2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
10 #include "qemu/osdep.h"
12 #include "qapi/error.h"
13 #include "target/ppc/cpu.h"
14 #include "sysemu/cpus.h"
15 #include "sysemu/dma.h"
16 #include "hw/qdev-properties.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/xive.h"
19 #include "hw/ppc/xive_regs.h"
22 * XIVE Thread Interrupt Management context
26 * Convert a priority number to an Interrupt Pending Buffer (IPB)
27 * register, which indicates a pending interrupt at the priority
28 * corresponding to the bit number
30 static uint8_t priority_to_ipb(uint8_t priority
)
32 return priority
> XIVE_PRIORITY_MAX
?
33 0 : 1 << (XIVE_PRIORITY_MAX
- priority
);
37 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
38 * Interrupt Priority Register (PIPR), which contains the priority of
39 * the most favored pending notification.
41 static uint8_t ipb_to_pipr(uint8_t ibp
)
43 return ibp
? clz32((uint32_t)ibp
<< 24) : 0xff;
46 static void ipb_update(uint8_t *regs
, uint8_t priority
)
48 regs
[TM_IPB
] |= priority_to_ipb(priority
);
49 regs
[TM_PIPR
] = ipb_to_pipr(regs
[TM_IPB
]);
52 static uint8_t exception_mask(uint8_t ring
)
60 g_assert_not_reached();
64 static uint64_t xive_tctx_accept(XiveTCTX
*tctx
, uint8_t ring
)
66 uint8_t *regs
= &tctx
->regs
[ring
];
67 uint8_t nsr
= regs
[TM_NSR
];
68 uint8_t mask
= exception_mask(ring
);
70 qemu_irq_lower(tctx
->output
);
72 if (regs
[TM_NSR
] & mask
) {
73 uint8_t cppr
= regs
[TM_PIPR
];
77 /* Reset the pending buffer bit */
78 regs
[TM_IPB
] &= ~priority_to_ipb(cppr
);
79 regs
[TM_PIPR
] = ipb_to_pipr(regs
[TM_IPB
]);
81 /* Drop Exception bit */
82 regs
[TM_NSR
] &= ~mask
;
85 return (nsr
<< 8) | regs
[TM_CPPR
];
88 static void xive_tctx_notify(XiveTCTX
*tctx
, uint8_t ring
)
90 uint8_t *regs
= &tctx
->regs
[ring
];
92 if (regs
[TM_PIPR
] < regs
[TM_CPPR
]) {
95 regs
[TM_NSR
] |= TM_QW1_NSR_EO
;
98 regs
[TM_NSR
] |= (TM_QW3_NSR_HE_PHYS
<< 6);
101 g_assert_not_reached();
103 qemu_irq_raise(tctx
->output
);
107 static void xive_tctx_set_cppr(XiveTCTX
*tctx
, uint8_t ring
, uint8_t cppr
)
109 if (cppr
> XIVE_PRIORITY_MAX
) {
113 tctx
->regs
[ring
+ TM_CPPR
] = cppr
;
115 /* CPPR has changed, check if we need to raise a pending exception */
116 xive_tctx_notify(tctx
, ring
);
120 * XIVE Thread Interrupt Management Area (TIMA)
123 static void xive_tm_set_hv_cppr(XiveTCTX
*tctx
, hwaddr offset
,
124 uint64_t value
, unsigned size
)
126 xive_tctx_set_cppr(tctx
, TM_QW3_HV_PHYS
, value
& 0xff);
129 static uint64_t xive_tm_ack_hv_reg(XiveTCTX
*tctx
, hwaddr offset
, unsigned size
)
131 return xive_tctx_accept(tctx
, TM_QW3_HV_PHYS
);
134 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX
*tctx
, hwaddr offset
,
139 ret
= tctx
->regs
[TM_QW2_HV_POOL
+ TM_WORD2
] & TM_QW2W2_POOL_CAM
;
140 tctx
->regs
[TM_QW2_HV_POOL
+ TM_WORD2
] &= ~TM_QW2W2_POOL_CAM
;
144 static void xive_tm_vt_push(XiveTCTX
*tctx
, hwaddr offset
,
145 uint64_t value
, unsigned size
)
147 tctx
->regs
[TM_QW3_HV_PHYS
+ TM_WORD2
] = value
& 0xff;
150 static uint64_t xive_tm_vt_poll(XiveTCTX
*tctx
, hwaddr offset
, unsigned size
)
152 return tctx
->regs
[TM_QW3_HV_PHYS
+ TM_WORD2
] & 0xff;
156 * Define an access map for each page of the TIMA that we will use in
157 * the memory region ops to filter values when doing loads and stores
158 * of raw registers values
160 * Registers accessibility bits :
168 static const uint8_t xive_tm_hw_view
[] = {
169 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
170 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
171 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
172 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 3, 3, 3, 0,
175 static const uint8_t xive_tm_hv_view
[] = {
176 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
177 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
178 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0,
179 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0,
182 static const uint8_t xive_tm_os_view
[] = {
183 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
184 /* QW-1 OS */ 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,
185 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
186 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
189 static const uint8_t xive_tm_user_view
[] = {
190 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
191 /* QW-1 OS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
192 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
193 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
197 * Overall TIMA access map for the thread interrupt management context
200 static const uint8_t *xive_tm_views
[] = {
201 [XIVE_TM_HW_PAGE
] = xive_tm_hw_view
,
202 [XIVE_TM_HV_PAGE
] = xive_tm_hv_view
,
203 [XIVE_TM_OS_PAGE
] = xive_tm_os_view
,
204 [XIVE_TM_USER_PAGE
] = xive_tm_user_view
,
208 * Computes a register access mask for a given offset in the TIMA
210 static uint64_t xive_tm_mask(hwaddr offset
, unsigned size
, bool write
)
212 uint8_t page_offset
= (offset
>> TM_SHIFT
) & 0x3;
213 uint8_t reg_offset
= offset
& 0x3F;
214 uint8_t reg_mask
= write
? 0x1 : 0x2;
218 for (i
= 0; i
< size
; i
++) {
219 if (xive_tm_views
[page_offset
][reg_offset
+ i
] & reg_mask
) {
220 mask
|= (uint64_t) 0xff << (8 * (size
- i
- 1));
227 static void xive_tm_raw_write(XiveTCTX
*tctx
, hwaddr offset
, uint64_t value
,
230 uint8_t ring_offset
= offset
& 0x30;
231 uint8_t reg_offset
= offset
& 0x3F;
232 uint64_t mask
= xive_tm_mask(offset
, size
, true);
236 * Only 4 or 8 bytes stores are allowed and the User ring is
239 if (size
< 4 || !mask
|| ring_offset
== TM_QW0_USER
) {
240 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid write access at TIMA @%"
241 HWADDR_PRIx
"\n", offset
);
246 * Use the register offset for the raw values and filter out
249 for (i
= 0; i
< size
; i
++) {
250 uint8_t byte_mask
= (mask
>> (8 * (size
- i
- 1)));
252 tctx
->regs
[reg_offset
+ i
] = (value
>> (8 * (size
- i
- 1))) &
258 static uint64_t xive_tm_raw_read(XiveTCTX
*tctx
, hwaddr offset
, unsigned size
)
260 uint8_t ring_offset
= offset
& 0x30;
261 uint8_t reg_offset
= offset
& 0x3F;
262 uint64_t mask
= xive_tm_mask(offset
, size
, false);
267 * Only 4 or 8 bytes loads are allowed and the User ring is
270 if (size
< 4 || !mask
|| ring_offset
== TM_QW0_USER
) {
271 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid read access at TIMA @%"
272 HWADDR_PRIx
"\n", offset
);
276 /* Use the register offset for the raw values */
278 for (i
= 0; i
< size
; i
++) {
279 ret
|= (uint64_t) tctx
->regs
[reg_offset
+ i
] << (8 * (size
- i
- 1));
282 /* filter out reserved values */
287 * The TM context is mapped twice within each page. Stores and loads
288 * to the first mapping below 2K write and read the specified values
289 * without modification. The second mapping above 2K performs specific
290 * state changes (side effects) in addition to setting/returning the
291 * interrupt management area context of the processor thread.
293 static uint64_t xive_tm_ack_os_reg(XiveTCTX
*tctx
, hwaddr offset
, unsigned size
)
295 return xive_tctx_accept(tctx
, TM_QW1_OS
);
298 static void xive_tm_set_os_cppr(XiveTCTX
*tctx
, hwaddr offset
,
299 uint64_t value
, unsigned size
)
301 xive_tctx_set_cppr(tctx
, TM_QW1_OS
, value
& 0xff);
305 * Adjust the IPB to allow a CPU to process event queues of other
306 * priorities during one physical interrupt cycle.
308 static void xive_tm_set_os_pending(XiveTCTX
*tctx
, hwaddr offset
,
309 uint64_t value
, unsigned size
)
311 ipb_update(&tctx
->regs
[TM_QW1_OS
], value
& 0xff);
312 xive_tctx_notify(tctx
, TM_QW1_OS
);
316 * Define a mapping of "special" operations depending on the TIMA page
317 * offset and the size of the operation.
319 typedef struct XiveTmOp
{
323 void (*write_handler
)(XiveTCTX
*tctx
, hwaddr offset
, uint64_t value
,
325 uint64_t (*read_handler
)(XiveTCTX
*tctx
, hwaddr offset
, unsigned size
);
328 static const XiveTmOp xive_tm_operations
[] = {
330 * MMIOs below 2K : raw values and special operations without side
333 { XIVE_TM_OS_PAGE
, TM_QW1_OS
+ TM_CPPR
, 1, xive_tm_set_os_cppr
, NULL
},
334 { XIVE_TM_HV_PAGE
, TM_QW3_HV_PHYS
+ TM_CPPR
, 1, xive_tm_set_hv_cppr
, NULL
},
335 { XIVE_TM_HV_PAGE
, TM_QW3_HV_PHYS
+ TM_WORD2
, 1, xive_tm_vt_push
, NULL
},
336 { XIVE_TM_HV_PAGE
, TM_QW3_HV_PHYS
+ TM_WORD2
, 1, NULL
, xive_tm_vt_poll
},
338 /* MMIOs above 2K : special operations with side effects */
339 { XIVE_TM_OS_PAGE
, TM_SPC_ACK_OS_REG
, 2, NULL
, xive_tm_ack_os_reg
},
340 { XIVE_TM_OS_PAGE
, TM_SPC_SET_OS_PENDING
, 1, xive_tm_set_os_pending
, NULL
},
341 { XIVE_TM_HV_PAGE
, TM_SPC_ACK_HV_REG
, 2, NULL
, xive_tm_ack_hv_reg
},
342 { XIVE_TM_HV_PAGE
, TM_SPC_PULL_POOL_CTX
, 4, NULL
, xive_tm_pull_pool_ctx
},
343 { XIVE_TM_HV_PAGE
, TM_SPC_PULL_POOL_CTX
, 8, NULL
, xive_tm_pull_pool_ctx
},
346 static const XiveTmOp
*xive_tm_find_op(hwaddr offset
, unsigned size
, bool write
)
348 uint8_t page_offset
= (offset
>> TM_SHIFT
) & 0x3;
349 uint32_t op_offset
= offset
& 0xFFF;
352 for (i
= 0; i
< ARRAY_SIZE(xive_tm_operations
); i
++) {
353 const XiveTmOp
*xto
= &xive_tm_operations
[i
];
355 /* Accesses done from a more privileged TIMA page is allowed */
356 if (xto
->page_offset
>= page_offset
&&
357 xto
->op_offset
== op_offset
&&
359 ((write
&& xto
->write_handler
) || (!write
&& xto
->read_handler
))) {
369 void xive_tctx_tm_write(XiveTCTX
*tctx
, hwaddr offset
, uint64_t value
,
375 * TODO: check V bit in Q[0-3]W2
379 * First, check for special operations in the 2K region
381 if (offset
& 0x800) {
382 xto
= xive_tm_find_op(offset
, size
, true);
384 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid write access at TIMA"
385 "@%"HWADDR_PRIx
"\n", offset
);
387 xto
->write_handler(tctx
, offset
, value
, size
);
393 * Then, for special operations in the region below 2K.
395 xto
= xive_tm_find_op(offset
, size
, true);
397 xto
->write_handler(tctx
, offset
, value
, size
);
402 * Finish with raw access to the register values
404 xive_tm_raw_write(tctx
, offset
, value
, size
);
407 uint64_t xive_tctx_tm_read(XiveTCTX
*tctx
, hwaddr offset
, unsigned size
)
412 * TODO: check V bit in Q[0-3]W2
416 * First, check for special operations in the 2K region
418 if (offset
& 0x800) {
419 xto
= xive_tm_find_op(offset
, size
, false);
421 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid read access to TIMA"
422 "@%"HWADDR_PRIx
"\n", offset
);
425 return xto
->read_handler(tctx
, offset
, size
);
429 * Then, for special operations in the region below 2K.
431 xto
= xive_tm_find_op(offset
, size
, false);
433 return xto
->read_handler(tctx
, offset
, size
);
437 * Finish with raw access to the register values
439 return xive_tm_raw_read(tctx
, offset
, size
);
442 static void xive_tm_write(void *opaque
, hwaddr offset
,
443 uint64_t value
, unsigned size
)
445 XiveTCTX
*tctx
= xive_router_get_tctx(XIVE_ROUTER(opaque
), current_cpu
);
447 xive_tctx_tm_write(tctx
, offset
, value
, size
);
450 static uint64_t xive_tm_read(void *opaque
, hwaddr offset
, unsigned size
)
452 XiveTCTX
*tctx
= xive_router_get_tctx(XIVE_ROUTER(opaque
), current_cpu
);
454 return xive_tctx_tm_read(tctx
, offset
, size
);
457 const MemoryRegionOps xive_tm_ops
= {
458 .read
= xive_tm_read
,
459 .write
= xive_tm_write
,
460 .endianness
= DEVICE_BIG_ENDIAN
,
462 .min_access_size
= 1,
463 .max_access_size
= 8,
466 .min_access_size
= 1,
467 .max_access_size
= 8,
471 static inline uint32_t xive_tctx_word2(uint8_t *ring
)
473 return *((uint32_t *) &ring
[TM_WORD2
]);
476 static char *xive_tctx_ring_print(uint8_t *ring
)
478 uint32_t w2
= xive_tctx_word2(ring
);
480 return g_strdup_printf("%02x %02x %02x %02x %02x "
481 "%02x %02x %02x %08x",
482 ring
[TM_NSR
], ring
[TM_CPPR
], ring
[TM_IPB
], ring
[TM_LSMFB
],
483 ring
[TM_ACK_CNT
], ring
[TM_INC
], ring
[TM_AGE
], ring
[TM_PIPR
],
487 static const char * const xive_tctx_ring_names
[] = {
488 "USER", "OS", "POOL", "PHYS",
491 void xive_tctx_pic_print_info(XiveTCTX
*tctx
, Monitor
*mon
)
493 int cpu_index
= tctx
->cs
? tctx
->cs
->cpu_index
: -1;
496 monitor_printf(mon
, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
499 for (i
= 0; i
< XIVE_TM_RING_COUNT
; i
++) {
500 char *s
= xive_tctx_ring_print(&tctx
->regs
[i
* XIVE_TM_RING_SIZE
]);
501 monitor_printf(mon
, "CPU[%04x]: %4s %s\n", cpu_index
,
502 xive_tctx_ring_names
[i
], s
);
507 static void xive_tctx_reset(void *dev
)
509 XiveTCTX
*tctx
= XIVE_TCTX(dev
);
511 memset(tctx
->regs
, 0, sizeof(tctx
->regs
));
513 /* Set some defaults */
514 tctx
->regs
[TM_QW1_OS
+ TM_LSMFB
] = 0xFF;
515 tctx
->regs
[TM_QW1_OS
+ TM_ACK_CNT
] = 0xFF;
516 tctx
->regs
[TM_QW1_OS
+ TM_AGE
] = 0xFF;
519 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
522 tctx
->regs
[TM_QW1_OS
+ TM_PIPR
] =
523 ipb_to_pipr(tctx
->regs
[TM_QW1_OS
+ TM_IPB
]);
524 tctx
->regs
[TM_QW3_HV_PHYS
+ TM_PIPR
] =
525 ipb_to_pipr(tctx
->regs
[TM_QW3_HV_PHYS
+ TM_IPB
]);
528 static void xive_tctx_realize(DeviceState
*dev
, Error
**errp
)
530 XiveTCTX
*tctx
= XIVE_TCTX(dev
);
534 Error
*local_err
= NULL
;
536 obj
= object_property_get_link(OBJECT(dev
), "cpu", &local_err
);
538 error_propagate(errp
, local_err
);
539 error_prepend(errp
, "required link 'cpu' not found: ");
543 cpu
= POWERPC_CPU(obj
);
547 switch (PPC_INPUT(env
)) {
548 case PPC_FLAGS_INPUT_POWER9
:
549 tctx
->output
= env
->irq_inputs
[POWER9_INPUT_INT
];
553 error_setg(errp
, "XIVE interrupt controller does not support "
554 "this CPU bus model");
558 qemu_register_reset(xive_tctx_reset
, dev
);
561 static void xive_tctx_unrealize(DeviceState
*dev
, Error
**errp
)
563 qemu_unregister_reset(xive_tctx_reset
, dev
);
566 static const VMStateDescription vmstate_xive_tctx
= {
567 .name
= TYPE_XIVE_TCTX
,
569 .minimum_version_id
= 1,
570 .fields
= (VMStateField
[]) {
571 VMSTATE_BUFFER(regs
, XiveTCTX
),
572 VMSTATE_END_OF_LIST()
576 static void xive_tctx_class_init(ObjectClass
*klass
, void *data
)
578 DeviceClass
*dc
= DEVICE_CLASS(klass
);
580 dc
->desc
= "XIVE Interrupt Thread Context";
581 dc
->realize
= xive_tctx_realize
;
582 dc
->unrealize
= xive_tctx_unrealize
;
583 dc
->vmsd
= &vmstate_xive_tctx
;
586 static const TypeInfo xive_tctx_info
= {
587 .name
= TYPE_XIVE_TCTX
,
588 .parent
= TYPE_DEVICE
,
589 .instance_size
= sizeof(XiveTCTX
),
590 .class_init
= xive_tctx_class_init
,
593 Object
*xive_tctx_create(Object
*cpu
, XiveRouter
*xrtr
, Error
**errp
)
595 Error
*local_err
= NULL
;
598 obj
= object_new(TYPE_XIVE_TCTX
);
599 object_property_add_child(cpu
, TYPE_XIVE_TCTX
, obj
, &error_abort
);
601 object_property_add_const_link(obj
, "cpu", cpu
, &error_abort
);
602 object_property_set_bool(obj
, true, "realized", &local_err
);
610 object_unparent(obj
);
611 error_propagate(errp
, local_err
);
619 static uint8_t xive_esb_set(uint8_t *pq
, uint8_t value
)
621 uint8_t old_pq
= *pq
& 0x3;
629 static bool xive_esb_trigger(uint8_t *pq
)
631 uint8_t old_pq
= *pq
& 0x3;
635 xive_esb_set(pq
, XIVE_ESB_PENDING
);
637 case XIVE_ESB_PENDING
:
638 case XIVE_ESB_QUEUED
:
639 xive_esb_set(pq
, XIVE_ESB_QUEUED
);
642 xive_esb_set(pq
, XIVE_ESB_OFF
);
645 g_assert_not_reached();
649 static bool xive_esb_eoi(uint8_t *pq
)
651 uint8_t old_pq
= *pq
& 0x3;
655 case XIVE_ESB_PENDING
:
656 xive_esb_set(pq
, XIVE_ESB_RESET
);
658 case XIVE_ESB_QUEUED
:
659 xive_esb_set(pq
, XIVE_ESB_PENDING
);
662 xive_esb_set(pq
, XIVE_ESB_OFF
);
665 g_assert_not_reached();
670 * XIVE Interrupt Source (or IVSE)
673 uint8_t xive_source_esb_get(XiveSource
*xsrc
, uint32_t srcno
)
675 assert(srcno
< xsrc
->nr_irqs
);
677 return xsrc
->status
[srcno
] & 0x3;
680 uint8_t xive_source_esb_set(XiveSource
*xsrc
, uint32_t srcno
, uint8_t pq
)
682 assert(srcno
< xsrc
->nr_irqs
);
684 return xive_esb_set(&xsrc
->status
[srcno
], pq
);
688 * Returns whether the event notification should be forwarded.
690 static bool xive_source_lsi_trigger(XiveSource
*xsrc
, uint32_t srcno
)
692 uint8_t old_pq
= xive_source_esb_get(xsrc
, srcno
);
694 xsrc
->status
[srcno
] |= XIVE_STATUS_ASSERTED
;
698 xive_source_esb_set(xsrc
, srcno
, XIVE_ESB_PENDING
);
706 * Returns whether the event notification should be forwarded.
708 static bool xive_source_esb_trigger(XiveSource
*xsrc
, uint32_t srcno
)
712 assert(srcno
< xsrc
->nr_irqs
);
714 ret
= xive_esb_trigger(&xsrc
->status
[srcno
]);
716 if (xive_source_irq_is_lsi(xsrc
, srcno
) &&
717 xive_source_esb_get(xsrc
, srcno
) == XIVE_ESB_QUEUED
) {
718 qemu_log_mask(LOG_GUEST_ERROR
,
719 "XIVE: queued an event on LSI IRQ %d\n", srcno
);
726 * Returns whether the event notification should be forwarded.
728 static bool xive_source_esb_eoi(XiveSource
*xsrc
, uint32_t srcno
)
732 assert(srcno
< xsrc
->nr_irqs
);
734 ret
= xive_esb_eoi(&xsrc
->status
[srcno
]);
737 * LSI sources do not set the Q bit but they can still be
738 * asserted, in which case we should forward a new event
741 if (xive_source_irq_is_lsi(xsrc
, srcno
) &&
742 xsrc
->status
[srcno
] & XIVE_STATUS_ASSERTED
) {
743 ret
= xive_source_lsi_trigger(xsrc
, srcno
);
750 * Forward the source event notification to the Router
752 static void xive_source_notify(XiveSource
*xsrc
, int srcno
)
754 XiveNotifierClass
*xnc
= XIVE_NOTIFIER_GET_CLASS(xsrc
->xive
);
757 xnc
->notify(xsrc
->xive
, srcno
);
762 * In a two pages ESB MMIO setting, even page is the trigger page, odd
763 * page is for management
765 static inline bool addr_is_even(hwaddr addr
, uint32_t shift
)
767 return !((addr
>> shift
) & 1);
770 static inline bool xive_source_is_trigger_page(XiveSource
*xsrc
, hwaddr addr
)
772 return xive_source_esb_has_2page(xsrc
) &&
773 addr_is_even(addr
, xsrc
->esb_shift
- 1);
778 * Trigger page Management/EOI page
780 * ESB MMIO setting 2 pages 1 or 2 pages
782 * 0x000 .. 0x3FF -1 EOI and return 0|1
783 * 0x400 .. 0x7FF -1 EOI and return 0|1
784 * 0x800 .. 0xBFF -1 return PQ
785 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
786 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
787 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
788 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
790 static uint64_t xive_source_esb_read(void *opaque
, hwaddr addr
, unsigned size
)
792 XiveSource
*xsrc
= XIVE_SOURCE(opaque
);
793 uint32_t offset
= addr
& 0xFFF;
794 uint32_t srcno
= addr
>> xsrc
->esb_shift
;
797 /* In a two pages ESB MMIO setting, trigger page should not be read */
798 if (xive_source_is_trigger_page(xsrc
, addr
)) {
799 qemu_log_mask(LOG_GUEST_ERROR
,
800 "XIVE: invalid load on IRQ %d trigger page at "
801 "0x%"HWADDR_PRIx
"\n", srcno
, addr
);
806 case XIVE_ESB_LOAD_EOI
... XIVE_ESB_LOAD_EOI
+ 0x7FF:
807 ret
= xive_source_esb_eoi(xsrc
, srcno
);
809 /* Forward the source event notification for routing */
811 xive_source_notify(xsrc
, srcno
);
815 case XIVE_ESB_GET
... XIVE_ESB_GET
+ 0x3FF:
816 ret
= xive_source_esb_get(xsrc
, srcno
);
819 case XIVE_ESB_SET_PQ_00
... XIVE_ESB_SET_PQ_00
+ 0x0FF:
820 case XIVE_ESB_SET_PQ_01
... XIVE_ESB_SET_PQ_01
+ 0x0FF:
821 case XIVE_ESB_SET_PQ_10
... XIVE_ESB_SET_PQ_10
+ 0x0FF:
822 case XIVE_ESB_SET_PQ_11
... XIVE_ESB_SET_PQ_11
+ 0x0FF:
823 ret
= xive_source_esb_set(xsrc
, srcno
, (offset
>> 8) & 0x3);
826 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid ESB load addr %x\n",
835 * Trigger page Management/EOI page
837 * ESB MMIO setting 2 pages 1 or 2 pages
839 * 0x000 .. 0x3FF Trigger Trigger
840 * 0x400 .. 0x7FF Trigger EOI
841 * 0x800 .. 0xBFF Trigger undefined
842 * 0xC00 .. 0xCFF Trigger PQ=00
843 * 0xD00 .. 0xDFF Trigger PQ=01
844 * 0xE00 .. 0xDFF Trigger PQ=10
845 * 0xF00 .. 0xDFF Trigger PQ=11
847 static void xive_source_esb_write(void *opaque
, hwaddr addr
,
848 uint64_t value
, unsigned size
)
850 XiveSource
*xsrc
= XIVE_SOURCE(opaque
);
851 uint32_t offset
= addr
& 0xFFF;
852 uint32_t srcno
= addr
>> xsrc
->esb_shift
;
855 /* In a two pages ESB MMIO setting, trigger page only triggers */
856 if (xive_source_is_trigger_page(xsrc
, addr
)) {
857 notify
= xive_source_esb_trigger(xsrc
, srcno
);
863 notify
= xive_source_esb_trigger(xsrc
, srcno
);
866 case XIVE_ESB_STORE_EOI
... XIVE_ESB_STORE_EOI
+ 0x3FF:
867 if (!(xsrc
->esb_flags
& XIVE_SRC_STORE_EOI
)) {
868 qemu_log_mask(LOG_GUEST_ERROR
,
869 "XIVE: invalid Store EOI for IRQ %d\n", srcno
);
873 notify
= xive_source_esb_eoi(xsrc
, srcno
);
876 case XIVE_ESB_SET_PQ_00
... XIVE_ESB_SET_PQ_00
+ 0x0FF:
877 case XIVE_ESB_SET_PQ_01
... XIVE_ESB_SET_PQ_01
+ 0x0FF:
878 case XIVE_ESB_SET_PQ_10
... XIVE_ESB_SET_PQ_10
+ 0x0FF:
879 case XIVE_ESB_SET_PQ_11
... XIVE_ESB_SET_PQ_11
+ 0x0FF:
880 xive_source_esb_set(xsrc
, srcno
, (offset
>> 8) & 0x3);
884 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid ESB write addr %x\n",
890 /* Forward the source event notification for routing */
892 xive_source_notify(xsrc
, srcno
);
896 static const MemoryRegionOps xive_source_esb_ops
= {
897 .read
= xive_source_esb_read
,
898 .write
= xive_source_esb_write
,
899 .endianness
= DEVICE_BIG_ENDIAN
,
901 .min_access_size
= 8,
902 .max_access_size
= 8,
905 .min_access_size
= 8,
906 .max_access_size
= 8,
910 void xive_source_set_irq(void *opaque
, int srcno
, int val
)
912 XiveSource
*xsrc
= XIVE_SOURCE(opaque
);
915 if (xive_source_irq_is_lsi(xsrc
, srcno
)) {
917 notify
= xive_source_lsi_trigger(xsrc
, srcno
);
919 xsrc
->status
[srcno
] &= ~XIVE_STATUS_ASSERTED
;
923 notify
= xive_source_esb_trigger(xsrc
, srcno
);
927 /* Forward the source event notification for routing */
929 xive_source_notify(xsrc
, srcno
);
933 void xive_source_pic_print_info(XiveSource
*xsrc
, uint32_t offset
, Monitor
*mon
)
937 for (i
= 0; i
< xsrc
->nr_irqs
; i
++) {
938 uint8_t pq
= xive_source_esb_get(xsrc
, i
);
940 if (pq
== XIVE_ESB_OFF
) {
944 monitor_printf(mon
, " %08x %s %c%c%c\n", i
+ offset
,
945 xive_source_irq_is_lsi(xsrc
, i
) ? "LSI" : "MSI",
946 pq
& XIVE_ESB_VAL_P
? 'P' : '-',
947 pq
& XIVE_ESB_VAL_Q
? 'Q' : '-',
948 xsrc
->status
[i
] & XIVE_STATUS_ASSERTED
? 'A' : ' ');
952 static void xive_source_reset(void *dev
)
954 XiveSource
*xsrc
= XIVE_SOURCE(dev
);
956 /* Do not clear the LSI bitmap */
958 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
959 memset(xsrc
->status
, XIVE_ESB_OFF
, xsrc
->nr_irqs
);
962 static void xive_source_realize(DeviceState
*dev
, Error
**errp
)
964 XiveSource
*xsrc
= XIVE_SOURCE(dev
);
966 Error
*local_err
= NULL
;
968 obj
= object_property_get_link(OBJECT(dev
), "xive", &local_err
);
970 error_propagate(errp
, local_err
);
971 error_prepend(errp
, "required link 'xive' not found: ");
975 xsrc
->xive
= XIVE_NOTIFIER(obj
);
977 if (!xsrc
->nr_irqs
) {
978 error_setg(errp
, "Number of interrupt needs to be greater than 0");
982 if (xsrc
->esb_shift
!= XIVE_ESB_4K
&&
983 xsrc
->esb_shift
!= XIVE_ESB_4K_2PAGE
&&
984 xsrc
->esb_shift
!= XIVE_ESB_64K
&&
985 xsrc
->esb_shift
!= XIVE_ESB_64K_2PAGE
) {
986 error_setg(errp
, "Invalid ESB shift setting");
990 xsrc
->status
= g_malloc0(xsrc
->nr_irqs
);
991 xsrc
->lsi_map
= bitmap_new(xsrc
->nr_irqs
);
993 memory_region_init_io(&xsrc
->esb_mmio
, OBJECT(xsrc
),
994 &xive_source_esb_ops
, xsrc
, "xive.esb",
995 (1ull << xsrc
->esb_shift
) * xsrc
->nr_irqs
);
997 qemu_register_reset(xive_source_reset
, dev
);
1000 static const VMStateDescription vmstate_xive_source
= {
1001 .name
= TYPE_XIVE_SOURCE
,
1003 .minimum_version_id
= 1,
1004 .fields
= (VMStateField
[]) {
1005 VMSTATE_UINT32_EQUAL(nr_irqs
, XiveSource
, NULL
),
1006 VMSTATE_VBUFFER_UINT32(status
, XiveSource
, 1, NULL
, nr_irqs
),
1007 VMSTATE_END_OF_LIST()
1012 * The default XIVE interrupt source setting for the ESB MMIOs is two
1013 * 64k pages without Store EOI, to be in sync with KVM.
1015 static Property xive_source_properties
[] = {
1016 DEFINE_PROP_UINT64("flags", XiveSource
, esb_flags
, 0),
1017 DEFINE_PROP_UINT32("nr-irqs", XiveSource
, nr_irqs
, 0),
1018 DEFINE_PROP_UINT32("shift", XiveSource
, esb_shift
, XIVE_ESB_64K_2PAGE
),
1019 DEFINE_PROP_END_OF_LIST(),
1022 static void xive_source_class_init(ObjectClass
*klass
, void *data
)
1024 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1026 dc
->desc
= "XIVE Interrupt Source";
1027 dc
->props
= xive_source_properties
;
1028 dc
->realize
= xive_source_realize
;
1029 dc
->vmsd
= &vmstate_xive_source
;
1032 static const TypeInfo xive_source_info
= {
1033 .name
= TYPE_XIVE_SOURCE
,
1034 .parent
= TYPE_DEVICE
,
1035 .instance_size
= sizeof(XiveSource
),
1036 .class_init
= xive_source_class_init
,
1043 void xive_end_queue_pic_print_info(XiveEND
*end
, uint32_t width
, Monitor
*mon
)
1045 uint64_t qaddr_base
= (uint64_t) be32_to_cpu(end
->w2
& 0x0fffffff) << 32
1046 | be32_to_cpu(end
->w3
);
1047 uint32_t qsize
= xive_get_field32(END_W0_QSIZE
, end
->w0
);
1048 uint32_t qindex
= xive_get_field32(END_W1_PAGE_OFF
, end
->w1
);
1049 uint32_t qentries
= 1 << (qsize
+ 10);
1053 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1055 monitor_printf(mon
, " [ ");
1056 qindex
= (qindex
- (width
- 1)) & (qentries
- 1);
1057 for (i
= 0; i
< width
; i
++) {
1058 uint64_t qaddr
= qaddr_base
+ (qindex
<< 2);
1059 uint32_t qdata
= -1;
1061 if (dma_memory_read(&address_space_memory
, qaddr
, &qdata
,
1063 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: failed to read EQ @0x%"
1064 HWADDR_PRIx
"\n", qaddr
);
1067 monitor_printf(mon
, "%s%08x ", i
== width
- 1 ? "^" : "",
1068 be32_to_cpu(qdata
));
1069 qindex
= (qindex
+ 1) & (qentries
- 1);
1073 void xive_end_pic_print_info(XiveEND
*end
, uint32_t end_idx
, Monitor
*mon
)
1075 uint64_t qaddr_base
= (uint64_t) be32_to_cpu(end
->w2
& 0x0fffffff) << 32
1076 | be32_to_cpu(end
->w3
);
1077 uint32_t qindex
= xive_get_field32(END_W1_PAGE_OFF
, end
->w1
);
1078 uint32_t qgen
= xive_get_field32(END_W1_GENERATION
, end
->w1
);
1079 uint32_t qsize
= xive_get_field32(END_W0_QSIZE
, end
->w0
);
1080 uint32_t qentries
= 1 << (qsize
+ 10);
1082 uint32_t nvt
= xive_get_field32(END_W6_NVT_INDEX
, end
->w6
);
1083 uint8_t priority
= xive_get_field32(END_W7_F0_PRIORITY
, end
->w7
);
1085 if (!xive_end_is_valid(end
)) {
1089 monitor_printf(mon
, " %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
1090 "% 6d/%5d ^%d", end_idx
,
1091 xive_end_is_valid(end
) ? 'v' : '-',
1092 xive_end_is_enqueue(end
) ? 'q' : '-',
1093 xive_end_is_notify(end
) ? 'n' : '-',
1094 xive_end_is_backlog(end
) ? 'b' : '-',
1095 xive_end_is_escalate(end
) ? 'e' : '-',
1096 priority
, nvt
, qaddr_base
, qindex
, qentries
, qgen
);
1098 xive_end_queue_pic_print_info(end
, 6, mon
);
1099 monitor_printf(mon
, "]\n");
1102 static void xive_end_enqueue(XiveEND
*end
, uint32_t data
)
1104 uint64_t qaddr_base
= (uint64_t) be32_to_cpu(end
->w2
& 0x0fffffff) << 32
1105 | be32_to_cpu(end
->w3
);
1106 uint32_t qsize
= xive_get_field32(END_W0_QSIZE
, end
->w0
);
1107 uint32_t qindex
= xive_get_field32(END_W1_PAGE_OFF
, end
->w1
);
1108 uint32_t qgen
= xive_get_field32(END_W1_GENERATION
, end
->w1
);
1110 uint64_t qaddr
= qaddr_base
+ (qindex
<< 2);
1111 uint32_t qdata
= cpu_to_be32((qgen
<< 31) | (data
& 0x7fffffff));
1112 uint32_t qentries
= 1 << (qsize
+ 10);
1114 if (dma_memory_write(&address_space_memory
, qaddr
, &qdata
, sizeof(qdata
))) {
1115 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: failed to write END data @0x%"
1116 HWADDR_PRIx
"\n", qaddr
);
1120 qindex
= (qindex
+ 1) & (qentries
- 1);
1123 end
->w1
= xive_set_field32(END_W1_GENERATION
, end
->w1
, qgen
);
1125 end
->w1
= xive_set_field32(END_W1_PAGE_OFF
, end
->w1
, qindex
);
1129 * XIVE Router (aka. Virtualization Controller or IVRE)
1132 int xive_router_get_eas(XiveRouter
*xrtr
, uint8_t eas_blk
, uint32_t eas_idx
,
1135 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1137 return xrc
->get_eas(xrtr
, eas_blk
, eas_idx
, eas
);
1140 int xive_router_get_end(XiveRouter
*xrtr
, uint8_t end_blk
, uint32_t end_idx
,
1143 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1145 return xrc
->get_end(xrtr
, end_blk
, end_idx
, end
);
1148 int xive_router_write_end(XiveRouter
*xrtr
, uint8_t end_blk
, uint32_t end_idx
,
1149 XiveEND
*end
, uint8_t word_number
)
1151 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1153 return xrc
->write_end(xrtr
, end_blk
, end_idx
, end
, word_number
);
1156 int xive_router_get_nvt(XiveRouter
*xrtr
, uint8_t nvt_blk
, uint32_t nvt_idx
,
1159 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1161 return xrc
->get_nvt(xrtr
, nvt_blk
, nvt_idx
, nvt
);
1164 int xive_router_write_nvt(XiveRouter
*xrtr
, uint8_t nvt_blk
, uint32_t nvt_idx
,
1165 XiveNVT
*nvt
, uint8_t word_number
)
1167 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1169 return xrc
->write_nvt(xrtr
, nvt_blk
, nvt_idx
, nvt
, word_number
);
1172 XiveTCTX
*xive_router_get_tctx(XiveRouter
*xrtr
, CPUState
*cs
)
1174 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1176 return xrc
->get_tctx(xrtr
, cs
);
1180 * By default on P9, the HW CAM line (23bits) is hardwired to :
1182 * 0x000||0b1||4Bit chip number||7Bit Thread number.
1184 * When the block grouping is enabled, the CAM line is changed to :
1186 * 4Bit chip number||0x001||7Bit Thread number.
1188 static uint32_t hw_cam_line(uint8_t chip_id
, uint8_t tid
)
1190 return 1 << 11 | (chip_id
& 0xf) << 7 | (tid
& 0x7f);
1193 static bool xive_presenter_tctx_match_hw(XiveTCTX
*tctx
,
1194 uint8_t nvt_blk
, uint32_t nvt_idx
)
1196 CPUPPCState
*env
= &POWERPC_CPU(tctx
->cs
)->env
;
1197 uint32_t pir
= env
->spr_cb
[SPR_PIR
].default_value
;
1199 return hw_cam_line((pir
>> 8) & 0xf, pir
& 0x7f) ==
1200 hw_cam_line(nvt_blk
, nvt_idx
);
1204 * The thread context register words are in big-endian format.
1206 static int xive_presenter_tctx_match(XiveTCTX
*tctx
, uint8_t format
,
1207 uint8_t nvt_blk
, uint32_t nvt_idx
,
1208 bool cam_ignore
, uint32_t logic_serv
)
1210 uint32_t cam
= xive_nvt_cam_line(nvt_blk
, nvt_idx
);
1211 uint32_t qw3w2
= xive_tctx_word2(&tctx
->regs
[TM_QW3_HV_PHYS
]);
1212 uint32_t qw2w2
= xive_tctx_word2(&tctx
->regs
[TM_QW2_HV_POOL
]);
1213 uint32_t qw1w2
= xive_tctx_word2(&tctx
->regs
[TM_QW1_OS
]);
1214 uint32_t qw0w2
= xive_tctx_word2(&tctx
->regs
[TM_QW0_USER
]);
1217 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1218 * identifier are ignored in the "CAM" match.
1222 if (cam_ignore
== true) {
1224 * F=0 & i=1: Logical server notification (bits ignored at
1225 * the end of the NVT identifier)
1227 qemu_log_mask(LOG_UNIMP
, "XIVE: no support for LS NVT %x/%x\n",
1232 /* F=0 & i=0: Specific NVT notification */
1235 if ((be32_to_cpu(qw3w2
) & TM_QW3W2_VT
) &&
1236 xive_presenter_tctx_match_hw(tctx
, nvt_blk
, nvt_idx
)) {
1237 return TM_QW3_HV_PHYS
;
1241 if ((be32_to_cpu(qw2w2
) & TM_QW2W2_VP
) &&
1242 cam
== xive_get_field32(TM_QW2W2_POOL_CAM
, qw2w2
)) {
1243 return TM_QW2_HV_POOL
;
1247 if ((be32_to_cpu(qw1w2
) & TM_QW1W2_VO
) &&
1248 cam
== xive_get_field32(TM_QW1W2_OS_CAM
, qw1w2
)) {
1252 /* F=1 : User level Event-Based Branch (EBB) notification */
1255 if ((be32_to_cpu(qw1w2
) & TM_QW1W2_VO
) &&
1256 (cam
== xive_get_field32(TM_QW1W2_OS_CAM
, qw1w2
)) &&
1257 (be32_to_cpu(qw0w2
) & TM_QW0W2_VU
) &&
1258 (logic_serv
== xive_get_field32(TM_QW0W2_LOGIC_SERV
, qw0w2
))) {
1265 typedef struct XiveTCTXMatch
{
1270 static bool xive_presenter_match(XiveRouter
*xrtr
, uint8_t format
,
1271 uint8_t nvt_blk
, uint32_t nvt_idx
,
1272 bool cam_ignore
, uint8_t priority
,
1273 uint32_t logic_serv
, XiveTCTXMatch
*match
)
1278 * TODO (PowerNV): handle chip_id overwrite of block field for
1279 * hardwired CAM compares
1283 XiveTCTX
*tctx
= xive_router_get_tctx(xrtr
, cs
);
1287 * HW checks that the CPU is enabled in the Physical Thread
1288 * Enable Register (PTER).
1292 * Check the thread context CAM lines and record matches. We
1293 * will handle CPU exception delivery later
1295 ring
= xive_presenter_tctx_match(tctx
, format
, nvt_blk
, nvt_idx
,
1296 cam_ignore
, logic_serv
);
1298 * Save the context and follow on to catch duplicates, that we
1299 * don't support yet.
1303 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: already found a thread "
1304 "context NVT %x/%x\n", nvt_blk
, nvt_idx
);
1314 qemu_log_mask(LOG_UNIMP
, "XIVE: NVT %x/%x is not dispatched\n",
1323 * This is our simple Xive Presenter Engine model. It is merged in the
1324 * Router as it does not require an extra object.
1326 * It receives notification requests sent by the IVRE to find one
1327 * matching NVT (or more) dispatched on the processor threads. In case
1328 * of a single NVT notification, the process is abreviated and the
1329 * thread is signaled if a match is found. In case of a logical server
1330 * notification (bits ignored at the end of the NVT identifier), the
1331 * IVPE and IVRE select a winning thread using different filters. This
1332 * involves 2 or 3 exchanges on the PowerBus that the model does not
1335 * The parameters represent what is sent on the PowerBus
1337 static void xive_presenter_notify(XiveRouter
*xrtr
, uint8_t format
,
1338 uint8_t nvt_blk
, uint32_t nvt_idx
,
1339 bool cam_ignore
, uint8_t priority
,
1340 uint32_t logic_serv
)
1343 XiveTCTXMatch match
= { .tctx
= NULL
, .ring
= 0 };
1346 /* NVT cache lookup */
1347 if (xive_router_get_nvt(xrtr
, nvt_blk
, nvt_idx
, &nvt
)) {
1348 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: no NVT %x/%x\n",
1353 if (!xive_nvt_is_valid(&nvt
)) {
1354 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: NVT %x/%x is invalid\n",
1359 found
= xive_presenter_match(xrtr
, format
, nvt_blk
, nvt_idx
, cam_ignore
,
1360 priority
, logic_serv
, &match
);
1362 ipb_update(&match
.tctx
->regs
[match
.ring
], priority
);
1363 xive_tctx_notify(match
.tctx
, match
.ring
);
1367 /* Record the IPB in the associated NVT structure */
1368 ipb_update((uint8_t *) &nvt
.w4
, priority
);
1369 xive_router_write_nvt(xrtr
, nvt_blk
, nvt_idx
, &nvt
, 4);
1372 * If no matching NVT is dispatched on a HW thread :
1373 * - update the NVT structure if backlog is activated
1374 * - escalate (ESe PQ bits and EAS in w4-5) if escalation is
1380 * An END trigger can come from an event trigger (IPI or HW) or from
1381 * another chip. We don't model the PowerBus but the END trigger
1382 * message has the same parameters than in the function below.
1384 static void xive_router_end_notify(XiveRouter
*xrtr
, uint8_t end_blk
,
1385 uint32_t end_idx
, uint32_t end_data
)
1391 /* END cache lookup */
1392 if (xive_router_get_end(xrtr
, end_blk
, end_idx
, &end
)) {
1393 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: No END %x/%x\n", end_blk
,
1398 if (!xive_end_is_valid(&end
)) {
1399 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: END %x/%x is invalid\n",
1404 if (xive_end_is_enqueue(&end
)) {
1405 xive_end_enqueue(&end
, end_data
);
1406 /* Enqueuing event data modifies the EQ toggle and index */
1407 xive_router_write_end(xrtr
, end_blk
, end_idx
, &end
, 1);
1411 * The W7 format depends on the F bit in W6. It defines the type
1412 * of the notification :
1414 * F=0 : single or multiple NVT notification
1415 * F=1 : User level Event-Based Branch (EBB) notification, no
1418 format
= xive_get_field32(END_W6_FORMAT_BIT
, end
.w6
);
1419 priority
= xive_get_field32(END_W7_F0_PRIORITY
, end
.w7
);
1421 /* The END is masked */
1422 if (format
== 0 && priority
== 0xff) {
1427 * Check the END ESn (Event State Buffer for notification) for
1428 * even futher coalescing in the Router
1430 if (!xive_end_is_notify(&end
)) {
1431 uint8_t pq
= xive_get_field32(END_W1_ESn
, end
.w1
);
1432 bool notify
= xive_esb_trigger(&pq
);
1434 if (pq
!= xive_get_field32(END_W1_ESn
, end
.w1
)) {
1435 end
.w1
= xive_set_field32(END_W1_ESn
, end
.w1
, pq
);
1436 xive_router_write_end(xrtr
, end_blk
, end_idx
, &end
, 1);
1439 /* ESn[Q]=1 : end of notification */
1446 * Follows IVPE notification
1448 xive_presenter_notify(xrtr
, format
,
1449 xive_get_field32(END_W6_NVT_BLOCK
, end
.w6
),
1450 xive_get_field32(END_W6_NVT_INDEX
, end
.w6
),
1451 xive_get_field32(END_W7_F0_IGNORE
, end
.w7
),
1453 xive_get_field32(END_W7_F1_LOG_SERVER_ID
, end
.w7
));
1455 /* TODO: Auto EOI. */
1458 void xive_router_notify(XiveNotifier
*xn
, uint32_t lisn
)
1460 XiveRouter
*xrtr
= XIVE_ROUTER(xn
);
1461 uint8_t eas_blk
= XIVE_SRCNO_BLOCK(lisn
);
1462 uint32_t eas_idx
= XIVE_SRCNO_INDEX(lisn
);
1465 /* EAS cache lookup */
1466 if (xive_router_get_eas(xrtr
, eas_blk
, eas_idx
, &eas
)) {
1467 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Unknown LISN %x\n", lisn
);
1472 * The IVRE checks the State Bit Cache at this point. We skip the
1473 * SBC lookup because the state bits of the sources are modeled
1474 * internally in QEMU.
1477 if (!xive_eas_is_valid(&eas
)) {
1478 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid LISN %x\n", lisn
);
1482 if (xive_eas_is_masked(&eas
)) {
1483 /* Notification completed */
1488 * The event trigger becomes an END trigger
1490 xive_router_end_notify(xrtr
,
1491 xive_get_field64(EAS_END_BLOCK
, eas
.w
),
1492 xive_get_field64(EAS_END_INDEX
, eas
.w
),
1493 xive_get_field64(EAS_END_DATA
, eas
.w
));
1496 static void xive_router_class_init(ObjectClass
*klass
, void *data
)
1498 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1499 XiveNotifierClass
*xnc
= XIVE_NOTIFIER_CLASS(klass
);
1501 dc
->desc
= "XIVE Router Engine";
1502 xnc
->notify
= xive_router_notify
;
1505 static const TypeInfo xive_router_info
= {
1506 .name
= TYPE_XIVE_ROUTER
,
1507 .parent
= TYPE_SYS_BUS_DEVICE
,
1509 .class_size
= sizeof(XiveRouterClass
),
1510 .class_init
= xive_router_class_init
,
1511 .interfaces
= (InterfaceInfo
[]) {
1512 { TYPE_XIVE_NOTIFIER
},
1517 void xive_eas_pic_print_info(XiveEAS
*eas
, uint32_t lisn
, Monitor
*mon
)
1519 if (!xive_eas_is_valid(eas
)) {
1523 monitor_printf(mon
, " %08x %s end:%02x/%04x data:%08x\n",
1524 lisn
, xive_eas_is_masked(eas
) ? "M" : " ",
1525 (uint8_t) xive_get_field64(EAS_END_BLOCK
, eas
->w
),
1526 (uint32_t) xive_get_field64(EAS_END_INDEX
, eas
->w
),
1527 (uint32_t) xive_get_field64(EAS_END_DATA
, eas
->w
));
1531 * END ESB MMIO loads
1533 static uint64_t xive_end_source_read(void *opaque
, hwaddr addr
, unsigned size
)
1535 XiveENDSource
*xsrc
= XIVE_END_SOURCE(opaque
);
1536 uint32_t offset
= addr
& 0xFFF;
1540 uint32_t end_esmask
;
1544 end_blk
= xsrc
->block_id
;
1545 end_idx
= addr
>> (xsrc
->esb_shift
+ 1);
1547 if (xive_router_get_end(xsrc
->xrtr
, end_blk
, end_idx
, &end
)) {
1548 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: No END %x/%x\n", end_blk
,
1553 if (!xive_end_is_valid(&end
)) {
1554 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: END %x/%x is invalid\n",
1559 end_esmask
= addr_is_even(addr
, xsrc
->esb_shift
) ? END_W1_ESn
: END_W1_ESe
;
1560 pq
= xive_get_field32(end_esmask
, end
.w1
);
1563 case XIVE_ESB_LOAD_EOI
... XIVE_ESB_LOAD_EOI
+ 0x7FF:
1564 ret
= xive_esb_eoi(&pq
);
1566 /* Forward the source event notification for routing ?? */
1569 case XIVE_ESB_GET
... XIVE_ESB_GET
+ 0x3FF:
1573 case XIVE_ESB_SET_PQ_00
... XIVE_ESB_SET_PQ_00
+ 0x0FF:
1574 case XIVE_ESB_SET_PQ_01
... XIVE_ESB_SET_PQ_01
+ 0x0FF:
1575 case XIVE_ESB_SET_PQ_10
... XIVE_ESB_SET_PQ_10
+ 0x0FF:
1576 case XIVE_ESB_SET_PQ_11
... XIVE_ESB_SET_PQ_11
+ 0x0FF:
1577 ret
= xive_esb_set(&pq
, (offset
>> 8) & 0x3);
1580 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid END ESB load addr %d\n",
1585 if (pq
!= xive_get_field32(end_esmask
, end
.w1
)) {
1586 end
.w1
= xive_set_field32(end_esmask
, end
.w1
, pq
);
1587 xive_router_write_end(xsrc
->xrtr
, end_blk
, end_idx
, &end
, 1);
1594 * END ESB MMIO stores are invalid
1596 static void xive_end_source_write(void *opaque
, hwaddr addr
,
1597 uint64_t value
, unsigned size
)
1599 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid ESB write addr 0x%"
1600 HWADDR_PRIx
"\n", addr
);
1603 static const MemoryRegionOps xive_end_source_ops
= {
1604 .read
= xive_end_source_read
,
1605 .write
= xive_end_source_write
,
1606 .endianness
= DEVICE_BIG_ENDIAN
,
1608 .min_access_size
= 8,
1609 .max_access_size
= 8,
1612 .min_access_size
= 8,
1613 .max_access_size
= 8,
1617 static void xive_end_source_realize(DeviceState
*dev
, Error
**errp
)
1619 XiveENDSource
*xsrc
= XIVE_END_SOURCE(dev
);
1621 Error
*local_err
= NULL
;
1623 obj
= object_property_get_link(OBJECT(dev
), "xive", &local_err
);
1625 error_propagate(errp
, local_err
);
1626 error_prepend(errp
, "required link 'xive' not found: ");
1630 xsrc
->xrtr
= XIVE_ROUTER(obj
);
1632 if (!xsrc
->nr_ends
) {
1633 error_setg(errp
, "Number of interrupt needs to be greater than 0");
1637 if (xsrc
->esb_shift
!= XIVE_ESB_4K
&&
1638 xsrc
->esb_shift
!= XIVE_ESB_64K
) {
1639 error_setg(errp
, "Invalid ESB shift setting");
1644 * Each END is assigned an even/odd pair of MMIO pages, the even page
1645 * manages the ESn field while the odd page manages the ESe field.
1647 memory_region_init_io(&xsrc
->esb_mmio
, OBJECT(xsrc
),
1648 &xive_end_source_ops
, xsrc
, "xive.end",
1649 (1ull << (xsrc
->esb_shift
+ 1)) * xsrc
->nr_ends
);
1652 static Property xive_end_source_properties
[] = {
1653 DEFINE_PROP_UINT8("block-id", XiveENDSource
, block_id
, 0),
1654 DEFINE_PROP_UINT32("nr-ends", XiveENDSource
, nr_ends
, 0),
1655 DEFINE_PROP_UINT32("shift", XiveENDSource
, esb_shift
, XIVE_ESB_64K
),
1656 DEFINE_PROP_END_OF_LIST(),
1659 static void xive_end_source_class_init(ObjectClass
*klass
, void *data
)
1661 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1663 dc
->desc
= "XIVE END Source";
1664 dc
->props
= xive_end_source_properties
;
1665 dc
->realize
= xive_end_source_realize
;
1668 static const TypeInfo xive_end_source_info
= {
1669 .name
= TYPE_XIVE_END_SOURCE
,
1670 .parent
= TYPE_DEVICE
,
1671 .instance_size
= sizeof(XiveENDSource
),
1672 .class_init
= xive_end_source_class_init
,
1678 static const TypeInfo xive_notifier_info
= {
1679 .name
= TYPE_XIVE_NOTIFIER
,
1680 .parent
= TYPE_INTERFACE
,
1681 .class_size
= sizeof(XiveNotifierClass
),
1684 static void xive_register_types(void)
1686 type_register_static(&xive_source_info
);
1687 type_register_static(&xive_notifier_info
);
1688 type_register_static(&xive_router_info
);
1689 type_register_static(&xive_end_source_info
);
1690 type_register_static(&xive_tctx_info
);
1693 type_init(xive_register_types
)