hw/sd/sdhci: Block Size Register bits [14:12] is lost
[qemu/kevin.git] / hw / sd / sdhci.c
blob40473b0db099a6289181ffe2795e19ccbe532ae9
1 /*
2 * SD Association Host Standard Specification v2.0 controller emulation
4 * Datasheet: PartA2_SD_Host_Controller_Simplified_Specification_Ver2.00.pdf
6 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
7 * Mitsyanko Igor <i.mitsyanko@samsung.com>
8 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
10 * Based on MMC controller for Samsung S5PC1xx-based board emulation
11 * by Alexey Merkulov and Vladimir Monakhov.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21 * See the GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, see <http://www.gnu.org/licenses/>.
27 #include "qemu/osdep.h"
28 #include "qemu/units.h"
29 #include "qemu/error-report.h"
30 #include "qapi/error.h"
31 #include "hw/irq.h"
32 #include "hw/qdev-properties.h"
33 #include "sysemu/dma.h"
34 #include "qemu/timer.h"
35 #include "qemu/bitops.h"
36 #include "hw/sd/sdhci.h"
37 #include "migration/vmstate.h"
38 #include "sdhci-internal.h"
39 #include "qemu/log.h"
40 #include "qemu/module.h"
41 #include "trace.h"
42 #include "qom/object.h"
44 #define TYPE_SDHCI_BUS "sdhci-bus"
45 /* This is reusing the SDBus typedef from SD_BUS */
46 DECLARE_INSTANCE_CHECKER(SDBus, SDHCI_BUS,
47 TYPE_SDHCI_BUS)
49 #define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val))
51 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
53 return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
56 /* return true on error */
57 static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
58 uint8_t freq, Error **errp)
60 if (s->sd_spec_version >= 3) {
61 return false;
63 switch (freq) {
64 case 0:
65 case 10 ... 63:
66 break;
67 default:
68 error_setg(errp, "SD %s clock frequency can have value"
69 "in range 0-63 only", desc);
70 return true;
72 return false;
75 static void sdhci_check_capareg(SDHCIState *s, Error **errp)
77 uint64_t msk = s->capareg;
78 uint32_t val;
79 bool y;
81 switch (s->sd_spec_version) {
82 case 4:
83 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4);
84 trace_sdhci_capareg("64-bit system bus (v4)", val);
85 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0);
87 val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II);
88 trace_sdhci_capareg("UHS-II", val);
89 msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0);
91 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3);
92 trace_sdhci_capareg("ADMA3", val);
93 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0);
95 /* fallthrough */
96 case 3:
97 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
98 trace_sdhci_capareg("async interrupt", val);
99 msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);
101 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
102 if (val) {
103 error_setg(errp, "slot-type not supported");
104 return;
106 trace_sdhci_capareg("slot type", val);
107 msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);
109 if (val != 2) {
110 val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
111 trace_sdhci_capareg("8-bit bus", val);
113 msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);
115 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
116 trace_sdhci_capareg("bus speed mask", val);
117 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);
119 val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
120 trace_sdhci_capareg("driver strength mask", val);
121 msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);
123 val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
124 trace_sdhci_capareg("timer re-tuning", val);
125 msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);
127 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
128 trace_sdhci_capareg("use SDR50 tuning", val);
129 msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);
131 val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
132 trace_sdhci_capareg("re-tuning mode", val);
133 msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);
135 val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
136 trace_sdhci_capareg("clock multiplier", val);
137 msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);
139 /* fallthrough */
140 case 2: /* default version */
141 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
142 trace_sdhci_capareg("ADMA2", val);
143 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);
145 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
146 trace_sdhci_capareg("ADMA1", val);
147 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);
149 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
150 trace_sdhci_capareg("64-bit system bus (v3)", val);
151 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
153 /* fallthrough */
154 case 1:
155 y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
156 msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
158 val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
159 trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
160 if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
161 return;
163 msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
165 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
166 trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
167 if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
168 return;
170 msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
172 val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
173 if (val >= 3) {
174 error_setg(errp, "block size can be 512, 1024 or 2048 only");
175 return;
177 trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
178 msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
180 val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
181 trace_sdhci_capareg("high speed", val);
182 msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
184 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
185 trace_sdhci_capareg("SDMA", val);
186 msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
188 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
189 trace_sdhci_capareg("suspend/resume", val);
190 msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
192 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
193 trace_sdhci_capareg("3.3v", val);
194 msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
196 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
197 trace_sdhci_capareg("3.0v", val);
198 msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
200 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
201 trace_sdhci_capareg("1.8v", val);
202 msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
203 break;
205 default:
206 error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
208 if (msk) {
209 qemu_log_mask(LOG_UNIMP,
210 "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
214 static uint8_t sdhci_slotint(SDHCIState *s)
216 return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
217 ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
218 ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
221 /* Return true if IRQ was pending and delivered */
222 static bool sdhci_update_irq(SDHCIState *s)
224 bool pending = sdhci_slotint(s);
226 qemu_set_irq(s->irq, pending);
228 return pending;
231 static void sdhci_raise_insertion_irq(void *opaque)
233 SDHCIState *s = (SDHCIState *)opaque;
235 if (s->norintsts & SDHC_NIS_REMOVE) {
236 timer_mod(s->insert_timer,
237 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
238 } else {
239 s->prnsts = 0x1ff0000;
240 if (s->norintstsen & SDHC_NISEN_INSERT) {
241 s->norintsts |= SDHC_NIS_INSERT;
243 sdhci_update_irq(s);
247 static void sdhci_set_inserted(DeviceState *dev, bool level)
249 SDHCIState *s = (SDHCIState *)dev;
251 trace_sdhci_set_inserted(level ? "insert" : "eject");
252 if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
253 /* Give target some time to notice card ejection */
254 timer_mod(s->insert_timer,
255 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
256 } else {
257 if (level) {
258 s->prnsts = 0x1ff0000;
259 if (s->norintstsen & SDHC_NISEN_INSERT) {
260 s->norintsts |= SDHC_NIS_INSERT;
262 } else {
263 s->prnsts = 0x1fa0000;
264 s->pwrcon &= ~SDHC_POWER_ON;
265 s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
266 if (s->norintstsen & SDHC_NISEN_REMOVE) {
267 s->norintsts |= SDHC_NIS_REMOVE;
270 sdhci_update_irq(s);
274 static void sdhci_set_readonly(DeviceState *dev, bool level)
276 SDHCIState *s = (SDHCIState *)dev;
278 if (level) {
279 s->prnsts &= ~SDHC_WRITE_PROTECT;
280 } else {
281 /* Write enabled */
282 s->prnsts |= SDHC_WRITE_PROTECT;
286 static void sdhci_reset(SDHCIState *s)
288 DeviceState *dev = DEVICE(s);
290 timer_del(s->insert_timer);
291 timer_del(s->transfer_timer);
293 /* Set all registers to 0. Capabilities/Version registers are not cleared
294 * and assumed to always preserve their value, given to them during
295 * initialization */
296 memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
298 /* Reset other state based on current card insertion/readonly status */
299 sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
300 sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
302 s->data_count = 0;
303 s->stopped_state = sdhc_not_stopped;
304 s->pending_insert_state = false;
307 static void sdhci_poweron_reset(DeviceState *dev)
309 /* QOM (ie power-on) reset. This is identical to reset
310 * commanded via device register apart from handling of the
311 * 'pending insert on powerup' quirk.
313 SDHCIState *s = (SDHCIState *)dev;
315 sdhci_reset(s);
317 if (s->pending_insert_quirk) {
318 s->pending_insert_state = true;
322 static void sdhci_data_transfer(void *opaque);
324 #define BLOCK_SIZE_MASK (4 * KiB - 1)
326 static void sdhci_send_command(SDHCIState *s)
328 SDRequest request;
329 uint8_t response[16];
330 int rlen;
331 bool timeout = false;
333 s->errintsts = 0;
334 s->acmd12errsts = 0;
335 request.cmd = s->cmdreg >> 8;
336 request.arg = s->argument;
338 trace_sdhci_send_command(request.cmd, request.arg);
339 rlen = sdbus_do_command(&s->sdbus, &request, response);
341 if (s->cmdreg & SDHC_CMD_RESPONSE) {
342 if (rlen == 4) {
343 s->rspreg[0] = ldl_be_p(response);
344 s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
345 trace_sdhci_response4(s->rspreg[0]);
346 } else if (rlen == 16) {
347 s->rspreg[0] = ldl_be_p(&response[11]);
348 s->rspreg[1] = ldl_be_p(&response[7]);
349 s->rspreg[2] = ldl_be_p(&response[3]);
350 s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
351 response[2];
352 trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
353 s->rspreg[1], s->rspreg[0]);
354 } else {
355 timeout = true;
356 trace_sdhci_error("timeout waiting for command response");
357 if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
358 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
359 s->norintsts |= SDHC_NIS_ERR;
363 if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
364 (s->norintstsen & SDHC_NISEN_TRSCMP) &&
365 (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
366 s->norintsts |= SDHC_NIS_TRSCMP;
370 if (s->norintstsen & SDHC_NISEN_CMDCMP) {
371 s->norintsts |= SDHC_NIS_CMDCMP;
374 sdhci_update_irq(s);
376 if (!timeout && (s->blksize & BLOCK_SIZE_MASK) &&
377 (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
378 s->data_count = 0;
379 sdhci_data_transfer(s);
383 static void sdhci_end_transfer(SDHCIState *s)
385 /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
386 if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
387 SDRequest request;
388 uint8_t response[16];
390 request.cmd = 0x0C;
391 request.arg = 0;
392 trace_sdhci_end_transfer(request.cmd, request.arg);
393 sdbus_do_command(&s->sdbus, &request, response);
394 /* Auto CMD12 response goes to the upper Response register */
395 s->rspreg[3] = ldl_be_p(response);
398 s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
399 SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
400 SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
402 if (s->norintstsen & SDHC_NISEN_TRSCMP) {
403 s->norintsts |= SDHC_NIS_TRSCMP;
406 sdhci_update_irq(s);
410 * Programmed i/o data transfer
413 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
414 static void sdhci_read_block_from_card(SDHCIState *s)
416 const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
418 if ((s->trnmod & SDHC_TRNS_MULTI) &&
419 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
420 return;
423 if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
424 /* Device is not in tuning */
425 sdbus_read_data(&s->sdbus, s->fifo_buffer, blk_size);
428 if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
429 /* Device is in tuning */
430 s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
431 s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
432 s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
433 SDHC_DATA_INHIBIT);
434 goto read_done;
437 /* New data now available for READ through Buffer Port Register */
438 s->prnsts |= SDHC_DATA_AVAILABLE;
439 if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
440 s->norintsts |= SDHC_NIS_RBUFRDY;
443 /* Clear DAT line active status if that was the last block */
444 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
445 ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
446 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
449 /* If stop at block gap request was set and it's not the last block of
450 * data - generate Block Event interrupt */
451 if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
452 s->blkcnt != 1) {
453 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
454 if (s->norintstsen & SDHC_EISEN_BLKGAP) {
455 s->norintsts |= SDHC_EIS_BLKGAP;
459 read_done:
460 sdhci_update_irq(s);
463 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
464 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
466 uint32_t value = 0;
467 int i;
469 /* first check that a valid data exists in host controller input buffer */
470 if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
471 trace_sdhci_error("read from empty buffer");
472 return 0;
475 for (i = 0; i < size; i++) {
476 value |= s->fifo_buffer[s->data_count] << i * 8;
477 s->data_count++;
478 /* check if we've read all valid data (blksize bytes) from buffer */
479 if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
480 trace_sdhci_read_dataport(s->data_count);
481 s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
482 s->data_count = 0; /* next buff read must start at position [0] */
484 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
485 s->blkcnt--;
488 /* if that was the last block of data */
489 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
490 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
491 /* stop at gap request */
492 (s->stopped_state == sdhc_gap_read &&
493 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
494 sdhci_end_transfer(s);
495 } else { /* if there are more data, read next block from card */
496 sdhci_read_block_from_card(s);
498 break;
502 return value;
505 /* Write data from host controller FIFO to card */
506 static void sdhci_write_block_to_card(SDHCIState *s)
508 if (s->prnsts & SDHC_SPACE_AVAILABLE) {
509 if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
510 s->norintsts |= SDHC_NIS_WBUFRDY;
512 sdhci_update_irq(s);
513 return;
516 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
517 if (s->blkcnt == 0) {
518 return;
519 } else {
520 s->blkcnt--;
524 sdbus_write_data(&s->sdbus, s->fifo_buffer, s->blksize & BLOCK_SIZE_MASK);
526 /* Next data can be written through BUFFER DATORT register */
527 s->prnsts |= SDHC_SPACE_AVAILABLE;
529 /* Finish transfer if that was the last block of data */
530 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
531 ((s->trnmod & SDHC_TRNS_MULTI) &&
532 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
533 sdhci_end_transfer(s);
534 } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
535 s->norintsts |= SDHC_NIS_WBUFRDY;
538 /* Generate Block Gap Event if requested and if not the last block */
539 if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
540 s->blkcnt > 0) {
541 s->prnsts &= ~SDHC_DOING_WRITE;
542 if (s->norintstsen & SDHC_EISEN_BLKGAP) {
543 s->norintsts |= SDHC_EIS_BLKGAP;
545 sdhci_end_transfer(s);
548 sdhci_update_irq(s);
551 /* Write @size bytes of @value data to host controller @s Buffer Data Port
552 * register */
553 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
555 unsigned i;
557 /* Check that there is free space left in a buffer */
558 if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
559 trace_sdhci_error("Can't write to data buffer: buffer full");
560 return;
563 for (i = 0; i < size; i++) {
564 s->fifo_buffer[s->data_count] = value & 0xFF;
565 s->data_count++;
566 value >>= 8;
567 if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
568 trace_sdhci_write_dataport(s->data_count);
569 s->data_count = 0;
570 s->prnsts &= ~SDHC_SPACE_AVAILABLE;
571 if (s->prnsts & SDHC_DOING_WRITE) {
572 sdhci_write_block_to_card(s);
579 * Single DMA data transfer
582 /* Multi block SDMA transfer */
583 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
585 bool page_aligned = false;
586 unsigned int begin;
587 const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
588 uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
589 uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
591 if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
592 qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
593 return;
596 /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
597 * possible stop at page boundary if initial address is not page aligned,
598 * allow them to work properly */
599 if ((s->sdmasysad % boundary_chk) == 0) {
600 page_aligned = true;
603 s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
604 if (s->trnmod & SDHC_TRNS_READ) {
605 s->prnsts |= SDHC_DOING_READ;
606 while (s->blkcnt) {
607 if (s->data_count == 0) {
608 sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
610 begin = s->data_count;
611 if (((boundary_count + begin) < block_size) && page_aligned) {
612 s->data_count = boundary_count + begin;
613 boundary_count = 0;
614 } else {
615 s->data_count = block_size;
616 boundary_count -= block_size - begin;
617 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
618 s->blkcnt--;
621 dma_memory_write(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
622 s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
623 s->sdmasysad += s->data_count - begin;
624 if (s->data_count == block_size) {
625 s->data_count = 0;
627 if (page_aligned && boundary_count == 0) {
628 break;
631 } else {
632 s->prnsts |= SDHC_DOING_WRITE;
633 while (s->blkcnt) {
634 begin = s->data_count;
635 if (((boundary_count + begin) < block_size) && page_aligned) {
636 s->data_count = boundary_count + begin;
637 boundary_count = 0;
638 } else {
639 s->data_count = block_size;
640 boundary_count -= block_size - begin;
642 dma_memory_read(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
643 s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
644 s->sdmasysad += s->data_count - begin;
645 if (s->data_count == block_size) {
646 sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
647 s->data_count = 0;
648 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
649 s->blkcnt--;
652 if (page_aligned && boundary_count == 0) {
653 break;
658 if (s->blkcnt == 0) {
659 sdhci_end_transfer(s);
660 } else {
661 if (s->norintstsen & SDHC_NISEN_DMA) {
662 s->norintsts |= SDHC_NIS_DMA;
664 sdhci_update_irq(s);
668 /* single block SDMA transfer */
669 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
671 uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
673 if (s->trnmod & SDHC_TRNS_READ) {
674 sdbus_read_data(&s->sdbus, s->fifo_buffer, datacnt);
675 dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
676 MEMTXATTRS_UNSPECIFIED);
677 } else {
678 dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
679 MEMTXATTRS_UNSPECIFIED);
680 sdbus_write_data(&s->sdbus, s->fifo_buffer, datacnt);
682 s->blkcnt--;
684 sdhci_end_transfer(s);
687 typedef struct ADMADescr {
688 hwaddr addr;
689 uint16_t length;
690 uint8_t attr;
691 uint8_t incr;
692 } ADMADescr;
694 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
696 uint32_t adma1 = 0;
697 uint64_t adma2 = 0;
698 hwaddr entry_addr = (hwaddr)s->admasysaddr;
699 switch (SDHC_DMA_TYPE(s->hostctl1)) {
700 case SDHC_CTRL_ADMA2_32:
701 dma_memory_read(s->dma_as, entry_addr, &adma2, sizeof(adma2),
702 MEMTXATTRS_UNSPECIFIED);
703 adma2 = le64_to_cpu(adma2);
704 /* The spec does not specify endianness of descriptor table.
705 * We currently assume that it is LE.
707 dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
708 dscr->length = (uint16_t)extract64(adma2, 16, 16);
709 dscr->attr = (uint8_t)extract64(adma2, 0, 7);
710 dscr->incr = 8;
711 break;
712 case SDHC_CTRL_ADMA1_32:
713 dma_memory_read(s->dma_as, entry_addr, &adma1, sizeof(adma1),
714 MEMTXATTRS_UNSPECIFIED);
715 adma1 = le32_to_cpu(adma1);
716 dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
717 dscr->attr = (uint8_t)extract32(adma1, 0, 7);
718 dscr->incr = 4;
719 if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
720 dscr->length = (uint16_t)extract32(adma1, 12, 16);
721 } else {
722 dscr->length = 4 * KiB;
724 break;
725 case SDHC_CTRL_ADMA2_64:
726 dma_memory_read(s->dma_as, entry_addr, &dscr->attr, 1,
727 MEMTXATTRS_UNSPECIFIED);
728 dma_memory_read(s->dma_as, entry_addr + 2, &dscr->length, 2,
729 MEMTXATTRS_UNSPECIFIED);
730 dscr->length = le16_to_cpu(dscr->length);
731 dma_memory_read(s->dma_as, entry_addr + 4, &dscr->addr, 8,
732 MEMTXATTRS_UNSPECIFIED);
733 dscr->addr = le64_to_cpu(dscr->addr);
734 dscr->attr &= (uint8_t) ~0xC0;
735 dscr->incr = 12;
736 break;
740 /* Advanced DMA data transfer */
742 static void sdhci_do_adma(SDHCIState *s)
744 unsigned int begin, length;
745 const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
746 const MemTxAttrs attrs = { .memory = true };
747 ADMADescr dscr = {};
748 MemTxResult res;
749 int i;
751 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN && !s->blkcnt) {
752 /* Stop Multiple Transfer */
753 sdhci_end_transfer(s);
754 return;
757 for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
758 s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
760 get_adma_description(s, &dscr);
761 trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
763 if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
764 /* Indicate that error occurred in ST_FDS state */
765 s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
766 s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
768 /* Generate ADMA error interrupt */
769 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
770 s->errintsts |= SDHC_EIS_ADMAERR;
771 s->norintsts |= SDHC_NIS_ERR;
774 sdhci_update_irq(s);
775 return;
778 length = dscr.length ? dscr.length : 64 * KiB;
780 switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
781 case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */
782 s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
783 if (s->trnmod & SDHC_TRNS_READ) {
784 s->prnsts |= SDHC_DOING_READ;
785 while (length) {
786 if (s->data_count == 0) {
787 sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
789 begin = s->data_count;
790 if ((length + begin) < block_size) {
791 s->data_count = length + begin;
792 length = 0;
793 } else {
794 s->data_count = block_size;
795 length -= block_size - begin;
797 res = dma_memory_write(s->dma_as, dscr.addr,
798 &s->fifo_buffer[begin],
799 s->data_count - begin,
800 attrs);
801 if (res != MEMTX_OK) {
802 break;
804 dscr.addr += s->data_count - begin;
805 if (s->data_count == block_size) {
806 s->data_count = 0;
807 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
808 s->blkcnt--;
809 if (s->blkcnt == 0) {
810 break;
815 } else {
816 s->prnsts |= SDHC_DOING_WRITE;
817 while (length) {
818 begin = s->data_count;
819 if ((length + begin) < block_size) {
820 s->data_count = length + begin;
821 length = 0;
822 } else {
823 s->data_count = block_size;
824 length -= block_size - begin;
826 res = dma_memory_read(s->dma_as, dscr.addr,
827 &s->fifo_buffer[begin],
828 s->data_count - begin,
829 attrs);
830 if (res != MEMTX_OK) {
831 break;
833 dscr.addr += s->data_count - begin;
834 if (s->data_count == block_size) {
835 sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
836 s->data_count = 0;
837 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
838 s->blkcnt--;
839 if (s->blkcnt == 0) {
840 break;
846 if (res != MEMTX_OK) {
847 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
848 trace_sdhci_error("Set ADMA error flag");
849 s->errintsts |= SDHC_EIS_ADMAERR;
850 s->norintsts |= SDHC_NIS_ERR;
852 sdhci_update_irq(s);
853 } else {
854 s->admasysaddr += dscr.incr;
856 break;
857 case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */
858 s->admasysaddr = dscr.addr;
859 trace_sdhci_adma("link", s->admasysaddr);
860 break;
861 default:
862 s->admasysaddr += dscr.incr;
863 break;
866 if (dscr.attr & SDHC_ADMA_ATTR_INT) {
867 trace_sdhci_adma("interrupt", s->admasysaddr);
868 if (s->norintstsen & SDHC_NISEN_DMA) {
869 s->norintsts |= SDHC_NIS_DMA;
872 if (sdhci_update_irq(s) && !(dscr.attr & SDHC_ADMA_ATTR_END)) {
873 /* IRQ delivered, reschedule current transfer */
874 break;
878 /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
879 if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
880 (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
881 trace_sdhci_adma_transfer_completed();
882 if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
883 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
884 s->blkcnt != 0)) {
885 trace_sdhci_error("SD/MMC host ADMA length mismatch");
886 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
887 SDHC_ADMAERR_STATE_ST_TFR;
888 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
889 trace_sdhci_error("Set ADMA error flag");
890 s->errintsts |= SDHC_EIS_ADMAERR;
891 s->norintsts |= SDHC_NIS_ERR;
894 sdhci_update_irq(s);
896 sdhci_end_transfer(s);
897 return;
902 /* we have unfinished business - reschedule to continue ADMA */
903 timer_mod(s->transfer_timer,
904 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
907 /* Perform data transfer according to controller configuration */
909 static void sdhci_data_transfer(void *opaque)
911 SDHCIState *s = (SDHCIState *)opaque;
913 if (s->trnmod & SDHC_TRNS_DMA) {
914 switch (SDHC_DMA_TYPE(s->hostctl1)) {
915 case SDHC_CTRL_SDMA:
916 if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
917 sdhci_sdma_transfer_single_block(s);
918 } else {
919 sdhci_sdma_transfer_multi_blocks(s);
922 break;
923 case SDHC_CTRL_ADMA1_32:
924 if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
925 trace_sdhci_error("ADMA1 not supported");
926 break;
929 sdhci_do_adma(s);
930 break;
931 case SDHC_CTRL_ADMA2_32:
932 if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
933 trace_sdhci_error("ADMA2 not supported");
934 break;
937 sdhci_do_adma(s);
938 break;
939 case SDHC_CTRL_ADMA2_64:
940 if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
941 !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
942 trace_sdhci_error("64 bit ADMA not supported");
943 break;
946 sdhci_do_adma(s);
947 break;
948 default:
949 trace_sdhci_error("Unsupported DMA type");
950 break;
952 } else {
953 if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
954 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
955 SDHC_DAT_LINE_ACTIVE;
956 sdhci_read_block_from_card(s);
957 } else {
958 s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
959 SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
960 sdhci_write_block_to_card(s);
965 static bool sdhci_can_issue_command(SDHCIState *s)
967 if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
968 (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
969 ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
970 ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
971 !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
972 return false;
975 return true;
978 /* The Buffer Data Port register must be accessed in sequential and
979 * continuous manner */
980 static inline bool
981 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
983 if ((s->data_count & 0x3) != byte_num) {
984 trace_sdhci_error("Non-sequential access to Buffer Data Port register"
985 "is prohibited\n");
986 return false;
988 return true;
991 static void sdhci_resume_pending_transfer(SDHCIState *s)
993 timer_del(s->transfer_timer);
994 sdhci_data_transfer(s);
997 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
999 SDHCIState *s = (SDHCIState *)opaque;
1000 uint32_t ret = 0;
1002 if (timer_pending(s->transfer_timer)) {
1003 sdhci_resume_pending_transfer(s);
1006 switch (offset & ~0x3) {
1007 case SDHC_SYSAD:
1008 ret = s->sdmasysad;
1009 break;
1010 case SDHC_BLKSIZE:
1011 ret = s->blksize | (s->blkcnt << 16);
1012 break;
1013 case SDHC_ARGUMENT:
1014 ret = s->argument;
1015 break;
1016 case SDHC_TRNMOD:
1017 ret = s->trnmod | (s->cmdreg << 16);
1018 break;
1019 case SDHC_RSPREG0 ... SDHC_RSPREG3:
1020 ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
1021 break;
1022 case SDHC_BDATA:
1023 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1024 ret = sdhci_read_dataport(s, size);
1025 trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1026 return ret;
1028 break;
1029 case SDHC_PRNSTS:
1030 ret = s->prnsts;
1031 ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
1032 sdbus_get_dat_lines(&s->sdbus));
1033 ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
1034 sdbus_get_cmd_line(&s->sdbus));
1035 break;
1036 case SDHC_HOSTCTL:
1037 ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
1038 (s->wakcon << 24);
1039 break;
1040 case SDHC_CLKCON:
1041 ret = s->clkcon | (s->timeoutcon << 16);
1042 break;
1043 case SDHC_NORINTSTS:
1044 ret = s->norintsts | (s->errintsts << 16);
1045 break;
1046 case SDHC_NORINTSTSEN:
1047 ret = s->norintstsen | (s->errintstsen << 16);
1048 break;
1049 case SDHC_NORINTSIGEN:
1050 ret = s->norintsigen | (s->errintsigen << 16);
1051 break;
1052 case SDHC_ACMD12ERRSTS:
1053 ret = s->acmd12errsts | (s->hostctl2 << 16);
1054 break;
1055 case SDHC_CAPAB:
1056 ret = (uint32_t)s->capareg;
1057 break;
1058 case SDHC_CAPAB + 4:
1059 ret = (uint32_t)(s->capareg >> 32);
1060 break;
1061 case SDHC_MAXCURR:
1062 ret = (uint32_t)s->maxcurr;
1063 break;
1064 case SDHC_MAXCURR + 4:
1065 ret = (uint32_t)(s->maxcurr >> 32);
1066 break;
1067 case SDHC_ADMAERR:
1068 ret = s->admaerr;
1069 break;
1070 case SDHC_ADMASYSADDR:
1071 ret = (uint32_t)s->admasysaddr;
1072 break;
1073 case SDHC_ADMASYSADDR + 4:
1074 ret = (uint32_t)(s->admasysaddr >> 32);
1075 break;
1076 case SDHC_SLOT_INT_STATUS:
1077 ret = (s->version << 16) | sdhci_slotint(s);
1078 break;
1079 default:
1080 qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
1081 "not implemented\n", size, offset);
1082 break;
1085 ret >>= (offset & 0x3) * 8;
1086 ret &= (1ULL << (size * 8)) - 1;
1087 trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1088 return ret;
1091 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
1093 if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
1094 return;
1096 s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
1098 if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
1099 (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
1100 if (s->stopped_state == sdhc_gap_read) {
1101 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1102 sdhci_read_block_from_card(s);
1103 } else {
1104 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1105 sdhci_write_block_to_card(s);
1107 s->stopped_state = sdhc_not_stopped;
1108 } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
1109 if (s->prnsts & SDHC_DOING_READ) {
1110 s->stopped_state = sdhc_gap_read;
1111 } else if (s->prnsts & SDHC_DOING_WRITE) {
1112 s->stopped_state = sdhc_gap_write;
1117 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
1119 switch (value) {
1120 case SDHC_RESET_ALL:
1121 sdhci_reset(s);
1122 break;
1123 case SDHC_RESET_CMD:
1124 s->prnsts &= ~SDHC_CMD_INHIBIT;
1125 s->norintsts &= ~SDHC_NIS_CMDCMP;
1126 break;
1127 case SDHC_RESET_DATA:
1128 s->data_count = 0;
1129 s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
1130 SDHC_DOING_READ | SDHC_DOING_WRITE |
1131 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
1132 s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
1133 s->stopped_state = sdhc_not_stopped;
1134 s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
1135 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
1136 break;
1140 static void
1141 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1143 SDHCIState *s = (SDHCIState *)opaque;
1144 unsigned shift = 8 * (offset & 0x3);
1145 uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1146 uint32_t value = val;
1147 value <<= shift;
1149 if (timer_pending(s->transfer_timer)) {
1150 sdhci_resume_pending_transfer(s);
1153 switch (offset & ~0x3) {
1154 case SDHC_SYSAD:
1155 if (!TRANSFERRING_DATA(s->prnsts)) {
1156 s->sdmasysad = (s->sdmasysad & mask) | value;
1157 MASKED_WRITE(s->sdmasysad, mask, value);
1158 /* Writing to last byte of sdmasysad might trigger transfer */
1159 if (!(mask & 0xFF000000) && s->blkcnt &&
1160 (s->blksize & BLOCK_SIZE_MASK) &&
1161 SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1162 if (s->trnmod & SDHC_TRNS_MULTI) {
1163 sdhci_sdma_transfer_multi_blocks(s);
1164 } else {
1165 sdhci_sdma_transfer_single_block(s);
1169 break;
1170 case SDHC_BLKSIZE:
1171 if (!TRANSFERRING_DATA(s->prnsts)) {
1172 uint16_t blksize = s->blksize;
1175 * [14:12] SDMA Buffer Boundary
1176 * [11:00] Transfer Block Size
1178 MASKED_WRITE(s->blksize, mask, extract32(value, 0, 15));
1179 MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1181 /* Limit block size to the maximum buffer size */
1182 if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1183 qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than "
1184 "the maximum buffer 0x%x\n", __func__, s->blksize,
1185 s->buf_maxsz);
1187 s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1191 * If the block size is programmed to a different value from
1192 * the previous one, reset the data pointer of s->fifo_buffer[]
1193 * so that s->fifo_buffer[] can be filled in using the new block
1194 * size in the next transfer.
1196 if (blksize != s->blksize) {
1197 s->data_count = 0;
1201 break;
1202 case SDHC_ARGUMENT:
1203 MASKED_WRITE(s->argument, mask, value);
1204 break;
1205 case SDHC_TRNMOD:
1206 /* DMA can be enabled only if it is supported as indicated by
1207 * capabilities register */
1208 if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1209 value &= ~SDHC_TRNS_DMA;
1211 MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1212 MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1214 /* Writing to the upper byte of CMDREG triggers SD command generation */
1215 if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1216 break;
1219 sdhci_send_command(s);
1220 break;
1221 case SDHC_BDATA:
1222 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1223 sdhci_write_dataport(s, value >> shift, size);
1225 break;
1226 case SDHC_HOSTCTL:
1227 if (!(mask & 0xFF0000)) {
1228 sdhci_blkgap_write(s, value >> 16);
1230 MASKED_WRITE(s->hostctl1, mask, value);
1231 MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1232 MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1233 if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1234 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1235 s->pwrcon &= ~SDHC_POWER_ON;
1237 break;
1238 case SDHC_CLKCON:
1239 if (!(mask & 0xFF000000)) {
1240 sdhci_reset_write(s, value >> 24);
1242 MASKED_WRITE(s->clkcon, mask, value);
1243 MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1244 if (s->clkcon & SDHC_CLOCK_INT_EN) {
1245 s->clkcon |= SDHC_CLOCK_INT_STABLE;
1246 } else {
1247 s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1249 break;
1250 case SDHC_NORINTSTS:
1251 if (s->norintstsen & SDHC_NISEN_CARDINT) {
1252 value &= ~SDHC_NIS_CARDINT;
1254 s->norintsts &= mask | ~value;
1255 s->errintsts &= (mask >> 16) | ~(value >> 16);
1256 if (s->errintsts) {
1257 s->norintsts |= SDHC_NIS_ERR;
1258 } else {
1259 s->norintsts &= ~SDHC_NIS_ERR;
1261 sdhci_update_irq(s);
1262 break;
1263 case SDHC_NORINTSTSEN:
1264 MASKED_WRITE(s->norintstsen, mask, value);
1265 MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1266 s->norintsts &= s->norintstsen;
1267 s->errintsts &= s->errintstsen;
1268 if (s->errintsts) {
1269 s->norintsts |= SDHC_NIS_ERR;
1270 } else {
1271 s->norintsts &= ~SDHC_NIS_ERR;
1273 /* Quirk for Raspberry Pi: pending card insert interrupt
1274 * appears when first enabled after power on */
1275 if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
1276 assert(s->pending_insert_quirk);
1277 s->norintsts |= SDHC_NIS_INSERT;
1278 s->pending_insert_state = false;
1280 sdhci_update_irq(s);
1281 break;
1282 case SDHC_NORINTSIGEN:
1283 MASKED_WRITE(s->norintsigen, mask, value);
1284 MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1285 sdhci_update_irq(s);
1286 break;
1287 case SDHC_ADMAERR:
1288 MASKED_WRITE(s->admaerr, mask, value);
1289 break;
1290 case SDHC_ADMASYSADDR:
1291 s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1292 (uint64_t)mask)) | (uint64_t)value;
1293 break;
1294 case SDHC_ADMASYSADDR + 4:
1295 s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1296 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1297 break;
1298 case SDHC_FEAER:
1299 s->acmd12errsts |= value;
1300 s->errintsts |= (value >> 16) & s->errintstsen;
1301 if (s->acmd12errsts) {
1302 s->errintsts |= SDHC_EIS_CMD12ERR;
1304 if (s->errintsts) {
1305 s->norintsts |= SDHC_NIS_ERR;
1307 sdhci_update_irq(s);
1308 break;
1309 case SDHC_ACMD12ERRSTS:
1310 MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
1311 if (s->uhs_mode >= UHS_I) {
1312 MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);
1314 if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
1315 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
1316 } else {
1317 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
1320 break;
1322 case SDHC_CAPAB:
1323 case SDHC_CAPAB + 4:
1324 case SDHC_MAXCURR:
1325 case SDHC_MAXCURR + 4:
1326 qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
1327 " <- 0x%08x read-only\n", size, offset, value >> shift);
1328 break;
1330 default:
1331 qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
1332 "not implemented\n", size, offset, value >> shift);
1333 break;
1335 trace_sdhci_access("wr", size << 3, offset, "<-",
1336 value >> shift, value >> shift);
1339 static const MemoryRegionOps sdhci_mmio_le_ops = {
1340 .read = sdhci_read,
1341 .write = sdhci_write,
1342 .valid = {
1343 .min_access_size = 1,
1344 .max_access_size = 4,
1345 .unaligned = false
1347 .endianness = DEVICE_LITTLE_ENDIAN,
1350 static const MemoryRegionOps sdhci_mmio_be_ops = {
1351 .read = sdhci_read,
1352 .write = sdhci_write,
1353 .impl = {
1354 .min_access_size = 4,
1355 .max_access_size = 4,
1357 .valid = {
1358 .min_access_size = 1,
1359 .max_access_size = 4,
1360 .unaligned = false
1362 .endianness = DEVICE_BIG_ENDIAN,
1365 static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
1367 ERRP_GUARD();
1369 switch (s->sd_spec_version) {
1370 case 2 ... 3:
1371 break;
1372 default:
1373 error_setg(errp, "Only Spec v2/v3 are supported");
1374 return;
1376 s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1378 sdhci_check_capareg(s, errp);
1379 if (*errp) {
1380 return;
1384 /* --- qdev common --- */
1386 void sdhci_initfn(SDHCIState *s)
1388 qbus_init(&s->sdbus, sizeof(s->sdbus), TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1390 s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1391 s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1393 s->io_ops = &sdhci_mmio_le_ops;
1396 void sdhci_uninitfn(SDHCIState *s)
1398 timer_free(s->insert_timer);
1399 timer_free(s->transfer_timer);
1401 g_free(s->fifo_buffer);
1402 s->fifo_buffer = NULL;
1405 void sdhci_common_realize(SDHCIState *s, Error **errp)
1407 ERRP_GUARD();
1409 switch (s->endianness) {
1410 case DEVICE_LITTLE_ENDIAN:
1411 /* s->io_ops is little endian by default */
1412 break;
1413 case DEVICE_BIG_ENDIAN:
1414 if (s->io_ops != &sdhci_mmio_le_ops) {
1415 error_setg(errp, "SD controller doesn't support big endianness");
1416 return;
1418 s->io_ops = &sdhci_mmio_be_ops;
1419 break;
1420 default:
1421 error_setg(errp, "Incorrect endianness");
1422 return;
1425 sdhci_init_readonly_registers(s, errp);
1426 if (*errp) {
1427 return;
1430 s->buf_maxsz = sdhci_get_fifolen(s);
1431 s->fifo_buffer = g_malloc0(s->buf_maxsz);
1433 memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
1434 SDHC_REGISTERS_MAP_SIZE);
1437 void sdhci_common_unrealize(SDHCIState *s)
1439 /* This function is expected to be called only once for each class:
1440 * - SysBus: via DeviceClass->unrealize(),
1441 * - PCI: via PCIDeviceClass->exit().
1442 * However to avoid double-free and/or use-after-free we still nullify
1443 * this variable (better safe than sorry!). */
1444 g_free(s->fifo_buffer);
1445 s->fifo_buffer = NULL;
1448 static bool sdhci_pending_insert_vmstate_needed(void *opaque)
1450 SDHCIState *s = opaque;
1452 return s->pending_insert_state;
1455 static const VMStateDescription sdhci_pending_insert_vmstate = {
1456 .name = "sdhci/pending-insert",
1457 .version_id = 1,
1458 .minimum_version_id = 1,
1459 .needed = sdhci_pending_insert_vmstate_needed,
1460 .fields = (VMStateField[]) {
1461 VMSTATE_BOOL(pending_insert_state, SDHCIState),
1462 VMSTATE_END_OF_LIST()
1466 const VMStateDescription sdhci_vmstate = {
1467 .name = "sdhci",
1468 .version_id = 1,
1469 .minimum_version_id = 1,
1470 .fields = (VMStateField[]) {
1471 VMSTATE_UINT32(sdmasysad, SDHCIState),
1472 VMSTATE_UINT16(blksize, SDHCIState),
1473 VMSTATE_UINT16(blkcnt, SDHCIState),
1474 VMSTATE_UINT32(argument, SDHCIState),
1475 VMSTATE_UINT16(trnmod, SDHCIState),
1476 VMSTATE_UINT16(cmdreg, SDHCIState),
1477 VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1478 VMSTATE_UINT32(prnsts, SDHCIState),
1479 VMSTATE_UINT8(hostctl1, SDHCIState),
1480 VMSTATE_UINT8(pwrcon, SDHCIState),
1481 VMSTATE_UINT8(blkgap, SDHCIState),
1482 VMSTATE_UINT8(wakcon, SDHCIState),
1483 VMSTATE_UINT16(clkcon, SDHCIState),
1484 VMSTATE_UINT8(timeoutcon, SDHCIState),
1485 VMSTATE_UINT8(admaerr, SDHCIState),
1486 VMSTATE_UINT16(norintsts, SDHCIState),
1487 VMSTATE_UINT16(errintsts, SDHCIState),
1488 VMSTATE_UINT16(norintstsen, SDHCIState),
1489 VMSTATE_UINT16(errintstsen, SDHCIState),
1490 VMSTATE_UINT16(norintsigen, SDHCIState),
1491 VMSTATE_UINT16(errintsigen, SDHCIState),
1492 VMSTATE_UINT16(acmd12errsts, SDHCIState),
1493 VMSTATE_UINT16(data_count, SDHCIState),
1494 VMSTATE_UINT64(admasysaddr, SDHCIState),
1495 VMSTATE_UINT8(stopped_state, SDHCIState),
1496 VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1497 VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1498 VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1499 VMSTATE_END_OF_LIST()
1501 .subsections = (const VMStateDescription*[]) {
1502 &sdhci_pending_insert_vmstate,
1503 NULL
1507 void sdhci_common_class_init(ObjectClass *klass, void *data)
1509 DeviceClass *dc = DEVICE_CLASS(klass);
1511 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1512 dc->vmsd = &sdhci_vmstate;
1513 dc->reset = sdhci_poweron_reset;
1516 /* --- qdev SysBus --- */
1518 static Property sdhci_sysbus_properties[] = {
1519 DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1520 DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
1521 false),
1522 DEFINE_PROP_LINK("dma", SDHCIState,
1523 dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1524 DEFINE_PROP_END_OF_LIST(),
1527 static void sdhci_sysbus_init(Object *obj)
1529 SDHCIState *s = SYSBUS_SDHCI(obj);
1531 sdhci_initfn(s);
1534 static void sdhci_sysbus_finalize(Object *obj)
1536 SDHCIState *s = SYSBUS_SDHCI(obj);
1538 if (s->dma_mr) {
1539 object_unparent(OBJECT(s->dma_mr));
1542 sdhci_uninitfn(s);
1545 static void sdhci_sysbus_realize(DeviceState *dev, Error **errp)
1547 ERRP_GUARD();
1548 SDHCIState *s = SYSBUS_SDHCI(dev);
1549 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1551 sdhci_common_realize(s, errp);
1552 if (*errp) {
1553 return;
1556 if (s->dma_mr) {
1557 s->dma_as = &s->sysbus_dma_as;
1558 address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
1559 } else {
1560 /* use system_memory() if property "dma" not set */
1561 s->dma_as = &address_space_memory;
1564 sysbus_init_irq(sbd, &s->irq);
1566 sysbus_init_mmio(sbd, &s->iomem);
1569 static void sdhci_sysbus_unrealize(DeviceState *dev)
1571 SDHCIState *s = SYSBUS_SDHCI(dev);
1573 sdhci_common_unrealize(s);
1575 if (s->dma_mr) {
1576 address_space_destroy(s->dma_as);
1580 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1582 DeviceClass *dc = DEVICE_CLASS(klass);
1584 device_class_set_props(dc, sdhci_sysbus_properties);
1585 dc->realize = sdhci_sysbus_realize;
1586 dc->unrealize = sdhci_sysbus_unrealize;
1588 sdhci_common_class_init(klass, data);
1591 static const TypeInfo sdhci_sysbus_info = {
1592 .name = TYPE_SYSBUS_SDHCI,
1593 .parent = TYPE_SYS_BUS_DEVICE,
1594 .instance_size = sizeof(SDHCIState),
1595 .instance_init = sdhci_sysbus_init,
1596 .instance_finalize = sdhci_sysbus_finalize,
1597 .class_init = sdhci_sysbus_class_init,
1600 /* --- qdev bus master --- */
1602 static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1604 SDBusClass *sbc = SD_BUS_CLASS(klass);
1606 sbc->set_inserted = sdhci_set_inserted;
1607 sbc->set_readonly = sdhci_set_readonly;
1610 static const TypeInfo sdhci_bus_info = {
1611 .name = TYPE_SDHCI_BUS,
1612 .parent = TYPE_SD_BUS,
1613 .instance_size = sizeof(SDBus),
1614 .class_init = sdhci_bus_class_init,
1617 /* --- qdev i.MX eSDHC --- */
1619 #define USDHC_MIX_CTRL 0x48
1621 #define USDHC_VENDOR_SPEC 0xc0
1622 #define USDHC_IMX_FRC_SDCLK_ON (1 << 8)
1624 #define USDHC_DLL_CTRL 0x60
1626 #define USDHC_TUNING_CTRL 0xcc
1627 #define USDHC_TUNE_CTRL_STATUS 0x68
1628 #define USDHC_WTMK_LVL 0x44
1630 /* Undocumented register used by guests working around erratum ERR004536 */
1631 #define USDHC_UNDOCUMENTED_REG27 0x6c
1633 #define USDHC_CTRL_4BITBUS (0x1 << 1)
1634 #define USDHC_CTRL_8BITBUS (0x2 << 1)
1636 #define USDHC_PRNSTS_SDSTB (1 << 3)
1638 static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
1640 SDHCIState *s = SYSBUS_SDHCI(opaque);
1641 uint32_t ret;
1642 uint16_t hostctl1;
1644 switch (offset) {
1645 default:
1646 return sdhci_read(opaque, offset, size);
1648 case SDHC_HOSTCTL:
1650 * For a detailed explanation on the following bit
1651 * manipulation code see comments in a similar part of
1652 * usdhc_write()
1654 hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1656 if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
1657 hostctl1 |= USDHC_CTRL_8BITBUS;
1660 if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
1661 hostctl1 |= USDHC_CTRL_4BITBUS;
1664 ret = hostctl1;
1665 ret |= (uint32_t)s->blkgap << 16;
1666 ret |= (uint32_t)s->wakcon << 24;
1668 break;
1670 case SDHC_PRNSTS:
1671 /* Add SDSTB (SD Clock Stable) bit to PRNSTS */
1672 ret = sdhci_read(opaque, offset, size) & ~USDHC_PRNSTS_SDSTB;
1673 if (s->clkcon & SDHC_CLOCK_INT_STABLE) {
1674 ret |= USDHC_PRNSTS_SDSTB;
1676 break;
1678 case USDHC_VENDOR_SPEC:
1679 ret = s->vendor_spec;
1680 break;
1681 case USDHC_DLL_CTRL:
1682 case USDHC_TUNE_CTRL_STATUS:
1683 case USDHC_UNDOCUMENTED_REG27:
1684 case USDHC_TUNING_CTRL:
1685 case USDHC_MIX_CTRL:
1686 case USDHC_WTMK_LVL:
1687 ret = 0;
1688 break;
1691 return ret;
1694 static void
1695 usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1697 SDHCIState *s = SYSBUS_SDHCI(opaque);
1698 uint8_t hostctl1;
1699 uint32_t value = (uint32_t)val;
1701 switch (offset) {
1702 case USDHC_DLL_CTRL:
1703 case USDHC_TUNE_CTRL_STATUS:
1704 case USDHC_UNDOCUMENTED_REG27:
1705 case USDHC_TUNING_CTRL:
1706 case USDHC_WTMK_LVL:
1707 break;
1709 case USDHC_VENDOR_SPEC:
1710 s->vendor_spec = value;
1711 switch (s->vendor) {
1712 case SDHCI_VENDOR_IMX:
1713 if (value & USDHC_IMX_FRC_SDCLK_ON) {
1714 s->prnsts &= ~SDHC_IMX_CLOCK_GATE_OFF;
1715 } else {
1716 s->prnsts |= SDHC_IMX_CLOCK_GATE_OFF;
1718 break;
1719 default:
1720 break;
1722 break;
1724 case SDHC_HOSTCTL:
1726 * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
1728 * 7 6 5 4 3 2 1 0
1729 * |-----------+--------+--------+-----------+----------+---------|
1730 * | Card | Card | Endian | DATA3 | Data | Led |
1731 * | Detect | Detect | Mode | as Card | Transfer | Control |
1732 * | Signal | Test | | Detection | Width | |
1733 * | Selection | Level | | Pin | | |
1734 * |-----------+--------+--------+-----------+----------+---------|
1736 * and 0x29
1738 * 15 10 9 8
1739 * |----------+------|
1740 * | Reserved | DMA |
1741 * | | Sel. |
1742 * | | |
1743 * |----------+------|
1745 * and here's what SDCHI spec expects those offsets to be:
1747 * 0x28 (Host Control Register)
1749 * 7 6 5 4 3 2 1 0
1750 * |--------+--------+----------+------+--------+----------+---------|
1751 * | Card | Card | Extended | DMA | High | Data | LED |
1752 * | Detect | Detect | Data | Sel. | Speed | Transfer | Control |
1753 * | Signal | Test | Transfer | | Enable | Width | |
1754 * | Sel. | Level | Width | | | | |
1755 * |--------+--------+----------+------+--------+----------+---------|
1757 * and 0x29 (Power Control Register)
1759 * |----------------------------------|
1760 * | Power Control Register |
1761 * | |
1762 * | Description omitted, |
1763 * | since it has no analog in ESDHCI |
1764 * | |
1765 * |----------------------------------|
1767 * Since offsets 0x2A and 0x2B should be compatible between
1768 * both IP specs we only need to reconcile least 16-bit of the
1769 * word we've been given.
1773 * First, save bits 7 6 and 0 since they are identical
1775 hostctl1 = value & (SDHC_CTRL_LED |
1776 SDHC_CTRL_CDTEST_INS |
1777 SDHC_CTRL_CDTEST_EN);
1779 * Second, split "Data Transfer Width" from bits 2 and 1 in to
1780 * bits 5 and 1
1782 if (value & USDHC_CTRL_8BITBUS) {
1783 hostctl1 |= SDHC_CTRL_8BITBUS;
1786 if (value & USDHC_CTRL_4BITBUS) {
1787 hostctl1 |= USDHC_CTRL_4BITBUS;
1791 * Third, move DMA select from bits 9 and 8 to bits 4 and 3
1793 hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1796 * Now place the corrected value into low 16-bit of the value
1797 * we are going to give standard SDHCI write function
1799 * NOTE: This transformation should be the inverse of what can
1800 * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
1801 * kernel
1803 value &= ~UINT16_MAX;
1804 value |= hostctl1;
1805 value |= (uint16_t)s->pwrcon << 8;
1807 sdhci_write(opaque, offset, value, size);
1808 break;
1810 case USDHC_MIX_CTRL:
1812 * So, when SD/MMC stack in Linux tries to write to "Transfer
1813 * Mode Register", ESDHC i.MX quirk code will translate it
1814 * into a write to ESDHC_MIX_CTRL, so we do the opposite in
1815 * order to get where we started
1817 * Note that Auto CMD23 Enable bit is located in a wrong place
1818 * on i.MX, but since it is not used by QEMU we do not care.
1820 * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
1821 * here because it will result in a call to
1822 * sdhci_send_command(s) which we don't want.
1825 s->trnmod = value & UINT16_MAX;
1826 break;
1827 case SDHC_TRNMOD:
1829 * Similar to above, but this time a write to "Command
1830 * Register" will be translated into a 4-byte write to
1831 * "Transfer Mode register" where lower 16-bit of value would
1832 * be set to zero. So what we do is fill those bits with
1833 * cached value from s->trnmod and let the SDHCI
1834 * infrastructure handle the rest
1836 sdhci_write(opaque, offset, val | s->trnmod, size);
1837 break;
1838 case SDHC_BLKSIZE:
1840 * ESDHCI does not implement "Host SDMA Buffer Boundary", and
1841 * Linux driver will try to zero this field out which will
1842 * break the rest of SDHCI emulation.
1844 * Linux defaults to maximum possible setting (512K boundary)
1845 * and it seems to be the only option that i.MX IP implements,
1846 * so we artificially set it to that value.
1848 val |= 0x7 << 12;
1849 /* FALLTHROUGH */
1850 default:
1851 sdhci_write(opaque, offset, val, size);
1852 break;
1856 static const MemoryRegionOps usdhc_mmio_ops = {
1857 .read = usdhc_read,
1858 .write = usdhc_write,
1859 .valid = {
1860 .min_access_size = 1,
1861 .max_access_size = 4,
1862 .unaligned = false
1864 .endianness = DEVICE_LITTLE_ENDIAN,
1867 static void imx_usdhc_init(Object *obj)
1869 SDHCIState *s = SYSBUS_SDHCI(obj);
1871 s->io_ops = &usdhc_mmio_ops;
1872 s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
1875 static const TypeInfo imx_usdhc_info = {
1876 .name = TYPE_IMX_USDHC,
1877 .parent = TYPE_SYSBUS_SDHCI,
1878 .instance_init = imx_usdhc_init,
1881 /* --- qdev Samsung s3c --- */
1883 #define S3C_SDHCI_CONTROL2 0x80
1884 #define S3C_SDHCI_CONTROL3 0x84
1885 #define S3C_SDHCI_CONTROL4 0x8c
1887 static uint64_t sdhci_s3c_read(void *opaque, hwaddr offset, unsigned size)
1889 uint64_t ret;
1891 switch (offset) {
1892 case S3C_SDHCI_CONTROL2:
1893 case S3C_SDHCI_CONTROL3:
1894 case S3C_SDHCI_CONTROL4:
1895 /* ignore */
1896 ret = 0;
1897 break;
1898 default:
1899 ret = sdhci_read(opaque, offset, size);
1900 break;
1903 return ret;
1906 static void sdhci_s3c_write(void *opaque, hwaddr offset, uint64_t val,
1907 unsigned size)
1909 switch (offset) {
1910 case S3C_SDHCI_CONTROL2:
1911 case S3C_SDHCI_CONTROL3:
1912 case S3C_SDHCI_CONTROL4:
1913 /* ignore */
1914 break;
1915 default:
1916 sdhci_write(opaque, offset, val, size);
1917 break;
1921 static const MemoryRegionOps sdhci_s3c_mmio_ops = {
1922 .read = sdhci_s3c_read,
1923 .write = sdhci_s3c_write,
1924 .valid = {
1925 .min_access_size = 1,
1926 .max_access_size = 4,
1927 .unaligned = false
1929 .endianness = DEVICE_LITTLE_ENDIAN,
1932 static void sdhci_s3c_init(Object *obj)
1934 SDHCIState *s = SYSBUS_SDHCI(obj);
1936 s->io_ops = &sdhci_s3c_mmio_ops;
1939 static const TypeInfo sdhci_s3c_info = {
1940 .name = TYPE_S3C_SDHCI ,
1941 .parent = TYPE_SYSBUS_SDHCI,
1942 .instance_init = sdhci_s3c_init,
1945 static void sdhci_register_types(void)
1947 type_register_static(&sdhci_sysbus_info);
1948 type_register_static(&sdhci_bus_info);
1949 type_register_static(&imx_usdhc_info);
1950 type_register_static(&sdhci_s3c_info);
1953 type_init(sdhci_register_types)