRegionSection now = remain;
1271 now.size = int128_and(now.size, int128_neg(page_size));
1272 register_multipage(fv, &now);
1273 if (int128_eq(remain.size, now.size)) {
1274 return;
1276 remain.size = int128_sub(remain.size, now.size);
1277 remain.offset_within_address_space += int128_get64(now.size);
1278 remain.offset_within_region += int128_get64(now.size);
1281 /* register last subpage */
1282 register_subpage(fv, &remain);
1285 void qemu_flush_coalesced_mmio_buffer(void)
1287 if (kvm_enabled())
1288 kvm_flush_coalesced_mmio_buffer();
1291 void qemu_mutex_lock_ramlist(void)
1293 qemu_mutex_lock(&ram_list.mutex);
1296 void qemu_mutex_unlock_ramlist(void)
1298 qemu_mutex_unlock(&ram_list.mutex);
1301 void ram_block_dump(Monitor *mon)
1303 RAMBlock *block;
1304 char *psize;
1306 RCU_READ_LOCK_GUARD();
1307 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1308 "Block Name", "PSize", "Offset", "Used", "Total");
1309 RAMBLOCK_FOREACH(block) {
1310 psize = size_to_str(block->page_size);
1311 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1312 " 0x%016" PRIx64 "\n", block->idstr, psize,
1313 (uint64_t)block->offset,
1314 (uint64_t)block->used_length,
1315 (uint64_t)block->max_length);
1316 g_free(psize);
1320 #ifdef __linux__
1322 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1323 * may or may not name the same files / on the same filesystem now as
1324 * when we actually open and map them. Iterate over the file
1325 * descriptors instead, and use qemu_fd_getpagesize().
1327 static int find_min_backend_pagesize(Object *obj, void *opaque)
1329 long *hpsize_min = opaque;
1331 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1332 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1333 long hpsize = host_memory_backend_pagesize(backend);
1335 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1336 *hpsize_min = hpsize;
1340 return 0;
1343 static int find_max_backend_pagesize(Object *obj, void *opaque)
1345 long *hpsize_max = opaque;
1347 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1348 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1349 long hpsize = host_memory_backend_pagesize(backend);
1351 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1352 *hpsize_max = hpsize;
1356 return 0;
1360 * TODO: We assume right now that all mapped host memory backends are
1361 * used as RAM, however some might be used for different purposes.
1363 long qemu_minrampagesize(void)
1365 long hpsize = LONG_MAX;
1366 Object *memdev_root = object_resolve_path("/objects", NULL);
1368 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1369 return hpsize;
1372 long qemu_maxrampagesize(void)
1374 long pagesize = 0;
1375 Object *memdev_root = object_resolve_path("/objects", NULL);
1377 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1378 return pagesize;
1380 #else
1381 long qemu_minrampagesize(void)
1383 return qemu_real_host_page_size;
1385 long qemu_maxrampagesize(void)
1387 return qemu_real_host_page_size;
1389 #endif
1391 #ifdef CONFIG_POSIX
1392 static int64_t get_file_size(int fd)
1394 int64_t size;
1395 #if defined(__linux__)
1396 struct stat st;
1398 if (fstat(fd, &st) < 0) {
1399 return -errno;
1402 /* Special handling for devdax character devices */
1403 if (S_ISCHR(st.st_mode)) {
1404 g_autofree char *subsystem_path = NULL;
1405 g_autofree char *subsystem = NULL;
1407 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1408 major(st.st_rdev), minor(st.st_rdev));
1409 subsystem = g_file_read_link(subsystem_path, NULL);
1411 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1412 g_autofree char *size_path = NULL;
1413 g_autofree char *size_str = NULL;
1415 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1416 major(st.st_rdev), minor(st.st_rdev));
1418 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1419 return g_ascii_strtoll(size_str, NULL, 0);
1423 #endif /* defined(__linux__) */
1425 /* st.st_size may be zero for special files yet lseek(2) works */
1426 size = lseek(fd, 0, SEEK_END);
1427 if (size < 0) {
1428 return -errno;
1430 return size;
1433 static int64_t get_file_align(int fd)
1435 int64_t align = -1;
1436 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1437 struct stat st;
1439 if (fstat(fd, &st) < 0) {
1440 return -errno;
1443 /* Special handling for devdax character devices */
1444 if (S_ISCHR(st.st_mode)) {
1445 g_autofree char *path = NULL;
1446 g_autofree char *rpath = NULL;
1447 struct daxctl_ctx *ctx;
1448 struct daxctl_region *region;
1449 int rc = 0;
1451 path = g_strdup_printf("/sys/dev/char/%d:%d",
1452 major(st.st_rdev), minor(st.st_rdev));
1453 rpath = realpath(path, NULL);
1455 rc = daxctl_new(&ctx);
1456 if (rc) {
1457 return -1;
1460 daxctl_region_foreach(ctx, region) {
1461 if (strstr(rpath, daxctl_region_get_path(region))) {
1462 align = daxctl_region_get_align(region);
1463 break;
1466 daxctl_unref(ctx);
1468 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1470 return align;
1473 static int file_ram_open(const char *path,
1474 const char *region_name,
1475 bool readonly,
1476 bool *created,
1477 Error **errp)
1479 char *filename;
1480 char *sanitized_name;
1481 char *c;
1482 int fd = -1;
1484 *created = false;
1485 for (;;) {
1486 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1487 if (fd >= 0) {
1488 /* @path names an existing file, use it */
1489 break;
1491 if (errno == ENOENT) {
1492 /* @path names a file that doesn't exist, create it */
1493 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1494 if (fd >= 0) {
1495 *created = true;
1496 break;
1498 } else if (errno == EISDIR) {
1499 /* @path names a directory, create a file there */
1500 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1501 sanitized_name = g_strdup(region_name);
1502 for (c = sanitized_name; *c != '\0'; c++) {
1503 if (*c == '/') {
1504 *c = '_';
1508 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1509 sanitized_name);
1510 g_free(sanitized_name);
1512 fd = mkstemp(filename);
1513 if (fd >= 0) {
1514 unlink(filename);
1515 g_free(filename);
1516 break;
1518 g_free(filename);
1520 if (errno != EEXIST && errno != EINTR) {
1521 error_setg_errno(errp, errno,
1522 "can't open backing store %s for guest RAM",
1523 path);
1524 return -1;
1527 * Try again on EINTR and EEXIST. The latter happens when
1528 * something else creates the file between our two open().
1532 return fd;
1535 static void *file_ram_alloc(RAMBlock *block,
1536 ram_addr_t memory,
1537 int fd,
1538 bool readonly,
1539 bool truncate,
1540 off_t offset,
1541 Error **errp)
1543 uint32_t qemu_map_flags;
1544 void *area;
1546 block->page_size = qemu_fd_getpagesize(fd);
1547 if (block->mr->align % block->page_size) {
1548 error_setg(errp, "alignment 0x%" PRIx64
1549 " must be multiples of page size 0x%zx",
1550 block->mr->align, block->page_size);
1551 return NULL;
1552 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1553 error_setg(errp, "alignment 0x%" PRIx64
1554 " must be a power of two", block->mr->align);
1555 return NULL;
1557 block->mr->align = MAX(block->page_size, block->mr->align);
1558 #if defined(__s390x__)
1559 if (kvm_enabled()) {
1560 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1562 #endif
1564 if (memory < block->page_size) {
1565 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1566 "or larger than page size 0x%zx",
1567 memory, block->page_size);
1568 return NULL;
1571 memory = ROUND_UP(memory, block->page_size);
1574 * ftruncate is not supported by hugetlbfs in older
1575 * hosts, so don't bother bailing out on errors.
1576 * If anything goes wrong with it under other filesystems,
1577 * mmap will fail.
1579 * Do not truncate the non-empty backend file to avoid corrupting
1580 * the existing data in the file. Disabling shrinking is not
1581 * enough. For example, the current vNVDIMM implementation stores
1582 * the guest NVDIMM labels at the end of the backend file. If the
1583 * backend file is later extended, QEMU will not be able to find
1584 * those labels. Therefore, extending the non-empty backend file
1585 * is disabled as well.
1587 if (truncate && ftruncate(fd, memory)) {
1588 perror("ftruncate");
1591 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1592 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1593 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1594 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1595 if (area == MAP_FAILED) {
1596 error_setg_errno(errp, errno,
1597 "unable to map backing store for guest RAM");
1598 return NULL;
1601 block->fd = fd;
1602 return area;
1604 #endif
1606 /* Allocate space within the ram_addr_t space that governs the
1607 * dirty bitmaps.
1608 * Called with the ramlist lock held.
1610 static ram_addr_t find_ram_offset(ram_addr_t size)
1612 RAMBlock *block, *next_block;
1613 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1615 assert(size != 0); /* it would hand out same offset multiple times */
1617 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1618 return 0;
1621 RAMBLOCK_FOREACH(block) {
1622 ram_addr_t candidate, next = RAM_ADDR_MAX;
1624 /* Align blocks to start on a 'long' in the bitmap
1625 * which makes the bitmap sync'ing take the fast path.
1627 candidate = block->offset + block->max_length;
1628 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1630 /* Search for the closest following block
1631 * and find the gap.
1633 RAMBLOCK_FOREACH(next_block) {
1634 if (next_block->offset >= candidate) {
1635 next = MIN(next, next_block->offset);
1639 /* If it fits remember our place and remember the size
1640 * of gap, but keep going so that we might find a smaller
1641 * gap to fill so avoiding fragmentation.
1643 if (next - candidate >= size && next - candidate < mingap) {
1644 offset = candidate;
1645 mingap = next - candidate;
1648 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1651 if (offset == RAM_ADDR_MAX) {
1652 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1653 (uint64_t)size);
1654 abort();
1657 trace_find_ram_offset(size, offset);
1659 return offset;
1662 static unsigned long last_ram_page(void)
1664 RAMBlock *block;
1665 ram_addr_t last = 0;
1667 RCU_READ_LOCK_GUARD();
1668 RAMBLOCK_FOREACH(block) {
1669 last = MAX(last, block->offset + block->max_length);
1671 return last >> TARGET_PAGE_BITS;
1674 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1676 int ret;
1678 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1679 if (!machine_dump_guest_core(current_machine)) {
1680 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1681 if (ret) {
1682 perror("qemu_madvise");
1683 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1684 "but dump_guest_core=off specified\n");
1689 const char *qemu_ram_get_idstr(RAMBlock *rb)
1691 return rb->idstr;
1694 void *qemu_ram_get_host_addr(RAMBlock *rb)
1696 return rb->host;
1699 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1701 return rb->offset;
1704 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1706 return rb->used_length;
1709 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1711 return rb->max_length;
1714 bool qemu_ram_is_shared(RAMBlock *rb)
1716 return rb->flags & RAM_SHARED;
1719 /* Note: Only set at the start of postcopy */
1720 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1722 return rb->flags & RAM_UF_ZEROPAGE;
1725 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1727 rb->flags |= RAM_UF_ZEROPAGE;
1730 bool qemu_ram_is_migratable(RAMBlock *rb)
1732 return rb->flags & RAM_MIGRATABLE;
1735 void qemu_ram_set_migratable(RAMBlock *rb)
1737 rb->flags |= RAM_MIGRATABLE;
1740 void qemu_ram_unset_migratable(RAMBlock *rb)
1742 rb->flags &= ~RAM_MIGRATABLE;
1745 /* Called with iothread lock held. */
1746 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1748 RAMBlock *block;
1750 assert(new_block);
1751 assert(!new_block->idstr[0]);
1753 if (dev) {
1754 char *id = qdev_get_dev_path(dev);
1755 if (id) {
1756 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1757 g_free(id);
1760 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1762 RCU_READ_LOCK_GUARD();
1763 RAMBLOCK_FOREACH(block) {
1764 if (block != new_block &&
1765 !strcmp(block->idstr, new_block->idstr)) {
1766 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1767 new_block->idstr);
1768 abort();
1773 /* Called with iothread lock held. */
1774 void qemu_ram_unset_idstr(RAMBlock *block)
1776 /* FIXME: arch_init.c assumes that this is not called throughout
1777 * migration. Ignore the problem since hot-unplug during migration
1778 * does not work anyway.
1780 if (block) {
1781 memset(block->idstr, 0, sizeof(block->idstr));
1785 size_t qemu_ram_pagesize(RAMBlock *rb)
1787 return rb->page_size;
1790 /* Returns the largest size of page in use */
1791 size_t qemu_ram_pagesize_largest(void)
1793 RAMBlock *block;
1794 size_t largest = 0;
1796 RAMBLOCK_FOREACH(block) {
1797 largest = MAX(largest, qemu_ram_pagesize(block));
1800 return largest;
1803 static int memory_try_enable_merging(void *addr, size_t len)
1805 if (!machine_mem_merge(current_machine)) {
1806 /* disabled by the user */
1807 return 0;
1810 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1814 * Resizing RAM while migrating can result in the migration being canceled.
1815 * Care has to be taken if the guest might have already detected the memory.
1817 * As memory core doesn't know how is memory accessed, it is up to
1818 * resize callback to update device state and/or add assertions to detect
1819 * misuse, if necessary.
1821 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1823 const ram_addr_t oldsize = block->used_length;
1824 const ram_addr_t unaligned_size = newsize;
1826 assert(block);
1828 newsize = HOST_PAGE_ALIGN(newsize);
1830 if (block->used_length == newsize) {
1832 * We don't have to resize the ram block (which only knows aligned
1833 * sizes), however, we have to notify if the unaligned size changed.
1835 if (unaligned_size != memory_region_size(block->mr)) {
1836 memory_region_set_size(block->mr, unaligned_size);
1837 if (block->resized) {
1838 block->resized(block->idstr, unaligned_size, block->host);
1841 return 0;
1844 if (!(block->flags & RAM_RESIZEABLE)) {
1845 error_setg_errno(errp, EINVAL,
1846 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1847 " != 0x" RAM_ADDR_FMT, block->idstr,
1848 newsize, block->used_length);
1849 return -EINVAL;
1852 if (block->max_length < newsize) {
1853 error_setg_errno(errp, EINVAL,
1854 "Size too large: %s: 0x" RAM_ADDR_FMT
1855 " > 0x" RAM_ADDR_FMT, block->idstr,
1856 newsize, block->max_length);
1857 return -EINVAL;
1860 /* Notify before modifying the ram block and touching the bitmaps. */
1861 if (block->host) {
1862 ram_block_notify_resize(block->host, oldsize, newsize);
1865 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1866 block->used_length = newsize;
1867 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1868 DIRTY_CLIENTS_ALL);
1869 memory_region_set_size(block->mr, unaligned_size);
1870 if (block->resized) {
1871 block->resized(block->idstr, unaligned_size, block->host);
1873 return 0;
1877 * Trigger sync on the given ram block for range [start, start + length]
1878 * with the backing store if one is available.
1879 * Otherwise no-op.
1880 * @Note: this is supposed to be a synchronous op.
1882 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1884 /* The requested range should fit in within the block range */
1885 g_assert((start + length) <= block->used_length);
1887 #ifdef CONFIG_LIBPMEM
1888 /* The lack of support for pmem should not block the sync */
1889 if (ramblock_is_pmem(block)) {
1890 void *addr = ramblock_ptr(block, start);
1891 pmem_persist(addr, length);
1892 return;
1894 #endif
1895 if (block->fd >= 0) {
1897 * Case there is no support for PMEM or the memory has not been
1898 * specified as persistent (or is not one) - use the msync.
1899 * Less optimal but still achieves the same goal
1901 void *addr = ramblock_ptr(block, start);
1902 if (qemu_msync(addr, length, block->fd)) {
1903 warn_report("%s: failed to sync memory range: start: "
1904 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1905 __func__, start, length);
1910 /* Called with ram_list.mutex held */
1911 static void dirty_memory_extend(ram_addr_t old_ram_size,
1912 ram_addr_t new_ram_size)
1914 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1915 DIRTY_MEMORY_BLOCK_SIZE);
1916 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1917 DIRTY_MEMORY_BLOCK_SIZE);
1918 int i;
1920 /* Only need to extend if block count increased */
1921 if (new_num_blocks <= old_num_blocks) {
1922 return;
1925 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1926 DirtyMemoryBlocks *old_blocks;
1927 DirtyMemoryBlocks *new_blocks;
1928 int j;
1930 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1931 new_blocks = g_malloc(sizeof(*new_blocks) +
1932 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1934 if (old_num_blocks) {
1935 memcpy(new_blocks->blocks, old_blocks->blocks,
1936 old_num_blocks * sizeof(old_blocks->blocks[0]));
1939 for (j = old_num_blocks; j < new_num_blocks; j++) {
1940 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1943 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1945 if (old_blocks) {
1946 g_free_rcu(old_blocks, rcu);
1951 static void ram_block_add(RAMBlock *new_block, Error **errp)
1953 const bool shared = qemu_ram_is_shared(new_block);
1954 RAMBlock *block;
1955 RAMBlock *last_block = NULL;
1956 ram_addr_t old_ram_size, new_ram_size;
1957 Error *err = NULL;
1959 old_ram_size = last_ram_page();
1961 qemu_mutex_lock_ramlist();
1962 new_block->offset = find_ram_offset(new_block->max_length);
1964 if (!new_block->host) {
1965 if (xen_enabled()) {
1966 xen_ram_alloc(new_block->offset, new_block->max_length,
1967 new_block->mr, &err);
1968 if (err) {
1969 error_propagate(errp, err);
1970 qemu_mutex_unlock_ramlist();
1971 return;
1973 } else {
1974 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1975 &new_block->mr->align,
1976 shared);
1977 if (!new_block->host) {
1978 error_setg_errno(errp, errno,
1979 "cannot set up guest memory '%s'",
1980 memory_region_name(new_block->mr));
1981 qemu_mutex_unlock_ramlist();
1982 return;
1984 memory_try_enable_merging(new_block->host, new_block->max_length);
1988 new_ram_size = MAX(old_ram_size,
1989 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1990 if (new_ram_size > old_ram_size) {
1991 dirty_memory_extend(old_ram_size, new_ram_size);
1993 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1994 * QLIST (which has an RCU-friendly variant) does not have insertion at
1995 * tail, so save the last element in last_block.
1997 RAMBLOCK_FOREACH(block) {
1998 last_block = block;
1999 if (block->max_length < new_block->max_length) {
2000 break;
2003 if (block) {
2004 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2005 } else if (last_block) {
2006 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2007 } else { /* list is empty */
2008 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2010 ram_list.mru_block = NULL;
2012 /* Write list before version */
2013 smp_wmb();
2014 ram_list.version++;
2015 qemu_mutex_unlock_ramlist();
2017 cpu_physical_memory_set_dirty_range(new_block->offset,
2018 new_block->used_length,
2019 DIRTY_CLIENTS_ALL);
2021 if (new_block->host) {
2022 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2023 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2025 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2026 * Configure it unless the machine is a qtest server, in which case
2027 * KVM is not used and it may be forked (eg for fuzzing purposes).
2029 if (!qtest_enabled()) {
2030 qemu_madvise(new_block->host, new_block->max_length,
2031 QEMU_MADV_DONTFORK);
2033 ram_block_notify_add(new_block->host, new_block->used_length,
2034 new_block->max_length);
2038 #ifdef CONFIG_POSIX
2039 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2040 uint32_t ram_flags, int fd, off_t offset,
2041 bool readonly, Error **errp)
2043 RAMBlock *new_block;
2044 Error *local_err = NULL;
2045 int64_t file_size, file_align;
2047 /* Just support these ram flags by now. */
2048 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2050 if (xen_enabled()) {
2051 error_setg(errp, "-mem-path not supported with Xen");
2052 return NULL;
2055 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2056 error_setg(errp,
2057 "host lacks kvm mmu notifiers, -mem-path unsupported");
2058 return NULL;
2061 size = HOST_PAGE_ALIGN(size);
2062 file_size = get_file_size(fd);
2063 if (file_size > 0 && file_size < size) {
2064 error_setg(errp, "backing store size 0x%" PRIx64
2065 " does not match 'size' option 0x" RAM_ADDR_FMT,
2066 file_size, size);
2067 return NULL;
2070 file_align = get_file_align(fd);
2071 if (file_align > 0 && mr && file_align > mr->align) {
2072 error_setg(errp, "backing store align 0x%" PRIx64
2073 " is larger than 'align' option 0x%" PRIx64,
2074 file_align, mr->align);
2075 return NULL;
2078 new_block = g_malloc0(sizeof(*new_block));
2079 new_block->mr = mr;
2080 new_block->used_length = size;
2081 new_block->max_length = size;
2082 new_block->flags = ram_flags;
2083 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2084 !file_size, offset, errp);
2085 if (!new_block->host) {
2086 g_free(new_block);
2087 return NULL;
2090 ram_block_add(new_block, &local_err);
2091 if (local_err) {
2092 g_free(new_block);
2093 error_propagate(errp, local_err);
2094 return NULL;
2096 return new_block;
2101 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2102 uint32_t ram_flags, const char *mem_path,
2103 bool readonly, Error **errp)
2105 int fd;
2106 bool created;
2107 RAMBlock *block;
2109 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2110 errp);
2111 if (fd < 0) {
2112 return NULL;
2115 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2116 if (!block) {
2117 if (created) {
2118 unlink(mem_path);
2120 close(fd);
2121 return NULL;
2124 return block;
2126 #endif
2128 static
2129 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2130 void (*resized)(const char*,
2131 uint64_t length,
2132 void *host),
2133 void *host, uint32_t ram_flags,
2134 MemoryRegion *mr, Error **errp)
2136 RAMBlock *new_block;
2137 Error *local_err = NULL;
2139 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC)) == 0);
2140 assert(!host ^ (ram_flags & RAM_PREALLOC));
2142 size = HOST_PAGE_ALIGN(size);
2143 max_size = HOST_PAGE_ALIGN(max_size);
2144 new_block = g_malloc0(sizeof(*new_block));
2145 new_block->mr = mr;
2146 new_block->resized = resized;
2147 new_block->used_length = size;
2148 new_block->max_length = max_size;
2149 assert(max_size >= size);
2150 new_block->fd = -1;
2151 new_block->page_size = qemu_real_host_page_size;
2152 new_block->host = host;
2153 new_block->flags = ram_flags;
2154 ram_block_add(new_block, &local_err);
2155 if (local_err) {
2156 g_free(new_block);
2157 error_propagate(errp, local_err);
2158 return NULL;
2160 return new_block;
2163 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2164 MemoryRegion *mr, Error **errp)
2166 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2167 errp);
2170 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2171 MemoryRegion *mr, Error **errp)
2173 assert((ram_flags & ~RAM_SHARED) == 0);
2174 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2177 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2178 void (*resized)(const char*,
2179 uint64_t length,
2180 void *host),
2181 MemoryRegion *mr, Error **errp)
2183 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2184 RAM_RESIZEABLE, mr, errp);
2187 static void reclaim_ramblock(RAMBlock *block)
2189 if (block->flags & RAM_PREALLOC) {
2191 } else if (xen_enabled()) {
2192 xen_invalidate_map_cache_entry(block->host);
2193 #ifndef _WIN32
2194 } else if (block->fd >= 0) {
2195 qemu_ram_munmap(block->fd, block->host, block->max_length);
2196 close(block->fd);
2197 #endif
2198 } else {
2199 qemu_anon_ram_free(block->host, block->max_length);
2201 g_free(block);
2204 void qemu_ram_free(RAMBlock *block)
2206 if (!block) {
2207 return;
2210 if (block->host) {
2211 ram_block_notify_remove(block->host, block->used_length,
2212 block->max_length);
2215 qemu_mutex_lock_ramlist();
2216 QLIST_REMOVE_RCU(block, next);
2217 ram_list.mru_block = NULL;
2218 /* Write list before version */
2219 smp_wmb();
2220 ram_list.version++;
2221 call_rcu(block, reclaim_ramblock, rcu);
2222 qemu_mutex_unlock_ramlist();
2225 #ifndef _WIN32
2226 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2228 RAMBlock *block;
2229 ram_addr_t offset;
2230 int flags;
2231 void *area, *vaddr;
2233 RAMBLOCK_FOREACH(block) {
2234 offset = addr - block->offset;
2235 if (offset < block->max_length) {
2236 vaddr = ramblock_ptr(block, offset);
2237 if (block->flags & RAM_PREALLOC) {
2239 } else if (xen_enabled()) {
2240 abort();
2241 } else {
2242 flags = MAP_FIXED;
2243 flags |= block->flags & RAM_SHARED ?
2244 MAP_SHARED : MAP_PRIVATE;
2245 if (block->fd >= 0) {
2246 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2247 flags, block->fd, offset);
2248 } else {
2249 flags |= MAP_ANONYMOUS;
2250 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2251 flags, -1, 0);
2253 if (area != vaddr) {
2254 error_report("Could not remap addr: "
2255 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2256 length, addr);
2257 exit(1);
2259 memory_try_enable_merging(vaddr, length);
2260 qemu_ram_setup_dump(vaddr, length);
2265 #endif /* !_WIN32 */
2267 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2268 * This should not be used for general purpose DMA. Use address_space_map
2269 * or address_space_rw instead. For local memory (e.g. video ram) that the
2270 * device owns, use memory_region_get_ram_ptr.
2272 * Called within RCU critical section.
2274 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2276 RAMBlock *block = ram_block;
2278 if (block == NULL) {
2279 block = qemu_get_ram_block(addr);
2280 addr -= block->offset;
2283 if (xen_enabled() && block->host == NULL) {
2284 /* We need to check if the requested address is in the RAM
2285 * because we don't want to map the entire memory in QEMU.
2286 * In that case just map until the end of the page.
2288 if (block->offset == 0) {
2289 return xen_map_cache(addr, 0, 0, false);
2292 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2294 return ramblock_ptr(block, addr);
2297 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2298 * but takes a size argument.
2300 * Called within RCU critical section.
2302 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2303 hwaddr *size, bool lock)
2305 RAMBlock *block = ram_block;
2306 if (*size == 0) {
2307 return NULL;
2310 if (block == NULL) {
2311 block = qemu_get_ram_block(addr);
2312 addr -= block->offset;
2314 *size = MIN(*size, block->max_length - addr);
2316 if (xen_enabled() && block->host == NULL) {
2317 /* We need to check if the requested address is in the RAM
2318 * because we don't want to map the entire memory in QEMU.
2319 * In that case just map the requested area.
2321 if (block->offset == 0) {
2322 return xen_map_cache(addr, *size, lock, lock);
2325 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2328 return ramblock_ptr(block, addr);
2331 /* Return the offset of a hostpointer within a ramblock */
2332 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2334 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2335 assert((uintptr_t)host >= (uintptr_t)rb->host);
2336 assert(res < rb->max_length);
2338 return res;
2342 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2343 * in that RAMBlock.
2345 * ptr: Host pointer to look up
2346 * round_offset: If true round the result offset down to a page boundary
2347 * *ram_addr: set to result ram_addr
2348 * *offset: set to result offset within the RAMBlock
2350 * Returns: RAMBlock (or NULL if not found)
2352 * By the time this function returns, the returned pointer is not protected
2353 * by RCU anymore. If the caller is not within an RCU critical section and
2354 * does not hold the iothread lock, it must have other means of protecting the
2355 * pointer, such as a reference to the region that includes the incoming
2356 * ram_addr_t.
2358 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2359 ram_addr_t *offset)
2361 RAMBlock *block;
2362 uint8_t *host = ptr;
2364 if (xen_enabled()) {
2365 ram_addr_t ram_addr;
2366 RCU_READ_LOCK_GUARD();
2367 ram_addr = xen_ram_addr_from_mapcache(ptr);
2368 block = qemu_get_ram_block(ram_addr);
2369 if (block) {
2370 *offset = ram_addr - block->offset;
2372 return block;
2375 RCU_READ_LOCK_GUARD();
2376 block = qatomic_rcu_read(&ram_list.mru_block);
2377 if (block && block->host && host - block->host < block->max_length) {
2378 goto found;
2381 RAMBLOCK_FOREACH(block) {
2382 /* This case append when the block is not mapped. */
2383 if (block->host == NULL) {
2384 continue;
2386 if (host - block->host < block->max_length) {
2387 goto found;
2391 return NULL;
2393 found:
2394 *offset = (host - block->host);
2395 if (round_offset) {
2396 *offset &= TARGET_PAGE_MASK;
2398 return block;
2402 * Finds the named RAMBlock
2404 * name: The name of RAMBlock to find
2406 * Returns: RAMBlock (or NULL if not found)
2408 RAMBlock *qemu_ram_block_by_name(const char *name)
2410 RAMBlock *block;
2412 RAMBLOCK_FOREACH(block) {
2413 if (!strcmp(name, block->idstr)) {
2414 return block;
2418 return NULL;
2421 /* Some of the softmmu routines need to translate from a host pointer
2422 (typically a TLB entry) back to a ram offset. */
2423 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2425 RAMBlock *block;
2426 ram_addr_t offset;
2428 block = qemu_ram_block_from_host(ptr, false, &offset);
2429 if (!block) {
2430 return RAM_ADDR_INVALID;
2433 return block->offset + offset;
2436 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2437 MemTxAttrs attrs, void *buf, hwaddr len);
2438 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2439 const void *buf, hwaddr len);
2440 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2441 bool is_write, MemTxAttrs attrs);
2443 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2444 unsigned len, MemTxAttrs attrs)
2446 subpage_t *subpage = opaque;
2447 uint8_t buf[8];
2448 MemTxResult res;
2450 #if defined(DEBUG_SUBPAGE)
2451 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2452 subpage, len, addr);
2453 #endif
2454 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2455 if (res) {
2456 return res;
2458 *data = ldn_p(buf, len);
2459 return MEMTX_OK;
2462 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2463 uint64_t value, unsigned len, MemTxAttrs attrs)
2465 subpage_t *subpage = opaque;
2466 uint8_t buf[8];
2468 #if defined(DEBUG_SUBPAGE)
2469 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2470 " value %"PRIx64"\n",
2471 __func__, subpage, len, addr, value);
2472 #endif
2473 stn_p(buf, len, value);
2474 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2477 static bool subpage_accepts(void *opaque, hwaddr addr,
2478 unsigned len, bool is_write,
2479 MemTxAttrs attrs)
2481 subpage_t *subpage = opaque;
2482 #if defined(DEBUG_SUBPAGE)
2483 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2484 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2485 #endif
2487 return flatview_access_valid(subpage->fv, addr + subpage->base,
2488 len, is_write, attrs);
2491 static const MemoryRegionOps subpage_ops = {
2492 .read_with_attrs = subpage_read,
2493 .write_with_attrs = subpage_write,
2494 .impl.min_access_size = 1,
2495 .impl.max_access_size = 8,
2496 .valid.min_access_size = 1,
2497 .valid.max_access_size = 8,
2498 .valid.accepts = subpage_accepts,
2499 .endianness = DEVICE_NATIVE_ENDIAN,
2502 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2503 uint16_t section)
2505 int idx, eidx;
2507 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2508 return -1;
2509 idx = SUBPAGE_IDX(start);
2510 eidx = SUBPAGE_IDX(end);
2511 #if defined(DEBUG_SUBPAGE)
2512 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2513 __func__, mmio, start, end, idx, eidx, section);
2514 #endif
2515 for (; idx <= eidx; idx++) {
2516 mmio->sub_section[idx] = section;
2519 return 0;
2522 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2524 subpage_t *mmio;
2526 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2527 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2528 mmio->fv = fv;
2529 mmio->base = base;
2530 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2531 NULL, TARGET_PAGE_SIZE);
2532 mmio->iomem.subpage = true;
2533 #if defined(DEBUG_SUBPAGE)
2534 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2535 mmio, base, TARGET_PAGE_SIZE);
2536 #endif
2538 return mmio;
2541 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2543 assert(fv);
2544 MemoryRegionSection section = {
2545 .fv = fv,
2546 .mr = mr,
2547 .offset_within_address_space = 0,
2548 .offset_within_region = 0,
2549 .size = int128_2_64(),
2552 return phys_section_add(map, &section);
2555 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2556 hwaddr index, MemTxAttrs attrs)
2558 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2559 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2560 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2561 MemoryRegionSection *sections = d->map.sections;
2563 return &sections[index & ~TARGET_PAGE_MASK];
2566 static void io_mem_init(void)
2568 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2569 NULL, UINT64_MAX);
2572 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2574 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2575 uint16_t n;
2577 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2578 assert(n == PHYS_SECTION_UNASSIGNED);
2580 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2582 return d;
2585 void address_space_dispatch_free(AddressSpaceDispatch *d)
2587 phys_sections_free(&d->map);
2588 g_free(d);
2591 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2595 static void tcg_log_global_after_sync(MemoryListener *listener)
2597 CPUAddressSpace *cpuas;
2599 /* Wait for the CPU to end the current TB. This avoids the following
2600 * incorrect race:
2602 * vCPU migration
2603 * ---------------------- -------------------------
2604 * TLB check -> slow path
2605 * notdirty_mem_write
2606 * write to RAM
2607 * mark dirty
2608 * clear dirty flag
2609 * TLB check -> fast path
2610 * read memory
2611 * write to RAM
2613 * by pushing the migration thread's memory read after the vCPU thread has
2614 * written the memory.
2616 if (replay_mode == REPLAY_MODE_NONE) {
2618 * VGA can make calls to this function while updating the screen.
2619 * In record/replay mode this causes a deadlock, because
2620 * run_on_cpu waits for rr mutex. Therefore no races are possible
2621 * in this case and no need for making run_on_cpu when
2622 * record/replay is not enabled.
2624 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2625 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2629 static void tcg_commit(MemoryListener *listener)
2631 CPUAddressSpace *cpuas;
2632 AddressSpaceDispatch *d;
2634 assert(tcg_enabled());
2635 /* since each CPU stores ram addresses in its TLB cache, we must
2636 reset the modified entries */
2637 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2638 cpu_reloading_memory_map();
2639 /* The CPU and TLB are protected by the iothread lock.
2640 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2641 * may have split the RCU critical section.
2643 d = address_space_to_dispatch(cpuas->as);
2644 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2645 tlb_flush(cpuas->cpu);
2648 static void memory_map_init(void)
2650 system_memory = g_malloc(sizeof(*system_memory));
2652 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2653 address_space_init(&address_space_memory, system_memory, "memory");
2655 system_io = g_malloc(sizeof(*system_io));
2656 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2657 65536);
2658 address_space_init(&address_space_io, system_io, "I/O");
2661 MemoryRegion *get_system_memory(void)
2663 return system_memory;
2666 MemoryRegion *get_system_io(void)
2668 return system_io;
2671 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2672 hwaddr length)
2674 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2675 addr += memory_region_get_ram_addr(mr);
2677 /* No early return if dirty_log_mask is or becomes 0, because
2678 * cpu_physical_memory_set_dirty_range will still call
2679 * xen_modified_memory.
2681 if (dirty_log_mask) {
2682 dirty_log_mask =
2683 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2685 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2686 assert(tcg_enabled());
2687 tb_invalidate_phys_range(addr, addr + length);
2688 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2690 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2693 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2696 * In principle this function would work on other memory region types too,
2697 * but the ROM device use case is the only one where this operation is
2698 * necessary. Other memory regions should use the
2699 * address_space_read/write() APIs.
2701 assert(memory_region_is_romd(mr));
2703 invalidate_and_set_dirty(mr, addr, size);
2706 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2708 unsigned access_size_max = mr->ops->valid.max_access_size;
2710 /* Regions are assumed to support 1-4 byte accesses unless
2711 otherwise specified. */
2712 if (access_size_max == 0) {
2713 access_size_max = 4;
2716 /* Bound the maximum access by the alignment of the address. */
2717 if (!mr->ops->impl.unaligned) {
2718 unsigned align_size_max = addr & -addr;
2719 if (align_size_max != 0 && align_size_max < access_size_max) {
2720 access_size_max = align_size_max;
2724 /* Don't attempt accesses larger than the maximum. */
2725 if (l > access_size_max) {
2726 l = access_size_max;
2728 l = pow2floor(l);
2730 return l;
2733 static bool prepare_mmio_access(MemoryRegion *mr)
2735 bool release_lock = false;
2737 if (!qemu_mutex_iothread_locked()) {
2738 qemu_mutex_lock_iothread();
2739 release_lock = true;
2741 if (mr->flush_coalesced_mmio) {
2742 qemu_flush_coalesced_mmio_buffer();
2745 return release_lock;
2748 /* Called within RCU critical section. */
2749 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2750 MemTxAttrs attrs,
2751 const void *ptr,
2752 hwaddr len, hwaddr addr1,
2753 hwaddr l, MemoryRegion *mr)
2755 uint8_t *ram_ptr;
2756 uint64_t val;
2757 MemTxResult result = MEMTX_OK;
2758 bool release_lock = false;
2759 const uint8_t *buf = ptr;
2761 for (;;) {
2762 if (!memory_access_is_direct(mr, true)) {
2763 release_lock |= prepare_mmio_access(mr);
2764 l = memory_access_size(mr, l, addr1);
2765 /* XXX: could force current_cpu to NULL to avoid
2766 potential bugs */
2767 val = ldn_he_p(buf, l);
2768 result |= memory_region_dispatch_write(mr, addr1, val,
2769 size_memop(l), attrs);
2770 } else {
2771 /* RAM case */
2772 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2773 memcpy(ram_ptr, buf, l);
2774 invalidate_and_set_dirty(mr, addr1, l);
2777 if (release_lock) {
2778 qemu_mutex_unlock_iothread();
2779 release_lock = false;
2782 len -= l;
2783 buf += l;
2784 addr += l;
2786 if (!len) {
2787 break;
2790 l = len;
2791 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2794 return result;
2797 /* Called from RCU critical section. */
2798 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2799 const void *buf, hwaddr len)
2801 hwaddr l;
2802 hwaddr addr1;
2803 MemoryRegion *mr;
2804 MemTxResult result = MEMTX_OK;
2806 l = len;
2807 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2808 result = flatview_write_continue(fv, addr, attrs, buf, len,
2809 addr1, l, mr);
2811 return result;
2814 /* Called within RCU critical section. */
2815 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2816 MemTxAttrs attrs, void *ptr,
2817 hwaddr len, hwaddr addr1, hwaddr l,
2818 MemoryRegion *mr)
2820 uint8_t *ram_ptr;
2821 uint64_t val;
2822 MemTxResult result = MEMTX_OK;
2823 bool release_lock = false;
2824 uint8_t *buf = ptr;
2826 fuzz_dma_read_cb(addr, len, mr);
2827 for (;;) {
2828 if (!memory_access_is_direct(mr, false)) {
2829 /* I/O case */
2830 release_lock |= prepare_mmio_access(mr);
2831 l = memory_access_size(mr, l, addr1);
2832 result |= memory_region_dispatch_read(mr, addr1, &val,
2833 size_memop(l), attrs);
2834 stn_he_p(buf, l, val);
2835 } else {
2836 /* RAM case */
2837 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2838 memcpy(buf, ram_ptr, l);
2841 if (release_lock) {
2842 qemu_mutex_unlock_iothread();
2843 release_lock = false;
2846 len -= l;
2847 buf += l;
2848 addr += l;
2850 if (!len) {
2851 break;
2854 l = len;
2855 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2858 return result;
2861 /* Called from RCU critical section. */
2862 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2863 MemTxAttrs attrs, void *buf, hwaddr len)
2865 hwaddr l;
2866 hwaddr addr1;
2867 MemoryRegion *mr;
2869 l = len;
2870 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2871 return flatview_read_continue(fv, addr, attrs, buf, len,
2872 addr1, l, mr);
2875 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2876 MemTxAttrs attrs, void *buf, hwaddr len)
2878 MemTxResult result = MEMTX_OK;
2879 FlatView *fv;
2881 if (len > 0) {
2882 RCU_READ_LOCK_GUARD();
2883 fv = address_space_to_flatview(as);
2884 result = flatview_read(fv, addr, attrs, buf, len);
2887 return result;
2890 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2891 MemTxAttrs attrs,
2892 const void *buf, hwaddr len)
2894 MemTxResult result = MEMTX_OK;
2895 FlatView *fv;
2897 if (len > 0) {
2898 RCU_READ_LOCK_GUARD();
2899 fv = address_space_to_flatview(as);
2900 result = flatview_write(fv, addr, attrs, buf, len);
2903 return result;
2906 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2907 void *buf, hwaddr len, bool is_write)
2909 if (is_write) {
2910 return address_space_write(as, addr, attrs, buf, len);
2911 } else {
2912 return address_space_read_full(as, addr, attrs, buf, len);
2916 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2917 hwaddr len, bool is_write)
2919 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2920 buf, len, is_write);
2923 enum write_rom_type {
2924 WRITE_DATA,
2925 FLUSH_CACHE,
2928 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2929 hwaddr addr,
2930 MemTxAttrs attrs,
2931 const void *ptr,
2932 hwaddr len,
2933 enum write_rom_type type)
2935 hwaddr l;
2936 uint8_t *ram_ptr;
2937 hwaddr addr1;
2938 MemoryRegion *mr;
2939 const uint8_t *buf = ptr;
2941 RCU_READ_LOCK_GUARD();
2942 while (len > 0) {
2943 l = len;
2944 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2946 if (!(memory_region_is_ram(mr) ||
2947 memory_region_is_romd(mr))) {
2948 l = memory_access_size(mr, l, addr1);
2949 } else {
2950 /* ROM/RAM case */
2951 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2952 switch (type) {
2953 case WRITE_DATA:
2954 memcpy(ram_ptr, buf, l);
2955 invalidate_and_set_dirty(mr, addr1, l);
2956 break;
2957 case FLUSH_CACHE:
2958 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2959 break;
2962 len -= l;
2963 buf += l;
2964 addr += l;
2966 return MEMTX_OK;
2969 /* used for ROM loading : can write in RAM and ROM */
2970 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2971 MemTxAttrs attrs,
2972 const void *buf, hwaddr len)
2974 return address_space_write_rom_internal(as, addr, attrs,
2975 buf, len, WRITE_DATA);
2978 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2981 * This function should do the same thing as an icache flush that was
2982 * triggered from within the guest. For TCG we are always cache coherent,
2983 * so there is no need to flush anything. For KVM / Xen we need to flush
2984 * the host's instruction cache at least.
2986 if (tcg_enabled()) {
2987 return;
2990 address_space_write_rom_internal(&address_space_memory,
2991 start, MEMTXATTRS_UNSPECIFIED,
2992 NULL, len, FLUSH_CACHE);
2995 typedef struct {
2996 MemoryRegion *mr;
2997 void *buffer;
2998 hwaddr addr;
2999 hwaddr len;
3000 bool in_use;
3001 } BounceBuffer;
3003 static BounceBuffer bounce;
3005 typedef struct MapClient {
3006 QEMUBH *bh;
3007 QLIST_ENTRY(MapClient) link;
3008 } MapClient;
3010 QemuMutex map_client_list_lock;
3011 static QLIST_HEAD(, MapClient) map_client_list
3012 = QLIST_HEAD_INITIALIZER(map_client_list);
3014 static void cpu_unregister_map_client_do(MapClient *client)
3016 QLIST_REMOVE(client, link);
3017 g_free(client);
3020 static void cpu_notify_map_clients_locked(void)
3022 MapClient *client;
3024 while (!QLIST_EMPTY(&map_client_list)) {
3025 client = QLIST_FIRST(&map_client_list);
3026 qemu_bh_schedule(client->bh);
3027 cpu_unregister_map_client_do(client);
3031 void cpu_register_map_client(QEMUBH *bh)
3033 MapClient *client = g_malloc(sizeof(*client));
3035 qemu_mutex_lock(&map_client_list_lock);
3036 client->bh = bh;
3037 QLIST_INSERT_HEAD(&map_client_list, client, link);
3038 if (!qatomic_read(&bounce.in_use)) {
3039 cpu_notify_map_clients_locked();
3041 qemu_mutex_unlock(&map_client_list_lock);
3044 void cpu_exec_init_all(void)
3046 qemu_mutex_init(&ram_list.mutex);
3047 /* The data structures we set up here depend on knowing the page size,
3048 * so no more changes can be made after this point.
3049 * In an ideal world, nothing we did before we had finished the
3050 * machine setup would care about the target page size, and we could
3051 * do this much later, rather than requiring board models to state
3052 * up front what their requirements are.
3054 finalize_target_page_bits();
3055 io_mem_init();
3056 memory_map_init();
3057 qemu_mutex_init(&map_client_list_lock);
3060 void cpu_unregister_map_client(QEMUBH *bh)
3062 MapClient *client;
3064 qemu_mutex_lock(&map_client_list_lock);
3065 QLIST_FOREACH(client, &map_client_list, link) {
3066 if (client->bh == bh) {
3067 cpu_unregister_map_client_do(client);
3068 break;
3071 qemu_mutex_unlock(&map_client_list_lock);
3074 static void cpu_notify_map_clients(void)
3076 qemu_mutex_lock(&map_client_list_lock);
3077 cpu_notify_map_clients_locked();
3078 qemu_mutex_unlock(&map_client_list_lock);
3081 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3082 bool is_write, MemTxAttrs attrs)
3084 MemoryRegion *mr;
3085 hwaddr l, xlat;
3087 while (len > 0) {
3088 l = len;
3089 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3090 if (!memory_access_is_direct(mr, is_write)) {
3091 l = memory_access_size(mr, l, addr);
3092 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3093 return false;
3097 len -= l;
3098 addr += l;
3100 return true;
3103 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3104 hwaddr len, bool is_write,
3105 MemTxAttrs attrs)
3107 FlatView *fv;
3108 bool result;
3110 RCU_READ_LOCK_GUARD();
3111 fv = address_space_to_flatview(as);
3112 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3113 return result;
3116 static hwaddr
3117 flatview_extend_translation(FlatView *fv, hwaddr addr,
3118 hwaddr target_len,
3119 MemoryRegion *mr, hwaddr base, hwaddr len,
3120 bool is_write, MemTxAttrs attrs)
3122 hwaddr done = 0;
3123 hwaddr xlat;
3124 MemoryRegion *this_mr;
3126 for (;;) {
3127 target_len -= len;
3128 addr += len;
3129 done += len;
3130 if (target_len == 0) {
3131 return done;
3134 len = target_len;
3135 this_mr = flatview_translate(fv, addr, &xlat,
3136 &len, is_write, attrs);
3137 if (this_mr != mr || xlat != base + done) {
3138 return done;
3143 /* Map a physical memory region into a host virtual address.
3144 * May map a subset of the requested range, given by and returned in *plen.
3145 * May return NULL if resources needed to perform the mapping are exhausted.
3146 * Use only for reads OR writes - not for read-modify-write operations.
3147 * Use cpu_register_map_client() to know when retrying the map operation is
3148 * likely to succeed.
3150 void *address_space_map(AddressSpace *as,
3151 hwaddr addr,
3152 hwaddr *plen,
3153 bool is_write,
3154 MemTxAttrs attrs)
3156 hwaddr len = *plen;
3157 hwaddr l, xlat;
3158 MemoryRegion *mr;
3159 void *ptr;
3160 FlatView *fv;
3162 if (len == 0) {
3163 return NULL;
3166 l = len;
3167 RCU_READ_LOCK_GUARD();
3168 fv = address_space_to_flatview(as);
3169 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3171 if (!memory_access_is_direct(mr, is_write)) {
3172 if (qatomic_xchg(&bounce.in_use, true)) {
3173 *plen = 0;
3174 return NULL;
3176 /* Avoid unbounded allocations */
3177 l = MIN(l, TARGET_PAGE_SIZE);
3178 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3179 bounce.addr = addr;
3180 bounce.len = l;
3182 memory_region_ref(mr);
3183 bounce.mr = mr;
3184 if (!is_write) {
3185 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3186 bounce.buffer, l);
3189 *plen = l;
3190 return bounce.buffer;
3194 memory_region_ref(mr);
3195 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3196 l, is_write, attrs);
3197 fuzz_dma_read_cb(addr, *plen, mr);
3198 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3200 return ptr;
3203 /* Unmaps a memory region previously mapped by address_space_map().
3204 * Will also mark the memory as dirty if is_write is true. access_len gives
3205 * the amount of memory that was actually read or written by the caller.
3207 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3208 bool is_write, hwaddr access_len)
3210 if (buffer != bounce.buffer) {
3211 MemoryRegion *mr;
3212 ram_addr_t addr1;
3214 mr = memory_region_from_host(buffer, &addr1);
3215 assert(mr != NULL);
3216 if (is_write) {
3217 invalidate_and_set_dirty(mr, addr1, access_len);
3219 if (xen_enabled()) {
3220 xen_invalidate_map_cache_entry(buffer);
3222 memory_region_unref(mr);
3223 return;
3225 if (is_write) {
3226 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3227 bounce.buffer, access_len);
3229 qemu_vfree(bounce.buffer);
3230 bounce.buffer = NULL;
3231 memory_region_unref(bounce.mr);
3232 qatomic_mb_set(&bounce.in_use, false);
3233 cpu_notify_map_clients();
3236 void *cpu_physical_memory_map(hwaddr addr,
3237 hwaddr *plen,
3238 bool is_write)
3240 return address_space_map(&address_space_memory, addr, plen, is_write,
3241 MEMTXATTRS_UNSPECIFIED);
3244 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3245 bool is_write, hwaddr access_len)
3247 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3250 #define ARG1_DECL AddressSpace *as
3251 #define ARG1 as
3252 #define SUFFIX
3253 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3254 #define RCU_READ_LOCK(...) rcu_read_lock()
3255 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3256 #include "memory_ldst.c.inc"
3258 int64_t address_space_cache_init(MemoryRegionCache *cache,
3259 AddressSpace *as,
3260 hwaddr addr,
3261 hwaddr len,
3262 bool is_write)
3264 AddressSpaceDispatch *d;
3265 hwaddr l;
3266 MemoryRegion *mr;
3267 Int128 diff;
3269 assert(len > 0);
3271 l = len;
3272 cache->fv = address_space_get_flatview(as);
3273 d = flatview_to_dispatch(cache->fv);
3274 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3277 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3278 * Take that into account to compute how many bytes are there between
3279 * cache->xlat and the end of the section.
3281 diff = int128_sub(cache->mrs.size,
3282 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3283 l = int128_get64(int128_min(diff, int128_make64(l)));
3285 mr = cache->mrs.mr;
3286 memory_region_ref(mr);
3287 if (memory_access_is_direct(mr, is_write)) {
3288 /* We don't care about the memory attributes here as we're only
3289 * doing this if we found actual RAM, which behaves the same
3290 * regardless of attributes; so UNSPECIFIED is fine.
3292 l = flatview_extend_translation(cache->fv, addr, len, mr,
3293 cache->xlat, l, is_write,
3294 MEMTXATTRS_UNSPECIFIED);
3295 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3296 } else {
3297 cache->ptr = NULL;
3300 cache->len = l;
3301 cache->is_write = is_write;
3302 return l;
3305 void address_space_cache_invalidate(MemoryRegionCache *cache,
3306 hwaddr addr,
3307 hwaddr access_len)
3309 assert(cache->is_write);
3310 if (likely(cache->ptr)) {
3311 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3315 void address_space_cache_destroy(MemoryRegionCache *cache)
3317 if (!cache->mrs.mr) {
3318 return;
3321 if (xen_enabled()) {
3322 xen_invalidate_map_cache_entry(cache->ptr);
3324 memory_region_unref(cache->mrs.mr);
3325 flatview_unref(cache->fv);
3326 cache->mrs.mr = NULL;
3327 cache->fv = NULL;
3330 /* Called from RCU critical section. This function has the same
3331 * semantics as address_space_translate, but it only works on a
3332 * predefined range of a MemoryRegion that was mapped with
3333 * address_space_cache_init.
3335 static inline MemoryRegion *address_space_translate_cached(
3336 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3337 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3339 MemoryRegionSection section;
3340 MemoryRegion *mr;
3341 IOMMUMemoryRegion *iommu_mr;
3342 AddressSpace *target_as;
3344 assert(!cache->ptr);
3345 *xlat = addr + cache->xlat;
3347 mr = cache->mrs.mr;
3348 iommu_mr = memory_region_get_iommu(mr);
3349 if (!iommu_mr) {
3350 /* MMIO region. */
3351 return mr;
3354 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3355 NULL, is_write, true,
3356 &target_as, attrs);
3357 return section.mr;
3360 /* Called from RCU critical section. address_space_read_cached uses this
3361 * out of line function when the target is an MMIO or IOMMU region.
3363 MemTxResult
3364 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3365 void *buf, hwaddr len)
3367 hwaddr addr1, l;
3368 MemoryRegion *mr;
3370 l = len;
3371 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3372 MEMTXATTRS_UNSPECIFIED);
3373 return flatview_read_continue(cache->fv,
3374 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3375 addr1, l, mr);
3378 /* Called from RCU critical section. address_space_write_cached uses this
3379 * out of line function when the target is an MMIO or IOMMU region.
3381 MemTxResult
3382 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3383 const void *buf, hwaddr len)
3385 hwaddr addr1, l;
3386 MemoryRegion *mr;
3388 l = len;
3389 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3390 MEMTXATTRS_UNSPECIFIED);
3391 return flatview_write_continue(cache->fv,
3392 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3393 addr1, l, mr);
3396 #define ARG1_DECL MemoryRegionCache *cache
3397 #define ARG1 cache
3398 #define SUFFIX _cached_slow
3399 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3400 #define RCU_READ_LOCK() ((void)0)
3401 #define RCU_READ_UNLOCK() ((void)0)
3402 #include "memory_ldst.c.inc"
3404 /* virtual memory access for debug (includes writing to ROM) */
3405 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3406 void *ptr, target_ulong len, bool is_write)
3408 hwaddr phys_addr;
3409 target_ulong l, page;
3410 uint8_t *buf = ptr;
3412 cpu_synchronize_state(cpu);
3413 while (len > 0) {
3414 int asidx;
3415 MemTxAttrs attrs;
3416 MemTxResult res;
3418 page = addr & TARGET_PAGE_MASK;
3419 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3420 asidx = cpu_asidx_from_attrs(cpu, attrs);
3421 /* if no physical page mapped, return an error */
3422 if (phys_addr == -1)
3423 return -1;
3424 l = (page + TARGET_PAGE_SIZE) - addr;
3425 if (l > len)
3426 l = len;
3427 phys_addr += (addr & ~TARGET_PAGE_MASK);
3428 if (is_write) {
3429 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3430 attrs, buf, l);
3431 } else {
3432 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3433 attrs, buf, l);
3435 if (res != MEMTX_OK) {
3436 return -1;
3438 len -= l;
3439 buf += l;
3440 addr += l;
3442 return 0;
3446 * Allows code that needs to deal with migration bitmaps etc to still be built
3447 * target independent.
3449 size_t qemu_target_page_size(void)
3451 return TARGET_PAGE_SIZE;
3454 int qemu_target_page_bits(void)
3456 return TARGET_PAGE_BITS;
3459 int qemu_target_page_bits_min(void)
3461 return TARGET_PAGE_BITS_MIN;
3464 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3466 MemoryRegion*mr;
3467 hwaddr l = 1;
3468 bool res;
3470 RCU_READ_LOCK_GUARD();
3471 mr = address_space_translate(&address_space_memory,
3472 phys_addr, &phys_addr, &l, false,
3473 MEMTXATTRS_UNSPECIFIED);
3475 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3476 return res;
3479 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3481 RAMBlock *block;
3482 int ret = 0;
3484 RCU_READ_LOCK_GUARD();
3485 RAMBLOCK_FOREACH(block) {
3486 ret = func(block, opaque);
3487 if (ret) {
3488 break;
3491 return ret;
3495 * Unmap pages of memory from start to start+length such that
3496 * they a) read as 0, b) Trigger whatever fault mechanism
3497 * the OS provides for postcopy.
3498 * The pages must be unmapped by the end of the function.
3499 * Returns: 0 on success, none-0 on failure
3502 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3504 int ret = -1;
3506 uint8_t *host_startaddr = rb->host + start;
3508 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3509 error_report("ram_block_discard_range: Unaligned start address: %p",
3510 host_startaddr);
3511 goto err;
3514 if ((start + length) <= rb->max_length) {
3515 bool need_madvise, need_fallocate;
3516 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3517 error_report("ram_block_discard_range: Unaligned length: %zx",
3518 length);
3519 goto err;
3522 errno = ENOTSUP; /* If we are missing MADVISE etc */
3524 /* The logic here is messy;
3525 * madvise DONTNEED fails for hugepages
3526 * fallocate works on hugepages and shmem
3527 * shared anonymous memory requires madvise REMOVE
3529 need_madvise = (rb->page_size == qemu_host_page_size);
3530 need_fallocate = rb->fd != -1;
3531 if (need_fallocate) {
3532 /* For a file, this causes the area of the file to be zero'd
3533 * if read, and for hugetlbfs also causes it to be unmapped
3534 * so a userfault will trigger.
3536 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3537 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3538 start, length);
3539 if (ret) {
3540 ret = -errno;
3541 error_report("ram_block_discard_range: Failed to fallocate "
3542 "%s:%" PRIx64 " +%zx (%d)",
3543 rb->idstr, start, length, ret);
3544 goto err;
3546 #else
3547 ret = -ENOSYS;
3548 error_report("ram_block_discard_range: fallocate not available/file"
3549 "%s:%" PRIx64 " +%zx (%d)",
3550 rb->idstr, start, length, ret);
3551 goto err;
3552 #endif
3554 if (need_madvise) {
3555 /* For normal RAM this causes it to be unmapped,
3556 * for shared memory it causes the local mapping to disappear
3557 * and to fall back on the file contents (which we just
3558 * fallocate'd away).
3560 #if defined(CONFIG_MADVISE)
3561 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3562 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3563 } else {
3564 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3566 if (ret) {
3567 ret = -errno;
3568 error_report("ram_block_discard_range: Failed to discard range "
3569 "%s:%" PRIx64 " +%zx (%d)",
3570 rb->idstr, start, length, ret);
3571 goto err;
3573 #else
3574 ret = -ENOSYS;
3575 error_report("ram_block_discard_range: MADVISE not available"
3576 "%s:%" PRIx64 " +%zx (%d)",
3577 rb->idstr, start, length, ret);
3578 goto err;
3579 #endif
3581 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3582 need_madvise, need_fallocate, ret);
3583 } else {
3584 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3585 "/%zx/" RAM_ADDR_FMT")",
3586 rb->idstr, start, length, rb->max_length);
3589 err:
3590 return ret;
3593 bool ramblock_is_pmem(RAMBlock *rb)
3595 return rb->flags & RAM_PMEM;
3598 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3600 if (start == end - 1) {
3601 qemu_printf("\t%3d ", start);
3602 } else {
3603 qemu_printf("\t%3d..%-3d ", start, end - 1);
3605 qemu_printf(" skip=%d ", skip);
3606 if (ptr == PHYS_MAP_NODE_NIL) {
3607 qemu_printf(" ptr=NIL");
3608 } else if (!skip) {
3609 qemu_printf(" ptr=#%d", ptr);
3610 } else {
3611 qemu_printf(" ptr=[%d]", ptr);
3613 qemu_printf("\n");
3616 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3617 int128_sub((size), int128_one())) : 0)
3619 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3621 int i;
3623 qemu_printf(" Dispatch\n");
3624 qemu_printf(" Physical sections\n");
3626 for (i = 0; i < d->map.sections_nb; ++i) {
3627 MemoryRegionSection *s = d->map.sections + i;
3628 const char *names[] = { " [unassigned]", " [not dirty]",
3629 " [ROM]", " [watch]" };
3631 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3632 " %s%s%s%s%s",
3634 s->offset_within_address_space,
3635 s->offset_within_address_space + MR_SIZE(s->mr->size),
3636 s->mr->name ? s->mr->name : "(noname)",
3637 i < ARRAY_SIZE(names) ? names[i] : "",
3638 s->mr == root ? " [ROOT]" : "",
3639 s == d->mru_section ? " [MRU]" : "",
3640 s->mr->is_iommu ? " [iommu]" : "");
3642 if (s->mr->alias) {
3643 qemu_printf(" alias=%s", s->mr->alias->name ?
3644 s->mr->alias->name : "noname");
3646 qemu_printf("\n");
3649 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3650 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3651 for (i = 0; i < d->map.nodes_nb; ++i) {
3652 int j, jprev;
3653 PhysPageEntry prev;
3654 Node *n = d->map.nodes + i;
3656 qemu_printf(" [%d]\n", i);
3658 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3659 PhysPageEntry *pe = *n + j;
3661 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3662 continue;
3665 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3667 jprev = j;
3668 prev = *pe;
3671 if (jprev != ARRAY_SIZE(*n)) {
3672 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3678 * If positive, discarding RAM is disabled. If negative, discarding RAM is
3679 * required to work and cannot be disabled.
3681 static int ram_block_discard_disabled;
3683 int ram_block_discard_disable(bool state)
3685 int old;
3687 if (!state) {
3688 qatomic_dec(&ram_block_discard_disabled);
3689 return 0;
3692 do {
3693 old = qatomic_read(&ram_block_discard_disabled);
3694 if (old < 0) {
3695 return -EBUSY;
3697 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3698 old, old + 1) != old);
3699 return 0;
3702 int ram_block_discard_require(bool state)
3704 int old;
3706 if (!state) {
3707 qatomic_inc(&ram_block_discard_disabled);
3708 return 0;
3711 do {
3712 old = qatomic_read(&ram_block_discard_disabled);
3713 if (old > 0) {
3714 return -EBUSY;
3716 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3717 old, old - 1) != old);
3718 return 0;
3721 bool ram_block_discard_is_disabled(void)
3723 return qatomic_read(&ram_block_discard_disabled) > 0;
3726 bool ram_block_discard_is_required(void)
3728 return qatomic_read(&ram_block_discard_disabled) < 0;