python: support pylint 2.16
[qemu/kevin.git] / block / io.c
blobd2be37b11e835a42a3f3f27e6d99918a0f092afa
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
45 static void bdrv_parent_cb_resize(BlockDriverState *bs);
46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
47 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
51 BdrvChild *c, *next;
53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54 if (c == ignore) {
55 continue;
57 bdrv_parent_drained_begin_single(c);
61 void bdrv_parent_drained_end_single(BdrvChild *c)
63 IO_OR_GS_CODE();
65 assert(c->quiesced_parent);
66 c->quiesced_parent = false;
68 if (c->klass->drained_end) {
69 c->klass->drained_end(c);
73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
75 BdrvChild *c;
77 QLIST_FOREACH(c, &bs->parents, next_parent) {
78 if (c == ignore) {
79 continue;
81 bdrv_parent_drained_end_single(c);
85 bool bdrv_parent_drained_poll_single(BdrvChild *c)
87 if (c->klass->drained_poll) {
88 return c->klass->drained_poll(c);
90 return false;
93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
94 bool ignore_bds_parents)
96 BdrvChild *c, *next;
97 bool busy = false;
99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
101 continue;
103 busy |= bdrv_parent_drained_poll_single(c);
106 return busy;
109 void bdrv_parent_drained_begin_single(BdrvChild *c)
111 IO_OR_GS_CODE();
113 assert(!c->quiesced_parent);
114 c->quiesced_parent = true;
116 if (c->klass->drained_begin) {
117 c->klass->drained_begin(c);
121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
124 src->pdiscard_alignment);
125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
128 src->max_hw_transfer);
129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130 src->opt_mem_alignment);
131 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132 src->min_mem_alignment);
133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
137 typedef struct BdrvRefreshLimitsState {
138 BlockDriverState *bs;
139 BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
142 static void bdrv_refresh_limits_abort(void *opaque)
144 BdrvRefreshLimitsState *s = opaque;
146 s->bs->bl = s->old_bl;
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150 .abort = bdrv_refresh_limits_abort,
151 .clean = g_free,
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
157 ERRP_GUARD();
158 BlockDriver *drv = bs->drv;
159 BdrvChild *c;
160 bool have_limits;
162 GLOBAL_STATE_CODE();
164 if (tran) {
165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
166 *s = (BdrvRefreshLimitsState) {
167 .bs = bs,
168 .old_bl = bs->bl,
170 tran_add(tran, &bdrv_refresh_limits_drv, s);
173 memset(&bs->bl, 0, sizeof(bs->bl));
175 if (!drv) {
176 return;
179 /* Default alignment based on whether driver has byte interface */
180 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
181 drv->bdrv_aio_preadv ||
182 drv->bdrv_co_preadv_part) ? 1 : 512;
184 /* Take some limits from the children as a default */
185 have_limits = false;
186 QLIST_FOREACH(c, &bs->children, next) {
187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
189 bdrv_merge_limits(&bs->bl, &c->bs->bl);
190 have_limits = true;
194 if (!have_limits) {
195 bs->bl.min_mem_alignment = 512;
196 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
198 /* Safe default since most protocols use readv()/writev()/etc */
199 bs->bl.max_iov = IOV_MAX;
202 /* Then let the driver override it */
203 if (drv->bdrv_refresh_limits) {
204 drv->bdrv_refresh_limits(bs, errp);
205 if (*errp) {
206 return;
210 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
211 error_setg(errp, "Driver requires too large request alignment");
216 * The copy-on-read flag is actually a reference count so multiple users may
217 * use the feature without worrying about clobbering its previous state.
218 * Copy-on-read stays enabled until all users have called to disable it.
220 void bdrv_enable_copy_on_read(BlockDriverState *bs)
222 IO_CODE();
223 qatomic_inc(&bs->copy_on_read);
226 void bdrv_disable_copy_on_read(BlockDriverState *bs)
228 int old = qatomic_fetch_dec(&bs->copy_on_read);
229 IO_CODE();
230 assert(old >= 1);
233 typedef struct {
234 Coroutine *co;
235 BlockDriverState *bs;
236 bool done;
237 bool begin;
238 bool poll;
239 BdrvChild *parent;
240 } BdrvCoDrainData;
242 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
243 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
244 bool ignore_bds_parents)
246 IO_OR_GS_CODE();
248 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
249 return true;
252 if (qatomic_read(&bs->in_flight)) {
253 return true;
256 return false;
259 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
260 BdrvChild *ignore_parent)
262 return bdrv_drain_poll(bs, ignore_parent, false);
265 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
266 bool poll);
267 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
269 static void bdrv_co_drain_bh_cb(void *opaque)
271 BdrvCoDrainData *data = opaque;
272 Coroutine *co = data->co;
273 BlockDriverState *bs = data->bs;
275 if (bs) {
276 AioContext *ctx = bdrv_get_aio_context(bs);
277 aio_context_acquire(ctx);
278 bdrv_dec_in_flight(bs);
279 if (data->begin) {
280 bdrv_do_drained_begin(bs, data->parent, data->poll);
281 } else {
282 assert(!data->poll);
283 bdrv_do_drained_end(bs, data->parent);
285 aio_context_release(ctx);
286 } else {
287 assert(data->begin);
288 bdrv_drain_all_begin();
291 data->done = true;
292 aio_co_wake(co);
295 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
296 bool begin,
297 BdrvChild *parent,
298 bool poll)
300 BdrvCoDrainData data;
301 Coroutine *self = qemu_coroutine_self();
302 AioContext *ctx = bdrv_get_aio_context(bs);
303 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
305 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
306 * other coroutines run if they were queued by aio_co_enter(). */
308 assert(qemu_in_coroutine());
309 data = (BdrvCoDrainData) {
310 .co = self,
311 .bs = bs,
312 .done = false,
313 .begin = begin,
314 .parent = parent,
315 .poll = poll,
318 if (bs) {
319 bdrv_inc_in_flight(bs);
323 * Temporarily drop the lock across yield or we would get deadlocks.
324 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
326 * When we yield below, the lock for the current context will be
327 * released, so if this is actually the lock that protects bs, don't drop
328 * it a second time.
330 if (ctx != co_ctx) {
331 aio_context_release(ctx);
333 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
335 qemu_coroutine_yield();
336 /* If we are resumed from some other event (such as an aio completion or a
337 * timer callback), it is a bug in the caller that should be fixed. */
338 assert(data.done);
340 /* Reaquire the AioContext of bs if we dropped it */
341 if (ctx != co_ctx) {
342 aio_context_acquire(ctx);
346 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
347 bool poll)
349 IO_OR_GS_CODE();
351 if (qemu_in_coroutine()) {
352 bdrv_co_yield_to_drain(bs, true, parent, poll);
353 return;
356 /* Stop things in parent-to-child order */
357 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
358 aio_disable_external(bdrv_get_aio_context(bs));
359 bdrv_parent_drained_begin(bs, parent);
360 if (bs->drv && bs->drv->bdrv_drain_begin) {
361 bs->drv->bdrv_drain_begin(bs);
366 * Wait for drained requests to finish.
368 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
369 * call is needed so things in this AioContext can make progress even
370 * though we don't return to the main AioContext loop - this automatically
371 * includes other nodes in the same AioContext and therefore all child
372 * nodes.
374 if (poll) {
375 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
379 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
381 bdrv_do_drained_begin(bs, parent, false);
384 void bdrv_drained_begin(BlockDriverState *bs)
386 IO_OR_GS_CODE();
387 bdrv_do_drained_begin(bs, NULL, true);
391 * This function does not poll, nor must any of its recursively called
392 * functions.
394 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
396 int old_quiesce_counter;
398 if (qemu_in_coroutine()) {
399 bdrv_co_yield_to_drain(bs, false, parent, false);
400 return;
402 assert(bs->quiesce_counter > 0);
404 /* Re-enable things in child-to-parent order */
405 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
406 if (old_quiesce_counter == 1) {
407 if (bs->drv && bs->drv->bdrv_drain_end) {
408 bs->drv->bdrv_drain_end(bs);
410 bdrv_parent_drained_end(bs, parent);
411 aio_enable_external(bdrv_get_aio_context(bs));
415 void bdrv_drained_end(BlockDriverState *bs)
417 IO_OR_GS_CODE();
418 bdrv_do_drained_end(bs, NULL);
421 void bdrv_drain(BlockDriverState *bs)
423 IO_OR_GS_CODE();
424 bdrv_drained_begin(bs);
425 bdrv_drained_end(bs);
428 static void bdrv_drain_assert_idle(BlockDriverState *bs)
430 BdrvChild *child, *next;
432 assert(qatomic_read(&bs->in_flight) == 0);
433 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
434 bdrv_drain_assert_idle(child->bs);
438 unsigned int bdrv_drain_all_count = 0;
440 static bool bdrv_drain_all_poll(void)
442 BlockDriverState *bs = NULL;
443 bool result = false;
444 GLOBAL_STATE_CODE();
446 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
447 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
448 while ((bs = bdrv_next_all_states(bs))) {
449 AioContext *aio_context = bdrv_get_aio_context(bs);
450 aio_context_acquire(aio_context);
451 result |= bdrv_drain_poll(bs, NULL, true);
452 aio_context_release(aio_context);
455 return result;
459 * Wait for pending requests to complete across all BlockDriverStates
461 * This function does not flush data to disk, use bdrv_flush_all() for that
462 * after calling this function.
464 * This pauses all block jobs and disables external clients. It must
465 * be paired with bdrv_drain_all_end().
467 * NOTE: no new block jobs or BlockDriverStates can be created between
468 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
470 void bdrv_drain_all_begin_nopoll(void)
472 BlockDriverState *bs = NULL;
473 GLOBAL_STATE_CODE();
476 * bdrv queue is managed by record/replay,
477 * waiting for finishing the I/O requests may
478 * be infinite
480 if (replay_events_enabled()) {
481 return;
484 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
485 * loop AioContext, so make sure we're in the main context. */
486 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
487 assert(bdrv_drain_all_count < INT_MAX);
488 bdrv_drain_all_count++;
490 /* Quiesce all nodes, without polling in-flight requests yet. The graph
491 * cannot change during this loop. */
492 while ((bs = bdrv_next_all_states(bs))) {
493 AioContext *aio_context = bdrv_get_aio_context(bs);
495 aio_context_acquire(aio_context);
496 bdrv_do_drained_begin(bs, NULL, false);
497 aio_context_release(aio_context);
501 void bdrv_drain_all_begin(void)
503 BlockDriverState *bs = NULL;
505 if (qemu_in_coroutine()) {
506 bdrv_co_yield_to_drain(NULL, true, NULL, true);
507 return;
511 * bdrv queue is managed by record/replay,
512 * waiting for finishing the I/O requests may
513 * be infinite
515 if (replay_events_enabled()) {
516 return;
519 bdrv_drain_all_begin_nopoll();
521 /* Now poll the in-flight requests */
522 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
524 while ((bs = bdrv_next_all_states(bs))) {
525 bdrv_drain_assert_idle(bs);
529 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
531 GLOBAL_STATE_CODE();
533 g_assert(bs->quiesce_counter > 0);
534 g_assert(!bs->refcnt);
536 while (bs->quiesce_counter) {
537 bdrv_do_drained_end(bs, NULL);
541 void bdrv_drain_all_end(void)
543 BlockDriverState *bs = NULL;
544 GLOBAL_STATE_CODE();
547 * bdrv queue is managed by record/replay,
548 * waiting for finishing the I/O requests may
549 * be endless
551 if (replay_events_enabled()) {
552 return;
555 while ((bs = bdrv_next_all_states(bs))) {
556 AioContext *aio_context = bdrv_get_aio_context(bs);
558 aio_context_acquire(aio_context);
559 bdrv_do_drained_end(bs, NULL);
560 aio_context_release(aio_context);
563 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
564 assert(bdrv_drain_all_count > 0);
565 bdrv_drain_all_count--;
568 void bdrv_drain_all(void)
570 GLOBAL_STATE_CODE();
571 bdrv_drain_all_begin();
572 bdrv_drain_all_end();
576 * Remove an active request from the tracked requests list
578 * This function should be called when a tracked request is completing.
580 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
582 if (req->serialising) {
583 qatomic_dec(&req->bs->serialising_in_flight);
586 qemu_co_mutex_lock(&req->bs->reqs_lock);
587 QLIST_REMOVE(req, list);
588 qemu_co_queue_restart_all(&req->wait_queue);
589 qemu_co_mutex_unlock(&req->bs->reqs_lock);
593 * Add an active request to the tracked requests list
595 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
596 BlockDriverState *bs,
597 int64_t offset,
598 int64_t bytes,
599 enum BdrvTrackedRequestType type)
601 bdrv_check_request(offset, bytes, &error_abort);
603 *req = (BdrvTrackedRequest){
604 .bs = bs,
605 .offset = offset,
606 .bytes = bytes,
607 .type = type,
608 .co = qemu_coroutine_self(),
609 .serialising = false,
610 .overlap_offset = offset,
611 .overlap_bytes = bytes,
614 qemu_co_queue_init(&req->wait_queue);
616 qemu_co_mutex_lock(&bs->reqs_lock);
617 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
618 qemu_co_mutex_unlock(&bs->reqs_lock);
621 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
622 int64_t offset, int64_t bytes)
624 bdrv_check_request(offset, bytes, &error_abort);
626 /* aaaa bbbb */
627 if (offset >= req->overlap_offset + req->overlap_bytes) {
628 return false;
630 /* bbbb aaaa */
631 if (req->overlap_offset >= offset + bytes) {
632 return false;
634 return true;
637 /* Called with self->bs->reqs_lock held */
638 static coroutine_fn BdrvTrackedRequest *
639 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
641 BdrvTrackedRequest *req;
643 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
644 if (req == self || (!req->serialising && !self->serialising)) {
645 continue;
647 if (tracked_request_overlaps(req, self->overlap_offset,
648 self->overlap_bytes))
651 * Hitting this means there was a reentrant request, for
652 * example, a block driver issuing nested requests. This must
653 * never happen since it means deadlock.
655 assert(qemu_coroutine_self() != req->co);
658 * If the request is already (indirectly) waiting for us, or
659 * will wait for us as soon as it wakes up, then just go on
660 * (instead of producing a deadlock in the former case).
662 if (!req->waiting_for) {
663 return req;
668 return NULL;
671 /* Called with self->bs->reqs_lock held */
672 static void coroutine_fn
673 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
675 BdrvTrackedRequest *req;
677 while ((req = bdrv_find_conflicting_request(self))) {
678 self->waiting_for = req;
679 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
680 self->waiting_for = NULL;
684 /* Called with req->bs->reqs_lock held */
685 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
686 uint64_t align)
688 int64_t overlap_offset = req->offset & ~(align - 1);
689 int64_t overlap_bytes =
690 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
692 bdrv_check_request(req->offset, req->bytes, &error_abort);
694 if (!req->serialising) {
695 qatomic_inc(&req->bs->serialising_in_flight);
696 req->serialising = true;
699 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
700 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
704 * Return the tracked request on @bs for the current coroutine, or
705 * NULL if there is none.
707 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
709 BdrvTrackedRequest *req;
710 Coroutine *self = qemu_coroutine_self();
711 IO_CODE();
713 QLIST_FOREACH(req, &bs->tracked_requests, list) {
714 if (req->co == self) {
715 return req;
719 return NULL;
723 * Round a region to cluster boundaries
725 void coroutine_fn bdrv_round_to_clusters(BlockDriverState *bs,
726 int64_t offset, int64_t bytes,
727 int64_t *cluster_offset,
728 int64_t *cluster_bytes)
730 BlockDriverInfo bdi;
731 IO_CODE();
732 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
733 *cluster_offset = offset;
734 *cluster_bytes = bytes;
735 } else {
736 int64_t c = bdi.cluster_size;
737 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
738 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
742 static coroutine_fn int bdrv_get_cluster_size(BlockDriverState *bs)
744 BlockDriverInfo bdi;
745 int ret;
747 ret = bdrv_co_get_info(bs, &bdi);
748 if (ret < 0 || bdi.cluster_size == 0) {
749 return bs->bl.request_alignment;
750 } else {
751 return bdi.cluster_size;
755 void bdrv_inc_in_flight(BlockDriverState *bs)
757 IO_CODE();
758 qatomic_inc(&bs->in_flight);
761 void bdrv_wakeup(BlockDriverState *bs)
763 IO_CODE();
764 aio_wait_kick();
767 void bdrv_dec_in_flight(BlockDriverState *bs)
769 IO_CODE();
770 qatomic_dec(&bs->in_flight);
771 bdrv_wakeup(bs);
774 static void coroutine_fn
775 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
777 BlockDriverState *bs = self->bs;
779 if (!qatomic_read(&bs->serialising_in_flight)) {
780 return;
783 qemu_co_mutex_lock(&bs->reqs_lock);
784 bdrv_wait_serialising_requests_locked(self);
785 qemu_co_mutex_unlock(&bs->reqs_lock);
788 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
789 uint64_t align)
791 IO_CODE();
793 qemu_co_mutex_lock(&req->bs->reqs_lock);
795 tracked_request_set_serialising(req, align);
796 bdrv_wait_serialising_requests_locked(req);
798 qemu_co_mutex_unlock(&req->bs->reqs_lock);
801 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
802 QEMUIOVector *qiov, size_t qiov_offset,
803 Error **errp)
806 * Check generic offset/bytes correctness
809 if (offset < 0) {
810 error_setg(errp, "offset is negative: %" PRIi64, offset);
811 return -EIO;
814 if (bytes < 0) {
815 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
816 return -EIO;
819 if (bytes > BDRV_MAX_LENGTH) {
820 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
821 bytes, BDRV_MAX_LENGTH);
822 return -EIO;
825 if (offset > BDRV_MAX_LENGTH) {
826 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
827 offset, BDRV_MAX_LENGTH);
828 return -EIO;
831 if (offset > BDRV_MAX_LENGTH - bytes) {
832 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
833 "exceeds maximum(%" PRIi64 ")", offset, bytes,
834 BDRV_MAX_LENGTH);
835 return -EIO;
838 if (!qiov) {
839 return 0;
843 * Check qiov and qiov_offset
846 if (qiov_offset > qiov->size) {
847 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
848 qiov_offset, qiov->size);
849 return -EIO;
852 if (bytes > qiov->size - qiov_offset) {
853 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
854 "vector size(%zu)", bytes, qiov_offset, qiov->size);
855 return -EIO;
858 return 0;
861 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
863 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
866 static int bdrv_check_request32(int64_t offset, int64_t bytes,
867 QEMUIOVector *qiov, size_t qiov_offset)
869 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
870 if (ret < 0) {
871 return ret;
874 if (bytes > BDRV_REQUEST_MAX_BYTES) {
875 return -EIO;
878 return 0;
882 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
883 * The operation is sped up by checking the block status and only writing
884 * zeroes to the device if they currently do not return zeroes. Optional
885 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
886 * BDRV_REQ_FUA).
888 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
890 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
892 int ret;
893 int64_t target_size, bytes, offset = 0;
894 BlockDriverState *bs = child->bs;
895 IO_CODE();
897 target_size = bdrv_getlength(bs);
898 if (target_size < 0) {
899 return target_size;
902 for (;;) {
903 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
904 if (bytes <= 0) {
905 return 0;
907 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
908 if (ret < 0) {
909 return ret;
911 if (ret & BDRV_BLOCK_ZERO) {
912 offset += bytes;
913 continue;
915 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
916 if (ret < 0) {
917 return ret;
919 offset += bytes;
924 * Writes to the file and ensures that no writes are reordered across this
925 * request (acts as a barrier)
927 * Returns 0 on success, -errno in error cases.
929 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
930 int64_t bytes, const void *buf,
931 BdrvRequestFlags flags)
933 int ret;
934 IO_CODE();
936 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
937 if (ret < 0) {
938 return ret;
941 ret = bdrv_co_flush(child->bs);
942 if (ret < 0) {
943 return ret;
946 return 0;
949 typedef struct CoroutineIOCompletion {
950 Coroutine *coroutine;
951 int ret;
952 } CoroutineIOCompletion;
954 static void bdrv_co_io_em_complete(void *opaque, int ret)
956 CoroutineIOCompletion *co = opaque;
958 co->ret = ret;
959 aio_co_wake(co->coroutine);
962 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
963 int64_t offset, int64_t bytes,
964 QEMUIOVector *qiov,
965 size_t qiov_offset, int flags)
967 BlockDriver *drv = bs->drv;
968 int64_t sector_num;
969 unsigned int nb_sectors;
970 QEMUIOVector local_qiov;
971 int ret;
973 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
974 assert(!(flags & ~bs->supported_read_flags));
976 if (!drv) {
977 return -ENOMEDIUM;
980 if (drv->bdrv_co_preadv_part) {
981 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
982 flags);
985 if (qiov_offset > 0 || bytes != qiov->size) {
986 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
987 qiov = &local_qiov;
990 if (drv->bdrv_co_preadv) {
991 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
992 goto out;
995 if (drv->bdrv_aio_preadv) {
996 BlockAIOCB *acb;
997 CoroutineIOCompletion co = {
998 .coroutine = qemu_coroutine_self(),
1001 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1002 bdrv_co_io_em_complete, &co);
1003 if (acb == NULL) {
1004 ret = -EIO;
1005 goto out;
1006 } else {
1007 qemu_coroutine_yield();
1008 ret = co.ret;
1009 goto out;
1013 sector_num = offset >> BDRV_SECTOR_BITS;
1014 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1016 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1017 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1018 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1019 assert(drv->bdrv_co_readv);
1021 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1023 out:
1024 if (qiov == &local_qiov) {
1025 qemu_iovec_destroy(&local_qiov);
1028 return ret;
1031 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1032 int64_t offset, int64_t bytes,
1033 QEMUIOVector *qiov,
1034 size_t qiov_offset,
1035 BdrvRequestFlags flags)
1037 BlockDriver *drv = bs->drv;
1038 bool emulate_fua = false;
1039 int64_t sector_num;
1040 unsigned int nb_sectors;
1041 QEMUIOVector local_qiov;
1042 int ret;
1044 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1046 if (!drv) {
1047 return -ENOMEDIUM;
1050 if ((flags & BDRV_REQ_FUA) &&
1051 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1052 flags &= ~BDRV_REQ_FUA;
1053 emulate_fua = true;
1056 flags &= bs->supported_write_flags;
1058 if (drv->bdrv_co_pwritev_part) {
1059 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1060 flags);
1061 goto emulate_flags;
1064 if (qiov_offset > 0 || bytes != qiov->size) {
1065 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1066 qiov = &local_qiov;
1069 if (drv->bdrv_co_pwritev) {
1070 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1071 goto emulate_flags;
1074 if (drv->bdrv_aio_pwritev) {
1075 BlockAIOCB *acb;
1076 CoroutineIOCompletion co = {
1077 .coroutine = qemu_coroutine_self(),
1080 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1081 bdrv_co_io_em_complete, &co);
1082 if (acb == NULL) {
1083 ret = -EIO;
1084 } else {
1085 qemu_coroutine_yield();
1086 ret = co.ret;
1088 goto emulate_flags;
1091 sector_num = offset >> BDRV_SECTOR_BITS;
1092 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1094 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1095 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1096 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1098 assert(drv->bdrv_co_writev);
1099 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1101 emulate_flags:
1102 if (ret == 0 && emulate_fua) {
1103 ret = bdrv_co_flush(bs);
1106 if (qiov == &local_qiov) {
1107 qemu_iovec_destroy(&local_qiov);
1110 return ret;
1113 static int coroutine_fn
1114 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1115 int64_t bytes, QEMUIOVector *qiov,
1116 size_t qiov_offset)
1118 BlockDriver *drv = bs->drv;
1119 QEMUIOVector local_qiov;
1120 int ret;
1122 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1124 if (!drv) {
1125 return -ENOMEDIUM;
1128 if (!block_driver_can_compress(drv)) {
1129 return -ENOTSUP;
1132 if (drv->bdrv_co_pwritev_compressed_part) {
1133 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1134 qiov, qiov_offset);
1137 if (qiov_offset == 0) {
1138 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1141 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1142 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1143 qemu_iovec_destroy(&local_qiov);
1145 return ret;
1148 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1149 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1150 size_t qiov_offset, int flags)
1152 BlockDriverState *bs = child->bs;
1154 /* Perform I/O through a temporary buffer so that users who scribble over
1155 * their read buffer while the operation is in progress do not end up
1156 * modifying the image file. This is critical for zero-copy guest I/O
1157 * where anything might happen inside guest memory.
1159 void *bounce_buffer = NULL;
1161 BlockDriver *drv = bs->drv;
1162 int64_t cluster_offset;
1163 int64_t cluster_bytes;
1164 int64_t skip_bytes;
1165 int ret;
1166 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1167 BDRV_REQUEST_MAX_BYTES);
1168 int64_t progress = 0;
1169 bool skip_write;
1171 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1173 if (!drv) {
1174 return -ENOMEDIUM;
1178 * Do not write anything when the BDS is inactive. That is not
1179 * allowed, and it would not help.
1181 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1183 /* FIXME We cannot require callers to have write permissions when all they
1184 * are doing is a read request. If we did things right, write permissions
1185 * would be obtained anyway, but internally by the copy-on-read code. As
1186 * long as it is implemented here rather than in a separate filter driver,
1187 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1188 * it could request permissions. Therefore we have to bypass the permission
1189 * system for the moment. */
1190 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1192 /* Cover entire cluster so no additional backing file I/O is required when
1193 * allocating cluster in the image file. Note that this value may exceed
1194 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1195 * is one reason we loop rather than doing it all at once.
1197 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1198 skip_bytes = offset - cluster_offset;
1200 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1201 cluster_offset, cluster_bytes);
1203 while (cluster_bytes) {
1204 int64_t pnum;
1206 if (skip_write) {
1207 ret = 1; /* "already allocated", so nothing will be copied */
1208 pnum = MIN(cluster_bytes, max_transfer);
1209 } else {
1210 ret = bdrv_is_allocated(bs, cluster_offset,
1211 MIN(cluster_bytes, max_transfer), &pnum);
1212 if (ret < 0) {
1214 * Safe to treat errors in querying allocation as if
1215 * unallocated; we'll probably fail again soon on the
1216 * read, but at least that will set a decent errno.
1218 pnum = MIN(cluster_bytes, max_transfer);
1221 /* Stop at EOF if the image ends in the middle of the cluster */
1222 if (ret == 0 && pnum == 0) {
1223 assert(progress >= bytes);
1224 break;
1227 assert(skip_bytes < pnum);
1230 if (ret <= 0) {
1231 QEMUIOVector local_qiov;
1233 /* Must copy-on-read; use the bounce buffer */
1234 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1235 if (!bounce_buffer) {
1236 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1237 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1238 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1240 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1241 if (!bounce_buffer) {
1242 ret = -ENOMEM;
1243 goto err;
1246 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1248 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1249 &local_qiov, 0, 0);
1250 if (ret < 0) {
1251 goto err;
1254 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1255 if (drv->bdrv_co_pwrite_zeroes &&
1256 buffer_is_zero(bounce_buffer, pnum)) {
1257 /* FIXME: Should we (perhaps conditionally) be setting
1258 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1259 * that still correctly reads as zero? */
1260 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1261 BDRV_REQ_WRITE_UNCHANGED);
1262 } else {
1263 /* This does not change the data on the disk, it is not
1264 * necessary to flush even in cache=writethrough mode.
1266 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1267 &local_qiov, 0,
1268 BDRV_REQ_WRITE_UNCHANGED);
1271 if (ret < 0) {
1272 /* It might be okay to ignore write errors for guest
1273 * requests. If this is a deliberate copy-on-read
1274 * then we don't want to ignore the error. Simply
1275 * report it in all cases.
1277 goto err;
1280 if (!(flags & BDRV_REQ_PREFETCH)) {
1281 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1282 bounce_buffer + skip_bytes,
1283 MIN(pnum - skip_bytes, bytes - progress));
1285 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1286 /* Read directly into the destination */
1287 ret = bdrv_driver_preadv(bs, offset + progress,
1288 MIN(pnum - skip_bytes, bytes - progress),
1289 qiov, qiov_offset + progress, 0);
1290 if (ret < 0) {
1291 goto err;
1295 cluster_offset += pnum;
1296 cluster_bytes -= pnum;
1297 progress += pnum - skip_bytes;
1298 skip_bytes = 0;
1300 ret = 0;
1302 err:
1303 qemu_vfree(bounce_buffer);
1304 return ret;
1308 * Forwards an already correctly aligned request to the BlockDriver. This
1309 * handles copy on read, zeroing after EOF, and fragmentation of large
1310 * reads; any other features must be implemented by the caller.
1312 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1313 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1314 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1316 BlockDriverState *bs = child->bs;
1317 int64_t total_bytes, max_bytes;
1318 int ret = 0;
1319 int64_t bytes_remaining = bytes;
1320 int max_transfer;
1322 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1323 assert(is_power_of_2(align));
1324 assert((offset & (align - 1)) == 0);
1325 assert((bytes & (align - 1)) == 0);
1326 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1327 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1328 align);
1331 * TODO: We would need a per-BDS .supported_read_flags and
1332 * potential fallback support, if we ever implement any read flags
1333 * to pass through to drivers. For now, there aren't any
1334 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1336 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1337 BDRV_REQ_REGISTERED_BUF)));
1339 /* Handle Copy on Read and associated serialisation */
1340 if (flags & BDRV_REQ_COPY_ON_READ) {
1341 /* If we touch the same cluster it counts as an overlap. This
1342 * guarantees that allocating writes will be serialized and not race
1343 * with each other for the same cluster. For example, in copy-on-read
1344 * it ensures that the CoR read and write operations are atomic and
1345 * guest writes cannot interleave between them. */
1346 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1347 } else {
1348 bdrv_wait_serialising_requests(req);
1351 if (flags & BDRV_REQ_COPY_ON_READ) {
1352 int64_t pnum;
1354 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1355 flags &= ~BDRV_REQ_COPY_ON_READ;
1357 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1358 if (ret < 0) {
1359 goto out;
1362 if (!ret || pnum != bytes) {
1363 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1364 qiov, qiov_offset, flags);
1365 goto out;
1366 } else if (flags & BDRV_REQ_PREFETCH) {
1367 goto out;
1371 /* Forward the request to the BlockDriver, possibly fragmenting it */
1372 total_bytes = bdrv_getlength(bs);
1373 if (total_bytes < 0) {
1374 ret = total_bytes;
1375 goto out;
1378 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1380 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1381 if (bytes <= max_bytes && bytes <= max_transfer) {
1382 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1383 goto out;
1386 while (bytes_remaining) {
1387 int64_t num;
1389 if (max_bytes) {
1390 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1391 assert(num);
1393 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1394 num, qiov,
1395 qiov_offset + bytes - bytes_remaining,
1396 flags);
1397 max_bytes -= num;
1398 } else {
1399 num = bytes_remaining;
1400 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1401 0, bytes_remaining);
1403 if (ret < 0) {
1404 goto out;
1406 bytes_remaining -= num;
1409 out:
1410 return ret < 0 ? ret : 0;
1414 * Request padding
1416 * |<---- align ----->| |<----- align ---->|
1417 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1418 * | | | | | |
1419 * -*----------$-------*-------- ... --------*-----$------------*---
1420 * | | | | | |
1421 * | offset | | end |
1422 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1423 * [buf ... ) [tail_buf )
1425 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1426 * is placed at the beginning of @buf and @tail at the @end.
1428 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1429 * around tail, if tail exists.
1431 * @merge_reads is true for small requests,
1432 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1433 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1435 typedef struct BdrvRequestPadding {
1436 uint8_t *buf;
1437 size_t buf_len;
1438 uint8_t *tail_buf;
1439 size_t head;
1440 size_t tail;
1441 bool merge_reads;
1442 QEMUIOVector local_qiov;
1443 } BdrvRequestPadding;
1445 static bool bdrv_init_padding(BlockDriverState *bs,
1446 int64_t offset, int64_t bytes,
1447 BdrvRequestPadding *pad)
1449 int64_t align = bs->bl.request_alignment;
1450 int64_t sum;
1452 bdrv_check_request(offset, bytes, &error_abort);
1453 assert(align <= INT_MAX); /* documented in block/block_int.h */
1454 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1456 memset(pad, 0, sizeof(*pad));
1458 pad->head = offset & (align - 1);
1459 pad->tail = ((offset + bytes) & (align - 1));
1460 if (pad->tail) {
1461 pad->tail = align - pad->tail;
1464 if (!pad->head && !pad->tail) {
1465 return false;
1468 assert(bytes); /* Nothing good in aligning zero-length requests */
1470 sum = pad->head + bytes + pad->tail;
1471 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1472 pad->buf = qemu_blockalign(bs, pad->buf_len);
1473 pad->merge_reads = sum == pad->buf_len;
1474 if (pad->tail) {
1475 pad->tail_buf = pad->buf + pad->buf_len - align;
1478 return true;
1481 static coroutine_fn int bdrv_padding_rmw_read(BdrvChild *child,
1482 BdrvTrackedRequest *req,
1483 BdrvRequestPadding *pad,
1484 bool zero_middle)
1486 QEMUIOVector local_qiov;
1487 BlockDriverState *bs = child->bs;
1488 uint64_t align = bs->bl.request_alignment;
1489 int ret;
1491 assert(req->serialising && pad->buf);
1493 if (pad->head || pad->merge_reads) {
1494 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1496 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1498 if (pad->head) {
1499 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1501 if (pad->merge_reads && pad->tail) {
1502 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1504 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1505 align, &local_qiov, 0, 0);
1506 if (ret < 0) {
1507 return ret;
1509 if (pad->head) {
1510 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1512 if (pad->merge_reads && pad->tail) {
1513 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1516 if (pad->merge_reads) {
1517 goto zero_mem;
1521 if (pad->tail) {
1522 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1524 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1525 ret = bdrv_aligned_preadv(
1526 child, req,
1527 req->overlap_offset + req->overlap_bytes - align,
1528 align, align, &local_qiov, 0, 0);
1529 if (ret < 0) {
1530 return ret;
1532 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1535 zero_mem:
1536 if (zero_middle) {
1537 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1540 return 0;
1543 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1545 if (pad->buf) {
1546 qemu_vfree(pad->buf);
1547 qemu_iovec_destroy(&pad->local_qiov);
1549 memset(pad, 0, sizeof(*pad));
1553 * bdrv_pad_request
1555 * Exchange request parameters with padded request if needed. Don't include RMW
1556 * read of padding, bdrv_padding_rmw_read() should be called separately if
1557 * needed.
1559 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1560 * - on function start they represent original request
1561 * - on failure or when padding is not needed they are unchanged
1562 * - on success when padding is needed they represent padded request
1564 static int bdrv_pad_request(BlockDriverState *bs,
1565 QEMUIOVector **qiov, size_t *qiov_offset,
1566 int64_t *offset, int64_t *bytes,
1567 BdrvRequestPadding *pad, bool *padded,
1568 BdrvRequestFlags *flags)
1570 int ret;
1572 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1574 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1575 if (padded) {
1576 *padded = false;
1578 return 0;
1581 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1582 *qiov, *qiov_offset, *bytes,
1583 pad->buf + pad->buf_len - pad->tail,
1584 pad->tail);
1585 if (ret < 0) {
1586 bdrv_padding_destroy(pad);
1587 return ret;
1589 *bytes += pad->head + pad->tail;
1590 *offset -= pad->head;
1591 *qiov = &pad->local_qiov;
1592 *qiov_offset = 0;
1593 if (padded) {
1594 *padded = true;
1596 if (flags) {
1597 /* Can't use optimization hint with bounce buffer */
1598 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1601 return 0;
1604 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1605 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1606 BdrvRequestFlags flags)
1608 IO_CODE();
1609 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1612 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1613 int64_t offset, int64_t bytes,
1614 QEMUIOVector *qiov, size_t qiov_offset,
1615 BdrvRequestFlags flags)
1617 BlockDriverState *bs = child->bs;
1618 BdrvTrackedRequest req;
1619 BdrvRequestPadding pad;
1620 int ret;
1621 IO_CODE();
1623 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1625 if (!bdrv_co_is_inserted(bs)) {
1626 return -ENOMEDIUM;
1629 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1630 if (ret < 0) {
1631 return ret;
1634 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1636 * Aligning zero request is nonsense. Even if driver has special meaning
1637 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1638 * it to driver due to request_alignment.
1640 * Still, no reason to return an error if someone do unaligned
1641 * zero-length read occasionally.
1643 return 0;
1646 bdrv_inc_in_flight(bs);
1648 /* Don't do copy-on-read if we read data before write operation */
1649 if (qatomic_read(&bs->copy_on_read)) {
1650 flags |= BDRV_REQ_COPY_ON_READ;
1653 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1654 NULL, &flags);
1655 if (ret < 0) {
1656 goto fail;
1659 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1660 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1661 bs->bl.request_alignment,
1662 qiov, qiov_offset, flags);
1663 tracked_request_end(&req);
1664 bdrv_padding_destroy(&pad);
1666 fail:
1667 bdrv_dec_in_flight(bs);
1669 return ret;
1672 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1673 int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1675 BlockDriver *drv = bs->drv;
1676 QEMUIOVector qiov;
1677 void *buf = NULL;
1678 int ret = 0;
1679 bool need_flush = false;
1680 int head = 0;
1681 int tail = 0;
1683 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1684 INT64_MAX);
1685 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1686 bs->bl.request_alignment);
1687 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1689 bdrv_check_request(offset, bytes, &error_abort);
1691 if (!drv) {
1692 return -ENOMEDIUM;
1695 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1696 return -ENOTSUP;
1699 /* By definition there is no user buffer so this flag doesn't make sense */
1700 if (flags & BDRV_REQ_REGISTERED_BUF) {
1701 return -EINVAL;
1704 /* Invalidate the cached block-status data range if this write overlaps */
1705 bdrv_bsc_invalidate_range(bs, offset, bytes);
1707 assert(alignment % bs->bl.request_alignment == 0);
1708 head = offset % alignment;
1709 tail = (offset + bytes) % alignment;
1710 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1711 assert(max_write_zeroes >= bs->bl.request_alignment);
1713 while (bytes > 0 && !ret) {
1714 int64_t num = bytes;
1716 /* Align request. Block drivers can expect the "bulk" of the request
1717 * to be aligned, and that unaligned requests do not cross cluster
1718 * boundaries.
1720 if (head) {
1721 /* Make a small request up to the first aligned sector. For
1722 * convenience, limit this request to max_transfer even if
1723 * we don't need to fall back to writes. */
1724 num = MIN(MIN(bytes, max_transfer), alignment - head);
1725 head = (head + num) % alignment;
1726 assert(num < max_write_zeroes);
1727 } else if (tail && num > alignment) {
1728 /* Shorten the request to the last aligned sector. */
1729 num -= tail;
1732 /* limit request size */
1733 if (num > max_write_zeroes) {
1734 num = max_write_zeroes;
1737 ret = -ENOTSUP;
1738 /* First try the efficient write zeroes operation */
1739 if (drv->bdrv_co_pwrite_zeroes) {
1740 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1741 flags & bs->supported_zero_flags);
1742 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1743 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1744 need_flush = true;
1746 } else {
1747 assert(!bs->supported_zero_flags);
1750 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1751 /* Fall back to bounce buffer if write zeroes is unsupported */
1752 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1754 if ((flags & BDRV_REQ_FUA) &&
1755 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1756 /* No need for bdrv_driver_pwrite() to do a fallback
1757 * flush on each chunk; use just one at the end */
1758 write_flags &= ~BDRV_REQ_FUA;
1759 need_flush = true;
1761 num = MIN(num, max_transfer);
1762 if (buf == NULL) {
1763 buf = qemu_try_blockalign0(bs, num);
1764 if (buf == NULL) {
1765 ret = -ENOMEM;
1766 goto fail;
1769 qemu_iovec_init_buf(&qiov, buf, num);
1771 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1773 /* Keep bounce buffer around if it is big enough for all
1774 * all future requests.
1776 if (num < max_transfer) {
1777 qemu_vfree(buf);
1778 buf = NULL;
1782 offset += num;
1783 bytes -= num;
1786 fail:
1787 if (ret == 0 && need_flush) {
1788 ret = bdrv_co_flush(bs);
1790 qemu_vfree(buf);
1791 return ret;
1794 static inline int coroutine_fn
1795 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1796 BdrvTrackedRequest *req, int flags)
1798 BlockDriverState *bs = child->bs;
1800 bdrv_check_request(offset, bytes, &error_abort);
1802 if (bdrv_is_read_only(bs)) {
1803 return -EPERM;
1806 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1807 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1808 assert(!(flags & ~BDRV_REQ_MASK));
1809 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1811 if (flags & BDRV_REQ_SERIALISING) {
1812 QEMU_LOCK_GUARD(&bs->reqs_lock);
1814 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1816 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1817 return -EBUSY;
1820 bdrv_wait_serialising_requests_locked(req);
1821 } else {
1822 bdrv_wait_serialising_requests(req);
1825 assert(req->overlap_offset <= offset);
1826 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1827 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1828 child->perm & BLK_PERM_RESIZE);
1830 switch (req->type) {
1831 case BDRV_TRACKED_WRITE:
1832 case BDRV_TRACKED_DISCARD:
1833 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1834 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1835 } else {
1836 assert(child->perm & BLK_PERM_WRITE);
1838 bdrv_write_threshold_check_write(bs, offset, bytes);
1839 return 0;
1840 case BDRV_TRACKED_TRUNCATE:
1841 assert(child->perm & BLK_PERM_RESIZE);
1842 return 0;
1843 default:
1844 abort();
1848 static inline void coroutine_fn
1849 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1850 BdrvTrackedRequest *req, int ret)
1852 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1853 BlockDriverState *bs = child->bs;
1855 bdrv_check_request(offset, bytes, &error_abort);
1857 qatomic_inc(&bs->write_gen);
1860 * Discard cannot extend the image, but in error handling cases, such as
1861 * when reverting a qcow2 cluster allocation, the discarded range can pass
1862 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1863 * here. Instead, just skip it, since semantically a discard request
1864 * beyond EOF cannot expand the image anyway.
1866 if (ret == 0 &&
1867 (req->type == BDRV_TRACKED_TRUNCATE ||
1868 end_sector > bs->total_sectors) &&
1869 req->type != BDRV_TRACKED_DISCARD) {
1870 bs->total_sectors = end_sector;
1871 bdrv_parent_cb_resize(bs);
1872 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1874 if (req->bytes) {
1875 switch (req->type) {
1876 case BDRV_TRACKED_WRITE:
1877 stat64_max(&bs->wr_highest_offset, offset + bytes);
1878 /* fall through, to set dirty bits */
1879 case BDRV_TRACKED_DISCARD:
1880 bdrv_set_dirty(bs, offset, bytes);
1881 break;
1882 default:
1883 break;
1889 * Forwards an already correctly aligned write request to the BlockDriver,
1890 * after possibly fragmenting it.
1892 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1893 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1894 int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
1895 BdrvRequestFlags flags)
1897 BlockDriverState *bs = child->bs;
1898 BlockDriver *drv = bs->drv;
1899 int ret;
1901 int64_t bytes_remaining = bytes;
1902 int max_transfer;
1904 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1906 if (!drv) {
1907 return -ENOMEDIUM;
1910 if (bdrv_has_readonly_bitmaps(bs)) {
1911 return -EPERM;
1914 assert(is_power_of_2(align));
1915 assert((offset & (align - 1)) == 0);
1916 assert((bytes & (align - 1)) == 0);
1917 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1918 align);
1920 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1922 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1923 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1924 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1925 flags |= BDRV_REQ_ZERO_WRITE;
1926 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1927 flags |= BDRV_REQ_MAY_UNMAP;
1930 /* Can't use optimization hint with bufferless zero write */
1931 flags &= ~BDRV_REQ_REGISTERED_BUF;
1934 if (ret < 0) {
1935 /* Do nothing, write notifier decided to fail this request */
1936 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1937 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1938 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1939 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1940 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1941 qiov, qiov_offset);
1942 } else if (bytes <= max_transfer) {
1943 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1944 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1945 } else {
1946 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1947 while (bytes_remaining) {
1948 int num = MIN(bytes_remaining, max_transfer);
1949 int local_flags = flags;
1951 assert(num);
1952 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1953 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1954 /* If FUA is going to be emulated by flush, we only
1955 * need to flush on the last iteration */
1956 local_flags &= ~BDRV_REQ_FUA;
1959 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1960 num, qiov,
1961 qiov_offset + bytes - bytes_remaining,
1962 local_flags);
1963 if (ret < 0) {
1964 break;
1966 bytes_remaining -= num;
1969 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
1971 if (ret >= 0) {
1972 ret = 0;
1974 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1976 return ret;
1979 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1980 int64_t offset,
1981 int64_t bytes,
1982 BdrvRequestFlags flags,
1983 BdrvTrackedRequest *req)
1985 BlockDriverState *bs = child->bs;
1986 QEMUIOVector local_qiov;
1987 uint64_t align = bs->bl.request_alignment;
1988 int ret = 0;
1989 bool padding;
1990 BdrvRequestPadding pad;
1992 /* This flag doesn't make sense for padding or zero writes */
1993 flags &= ~BDRV_REQ_REGISTERED_BUF;
1995 padding = bdrv_init_padding(bs, offset, bytes, &pad);
1996 if (padding) {
1997 assert(!(flags & BDRV_REQ_NO_WAIT));
1998 bdrv_make_request_serialising(req, align);
2000 bdrv_padding_rmw_read(child, req, &pad, true);
2002 if (pad.head || pad.merge_reads) {
2003 int64_t aligned_offset = offset & ~(align - 1);
2004 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2006 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2007 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2008 align, &local_qiov, 0,
2009 flags & ~BDRV_REQ_ZERO_WRITE);
2010 if (ret < 0 || pad.merge_reads) {
2011 /* Error or all work is done */
2012 goto out;
2014 offset += write_bytes - pad.head;
2015 bytes -= write_bytes - pad.head;
2019 assert(!bytes || (offset & (align - 1)) == 0);
2020 if (bytes >= align) {
2021 /* Write the aligned part in the middle. */
2022 int64_t aligned_bytes = bytes & ~(align - 1);
2023 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2024 NULL, 0, flags);
2025 if (ret < 0) {
2026 goto out;
2028 bytes -= aligned_bytes;
2029 offset += aligned_bytes;
2032 assert(!bytes || (offset & (align - 1)) == 0);
2033 if (bytes) {
2034 assert(align == pad.tail + bytes);
2036 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2037 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2038 &local_qiov, 0,
2039 flags & ~BDRV_REQ_ZERO_WRITE);
2042 out:
2043 bdrv_padding_destroy(&pad);
2045 return ret;
2049 * Handle a write request in coroutine context
2051 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2052 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2053 BdrvRequestFlags flags)
2055 IO_CODE();
2056 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2059 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2060 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2061 BdrvRequestFlags flags)
2063 BlockDriverState *bs = child->bs;
2064 BdrvTrackedRequest req;
2065 uint64_t align = bs->bl.request_alignment;
2066 BdrvRequestPadding pad;
2067 int ret;
2068 bool padded = false;
2069 IO_CODE();
2071 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2073 if (!bdrv_co_is_inserted(bs)) {
2074 return -ENOMEDIUM;
2077 if (flags & BDRV_REQ_ZERO_WRITE) {
2078 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2079 } else {
2080 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2082 if (ret < 0) {
2083 return ret;
2086 /* If the request is misaligned then we can't make it efficient */
2087 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2088 !QEMU_IS_ALIGNED(offset | bytes, align))
2090 return -ENOTSUP;
2093 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2095 * Aligning zero request is nonsense. Even if driver has special meaning
2096 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2097 * it to driver due to request_alignment.
2099 * Still, no reason to return an error if someone do unaligned
2100 * zero-length write occasionally.
2102 return 0;
2105 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2107 * Pad request for following read-modify-write cycle.
2108 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2109 * alignment only if there is no ZERO flag.
2111 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2112 &padded, &flags);
2113 if (ret < 0) {
2114 return ret;
2118 bdrv_inc_in_flight(bs);
2119 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2121 if (flags & BDRV_REQ_ZERO_WRITE) {
2122 assert(!padded);
2123 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2124 goto out;
2127 if (padded) {
2129 * Request was unaligned to request_alignment and therefore
2130 * padded. We are going to do read-modify-write, and must
2131 * serialize the request to prevent interactions of the
2132 * widened region with other transactions.
2134 assert(!(flags & BDRV_REQ_NO_WAIT));
2135 bdrv_make_request_serialising(&req, align);
2136 bdrv_padding_rmw_read(child, &req, &pad, false);
2139 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2140 qiov, qiov_offset, flags);
2142 bdrv_padding_destroy(&pad);
2144 out:
2145 tracked_request_end(&req);
2146 bdrv_dec_in_flight(bs);
2148 return ret;
2151 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2152 int64_t bytes, BdrvRequestFlags flags)
2154 IO_CODE();
2155 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2157 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2158 flags &= ~BDRV_REQ_MAY_UNMAP;
2161 return bdrv_co_pwritev(child, offset, bytes, NULL,
2162 BDRV_REQ_ZERO_WRITE | flags);
2166 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2168 int bdrv_flush_all(void)
2170 BdrvNextIterator it;
2171 BlockDriverState *bs = NULL;
2172 int result = 0;
2174 GLOBAL_STATE_CODE();
2177 * bdrv queue is managed by record/replay,
2178 * creating new flush request for stopping
2179 * the VM may break the determinism
2181 if (replay_events_enabled()) {
2182 return result;
2185 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2186 AioContext *aio_context = bdrv_get_aio_context(bs);
2187 int ret;
2189 aio_context_acquire(aio_context);
2190 ret = bdrv_flush(bs);
2191 if (ret < 0 && !result) {
2192 result = ret;
2194 aio_context_release(aio_context);
2197 return result;
2201 * Returns the allocation status of the specified sectors.
2202 * Drivers not implementing the functionality are assumed to not support
2203 * backing files, hence all their sectors are reported as allocated.
2205 * If 'want_zero' is true, the caller is querying for mapping
2206 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2207 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2208 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2210 * If 'offset' is beyond the end of the disk image the return value is
2211 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2213 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2214 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2215 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2217 * 'pnum' is set to the number of bytes (including and immediately
2218 * following the specified offset) that are easily known to be in the
2219 * same allocated/unallocated state. Note that a second call starting
2220 * at the original offset plus returned pnum may have the same status.
2221 * The returned value is non-zero on success except at end-of-file.
2223 * Returns negative errno on failure. Otherwise, if the
2224 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2225 * set to the host mapping and BDS corresponding to the guest offset.
2227 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2228 bool want_zero,
2229 int64_t offset, int64_t bytes,
2230 int64_t *pnum, int64_t *map,
2231 BlockDriverState **file)
2233 int64_t total_size;
2234 int64_t n; /* bytes */
2235 int ret;
2236 int64_t local_map = 0;
2237 BlockDriverState *local_file = NULL;
2238 int64_t aligned_offset, aligned_bytes;
2239 uint32_t align;
2240 bool has_filtered_child;
2242 assert(pnum);
2243 *pnum = 0;
2244 total_size = bdrv_getlength(bs);
2245 if (total_size < 0) {
2246 ret = total_size;
2247 goto early_out;
2250 if (offset >= total_size) {
2251 ret = BDRV_BLOCK_EOF;
2252 goto early_out;
2254 if (!bytes) {
2255 ret = 0;
2256 goto early_out;
2259 n = total_size - offset;
2260 if (n < bytes) {
2261 bytes = n;
2264 /* Must be non-NULL or bdrv_getlength() would have failed */
2265 assert(bs->drv);
2266 has_filtered_child = bdrv_filter_child(bs);
2267 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2268 *pnum = bytes;
2269 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2270 if (offset + bytes == total_size) {
2271 ret |= BDRV_BLOCK_EOF;
2273 if (bs->drv->protocol_name) {
2274 ret |= BDRV_BLOCK_OFFSET_VALID;
2275 local_map = offset;
2276 local_file = bs;
2278 goto early_out;
2281 bdrv_inc_in_flight(bs);
2283 /* Round out to request_alignment boundaries */
2284 align = bs->bl.request_alignment;
2285 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2286 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2288 if (bs->drv->bdrv_co_block_status) {
2290 * Use the block-status cache only for protocol nodes: Format
2291 * drivers are generally quick to inquire the status, but protocol
2292 * drivers often need to get information from outside of qemu, so
2293 * we do not have control over the actual implementation. There
2294 * have been cases where inquiring the status took an unreasonably
2295 * long time, and we can do nothing in qemu to fix it.
2296 * This is especially problematic for images with large data areas,
2297 * because finding the few holes in them and giving them special
2298 * treatment does not gain much performance. Therefore, we try to
2299 * cache the last-identified data region.
2301 * Second, limiting ourselves to protocol nodes allows us to assume
2302 * the block status for data regions to be DATA | OFFSET_VALID, and
2303 * that the host offset is the same as the guest offset.
2305 * Note that it is possible that external writers zero parts of
2306 * the cached regions without the cache being invalidated, and so
2307 * we may report zeroes as data. This is not catastrophic,
2308 * however, because reporting zeroes as data is fine.
2310 if (QLIST_EMPTY(&bs->children) &&
2311 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2313 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2314 local_file = bs;
2315 local_map = aligned_offset;
2316 } else {
2317 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2318 aligned_bytes, pnum, &local_map,
2319 &local_file);
2322 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2323 * the cache is queried above. Technically, we do not need to check
2324 * it here; the worst that can happen is that we fill the cache for
2325 * non-protocol nodes, and then it is never used. However, filling
2326 * the cache requires an RCU update, so double check here to avoid
2327 * such an update if possible.
2329 * Check want_zero, because we only want to update the cache when we
2330 * have accurate information about what is zero and what is data.
2332 if (want_zero &&
2333 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2334 QLIST_EMPTY(&bs->children))
2337 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2338 * returned local_map value must be the same as the offset we
2339 * have passed (aligned_offset), and local_bs must be the node
2340 * itself.
2341 * Assert this, because we follow this rule when reading from
2342 * the cache (see the `local_file = bs` and
2343 * `local_map = aligned_offset` assignments above), and the
2344 * result the cache delivers must be the same as the driver
2345 * would deliver.
2347 assert(local_file == bs);
2348 assert(local_map == aligned_offset);
2349 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2352 } else {
2353 /* Default code for filters */
2355 local_file = bdrv_filter_bs(bs);
2356 assert(local_file);
2358 *pnum = aligned_bytes;
2359 local_map = aligned_offset;
2360 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2362 if (ret < 0) {
2363 *pnum = 0;
2364 goto out;
2368 * The driver's result must be a non-zero multiple of request_alignment.
2369 * Clamp pnum and adjust map to original request.
2371 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2372 align > offset - aligned_offset);
2373 if (ret & BDRV_BLOCK_RECURSE) {
2374 assert(ret & BDRV_BLOCK_DATA);
2375 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2376 assert(!(ret & BDRV_BLOCK_ZERO));
2379 *pnum -= offset - aligned_offset;
2380 if (*pnum > bytes) {
2381 *pnum = bytes;
2383 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2384 local_map += offset - aligned_offset;
2387 if (ret & BDRV_BLOCK_RAW) {
2388 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2389 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2390 *pnum, pnum, &local_map, &local_file);
2391 goto out;
2394 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2395 ret |= BDRV_BLOCK_ALLOCATED;
2396 } else if (bs->drv->supports_backing) {
2397 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2399 if (!cow_bs) {
2400 ret |= BDRV_BLOCK_ZERO;
2401 } else if (want_zero) {
2402 int64_t size2 = bdrv_getlength(cow_bs);
2404 if (size2 >= 0 && offset >= size2) {
2405 ret |= BDRV_BLOCK_ZERO;
2410 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2411 local_file && local_file != bs &&
2412 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2413 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2414 int64_t file_pnum;
2415 int ret2;
2417 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2418 *pnum, &file_pnum, NULL, NULL);
2419 if (ret2 >= 0) {
2420 /* Ignore errors. This is just providing extra information, it
2421 * is useful but not necessary.
2423 if (ret2 & BDRV_BLOCK_EOF &&
2424 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2426 * It is valid for the format block driver to read
2427 * beyond the end of the underlying file's current
2428 * size; such areas read as zero.
2430 ret |= BDRV_BLOCK_ZERO;
2431 } else {
2432 /* Limit request to the range reported by the protocol driver */
2433 *pnum = file_pnum;
2434 ret |= (ret2 & BDRV_BLOCK_ZERO);
2439 out:
2440 bdrv_dec_in_flight(bs);
2441 if (ret >= 0 && offset + *pnum == total_size) {
2442 ret |= BDRV_BLOCK_EOF;
2444 early_out:
2445 if (file) {
2446 *file = local_file;
2448 if (map) {
2449 *map = local_map;
2451 return ret;
2454 int coroutine_fn
2455 bdrv_co_common_block_status_above(BlockDriverState *bs,
2456 BlockDriverState *base,
2457 bool include_base,
2458 bool want_zero,
2459 int64_t offset,
2460 int64_t bytes,
2461 int64_t *pnum,
2462 int64_t *map,
2463 BlockDriverState **file,
2464 int *depth)
2466 int ret;
2467 BlockDriverState *p;
2468 int64_t eof = 0;
2469 int dummy;
2470 IO_CODE();
2472 assert(!include_base || base); /* Can't include NULL base */
2474 if (!depth) {
2475 depth = &dummy;
2477 *depth = 0;
2479 if (!include_base && bs == base) {
2480 *pnum = bytes;
2481 return 0;
2484 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2485 ++*depth;
2486 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2487 return ret;
2490 if (ret & BDRV_BLOCK_EOF) {
2491 eof = offset + *pnum;
2494 assert(*pnum <= bytes);
2495 bytes = *pnum;
2497 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2498 p = bdrv_filter_or_cow_bs(p))
2500 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2501 file);
2502 ++*depth;
2503 if (ret < 0) {
2504 return ret;
2506 if (*pnum == 0) {
2508 * The top layer deferred to this layer, and because this layer is
2509 * short, any zeroes that we synthesize beyond EOF behave as if they
2510 * were allocated at this layer.
2512 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2513 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2514 * below.
2516 assert(ret & BDRV_BLOCK_EOF);
2517 *pnum = bytes;
2518 if (file) {
2519 *file = p;
2521 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2522 break;
2524 if (ret & BDRV_BLOCK_ALLOCATED) {
2526 * We've found the node and the status, we must break.
2528 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2529 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2530 * below.
2532 ret &= ~BDRV_BLOCK_EOF;
2533 break;
2536 if (p == base) {
2537 assert(include_base);
2538 break;
2542 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2543 * let's continue the diving.
2545 assert(*pnum <= bytes);
2546 bytes = *pnum;
2549 if (offset + *pnum == eof) {
2550 ret |= BDRV_BLOCK_EOF;
2553 return ret;
2556 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2557 BlockDriverState *base,
2558 int64_t offset, int64_t bytes,
2559 int64_t *pnum, int64_t *map,
2560 BlockDriverState **file)
2562 IO_CODE();
2563 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2564 bytes, pnum, map, file, NULL);
2567 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2568 int64_t offset, int64_t bytes, int64_t *pnum,
2569 int64_t *map, BlockDriverState **file)
2571 IO_CODE();
2572 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2573 pnum, map, file, NULL);
2576 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2577 int64_t *pnum, int64_t *map, BlockDriverState **file)
2579 IO_CODE();
2580 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2581 offset, bytes, pnum, map, file);
2585 * Check @bs (and its backing chain) to see if the range defined
2586 * by @offset and @bytes is known to read as zeroes.
2587 * Return 1 if that is the case, 0 otherwise and -errno on error.
2588 * This test is meant to be fast rather than accurate so returning 0
2589 * does not guarantee non-zero data.
2591 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2592 int64_t bytes)
2594 int ret;
2595 int64_t pnum = bytes;
2596 IO_CODE();
2598 if (!bytes) {
2599 return 1;
2602 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2603 bytes, &pnum, NULL, NULL, NULL);
2605 if (ret < 0) {
2606 return ret;
2609 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2612 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2613 int64_t bytes, int64_t *pnum)
2615 int ret;
2616 int64_t dummy;
2617 IO_CODE();
2619 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2620 bytes, pnum ? pnum : &dummy, NULL,
2621 NULL, NULL);
2622 if (ret < 0) {
2623 return ret;
2625 return !!(ret & BDRV_BLOCK_ALLOCATED);
2628 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2629 int64_t *pnum)
2631 int ret;
2632 int64_t dummy;
2633 IO_CODE();
2635 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2636 bytes, pnum ? pnum : &dummy, NULL,
2637 NULL, NULL);
2638 if (ret < 0) {
2639 return ret;
2641 return !!(ret & BDRV_BLOCK_ALLOCATED);
2644 /* See bdrv_is_allocated_above for documentation */
2645 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2646 BlockDriverState *base,
2647 bool include_base, int64_t offset,
2648 int64_t bytes, int64_t *pnum)
2650 int depth;
2651 int ret;
2652 IO_CODE();
2654 ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2655 offset, bytes, pnum, NULL, NULL,
2656 &depth);
2657 if (ret < 0) {
2658 return ret;
2661 if (ret & BDRV_BLOCK_ALLOCATED) {
2662 return depth;
2664 return 0;
2668 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2670 * Return a positive depth if (a prefix of) the given range is allocated
2671 * in any image between BASE and TOP (BASE is only included if include_base
2672 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2673 * BASE can be NULL to check if the given offset is allocated in any
2674 * image of the chain. Return 0 otherwise, or negative errno on
2675 * failure.
2677 * 'pnum' is set to the number of bytes (including and immediately
2678 * following the specified offset) that are known to be in the same
2679 * allocated/unallocated state. Note that a subsequent call starting
2680 * at 'offset + *pnum' may return the same allocation status (in other
2681 * words, the result is not necessarily the maximum possible range);
2682 * but 'pnum' will only be 0 when end of file is reached.
2684 int bdrv_is_allocated_above(BlockDriverState *top,
2685 BlockDriverState *base,
2686 bool include_base, int64_t offset,
2687 int64_t bytes, int64_t *pnum)
2689 int depth;
2690 int ret;
2691 IO_CODE();
2693 ret = bdrv_common_block_status_above(top, base, include_base, false,
2694 offset, bytes, pnum, NULL, NULL,
2695 &depth);
2696 if (ret < 0) {
2697 return ret;
2700 if (ret & BDRV_BLOCK_ALLOCATED) {
2701 return depth;
2703 return 0;
2706 int coroutine_fn
2707 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2709 BlockDriver *drv = bs->drv;
2710 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2711 int ret;
2712 IO_CODE();
2713 assert_bdrv_graph_readable();
2715 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2716 if (ret < 0) {
2717 return ret;
2720 if (!drv) {
2721 return -ENOMEDIUM;
2724 bdrv_inc_in_flight(bs);
2726 if (drv->bdrv_co_load_vmstate) {
2727 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2728 } else if (child_bs) {
2729 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2730 } else {
2731 ret = -ENOTSUP;
2734 bdrv_dec_in_flight(bs);
2736 return ret;
2739 int coroutine_fn
2740 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2742 BlockDriver *drv = bs->drv;
2743 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2744 int ret;
2745 IO_CODE();
2746 assert_bdrv_graph_readable();
2748 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2749 if (ret < 0) {
2750 return ret;
2753 if (!drv) {
2754 return -ENOMEDIUM;
2757 bdrv_inc_in_flight(bs);
2759 if (drv->bdrv_co_save_vmstate) {
2760 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2761 } else if (child_bs) {
2762 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2763 } else {
2764 ret = -ENOTSUP;
2767 bdrv_dec_in_flight(bs);
2769 return ret;
2772 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2773 int64_t pos, int size)
2775 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2776 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2777 IO_CODE();
2779 return ret < 0 ? ret : size;
2782 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2783 int64_t pos, int size)
2785 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2786 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2787 IO_CODE();
2789 return ret < 0 ? ret : size;
2792 /**************************************************************/
2793 /* async I/Os */
2795 void bdrv_aio_cancel(BlockAIOCB *acb)
2797 IO_CODE();
2798 qemu_aio_ref(acb);
2799 bdrv_aio_cancel_async(acb);
2800 while (acb->refcnt > 1) {
2801 if (acb->aiocb_info->get_aio_context) {
2802 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2803 } else if (acb->bs) {
2804 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2805 * assert that we're not using an I/O thread. Thread-safe
2806 * code should use bdrv_aio_cancel_async exclusively.
2808 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2809 aio_poll(bdrv_get_aio_context(acb->bs), true);
2810 } else {
2811 abort();
2814 qemu_aio_unref(acb);
2817 /* Async version of aio cancel. The caller is not blocked if the acb implements
2818 * cancel_async, otherwise we do nothing and let the request normally complete.
2819 * In either case the completion callback must be called. */
2820 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2822 IO_CODE();
2823 if (acb->aiocb_info->cancel_async) {
2824 acb->aiocb_info->cancel_async(acb);
2828 /**************************************************************/
2829 /* Coroutine block device emulation */
2831 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2833 BdrvChild *primary_child = bdrv_primary_child(bs);
2834 BdrvChild *child;
2835 int current_gen;
2836 int ret = 0;
2837 IO_CODE();
2839 bdrv_inc_in_flight(bs);
2841 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2842 bdrv_is_sg(bs)) {
2843 goto early_exit;
2846 qemu_co_mutex_lock(&bs->reqs_lock);
2847 current_gen = qatomic_read(&bs->write_gen);
2849 /* Wait until any previous flushes are completed */
2850 while (bs->active_flush_req) {
2851 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2854 /* Flushes reach this point in nondecreasing current_gen order. */
2855 bs->active_flush_req = true;
2856 qemu_co_mutex_unlock(&bs->reqs_lock);
2858 /* Write back all layers by calling one driver function */
2859 if (bs->drv->bdrv_co_flush) {
2860 ret = bs->drv->bdrv_co_flush(bs);
2861 goto out;
2864 /* Write back cached data to the OS even with cache=unsafe */
2865 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2866 if (bs->drv->bdrv_co_flush_to_os) {
2867 ret = bs->drv->bdrv_co_flush_to_os(bs);
2868 if (ret < 0) {
2869 goto out;
2873 /* But don't actually force it to the disk with cache=unsafe */
2874 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2875 goto flush_children;
2878 /* Check if we really need to flush anything */
2879 if (bs->flushed_gen == current_gen) {
2880 goto flush_children;
2883 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2884 if (!bs->drv) {
2885 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2886 * (even in case of apparent success) */
2887 ret = -ENOMEDIUM;
2888 goto out;
2890 if (bs->drv->bdrv_co_flush_to_disk) {
2891 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2892 } else if (bs->drv->bdrv_aio_flush) {
2893 BlockAIOCB *acb;
2894 CoroutineIOCompletion co = {
2895 .coroutine = qemu_coroutine_self(),
2898 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2899 if (acb == NULL) {
2900 ret = -EIO;
2901 } else {
2902 qemu_coroutine_yield();
2903 ret = co.ret;
2905 } else {
2907 * Some block drivers always operate in either writethrough or unsafe
2908 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2909 * know how the server works (because the behaviour is hardcoded or
2910 * depends on server-side configuration), so we can't ensure that
2911 * everything is safe on disk. Returning an error doesn't work because
2912 * that would break guests even if the server operates in writethrough
2913 * mode.
2915 * Let's hope the user knows what he's doing.
2917 ret = 0;
2920 if (ret < 0) {
2921 goto out;
2924 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2925 * in the case of cache=unsafe, so there are no useless flushes.
2927 flush_children:
2928 ret = 0;
2929 QLIST_FOREACH(child, &bs->children, next) {
2930 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2931 int this_child_ret = bdrv_co_flush(child->bs);
2932 if (!ret) {
2933 ret = this_child_ret;
2938 out:
2939 /* Notify any pending flushes that we have completed */
2940 if (ret == 0) {
2941 bs->flushed_gen = current_gen;
2944 qemu_co_mutex_lock(&bs->reqs_lock);
2945 bs->active_flush_req = false;
2946 /* Return value is ignored - it's ok if wait queue is empty */
2947 qemu_co_queue_next(&bs->flush_queue);
2948 qemu_co_mutex_unlock(&bs->reqs_lock);
2950 early_exit:
2951 bdrv_dec_in_flight(bs);
2952 return ret;
2955 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2956 int64_t bytes)
2958 BdrvTrackedRequest req;
2959 int ret;
2960 int64_t max_pdiscard;
2961 int head, tail, align;
2962 BlockDriverState *bs = child->bs;
2963 IO_CODE();
2965 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
2966 return -ENOMEDIUM;
2969 if (bdrv_has_readonly_bitmaps(bs)) {
2970 return -EPERM;
2973 ret = bdrv_check_request(offset, bytes, NULL);
2974 if (ret < 0) {
2975 return ret;
2978 /* Do nothing if disabled. */
2979 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2980 return 0;
2983 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2984 return 0;
2987 /* Invalidate the cached block-status data range if this discard overlaps */
2988 bdrv_bsc_invalidate_range(bs, offset, bytes);
2990 /* Discard is advisory, but some devices track and coalesce
2991 * unaligned requests, so we must pass everything down rather than
2992 * round here. Still, most devices will just silently ignore
2993 * unaligned requests (by returning -ENOTSUP), so we must fragment
2994 * the request accordingly. */
2995 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2996 assert(align % bs->bl.request_alignment == 0);
2997 head = offset % align;
2998 tail = (offset + bytes) % align;
3000 bdrv_inc_in_flight(bs);
3001 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3003 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3004 if (ret < 0) {
3005 goto out;
3008 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3009 align);
3010 assert(max_pdiscard >= bs->bl.request_alignment);
3012 while (bytes > 0) {
3013 int64_t num = bytes;
3015 if (head) {
3016 /* Make small requests to get to alignment boundaries. */
3017 num = MIN(bytes, align - head);
3018 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3019 num %= bs->bl.request_alignment;
3021 head = (head + num) % align;
3022 assert(num < max_pdiscard);
3023 } else if (tail) {
3024 if (num > align) {
3025 /* Shorten the request to the last aligned cluster. */
3026 num -= tail;
3027 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3028 tail > bs->bl.request_alignment) {
3029 tail %= bs->bl.request_alignment;
3030 num -= tail;
3033 /* limit request size */
3034 if (num > max_pdiscard) {
3035 num = max_pdiscard;
3038 if (!bs->drv) {
3039 ret = -ENOMEDIUM;
3040 goto out;
3042 if (bs->drv->bdrv_co_pdiscard) {
3043 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3044 } else {
3045 BlockAIOCB *acb;
3046 CoroutineIOCompletion co = {
3047 .coroutine = qemu_coroutine_self(),
3050 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3051 bdrv_co_io_em_complete, &co);
3052 if (acb == NULL) {
3053 ret = -EIO;
3054 goto out;
3055 } else {
3056 qemu_coroutine_yield();
3057 ret = co.ret;
3060 if (ret && ret != -ENOTSUP) {
3061 goto out;
3064 offset += num;
3065 bytes -= num;
3067 ret = 0;
3068 out:
3069 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3070 tracked_request_end(&req);
3071 bdrv_dec_in_flight(bs);
3072 return ret;
3075 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3077 BlockDriver *drv = bs->drv;
3078 CoroutineIOCompletion co = {
3079 .coroutine = qemu_coroutine_self(),
3081 BlockAIOCB *acb;
3082 IO_CODE();
3084 bdrv_inc_in_flight(bs);
3085 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3086 co.ret = -ENOTSUP;
3087 goto out;
3090 if (drv->bdrv_co_ioctl) {
3091 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3092 } else {
3093 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3094 if (!acb) {
3095 co.ret = -ENOTSUP;
3096 goto out;
3098 qemu_coroutine_yield();
3100 out:
3101 bdrv_dec_in_flight(bs);
3102 return co.ret;
3105 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3107 IO_CODE();
3108 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3111 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3113 IO_CODE();
3114 return memset(qemu_blockalign(bs, size), 0, size);
3117 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3119 size_t align = bdrv_opt_mem_align(bs);
3120 IO_CODE();
3122 /* Ensure that NULL is never returned on success */
3123 assert(align > 0);
3124 if (size == 0) {
3125 size = align;
3128 return qemu_try_memalign(align, size);
3131 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3133 void *mem = qemu_try_blockalign(bs, size);
3134 IO_CODE();
3136 if (mem) {
3137 memset(mem, 0, size);
3140 return mem;
3143 void coroutine_fn bdrv_co_io_plug(BlockDriverState *bs)
3145 BdrvChild *child;
3146 IO_CODE();
3148 QLIST_FOREACH(child, &bs->children, next) {
3149 bdrv_co_io_plug(child->bs);
3152 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3153 BlockDriver *drv = bs->drv;
3154 if (drv && drv->bdrv_co_io_plug) {
3155 drv->bdrv_co_io_plug(bs);
3160 void coroutine_fn bdrv_co_io_unplug(BlockDriverState *bs)
3162 BdrvChild *child;
3163 IO_CODE();
3165 assert(bs->io_plugged);
3166 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3167 BlockDriver *drv = bs->drv;
3168 if (drv && drv->bdrv_co_io_unplug) {
3169 drv->bdrv_co_io_unplug(bs);
3173 QLIST_FOREACH(child, &bs->children, next) {
3174 bdrv_co_io_unplug(child->bs);
3178 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3179 static void bdrv_register_buf_rollback(BlockDriverState *bs,
3180 void *host,
3181 size_t size,
3182 BdrvChild *final_child)
3184 BdrvChild *child;
3186 QLIST_FOREACH(child, &bs->children, next) {
3187 if (child == final_child) {
3188 break;
3191 bdrv_unregister_buf(child->bs, host, size);
3194 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3195 bs->drv->bdrv_unregister_buf(bs, host, size);
3199 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3200 Error **errp)
3202 BdrvChild *child;
3204 GLOBAL_STATE_CODE();
3205 if (bs->drv && bs->drv->bdrv_register_buf) {
3206 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3207 return false;
3210 QLIST_FOREACH(child, &bs->children, next) {
3211 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3212 bdrv_register_buf_rollback(bs, host, size, child);
3213 return false;
3216 return true;
3219 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3221 BdrvChild *child;
3223 GLOBAL_STATE_CODE();
3224 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3225 bs->drv->bdrv_unregister_buf(bs, host, size);
3227 QLIST_FOREACH(child, &bs->children, next) {
3228 bdrv_unregister_buf(child->bs, host, size);
3232 static int coroutine_fn bdrv_co_copy_range_internal(
3233 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3234 int64_t dst_offset, int64_t bytes,
3235 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3236 bool recurse_src)
3238 BdrvTrackedRequest req;
3239 int ret;
3241 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3242 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3243 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3244 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3245 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3247 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3248 return -ENOMEDIUM;
3250 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3251 if (ret) {
3252 return ret;
3254 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3255 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3258 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3259 return -ENOMEDIUM;
3261 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3262 if (ret) {
3263 return ret;
3266 if (!src->bs->drv->bdrv_co_copy_range_from
3267 || !dst->bs->drv->bdrv_co_copy_range_to
3268 || src->bs->encrypted || dst->bs->encrypted) {
3269 return -ENOTSUP;
3272 if (recurse_src) {
3273 bdrv_inc_in_flight(src->bs);
3274 tracked_request_begin(&req, src->bs, src_offset, bytes,
3275 BDRV_TRACKED_READ);
3277 /* BDRV_REQ_SERIALISING is only for write operation */
3278 assert(!(read_flags & BDRV_REQ_SERIALISING));
3279 bdrv_wait_serialising_requests(&req);
3281 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3282 src, src_offset,
3283 dst, dst_offset,
3284 bytes,
3285 read_flags, write_flags);
3287 tracked_request_end(&req);
3288 bdrv_dec_in_flight(src->bs);
3289 } else {
3290 bdrv_inc_in_flight(dst->bs);
3291 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3292 BDRV_TRACKED_WRITE);
3293 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3294 write_flags);
3295 if (!ret) {
3296 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3297 src, src_offset,
3298 dst, dst_offset,
3299 bytes,
3300 read_flags, write_flags);
3302 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3303 tracked_request_end(&req);
3304 bdrv_dec_in_flight(dst->bs);
3307 return ret;
3310 /* Copy range from @src to @dst.
3312 * See the comment of bdrv_co_copy_range for the parameter and return value
3313 * semantics. */
3314 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3315 BdrvChild *dst, int64_t dst_offset,
3316 int64_t bytes,
3317 BdrvRequestFlags read_flags,
3318 BdrvRequestFlags write_flags)
3320 IO_CODE();
3321 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3322 read_flags, write_flags);
3323 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3324 bytes, read_flags, write_flags, true);
3327 /* Copy range from @src to @dst.
3329 * See the comment of bdrv_co_copy_range for the parameter and return value
3330 * semantics. */
3331 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3332 BdrvChild *dst, int64_t dst_offset,
3333 int64_t bytes,
3334 BdrvRequestFlags read_flags,
3335 BdrvRequestFlags write_flags)
3337 IO_CODE();
3338 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3339 read_flags, write_flags);
3340 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3341 bytes, read_flags, write_flags, false);
3344 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3345 BdrvChild *dst, int64_t dst_offset,
3346 int64_t bytes, BdrvRequestFlags read_flags,
3347 BdrvRequestFlags write_flags)
3349 IO_CODE();
3350 return bdrv_co_copy_range_from(src, src_offset,
3351 dst, dst_offset,
3352 bytes, read_flags, write_flags);
3355 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3357 BdrvChild *c;
3358 QLIST_FOREACH(c, &bs->parents, next_parent) {
3359 if (c->klass->resize) {
3360 c->klass->resize(c);
3366 * Truncate file to 'offset' bytes (needed only for file protocols)
3368 * If 'exact' is true, the file must be resized to exactly the given
3369 * 'offset'. Otherwise, it is sufficient for the node to be at least
3370 * 'offset' bytes in length.
3372 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3373 PreallocMode prealloc, BdrvRequestFlags flags,
3374 Error **errp)
3376 BlockDriverState *bs = child->bs;
3377 BdrvChild *filtered, *backing;
3378 BlockDriver *drv = bs->drv;
3379 BdrvTrackedRequest req;
3380 int64_t old_size, new_bytes;
3381 int ret;
3382 IO_CODE();
3384 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3385 if (!drv) {
3386 error_setg(errp, "No medium inserted");
3387 return -ENOMEDIUM;
3389 if (offset < 0) {
3390 error_setg(errp, "Image size cannot be negative");
3391 return -EINVAL;
3394 ret = bdrv_check_request(offset, 0, errp);
3395 if (ret < 0) {
3396 return ret;
3399 old_size = bdrv_getlength(bs);
3400 if (old_size < 0) {
3401 error_setg_errno(errp, -old_size, "Failed to get old image size");
3402 return old_size;
3405 if (bdrv_is_read_only(bs)) {
3406 error_setg(errp, "Image is read-only");
3407 return -EACCES;
3410 if (offset > old_size) {
3411 new_bytes = offset - old_size;
3412 } else {
3413 new_bytes = 0;
3416 bdrv_inc_in_flight(bs);
3417 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3418 BDRV_TRACKED_TRUNCATE);
3420 /* If we are growing the image and potentially using preallocation for the
3421 * new area, we need to make sure that no write requests are made to it
3422 * concurrently or they might be overwritten by preallocation. */
3423 if (new_bytes) {
3424 bdrv_make_request_serialising(&req, 1);
3426 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3428 if (ret < 0) {
3429 error_setg_errno(errp, -ret,
3430 "Failed to prepare request for truncation");
3431 goto out;
3434 filtered = bdrv_filter_child(bs);
3435 backing = bdrv_cow_child(bs);
3438 * If the image has a backing file that is large enough that it would
3439 * provide data for the new area, we cannot leave it unallocated because
3440 * then the backing file content would become visible. Instead, zero-fill
3441 * the new area.
3443 * Note that if the image has a backing file, but was opened without the
3444 * backing file, taking care of keeping things consistent with that backing
3445 * file is the user's responsibility.
3447 if (new_bytes && backing) {
3448 int64_t backing_len;
3450 backing_len = bdrv_co_getlength(backing->bs);
3451 if (backing_len < 0) {
3452 ret = backing_len;
3453 error_setg_errno(errp, -ret, "Could not get backing file size");
3454 goto out;
3457 if (backing_len > old_size) {
3458 flags |= BDRV_REQ_ZERO_WRITE;
3462 if (drv->bdrv_co_truncate) {
3463 if (flags & ~bs->supported_truncate_flags) {
3464 error_setg(errp, "Block driver does not support requested flags");
3465 ret = -ENOTSUP;
3466 goto out;
3468 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3469 } else if (filtered) {
3470 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3471 } else {
3472 error_setg(errp, "Image format driver does not support resize");
3473 ret = -ENOTSUP;
3474 goto out;
3476 if (ret < 0) {
3477 goto out;
3480 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3481 if (ret < 0) {
3482 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3483 } else {
3484 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3487 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3488 * failed, but the latter doesn't affect how we should finish the request.
3489 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3491 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3493 out:
3494 tracked_request_end(&req);
3495 bdrv_dec_in_flight(bs);
3497 return ret;
3500 void bdrv_cancel_in_flight(BlockDriverState *bs)
3502 GLOBAL_STATE_CODE();
3503 if (!bs || !bs->drv) {
3504 return;
3507 if (bs->drv->bdrv_cancel_in_flight) {
3508 bs->drv->bdrv_cancel_in_flight(bs);
3512 int coroutine_fn
3513 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3514 QEMUIOVector *qiov, size_t qiov_offset)
3516 BlockDriverState *bs = child->bs;
3517 BlockDriver *drv = bs->drv;
3518 int ret;
3519 IO_CODE();
3521 if (!drv) {
3522 return -ENOMEDIUM;
3525 if (!drv->bdrv_co_preadv_snapshot) {
3526 return -ENOTSUP;
3529 bdrv_inc_in_flight(bs);
3530 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3531 bdrv_dec_in_flight(bs);
3533 return ret;
3536 int coroutine_fn
3537 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3538 bool want_zero, int64_t offset, int64_t bytes,
3539 int64_t *pnum, int64_t *map,
3540 BlockDriverState **file)
3542 BlockDriver *drv = bs->drv;
3543 int ret;
3544 IO_CODE();
3546 if (!drv) {
3547 return -ENOMEDIUM;
3550 if (!drv->bdrv_co_snapshot_block_status) {
3551 return -ENOTSUP;
3554 bdrv_inc_in_flight(bs);
3555 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3556 pnum, map, file);
3557 bdrv_dec_in_flight(bs);
3559 return ret;
3562 int coroutine_fn
3563 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3565 BlockDriver *drv = bs->drv;
3566 int ret;
3567 IO_CODE();
3569 if (!drv) {
3570 return -ENOMEDIUM;
3573 if (!drv->bdrv_co_pdiscard_snapshot) {
3574 return -ENOTSUP;
3577 bdrv_inc_in_flight(bs);
3578 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3579 bdrv_dec_in_flight(bs);
3581 return ret;