2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
27 #include <linux/kvm.h>
28 #include <asm/ptrace.h>
30 #include "qemu-common.h"
33 #include "kvm_s390x.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/timer.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/hw_accel.h"
40 #include "sysemu/device_tree.h"
41 #include "exec/gdbstub.h"
42 #include "exec/address-spaces.h"
44 #include "hw/s390x/s390-pci-inst.h"
45 #include "hw/s390x/s390-pci-bus.h"
46 #include "hw/s390x/ipl.h"
47 #include "hw/s390x/ebcdic.h"
48 #include "exec/memattrs.h"
49 #include "hw/s390x/s390-virtio-ccw.h"
50 #include "hw/s390x/s390-virtio-hcall.h"
56 #define DPRINTF(fmt, ...) do { \
58 fprintf(stderr, fmt, ## __VA_ARGS__); \
62 #define kvm_vm_check_mem_attr(s, attr) \
63 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
65 #define IPA0_DIAG 0x8300
66 #define IPA0_SIGP 0xae00
67 #define IPA0_B2 0xb200
68 #define IPA0_B9 0xb900
69 #define IPA0_EB 0xeb00
70 #define IPA0_E3 0xe300
72 #define PRIV_B2_SCLP_CALL 0x20
73 #define PRIV_B2_CSCH 0x30
74 #define PRIV_B2_HSCH 0x31
75 #define PRIV_B2_MSCH 0x32
76 #define PRIV_B2_SSCH 0x33
77 #define PRIV_B2_STSCH 0x34
78 #define PRIV_B2_TSCH 0x35
79 #define PRIV_B2_TPI 0x36
80 #define PRIV_B2_SAL 0x37
81 #define PRIV_B2_RSCH 0x38
82 #define PRIV_B2_STCRW 0x39
83 #define PRIV_B2_STCPS 0x3a
84 #define PRIV_B2_RCHP 0x3b
85 #define PRIV_B2_SCHM 0x3c
86 #define PRIV_B2_CHSC 0x5f
87 #define PRIV_B2_SIGA 0x74
88 #define PRIV_B2_XSCH 0x76
90 #define PRIV_EB_SQBS 0x8a
91 #define PRIV_EB_PCISTB 0xd0
92 #define PRIV_EB_SIC 0xd1
94 #define PRIV_B9_EQBS 0x9c
95 #define PRIV_B9_CLP 0xa0
96 #define PRIV_B9_PCISTG 0xd0
97 #define PRIV_B9_PCILG 0xd2
98 #define PRIV_B9_RPCIT 0xd3
100 #define PRIV_E3_MPCIFC 0xd0
101 #define PRIV_E3_STPCIFC 0xd4
103 #define DIAG_TIMEREVENT 0x288
104 #define DIAG_IPL 0x308
105 #define DIAG_KVM_HYPERCALL 0x500
106 #define DIAG_KVM_BREAKPOINT 0x501
108 #define ICPT_INSTRUCTION 0x04
109 #define ICPT_PROGRAM 0x08
110 #define ICPT_EXT_INT 0x14
111 #define ICPT_WAITPSW 0x1c
112 #define ICPT_SOFT_INTERCEPT 0x24
113 #define ICPT_CPU_STOP 0x28
114 #define ICPT_OPEREXC 0x2c
117 #define NR_LOCAL_IRQS 32
119 * Needs to be big enough to contain max_cpus emergency signals
120 * and in addition NR_LOCAL_IRQS interrupts
122 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
123 (max_cpus + NR_LOCAL_IRQS))
125 static CPUWatchpoint hw_watchpoint
;
127 * We don't use a list because this structure is also used to transmit the
128 * hardware breakpoints to the kernel.
130 static struct kvm_hw_breakpoint
*hw_breakpoints
;
131 static int nb_hw_breakpoints
;
133 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
137 static int cap_sync_regs
;
138 static int cap_async_pf
;
139 static int cap_mem_op
;
140 static int cap_s390_irq
;
144 static int active_cmma
;
146 static void *legacy_s390_alloc(size_t size
, uint64_t *align
, bool shared
);
148 static int kvm_s390_query_mem_limit(uint64_t *memory_limit
)
150 struct kvm_device_attr attr
= {
151 .group
= KVM_S390_VM_MEM_CTRL
,
152 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
153 .addr
= (uint64_t) memory_limit
,
156 return kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
159 int kvm_s390_set_mem_limit(uint64_t new_limit
, uint64_t *hw_limit
)
163 struct kvm_device_attr attr
= {
164 .group
= KVM_S390_VM_MEM_CTRL
,
165 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
166 .addr
= (uint64_t) &new_limit
,
169 if (!kvm_vm_check_mem_attr(kvm_state
, KVM_S390_VM_MEM_LIMIT_SIZE
)) {
173 rc
= kvm_s390_query_mem_limit(hw_limit
);
176 } else if (*hw_limit
< new_limit
) {
180 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
183 int kvm_s390_cmma_active(void)
188 static bool kvm_s390_cmma_available(void)
190 static bool initialized
, value
;
194 value
= kvm_vm_check_mem_attr(kvm_state
, KVM_S390_VM_MEM_ENABLE_CMMA
) &&
195 kvm_vm_check_mem_attr(kvm_state
, KVM_S390_VM_MEM_CLR_CMMA
);
200 void kvm_s390_cmma_reset(void)
203 struct kvm_device_attr attr
= {
204 .group
= KVM_S390_VM_MEM_CTRL
,
205 .attr
= KVM_S390_VM_MEM_CLR_CMMA
,
208 if (!kvm_s390_cmma_active()) {
212 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
213 trace_kvm_clear_cmma(rc
);
216 static void kvm_s390_enable_cmma(void)
219 struct kvm_device_attr attr
= {
220 .group
= KVM_S390_VM_MEM_CTRL
,
221 .attr
= KVM_S390_VM_MEM_ENABLE_CMMA
,
225 warn_report("CMM will not be enabled because it is not "
226 "compatible with hugetlbfs.");
229 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
231 trace_kvm_enable_cmma(rc
);
234 static void kvm_s390_set_attr(uint64_t attr
)
236 struct kvm_device_attr attribute
= {
237 .group
= KVM_S390_VM_CRYPTO
,
241 int ret
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attribute
);
244 error_report("Failed to set crypto device attribute %lu: %s",
245 attr
, strerror(-ret
));
249 static void kvm_s390_init_aes_kw(void)
251 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_AES_KW
;
253 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
255 attr
= KVM_S390_VM_CRYPTO_ENABLE_AES_KW
;
258 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
259 kvm_s390_set_attr(attr
);
263 static void kvm_s390_init_dea_kw(void)
265 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_DEA_KW
;
267 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
269 attr
= KVM_S390_VM_CRYPTO_ENABLE_DEA_KW
;
272 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
273 kvm_s390_set_attr(attr
);
277 void kvm_s390_crypto_reset(void)
279 if (s390_has_feat(S390_FEAT_MSA_EXT_3
)) {
280 kvm_s390_init_aes_kw();
281 kvm_s390_init_dea_kw();
285 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
287 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
289 mc
->default_cpu_type
= S390_CPU_TYPE_NAME("host");
290 cap_sync_regs
= kvm_check_extension(s
, KVM_CAP_SYNC_REGS
);
291 cap_async_pf
= kvm_check_extension(s
, KVM_CAP_ASYNC_PF
);
292 cap_mem_op
= kvm_check_extension(s
, KVM_CAP_S390_MEM_OP
);
293 cap_s390_irq
= kvm_check_extension(s
, KVM_CAP_S390_INJECT_IRQ
);
295 if (!kvm_check_extension(s
, KVM_CAP_S390_GMAP
)
296 || !kvm_check_extension(s
, KVM_CAP_S390_COW
)) {
297 phys_mem_set_alloc(legacy_s390_alloc
);
300 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_SIGP
, 0);
301 kvm_vm_enable_cap(s
, KVM_CAP_S390_VECTOR_REGISTERS
, 0);
302 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_STSI
, 0);
304 if (kvm_vm_enable_cap(s
, KVM_CAP_S390_RI
, 0) == 0) {
308 if (cpu_model_allowed()) {
309 if (kvm_vm_enable_cap(s
, KVM_CAP_S390_GS
, 0) == 0) {
315 * The migration interface for ais was introduced with kernel 4.13
316 * but the capability itself had been active since 4.12. As migration
317 * support is considered necessary let's disable ais in the 2.10
320 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */
325 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
330 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
332 return cpu
->cpu_index
;
335 int kvm_arch_init_vcpu(CPUState
*cs
)
337 S390CPU
*cpu
= S390_CPU(cs
);
338 kvm_s390_set_cpu_state(cpu
, cpu
->env
.cpu_state
);
339 cpu
->irqstate
= g_malloc0(VCPU_IRQ_BUF_SIZE
);
343 void kvm_s390_reset_vcpu(S390CPU
*cpu
)
345 CPUState
*cs
= CPU(cpu
);
347 /* The initial reset call is needed here to reset in-kernel
348 * vcpu data that we can't access directly from QEMU
349 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
350 * Before this ioctl cpu_synchronize_state() is called in common kvm
352 if (kvm_vcpu_ioctl(cs
, KVM_S390_INITIAL_RESET
, NULL
)) {
353 error_report("Initial CPU reset failed on CPU %i", cs
->cpu_index
);
357 static int can_sync_regs(CPUState
*cs
, int regs
)
359 return cap_sync_regs
&& (cs
->kvm_run
->kvm_valid_regs
& regs
) == regs
;
362 int kvm_arch_put_registers(CPUState
*cs
, int level
)
364 S390CPU
*cpu
= S390_CPU(cs
);
365 CPUS390XState
*env
= &cpu
->env
;
366 struct kvm_sregs sregs
;
367 struct kvm_regs regs
;
368 struct kvm_fpu fpu
= {};
372 /* always save the PSW and the GPRS*/
373 cs
->kvm_run
->psw_addr
= env
->psw
.addr
;
374 cs
->kvm_run
->psw_mask
= env
->psw
.mask
;
376 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
377 for (i
= 0; i
< 16; i
++) {
378 cs
->kvm_run
->s
.regs
.gprs
[i
] = env
->regs
[i
];
379 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_GPRS
;
382 for (i
= 0; i
< 16; i
++) {
383 regs
.gprs
[i
] = env
->regs
[i
];
385 r
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
391 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
392 for (i
= 0; i
< 32; i
++) {
393 cs
->kvm_run
->s
.regs
.vrs
[i
][0] = env
->vregs
[i
][0].ll
;
394 cs
->kvm_run
->s
.regs
.vrs
[i
][1] = env
->vregs
[i
][1].ll
;
396 cs
->kvm_run
->s
.regs
.fpc
= env
->fpc
;
397 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_VRS
;
398 } else if (can_sync_regs(cs
, KVM_SYNC_FPRS
)) {
399 for (i
= 0; i
< 16; i
++) {
400 cs
->kvm_run
->s
.regs
.fprs
[i
] = get_freg(env
, i
)->ll
;
402 cs
->kvm_run
->s
.regs
.fpc
= env
->fpc
;
403 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_FPRS
;
406 for (i
= 0; i
< 16; i
++) {
407 fpu
.fprs
[i
] = get_freg(env
, i
)->ll
;
411 r
= kvm_vcpu_ioctl(cs
, KVM_SET_FPU
, &fpu
);
417 /* Do we need to save more than that? */
418 if (level
== KVM_PUT_RUNTIME_STATE
) {
422 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
423 cs
->kvm_run
->s
.regs
.cputm
= env
->cputm
;
424 cs
->kvm_run
->s
.regs
.ckc
= env
->ckc
;
425 cs
->kvm_run
->s
.regs
.todpr
= env
->todpr
;
426 cs
->kvm_run
->s
.regs
.gbea
= env
->gbea
;
427 cs
->kvm_run
->s
.regs
.pp
= env
->pp
;
428 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ARCH0
;
431 * These ONE_REGS are not protected by a capability. As they are only
432 * necessary for migration we just trace a possible error, but don't
433 * return with an error return code.
435 kvm_set_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
436 kvm_set_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
437 kvm_set_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
438 kvm_set_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
439 kvm_set_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
442 if (can_sync_regs(cs
, KVM_SYNC_RICCB
)) {
443 memcpy(cs
->kvm_run
->s
.regs
.riccb
, env
->riccb
, 64);
444 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_RICCB
;
447 /* pfault parameters */
448 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
449 cs
->kvm_run
->s
.regs
.pft
= env
->pfault_token
;
450 cs
->kvm_run
->s
.regs
.pfs
= env
->pfault_select
;
451 cs
->kvm_run
->s
.regs
.pfc
= env
->pfault_compare
;
452 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PFAULT
;
453 } else if (cap_async_pf
) {
454 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
458 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
462 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
468 /* access registers and control registers*/
469 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
470 for (i
= 0; i
< 16; i
++) {
471 cs
->kvm_run
->s
.regs
.acrs
[i
] = env
->aregs
[i
];
472 cs
->kvm_run
->s
.regs
.crs
[i
] = env
->cregs
[i
];
474 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ACRS
;
475 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_CRS
;
477 for (i
= 0; i
< 16; i
++) {
478 sregs
.acrs
[i
] = env
->aregs
[i
];
479 sregs
.crs
[i
] = env
->cregs
[i
];
481 r
= kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
487 if (can_sync_regs(cs
, KVM_SYNC_GSCB
)) {
488 memcpy(cs
->kvm_run
->s
.regs
.gscb
, env
->gscb
, 32);
489 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_GSCB
;
492 if (can_sync_regs(cs
, KVM_SYNC_BPBC
)) {
493 cs
->kvm_run
->s
.regs
.bpbc
= env
->bpbc
;
494 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_BPBC
;
497 /* Finally the prefix */
498 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
499 cs
->kvm_run
->s
.regs
.prefix
= env
->psa
;
500 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PREFIX
;
502 /* prefix is only supported via sync regs */
507 int kvm_arch_get_registers(CPUState
*cs
)
509 S390CPU
*cpu
= S390_CPU(cs
);
510 CPUS390XState
*env
= &cpu
->env
;
511 struct kvm_sregs sregs
;
512 struct kvm_regs regs
;
517 env
->psw
.addr
= cs
->kvm_run
->psw_addr
;
518 env
->psw
.mask
= cs
->kvm_run
->psw_mask
;
521 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
522 for (i
= 0; i
< 16; i
++) {
523 env
->regs
[i
] = cs
->kvm_run
->s
.regs
.gprs
[i
];
526 r
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
530 for (i
= 0; i
< 16; i
++) {
531 env
->regs
[i
] = regs
.gprs
[i
];
535 /* The ACRS and CRS */
536 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
537 for (i
= 0; i
< 16; i
++) {
538 env
->aregs
[i
] = cs
->kvm_run
->s
.regs
.acrs
[i
];
539 env
->cregs
[i
] = cs
->kvm_run
->s
.regs
.crs
[i
];
542 r
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
546 for (i
= 0; i
< 16; i
++) {
547 env
->aregs
[i
] = sregs
.acrs
[i
];
548 env
->cregs
[i
] = sregs
.crs
[i
];
552 /* Floating point and vector registers */
553 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
554 for (i
= 0; i
< 32; i
++) {
555 env
->vregs
[i
][0].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][0];
556 env
->vregs
[i
][1].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][1];
558 env
->fpc
= cs
->kvm_run
->s
.regs
.fpc
;
559 } else if (can_sync_regs(cs
, KVM_SYNC_FPRS
)) {
560 for (i
= 0; i
< 16; i
++) {
561 get_freg(env
, i
)->ll
= cs
->kvm_run
->s
.regs
.fprs
[i
];
563 env
->fpc
= cs
->kvm_run
->s
.regs
.fpc
;
565 r
= kvm_vcpu_ioctl(cs
, KVM_GET_FPU
, &fpu
);
569 for (i
= 0; i
< 16; i
++) {
570 get_freg(env
, i
)->ll
= fpu
.fprs
[i
];
576 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
577 env
->psa
= cs
->kvm_run
->s
.regs
.prefix
;
580 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
581 env
->cputm
= cs
->kvm_run
->s
.regs
.cputm
;
582 env
->ckc
= cs
->kvm_run
->s
.regs
.ckc
;
583 env
->todpr
= cs
->kvm_run
->s
.regs
.todpr
;
584 env
->gbea
= cs
->kvm_run
->s
.regs
.gbea
;
585 env
->pp
= cs
->kvm_run
->s
.regs
.pp
;
588 * These ONE_REGS are not protected by a capability. As they are only
589 * necessary for migration we just trace a possible error, but don't
590 * return with an error return code.
592 kvm_get_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
593 kvm_get_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
594 kvm_get_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
595 kvm_get_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
596 kvm_get_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
599 if (can_sync_regs(cs
, KVM_SYNC_RICCB
)) {
600 memcpy(env
->riccb
, cs
->kvm_run
->s
.regs
.riccb
, 64);
603 if (can_sync_regs(cs
, KVM_SYNC_GSCB
)) {
604 memcpy(env
->gscb
, cs
->kvm_run
->s
.regs
.gscb
, 32);
607 if (can_sync_regs(cs
, KVM_SYNC_BPBC
)) {
608 env
->bpbc
= cs
->kvm_run
->s
.regs
.bpbc
;
611 /* pfault parameters */
612 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
613 env
->pfault_token
= cs
->kvm_run
->s
.regs
.pft
;
614 env
->pfault_select
= cs
->kvm_run
->s
.regs
.pfs
;
615 env
->pfault_compare
= cs
->kvm_run
->s
.regs
.pfc
;
616 } else if (cap_async_pf
) {
617 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
621 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
625 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
634 int kvm_s390_get_clock(uint8_t *tod_high
, uint64_t *tod_low
)
637 struct kvm_device_attr attr
= {
638 .group
= KVM_S390_VM_TOD
,
639 .attr
= KVM_S390_VM_TOD_LOW
,
640 .addr
= (uint64_t)tod_low
,
643 r
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
648 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
649 attr
.addr
= (uint64_t)tod_high
;
650 return kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
653 int kvm_s390_get_clock_ext(uint8_t *tod_high
, uint64_t *tod_low
)
656 struct kvm_s390_vm_tod_clock gtod
;
657 struct kvm_device_attr attr
= {
658 .group
= KVM_S390_VM_TOD
,
659 .attr
= KVM_S390_VM_TOD_EXT
,
660 .addr
= (uint64_t)>od
,
663 r
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
664 *tod_high
= gtod
.epoch_idx
;
670 int kvm_s390_set_clock(uint8_t *tod_high
, uint64_t *tod_low
)
673 struct kvm_device_attr attr
= {
674 .group
= KVM_S390_VM_TOD
,
675 .attr
= KVM_S390_VM_TOD_LOW
,
676 .addr
= (uint64_t)tod_low
,
679 r
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
684 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
685 attr
.addr
= (uint64_t)tod_high
;
686 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
689 int kvm_s390_set_clock_ext(uint8_t *tod_high
, uint64_t *tod_low
)
691 struct kvm_s390_vm_tod_clock gtod
= {
692 .epoch_idx
= *tod_high
,
695 struct kvm_device_attr attr
= {
696 .group
= KVM_S390_VM_TOD
,
697 .attr
= KVM_S390_VM_TOD_EXT
,
698 .addr
= (uint64_t)>od
,
701 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
706 * @addr: the logical start address in guest memory
707 * @ar: the access register number
708 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
709 * @len: length that should be transferred
710 * @is_write: true = write, false = read
711 * Returns: 0 on success, non-zero if an exception or error occurred
713 * Use KVM ioctl to read/write from/to guest memory. An access exception
714 * is injected into the vCPU in case of translation errors.
716 int kvm_s390_mem_op(S390CPU
*cpu
, vaddr addr
, uint8_t ar
, void *hostbuf
,
717 int len
, bool is_write
)
719 struct kvm_s390_mem_op mem_op
= {
721 .flags
= KVM_S390_MEMOP_F_INJECT_EXCEPTION
,
723 .op
= is_write
? KVM_S390_MEMOP_LOGICAL_WRITE
724 : KVM_S390_MEMOP_LOGICAL_READ
,
725 .buf
= (uint64_t)hostbuf
,
734 mem_op
.flags
|= KVM_S390_MEMOP_F_CHECK_ONLY
;
737 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_S390_MEM_OP
, &mem_op
);
739 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret
));
745 * Legacy layout for s390:
746 * Older S390 KVM requires the topmost vma of the RAM to be
747 * smaller than an system defined value, which is at least 256GB.
748 * Larger systems have larger values. We put the guest between
749 * the end of data segment (system break) and this value. We
750 * use 32GB as a base to have enough room for the system break
751 * to grow. We also have to use MAP parameters that avoid
752 * read-only mapping of guest pages.
754 static void *legacy_s390_alloc(size_t size
, uint64_t *align
, bool shared
)
758 mem
= mmap((void *) 0x800000000ULL
, size
,
759 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
760 MAP_SHARED
| MAP_ANONYMOUS
| MAP_FIXED
, -1, 0);
761 return mem
== MAP_FAILED
? NULL
: mem
;
764 static uint8_t const *sw_bp_inst
;
765 static uint8_t sw_bp_ilen
;
767 static void determine_sw_breakpoint_instr(void)
769 /* DIAG 501 is used for sw breakpoints with old kernels */
770 static const uint8_t diag_501
[] = {0x83, 0x24, 0x05, 0x01};
771 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
772 static const uint8_t instr_0x0000
[] = {0x00, 0x00};
777 if (kvm_vm_enable_cap(kvm_state
, KVM_CAP_S390_USER_INSTR0
, 0)) {
778 sw_bp_inst
= diag_501
;
779 sw_bp_ilen
= sizeof(diag_501
);
780 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
782 sw_bp_inst
= instr_0x0000
;
783 sw_bp_ilen
= sizeof(instr_0x0000
);
784 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
788 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
790 determine_sw_breakpoint_instr();
792 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
794 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)sw_bp_inst
, sw_bp_ilen
, 1)) {
800 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
804 if (cpu_memory_rw_debug(cs
, bp
->pc
, t
, sw_bp_ilen
, 0)) {
806 } else if (memcmp(t
, sw_bp_inst
, sw_bp_ilen
)) {
808 } else if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
816 static struct kvm_hw_breakpoint
*find_hw_breakpoint(target_ulong addr
,
821 for (n
= 0; n
< nb_hw_breakpoints
; n
++) {
822 if (hw_breakpoints
[n
].addr
== addr
&& hw_breakpoints
[n
].type
== type
&&
823 (hw_breakpoints
[n
].len
== len
|| len
== -1)) {
824 return &hw_breakpoints
[n
];
831 static int insert_hw_breakpoint(target_ulong addr
, int len
, int type
)
835 if (find_hw_breakpoint(addr
, len
, type
)) {
839 size
= (nb_hw_breakpoints
+ 1) * sizeof(struct kvm_hw_breakpoint
);
841 if (!hw_breakpoints
) {
842 nb_hw_breakpoints
= 0;
843 hw_breakpoints
= (struct kvm_hw_breakpoint
*)g_try_malloc(size
);
846 (struct kvm_hw_breakpoint
*)g_try_realloc(hw_breakpoints
, size
);
849 if (!hw_breakpoints
) {
850 nb_hw_breakpoints
= 0;
854 hw_breakpoints
[nb_hw_breakpoints
].addr
= addr
;
855 hw_breakpoints
[nb_hw_breakpoints
].len
= len
;
856 hw_breakpoints
[nb_hw_breakpoints
].type
= type
;
863 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
864 target_ulong len
, int type
)
867 case GDB_BREAKPOINT_HW
:
870 case GDB_WATCHPOINT_WRITE
:
874 type
= KVM_HW_WP_WRITE
;
879 return insert_hw_breakpoint(addr
, len
, type
);
882 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
883 target_ulong len
, int type
)
886 struct kvm_hw_breakpoint
*bp
= find_hw_breakpoint(addr
, len
, type
);
893 if (nb_hw_breakpoints
> 0) {
895 * In order to trim the array, move the last element to the position to
896 * be removed - if necessary.
898 if (bp
!= &hw_breakpoints
[nb_hw_breakpoints
]) {
899 *bp
= hw_breakpoints
[nb_hw_breakpoints
];
901 size
= nb_hw_breakpoints
* sizeof(struct kvm_hw_breakpoint
);
903 (struct kvm_hw_breakpoint
*)g_realloc(hw_breakpoints
, size
);
905 g_free(hw_breakpoints
);
906 hw_breakpoints
= NULL
;
912 void kvm_arch_remove_all_hw_breakpoints(void)
914 nb_hw_breakpoints
= 0;
915 g_free(hw_breakpoints
);
916 hw_breakpoints
= NULL
;
919 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
923 if (nb_hw_breakpoints
> 0) {
924 dbg
->arch
.nr_hw_bp
= nb_hw_breakpoints
;
925 dbg
->arch
.hw_bp
= hw_breakpoints
;
927 for (i
= 0; i
< nb_hw_breakpoints
; ++i
) {
928 hw_breakpoints
[i
].phys_addr
= s390_cpu_get_phys_addr_debug(cpu
,
929 hw_breakpoints
[i
].addr
);
931 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
933 dbg
->arch
.nr_hw_bp
= 0;
934 dbg
->arch
.hw_bp
= NULL
;
938 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
942 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
944 return MEMTXATTRS_UNSPECIFIED
;
947 int kvm_arch_process_async_events(CPUState
*cs
)
952 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq
*irq
,
953 struct kvm_s390_interrupt
*interrupt
)
957 interrupt
->type
= irq
->type
;
959 case KVM_S390_INT_VIRTIO
:
960 interrupt
->parm
= irq
->u
.ext
.ext_params
;
962 case KVM_S390_INT_PFAULT_INIT
:
963 case KVM_S390_INT_PFAULT_DONE
:
964 interrupt
->parm64
= irq
->u
.ext
.ext_params2
;
966 case KVM_S390_PROGRAM_INT
:
967 interrupt
->parm
= irq
->u
.pgm
.code
;
969 case KVM_S390_SIGP_SET_PREFIX
:
970 interrupt
->parm
= irq
->u
.prefix
.address
;
972 case KVM_S390_INT_SERVICE
:
973 interrupt
->parm
= irq
->u
.ext
.ext_params
;
976 interrupt
->parm
= irq
->u
.mchk
.cr14
;
977 interrupt
->parm64
= irq
->u
.mchk
.mcic
;
979 case KVM_S390_INT_EXTERNAL_CALL
:
980 interrupt
->parm
= irq
->u
.extcall
.code
;
982 case KVM_S390_INT_EMERGENCY
:
983 interrupt
->parm
= irq
->u
.emerg
.code
;
985 case KVM_S390_SIGP_STOP
:
986 case KVM_S390_RESTART
:
987 break; /* These types have no parameters */
988 case KVM_S390_INT_IO_MIN
...KVM_S390_INT_IO_MAX
:
989 interrupt
->parm
= irq
->u
.io
.subchannel_id
<< 16;
990 interrupt
->parm
|= irq
->u
.io
.subchannel_nr
;
991 interrupt
->parm64
= (uint64_t)irq
->u
.io
.io_int_parm
<< 32;
992 interrupt
->parm64
|= irq
->u
.io
.io_int_word
;
1001 static void inject_vcpu_irq_legacy(CPUState
*cs
, struct kvm_s390_irq
*irq
)
1003 struct kvm_s390_interrupt kvmint
= {};
1006 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
1008 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
1012 r
= kvm_vcpu_ioctl(cs
, KVM_S390_INTERRUPT
, &kvmint
);
1014 fprintf(stderr
, "KVM failed to inject interrupt\n");
1019 void kvm_s390_vcpu_interrupt(S390CPU
*cpu
, struct kvm_s390_irq
*irq
)
1021 CPUState
*cs
= CPU(cpu
);
1025 r
= kvm_vcpu_ioctl(cs
, KVM_S390_IRQ
, irq
);
1029 error_report("KVM failed to inject interrupt %llx", irq
->type
);
1033 inject_vcpu_irq_legacy(cs
, irq
);
1036 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq
*irq
)
1038 struct kvm_s390_interrupt kvmint
= {};
1041 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
1043 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
1047 r
= kvm_vm_ioctl(kvm_state
, KVM_S390_INTERRUPT
, &kvmint
);
1049 fprintf(stderr
, "KVM failed to inject interrupt\n");
1054 void kvm_s390_program_interrupt(S390CPU
*cpu
, uint16_t code
)
1056 struct kvm_s390_irq irq
= {
1057 .type
= KVM_S390_PROGRAM_INT
,
1061 kvm_s390_vcpu_interrupt(cpu
, &irq
);
1064 void kvm_s390_access_exception(S390CPU
*cpu
, uint16_t code
, uint64_t te_code
)
1066 struct kvm_s390_irq irq
= {
1067 .type
= KVM_S390_PROGRAM_INT
,
1069 .u
.pgm
.trans_exc_code
= te_code
,
1070 .u
.pgm
.exc_access_id
= te_code
& 3,
1073 kvm_s390_vcpu_interrupt(cpu
, &irq
);
1076 static int kvm_sclp_service_call(S390CPU
*cpu
, struct kvm_run
*run
,
1079 CPUS390XState
*env
= &cpu
->env
;
1084 cpu_synchronize_state(CPU(cpu
));
1085 sccb
= env
->regs
[ipbh0
& 0xf];
1086 code
= env
->regs
[(ipbh0
& 0xf0) >> 4];
1088 r
= sclp_service_call(env
, sccb
, code
);
1090 kvm_s390_program_interrupt(cpu
, -r
);
1098 static int handle_b2(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1100 CPUS390XState
*env
= &cpu
->env
;
1102 uint16_t ipbh0
= (run
->s390_sieic
.ipb
& 0xffff0000) >> 16;
1104 cpu_synchronize_state(CPU(cpu
));
1108 ioinst_handle_xsch(cpu
, env
->regs
[1], RA_IGNORED
);
1111 ioinst_handle_csch(cpu
, env
->regs
[1], RA_IGNORED
);
1114 ioinst_handle_hsch(cpu
, env
->regs
[1], RA_IGNORED
);
1117 ioinst_handle_msch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
, RA_IGNORED
);
1120 ioinst_handle_ssch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
, RA_IGNORED
);
1123 ioinst_handle_stcrw(cpu
, run
->s390_sieic
.ipb
, RA_IGNORED
);
1126 ioinst_handle_stsch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
, RA_IGNORED
);
1129 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1130 fprintf(stderr
, "Spurious tsch intercept\n");
1133 ioinst_handle_chsc(cpu
, run
->s390_sieic
.ipb
, RA_IGNORED
);
1136 /* This should have been handled by kvm already. */
1137 fprintf(stderr
, "Spurious tpi intercept\n");
1140 ioinst_handle_schm(cpu
, env
->regs
[1], env
->regs
[2],
1141 run
->s390_sieic
.ipb
, RA_IGNORED
);
1144 ioinst_handle_rsch(cpu
, env
->regs
[1], RA_IGNORED
);
1147 ioinst_handle_rchp(cpu
, env
->regs
[1], RA_IGNORED
);
1150 /* We do not provide this instruction, it is suppressed. */
1153 ioinst_handle_sal(cpu
, env
->regs
[1], RA_IGNORED
);
1156 /* Not provided, set CC = 3 for subchannel not operational */
1159 case PRIV_B2_SCLP_CALL
:
1160 rc
= kvm_sclp_service_call(cpu
, run
, ipbh0
);
1164 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1
);
1171 static uint64_t get_base_disp_rxy(S390CPU
*cpu
, struct kvm_run
*run
,
1174 CPUS390XState
*env
= &cpu
->env
;
1175 uint32_t x2
= (run
->s390_sieic
.ipa
& 0x000f);
1176 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1177 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1178 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1180 if (disp2
& 0x80000) {
1181 disp2
+= 0xfff00000;
1187 return (base2
? env
->regs
[base2
] : 0) +
1188 (x2
? env
->regs
[x2
] : 0) + (long)(int)disp2
;
1191 static uint64_t get_base_disp_rsy(S390CPU
*cpu
, struct kvm_run
*run
,
1194 CPUS390XState
*env
= &cpu
->env
;
1195 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1196 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1197 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1199 if (disp2
& 0x80000) {
1200 disp2
+= 0xfff00000;
1206 return (base2
? env
->regs
[base2
] : 0) + (long)(int)disp2
;
1209 static int kvm_clp_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1211 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1213 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1214 return clp_service_call(cpu
, r2
, RA_IGNORED
);
1220 static int kvm_pcilg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1222 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1223 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1225 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1226 return pcilg_service_call(cpu
, r1
, r2
, RA_IGNORED
);
1232 static int kvm_pcistg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1234 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1235 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1237 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1238 return pcistg_service_call(cpu
, r1
, r2
, RA_IGNORED
);
1244 static int kvm_stpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1246 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1250 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1251 cpu_synchronize_state(CPU(cpu
));
1252 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1254 return stpcifc_service_call(cpu
, r1
, fiba
, ar
, RA_IGNORED
);
1260 static int kvm_sic_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1262 CPUS390XState
*env
= &cpu
->env
;
1263 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1264 uint8_t r3
= run
->s390_sieic
.ipa
& 0x000f;
1269 cpu_synchronize_state(CPU(cpu
));
1270 mode
= env
->regs
[r1
] & 0xffff;
1271 isc
= (env
->regs
[r3
] >> 27) & 0x7;
1272 r
= css_do_sic(env
, isc
, mode
);
1274 kvm_s390_program_interrupt(cpu
, -r
);
1280 static int kvm_rpcit_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1282 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1283 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1285 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1286 return rpcit_service_call(cpu
, r1
, r2
, RA_IGNORED
);
1292 static int kvm_pcistb_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1294 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1295 uint8_t r3
= run
->s390_sieic
.ipa
& 0x000f;
1299 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1300 cpu_synchronize_state(CPU(cpu
));
1301 gaddr
= get_base_disp_rsy(cpu
, run
, &ar
);
1303 return pcistb_service_call(cpu
, r1
, r3
, gaddr
, ar
, RA_IGNORED
);
1309 static int kvm_mpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1311 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1315 if (s390_has_feat(S390_FEAT_ZPCI
)) {
1316 cpu_synchronize_state(CPU(cpu
));
1317 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1319 return mpcifc_service_call(cpu
, r1
, fiba
, ar
, RA_IGNORED
);
1325 static int handle_b9(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1331 r
= kvm_clp_service_call(cpu
, run
);
1333 case PRIV_B9_PCISTG
:
1334 r
= kvm_pcistg_service_call(cpu
, run
);
1337 r
= kvm_pcilg_service_call(cpu
, run
);
1340 r
= kvm_rpcit_service_call(cpu
, run
);
1343 /* just inject exception */
1348 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1
);
1355 static int handle_eb(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1360 case PRIV_EB_PCISTB
:
1361 r
= kvm_pcistb_service_call(cpu
, run
);
1364 r
= kvm_sic_service_call(cpu
, run
);
1367 /* just inject exception */
1372 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl
);
1379 static int handle_e3(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1384 case PRIV_E3_MPCIFC
:
1385 r
= kvm_mpcifc_service_call(cpu
, run
);
1387 case PRIV_E3_STPCIFC
:
1388 r
= kvm_stpcifc_service_call(cpu
, run
);
1392 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl
);
1399 static int handle_hypercall(S390CPU
*cpu
, struct kvm_run
*run
)
1401 CPUS390XState
*env
= &cpu
->env
;
1404 cpu_synchronize_state(CPU(cpu
));
1405 ret
= s390_virtio_hypercall(env
);
1406 if (ret
== -EINVAL
) {
1407 kvm_s390_program_interrupt(cpu
, PGM_SPECIFICATION
);
1414 static void kvm_handle_diag_288(S390CPU
*cpu
, struct kvm_run
*run
)
1419 cpu_synchronize_state(CPU(cpu
));
1420 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1421 r3
= run
->s390_sieic
.ipa
& 0x000f;
1422 rc
= handle_diag_288(&cpu
->env
, r1
, r3
);
1424 kvm_s390_program_interrupt(cpu
, PGM_SPECIFICATION
);
1428 static void kvm_handle_diag_308(S390CPU
*cpu
, struct kvm_run
*run
)
1432 cpu_synchronize_state(CPU(cpu
));
1433 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1434 r3
= run
->s390_sieic
.ipa
& 0x000f;
1435 handle_diag_308(&cpu
->env
, r1
, r3
, RA_IGNORED
);
1438 static int handle_sw_breakpoint(S390CPU
*cpu
, struct kvm_run
*run
)
1440 CPUS390XState
*env
= &cpu
->env
;
1443 cpu_synchronize_state(CPU(cpu
));
1445 pc
= env
->psw
.addr
- sw_bp_ilen
;
1446 if (kvm_find_sw_breakpoint(CPU(cpu
), pc
)) {
1454 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1456 static int handle_diag(S390CPU
*cpu
, struct kvm_run
*run
, uint32_t ipb
)
1462 * For any diagnose call we support, bits 48-63 of the resulting
1463 * address specify the function code; the remainder is ignored.
1465 func_code
= decode_basedisp_rs(&cpu
->env
, ipb
, NULL
) & DIAG_KVM_CODE_MASK
;
1466 switch (func_code
) {
1467 case DIAG_TIMEREVENT
:
1468 kvm_handle_diag_288(cpu
, run
);
1471 kvm_handle_diag_308(cpu
, run
);
1473 case DIAG_KVM_HYPERCALL
:
1474 r
= handle_hypercall(cpu
, run
);
1476 case DIAG_KVM_BREAKPOINT
:
1477 r
= handle_sw_breakpoint(cpu
, run
);
1480 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code
);
1481 kvm_s390_program_interrupt(cpu
, PGM_SPECIFICATION
);
1488 static int kvm_s390_handle_sigp(S390CPU
*cpu
, uint8_t ipa1
, uint32_t ipb
)
1490 CPUS390XState
*env
= &cpu
->env
;
1491 const uint8_t r1
= ipa1
>> 4;
1492 const uint8_t r3
= ipa1
& 0x0f;
1496 cpu_synchronize_state(CPU(cpu
));
1498 /* get order code */
1499 order
= decode_basedisp_rs(env
, ipb
, NULL
) & SIGP_ORDER_MASK
;
1501 ret
= handle_sigp(env
, order
, r1
, r3
);
1506 static int handle_instruction(S390CPU
*cpu
, struct kvm_run
*run
)
1508 unsigned int ipa0
= (run
->s390_sieic
.ipa
& 0xff00);
1509 uint8_t ipa1
= run
->s390_sieic
.ipa
& 0x00ff;
1512 DPRINTF("handle_instruction 0x%x 0x%x\n",
1513 run
->s390_sieic
.ipa
, run
->s390_sieic
.ipb
);
1516 r
= handle_b2(cpu
, run
, ipa1
);
1519 r
= handle_b9(cpu
, run
, ipa1
);
1522 r
= handle_eb(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1525 r
= handle_e3(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1528 r
= handle_diag(cpu
, run
, run
->s390_sieic
.ipb
);
1531 r
= kvm_s390_handle_sigp(cpu
, ipa1
, run
->s390_sieic
.ipb
);
1537 kvm_s390_program_interrupt(cpu
, PGM_OPERATION
);
1543 static void unmanageable_intercept(S390CPU
*cpu
, S390CrashReason reason
,
1546 CPUState
*cs
= CPU(cpu
);
1549 cpu
->env
.crash_reason
= reason
;
1550 qemu_system_guest_panicked(cpu_get_crash_info(cs
));
1553 /* try to detect pgm check loops */
1554 static int handle_oper_loop(S390CPU
*cpu
, struct kvm_run
*run
)
1556 CPUState
*cs
= CPU(cpu
);
1559 cpu_synchronize_state(cs
);
1560 newpsw
.mask
= ldq_phys(cs
->as
, cpu
->env
.psa
+
1561 offsetof(LowCore
, program_new_psw
));
1562 newpsw
.addr
= ldq_phys(cs
->as
, cpu
->env
.psa
+
1563 offsetof(LowCore
, program_new_psw
) + 8);
1564 oldpsw
.mask
= run
->psw_mask
;
1565 oldpsw
.addr
= run
->psw_addr
;
1567 * Avoid endless loops of operation exceptions, if the pgm new
1568 * PSW will cause a new operation exception.
1569 * The heuristic checks if the pgm new psw is within 6 bytes before
1570 * the faulting psw address (with same DAT, AS settings) and the
1571 * new psw is not a wait psw and the fault was not triggered by
1572 * problem state. In that case go into crashed state.
1575 if (oldpsw
.addr
- newpsw
.addr
<= 6 &&
1576 !(newpsw
.mask
& PSW_MASK_WAIT
) &&
1577 !(oldpsw
.mask
& PSW_MASK_PSTATE
) &&
1578 (newpsw
.mask
& PSW_MASK_ASC
) == (oldpsw
.mask
& PSW_MASK_ASC
) &&
1579 (newpsw
.mask
& PSW_MASK_DAT
) == (oldpsw
.mask
& PSW_MASK_DAT
)) {
1580 unmanageable_intercept(cpu
, S390_CRASH_REASON_OPINT_LOOP
,
1581 offsetof(LowCore
, program_new_psw
));
1587 static int handle_intercept(S390CPU
*cpu
)
1589 CPUState
*cs
= CPU(cpu
);
1590 struct kvm_run
*run
= cs
->kvm_run
;
1591 int icpt_code
= run
->s390_sieic
.icptcode
;
1594 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code
,
1595 (long)cs
->kvm_run
->psw_addr
);
1596 switch (icpt_code
) {
1597 case ICPT_INSTRUCTION
:
1598 r
= handle_instruction(cpu
, run
);
1601 unmanageable_intercept(cpu
, S390_CRASH_REASON_PGMINT_LOOP
,
1602 offsetof(LowCore
, program_new_psw
));
1606 unmanageable_intercept(cpu
, S390_CRASH_REASON_EXTINT_LOOP
,
1607 offsetof(LowCore
, external_new_psw
));
1611 /* disabled wait, since enabled wait is handled in kernel */
1612 cpu_synchronize_state(cs
);
1613 s390_handle_wait(cpu
);
1617 do_stop_interrupt(&cpu
->env
);
1621 /* check for break points */
1622 r
= handle_sw_breakpoint(cpu
, run
);
1624 /* Then check for potential pgm check loops */
1625 r
= handle_oper_loop(cpu
, run
);
1627 kvm_s390_program_interrupt(cpu
, PGM_OPERATION
);
1631 case ICPT_SOFT_INTERCEPT
:
1632 fprintf(stderr
, "KVM unimplemented icpt SOFT\n");
1636 fprintf(stderr
, "KVM unimplemented icpt IO\n");
1640 fprintf(stderr
, "Unknown intercept code: %d\n", icpt_code
);
1648 static int handle_tsch(S390CPU
*cpu
)
1650 CPUState
*cs
= CPU(cpu
);
1651 struct kvm_run
*run
= cs
->kvm_run
;
1654 cpu_synchronize_state(cs
);
1656 ret
= ioinst_handle_tsch(cpu
, cpu
->env
.regs
[1], run
->s390_tsch
.ipb
,
1661 * If an I/O interrupt had been dequeued, we have to reinject it.
1663 if (run
->s390_tsch
.dequeued
) {
1664 s390_io_interrupt(run
->s390_tsch
.subchannel_id
,
1665 run
->s390_tsch
.subchannel_nr
,
1666 run
->s390_tsch
.io_int_parm
,
1667 run
->s390_tsch
.io_int_word
);
1674 static void insert_stsi_3_2_2(S390CPU
*cpu
, __u64 addr
, uint8_t ar
)
1679 if (s390_cpu_virt_mem_read(cpu
, addr
, ar
, &sysib
, sizeof(sysib
))) {
1682 /* Shift the stack of Extended Names to prepare for our own data */
1683 memmove(&sysib
.ext_names
[1], &sysib
.ext_names
[0],
1684 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- 1));
1685 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1686 * assumed it's not capable of managing Extended Names for lower levels.
1688 for (del
= 1; del
< sysib
.count
; del
++) {
1689 if (!sysib
.vm
[del
].ext_name_encoding
|| !sysib
.ext_names
[del
][0]) {
1693 if (del
< sysib
.count
) {
1694 memset(sysib
.ext_names
[del
], 0,
1695 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- del
));
1697 /* Insert short machine name in EBCDIC, padded with blanks */
1699 memset(sysib
.vm
[0].name
, 0x40, sizeof(sysib
.vm
[0].name
));
1700 ebcdic_put(sysib
.vm
[0].name
, qemu_name
, MIN(sizeof(sysib
.vm
[0].name
),
1701 strlen(qemu_name
)));
1703 sysib
.vm
[0].ext_name_encoding
= 2; /* 2 = UTF-8 */
1704 memset(sysib
.ext_names
[0], 0, sizeof(sysib
.ext_names
[0]));
1705 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1706 * considered by s390 as not capable of providing any Extended Name.
1707 * Therefore if no name was specified on qemu invocation, we go with the
1708 * same "KVMguest" default, which KVM has filled into short name field.
1711 strncpy((char *)sysib
.ext_names
[0], qemu_name
,
1712 sizeof(sysib
.ext_names
[0]));
1714 strcpy((char *)sysib
.ext_names
[0], "KVMguest");
1717 memcpy(sysib
.vm
[0].uuid
, &qemu_uuid
, sizeof(sysib
.vm
[0].uuid
));
1719 s390_cpu_virt_mem_write(cpu
, addr
, ar
, &sysib
, sizeof(sysib
));
1722 static int handle_stsi(S390CPU
*cpu
)
1724 CPUState
*cs
= CPU(cpu
);
1725 struct kvm_run
*run
= cs
->kvm_run
;
1727 switch (run
->s390_stsi
.fc
) {
1729 if (run
->s390_stsi
.sel1
!= 2 || run
->s390_stsi
.sel2
!= 2) {
1732 /* Only sysib 3.2.2 needs post-handling for now. */
1733 insert_stsi_3_2_2(cpu
, run
->s390_stsi
.addr
, run
->s390_stsi
.ar
);
1740 static int kvm_arch_handle_debug_exit(S390CPU
*cpu
)
1742 CPUState
*cs
= CPU(cpu
);
1743 struct kvm_run
*run
= cs
->kvm_run
;
1746 struct kvm_debug_exit_arch
*arch_info
= &run
->debug
.arch
;
1748 switch (arch_info
->type
) {
1749 case KVM_HW_WP_WRITE
:
1750 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1751 cs
->watchpoint_hit
= &hw_watchpoint
;
1752 hw_watchpoint
.vaddr
= arch_info
->addr
;
1753 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1758 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1762 case KVM_SINGLESTEP
:
1763 if (cs
->singlestep_enabled
) {
1774 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
1776 S390CPU
*cpu
= S390_CPU(cs
);
1779 qemu_mutex_lock_iothread();
1781 cpu_synchronize_state(cs
);
1783 switch (run
->exit_reason
) {
1784 case KVM_EXIT_S390_SIEIC
:
1785 ret
= handle_intercept(cpu
);
1787 case KVM_EXIT_S390_RESET
:
1788 s390_reipl_request();
1790 case KVM_EXIT_S390_TSCH
:
1791 ret
= handle_tsch(cpu
);
1793 case KVM_EXIT_S390_STSI
:
1794 ret
= handle_stsi(cpu
);
1796 case KVM_EXIT_DEBUG
:
1797 ret
= kvm_arch_handle_debug_exit(cpu
);
1800 fprintf(stderr
, "Unknown KVM exit: %d\n", run
->exit_reason
);
1803 qemu_mutex_unlock_iothread();
1806 ret
= EXCP_INTERRUPT
;
1811 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
1816 void kvm_s390_enable_css_support(S390CPU
*cpu
)
1820 /* Activate host kernel channel subsystem support. */
1821 r
= kvm_vcpu_enable_cap(CPU(cpu
), KVM_CAP_S390_CSS_SUPPORT
, 0);
1825 void kvm_arch_init_irq_routing(KVMState
*s
)
1828 * Note that while irqchip capabilities generally imply that cpustates
1829 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1830 * have to override the common code kvm_halt_in_kernel_allowed setting.
1832 if (kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
1833 kvm_gsi_routing_allowed
= true;
1834 kvm_halt_in_kernel_allowed
= false;
1838 int kvm_s390_assign_subch_ioeventfd(EventNotifier
*notifier
, uint32_t sch
,
1839 int vq
, bool assign
)
1841 struct kvm_ioeventfd kick
= {
1842 .flags
= KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY
|
1843 KVM_IOEVENTFD_FLAG_DATAMATCH
,
1844 .fd
= event_notifier_get_fd(notifier
),
1849 if (!kvm_check_extension(kvm_state
, KVM_CAP_IOEVENTFD
)) {
1853 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1855 return kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1858 int kvm_s390_get_ri(void)
1863 int kvm_s390_get_gs(void)
1868 int kvm_s390_set_cpu_state(S390CPU
*cpu
, uint8_t cpu_state
)
1870 struct kvm_mp_state mp_state
= {};
1873 /* the kvm part might not have been initialized yet */
1874 if (CPU(cpu
)->kvm_state
== NULL
) {
1878 switch (cpu_state
) {
1879 case S390_CPU_STATE_STOPPED
:
1880 mp_state
.mp_state
= KVM_MP_STATE_STOPPED
;
1882 case S390_CPU_STATE_CHECK_STOP
:
1883 mp_state
.mp_state
= KVM_MP_STATE_CHECK_STOP
;
1885 case S390_CPU_STATE_OPERATING
:
1886 mp_state
.mp_state
= KVM_MP_STATE_OPERATING
;
1888 case S390_CPU_STATE_LOAD
:
1889 mp_state
.mp_state
= KVM_MP_STATE_LOAD
;
1892 error_report("Requested CPU state is not a valid S390 CPU state: %u",
1897 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
1899 trace_kvm_failed_cpu_state_set(CPU(cpu
)->cpu_index
, cpu_state
,
1906 void kvm_s390_vcpu_interrupt_pre_save(S390CPU
*cpu
)
1908 struct kvm_s390_irq_state irq_state
= {
1909 .buf
= (uint64_t) cpu
->irqstate
,
1910 .len
= VCPU_IRQ_BUF_SIZE
,
1912 CPUState
*cs
= CPU(cpu
);
1915 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
1919 bytes
= kvm_vcpu_ioctl(cs
, KVM_S390_GET_IRQ_STATE
, &irq_state
);
1921 cpu
->irqstate_saved_size
= 0;
1922 error_report("Migration of interrupt state failed");
1926 cpu
->irqstate_saved_size
= bytes
;
1929 int kvm_s390_vcpu_interrupt_post_load(S390CPU
*cpu
)
1931 CPUState
*cs
= CPU(cpu
);
1932 struct kvm_s390_irq_state irq_state
= {
1933 .buf
= (uint64_t) cpu
->irqstate
,
1934 .len
= cpu
->irqstate_saved_size
,
1938 if (cpu
->irqstate_saved_size
== 0) {
1942 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
1946 r
= kvm_vcpu_ioctl(cs
, KVM_S390_SET_IRQ_STATE
, &irq_state
);
1948 error_report("Setting interrupt state failed %d", r
);
1953 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
1954 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
1956 S390PCIBusDevice
*pbdev
;
1957 uint32_t vec
= data
& ZPCI_MSI_VEC_MASK
;
1960 DPRINTF("add_msi_route no pci device\n");
1964 pbdev
= s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev
)->id
);
1966 DPRINTF("add_msi_route no zpci device\n");
1970 route
->type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1972 route
->u
.adapter
.summary_addr
= pbdev
->routes
.adapter
.summary_addr
;
1973 route
->u
.adapter
.ind_addr
= pbdev
->routes
.adapter
.ind_addr
;
1974 route
->u
.adapter
.summary_offset
= pbdev
->routes
.adapter
.summary_offset
;
1975 route
->u
.adapter
.ind_offset
= pbdev
->routes
.adapter
.ind_offset
+ vec
;
1976 route
->u
.adapter
.adapter_id
= pbdev
->routes
.adapter
.adapter_id
;
1980 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry
*route
,
1981 int vector
, PCIDevice
*dev
)
1986 int kvm_arch_release_virq_post(int virq
)
1991 int kvm_arch_msi_data_to_gsi(uint32_t data
)
1996 static int query_cpu_subfunc(S390FeatBitmap features
)
1998 struct kvm_s390_vm_cpu_subfunc prop
;
1999 struct kvm_device_attr attr
= {
2000 .group
= KVM_S390_VM_CPU_MODEL
,
2001 .attr
= KVM_S390_VM_CPU_MACHINE_SUBFUNC
,
2002 .addr
= (uint64_t) &prop
,
2006 rc
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
2012 * We're going to add all subfunctions now, if the corresponding feature
2013 * is available that unlocks the query functions.
2015 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PLO
, prop
.plo
);
2016 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING
, features
)) {
2017 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PTFF
, prop
.ptff
);
2019 if (test_bit(S390_FEAT_MSA
, features
)) {
2020 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMAC
, prop
.kmac
);
2021 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMC
, prop
.kmc
);
2022 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KM
, prop
.km
);
2023 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KIMD
, prop
.kimd
);
2024 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KLMD
, prop
.klmd
);
2026 if (test_bit(S390_FEAT_MSA_EXT_3
, features
)) {
2027 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PCKMO
, prop
.pckmo
);
2029 if (test_bit(S390_FEAT_MSA_EXT_4
, features
)) {
2030 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMCTR
, prop
.kmctr
);
2031 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMF
, prop
.kmf
);
2032 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMO
, prop
.kmo
);
2033 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PCC
, prop
.pcc
);
2035 if (test_bit(S390_FEAT_MSA_EXT_5
, features
)) {
2036 s390_add_from_feat_block(features
, S390_FEAT_TYPE_PPNO
, prop
.ppno
);
2038 if (test_bit(S390_FEAT_MSA_EXT_8
, features
)) {
2039 s390_add_from_feat_block(features
, S390_FEAT_TYPE_KMA
, prop
.kma
);
2044 static int configure_cpu_subfunc(const S390FeatBitmap features
)
2046 struct kvm_s390_vm_cpu_subfunc prop
= {};
2047 struct kvm_device_attr attr
= {
2048 .group
= KVM_S390_VM_CPU_MODEL
,
2049 .attr
= KVM_S390_VM_CPU_PROCESSOR_SUBFUNC
,
2050 .addr
= (uint64_t) &prop
,
2053 if (!kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2054 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC
)) {
2055 /* hardware support might be missing, IBC will handle most of this */
2059 s390_fill_feat_block(features
, S390_FEAT_TYPE_PLO
, prop
.plo
);
2060 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING
, features
)) {
2061 s390_fill_feat_block(features
, S390_FEAT_TYPE_PTFF
, prop
.ptff
);
2063 if (test_bit(S390_FEAT_MSA
, features
)) {
2064 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMAC
, prop
.kmac
);
2065 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMC
, prop
.kmc
);
2066 s390_fill_feat_block(features
, S390_FEAT_TYPE_KM
, prop
.km
);
2067 s390_fill_feat_block(features
, S390_FEAT_TYPE_KIMD
, prop
.kimd
);
2068 s390_fill_feat_block(features
, S390_FEAT_TYPE_KLMD
, prop
.klmd
);
2070 if (test_bit(S390_FEAT_MSA_EXT_3
, features
)) {
2071 s390_fill_feat_block(features
, S390_FEAT_TYPE_PCKMO
, prop
.pckmo
);
2073 if (test_bit(S390_FEAT_MSA_EXT_4
, features
)) {
2074 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMCTR
, prop
.kmctr
);
2075 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMF
, prop
.kmf
);
2076 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMO
, prop
.kmo
);
2077 s390_fill_feat_block(features
, S390_FEAT_TYPE_PCC
, prop
.pcc
);
2079 if (test_bit(S390_FEAT_MSA_EXT_5
, features
)) {
2080 s390_fill_feat_block(features
, S390_FEAT_TYPE_PPNO
, prop
.ppno
);
2082 if (test_bit(S390_FEAT_MSA_EXT_8
, features
)) {
2083 s390_fill_feat_block(features
, S390_FEAT_TYPE_KMA
, prop
.kma
);
2085 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
2088 static int kvm_to_feat
[][2] = {
2089 { KVM_S390_VM_CPU_FEAT_ESOP
, S390_FEAT_ESOP
},
2090 { KVM_S390_VM_CPU_FEAT_SIEF2
, S390_FEAT_SIE_F2
},
2091 { KVM_S390_VM_CPU_FEAT_64BSCAO
, S390_FEAT_SIE_64BSCAO
},
2092 { KVM_S390_VM_CPU_FEAT_SIIF
, S390_FEAT_SIE_SIIF
},
2093 { KVM_S390_VM_CPU_FEAT_GPERE
, S390_FEAT_SIE_GPERE
},
2094 { KVM_S390_VM_CPU_FEAT_GSLS
, S390_FEAT_SIE_GSLS
},
2095 { KVM_S390_VM_CPU_FEAT_IB
, S390_FEAT_SIE_IB
},
2096 { KVM_S390_VM_CPU_FEAT_CEI
, S390_FEAT_SIE_CEI
},
2097 { KVM_S390_VM_CPU_FEAT_IBS
, S390_FEAT_SIE_IBS
},
2098 { KVM_S390_VM_CPU_FEAT_SKEY
, S390_FEAT_SIE_SKEY
},
2099 { KVM_S390_VM_CPU_FEAT_CMMA
, S390_FEAT_SIE_CMMA
},
2100 { KVM_S390_VM_CPU_FEAT_PFMFI
, S390_FEAT_SIE_PFMFI
},
2101 { KVM_S390_VM_CPU_FEAT_SIGPIF
, S390_FEAT_SIE_SIGPIF
},
2102 { KVM_S390_VM_CPU_FEAT_KSS
, S390_FEAT_SIE_KSS
},
2105 static int query_cpu_feat(S390FeatBitmap features
)
2107 struct kvm_s390_vm_cpu_feat prop
;
2108 struct kvm_device_attr attr
= {
2109 .group
= KVM_S390_VM_CPU_MODEL
,
2110 .attr
= KVM_S390_VM_CPU_MACHINE_FEAT
,
2111 .addr
= (uint64_t) &prop
,
2116 rc
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
2121 for (i
= 0; i
< ARRAY_SIZE(kvm_to_feat
); i
++) {
2122 if (test_be_bit(kvm_to_feat
[i
][0], (uint8_t *) prop
.feat
)) {
2123 set_bit(kvm_to_feat
[i
][1], features
);
2129 static int configure_cpu_feat(const S390FeatBitmap features
)
2131 struct kvm_s390_vm_cpu_feat prop
= {};
2132 struct kvm_device_attr attr
= {
2133 .group
= KVM_S390_VM_CPU_MODEL
,
2134 .attr
= KVM_S390_VM_CPU_PROCESSOR_FEAT
,
2135 .addr
= (uint64_t) &prop
,
2139 for (i
= 0; i
< ARRAY_SIZE(kvm_to_feat
); i
++) {
2140 if (test_bit(kvm_to_feat
[i
][1], features
)) {
2141 set_be_bit(kvm_to_feat
[i
][0], (uint8_t *) prop
.feat
);
2144 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
2147 bool kvm_s390_cpu_models_supported(void)
2149 if (!cpu_model_allowed()) {
2150 /* compatibility machines interfere with the cpu model */
2153 return kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2154 KVM_S390_VM_CPU_MACHINE
) &&
2155 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2156 KVM_S390_VM_CPU_PROCESSOR
) &&
2157 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2158 KVM_S390_VM_CPU_MACHINE_FEAT
) &&
2159 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2160 KVM_S390_VM_CPU_PROCESSOR_FEAT
) &&
2161 kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CPU_MODEL
,
2162 KVM_S390_VM_CPU_MACHINE_SUBFUNC
);
2165 void kvm_s390_get_host_cpu_model(S390CPUModel
*model
, Error
**errp
)
2167 struct kvm_s390_vm_cpu_machine prop
= {};
2168 struct kvm_device_attr attr
= {
2169 .group
= KVM_S390_VM_CPU_MODEL
,
2170 .attr
= KVM_S390_VM_CPU_MACHINE
,
2171 .addr
= (uint64_t) &prop
,
2173 uint16_t unblocked_ibc
= 0, cpu_type
= 0;
2176 memset(model
, 0, sizeof(*model
));
2178 if (!kvm_s390_cpu_models_supported()) {
2179 error_setg(errp
, "KVM doesn't support CPU models");
2183 /* query the basic cpu model properties */
2184 rc
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
2186 error_setg(errp
, "KVM: Error querying host CPU model: %d", rc
);
2190 cpu_type
= cpuid_type(prop
.cpuid
);
2191 if (has_ibc(prop
.ibc
)) {
2192 model
->lowest_ibc
= lowest_ibc(prop
.ibc
);
2193 unblocked_ibc
= unblocked_ibc(prop
.ibc
);
2195 model
->cpu_id
= cpuid_id(prop
.cpuid
);
2196 model
->cpu_id_format
= cpuid_format(prop
.cpuid
);
2197 model
->cpu_ver
= 0xff;
2199 /* get supported cpu features indicated via STFL(E) */
2200 s390_add_from_feat_block(model
->features
, S390_FEAT_TYPE_STFL
,
2201 (uint8_t *) prop
.fac_mask
);
2202 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2203 if (test_bit(S390_FEAT_STFLE
, model
->features
)) {
2204 set_bit(S390_FEAT_DAT_ENH_2
, model
->features
);
2206 /* get supported cpu features indicated e.g. via SCLP */
2207 rc
= query_cpu_feat(model
->features
);
2209 error_setg(errp
, "KVM: Error querying CPU features: %d", rc
);
2212 /* get supported cpu subfunctions indicated via query / test bit */
2213 rc
= query_cpu_subfunc(model
->features
);
2215 error_setg(errp
, "KVM: Error querying CPU subfunctions: %d", rc
);
2219 /* PTFF subfunctions might be indicated although kernel support missing */
2220 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH
, model
->features
)) {
2221 clear_bit(S390_FEAT_PTFF_QSIE
, model
->features
);
2222 clear_bit(S390_FEAT_PTFF_QTOUE
, model
->features
);
2223 clear_bit(S390_FEAT_PTFF_STOE
, model
->features
);
2224 clear_bit(S390_FEAT_PTFF_STOUE
, model
->features
);
2227 /* with cpu model support, CMM is only indicated if really available */
2228 if (kvm_s390_cmma_available()) {
2229 set_bit(S390_FEAT_CMM
, model
->features
);
2231 /* no cmm -> no cmm nt */
2232 clear_bit(S390_FEAT_CMM_NT
, model
->features
);
2235 /* bpb needs kernel support for migration, VSIE and reset */
2236 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_BPB
)) {
2237 clear_bit(S390_FEAT_BPB
, model
->features
);
2240 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2241 if (pci_available
) {
2242 set_bit(S390_FEAT_ZPCI
, model
->features
);
2244 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION
, model
->features
);
2246 if (s390_known_cpu_type(cpu_type
)) {
2247 /* we want the exact model, even if some features are missing */
2248 model
->def
= s390_find_cpu_def(cpu_type
, ibc_gen(unblocked_ibc
),
2249 ibc_ec_ga(unblocked_ibc
), NULL
);
2251 /* model unknown, e.g. too new - search using features */
2252 model
->def
= s390_find_cpu_def(0, ibc_gen(unblocked_ibc
),
2253 ibc_ec_ga(unblocked_ibc
),
2257 error_setg(errp
, "KVM: host CPU model could not be identified");
2260 /* strip of features that are not part of the maximum model */
2261 bitmap_and(model
->features
, model
->features
, model
->def
->full_feat
,
2265 void kvm_s390_apply_cpu_model(const S390CPUModel
*model
, Error
**errp
)
2267 struct kvm_s390_vm_cpu_processor prop
= {
2270 struct kvm_device_attr attr
= {
2271 .group
= KVM_S390_VM_CPU_MODEL
,
2272 .attr
= KVM_S390_VM_CPU_PROCESSOR
,
2273 .addr
= (uint64_t) &prop
,
2278 /* compatibility handling if cpu models are disabled */
2279 if (kvm_s390_cmma_available()) {
2280 kvm_s390_enable_cmma();
2284 if (!kvm_s390_cpu_models_supported()) {
2285 error_setg(errp
, "KVM doesn't support CPU models");
2288 prop
.cpuid
= s390_cpuid_from_cpu_model(model
);
2289 prop
.ibc
= s390_ibc_from_cpu_model(model
);
2290 /* configure cpu features indicated via STFL(e) */
2291 s390_fill_feat_block(model
->features
, S390_FEAT_TYPE_STFL
,
2292 (uint8_t *) prop
.fac_list
);
2293 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
2295 error_setg(errp
, "KVM: Error configuring the CPU model: %d", rc
);
2298 /* configure cpu features indicated e.g. via SCLP */
2299 rc
= configure_cpu_feat(model
->features
);
2301 error_setg(errp
, "KVM: Error configuring CPU features: %d", rc
);
2304 /* configure cpu subfunctions indicated via query / test bit */
2305 rc
= configure_cpu_subfunc(model
->features
);
2307 error_setg(errp
, "KVM: Error configuring CPU subfunctions: %d", rc
);
2310 /* enable CMM via CMMA */
2311 if (test_bit(S390_FEAT_CMM
, model
->features
)) {
2312 kvm_s390_enable_cmma();
2316 void kvm_s390_restart_interrupt(S390CPU
*cpu
)
2318 struct kvm_s390_irq irq
= {
2319 .type
= KVM_S390_RESTART
,
2322 kvm_s390_vcpu_interrupt(cpu
, &irq
);
2325 void kvm_s390_stop_interrupt(S390CPU
*cpu
)
2327 struct kvm_s390_irq irq
= {
2328 .type
= KVM_S390_SIGP_STOP
,
2331 kvm_s390_vcpu_interrupt(cpu
, &irq
);