4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
27 #define SIGNBIT (uint32_t)0x80000000
28 #define SIGNBIT64 ((uint64_t)1 << 63)
30 void raise_exception(CPUARMState
*env
, uint32_t excp
,
31 uint32_t syndrome
, uint32_t target_el
)
33 CPUState
*cs
= env_cpu(env
);
35 if (target_el
== 1 && (arm_hcr_el2_eff(env
) & HCR_TGE
)) {
37 * Redirect NS EL1 exceptions to NS EL2. These are reported with
38 * their original syndrome register value, with the exception of
39 * SIMD/FP access traps, which are reported as uncategorized
40 * (see DDI0478C.a D1.10.4)
43 if (syn_get_ec(syndrome
) == EC_ADVSIMDFPACCESSTRAP
) {
44 syndrome
= syn_uncategorized();
48 assert(!excp_is_internal(excp
));
49 cs
->exception_index
= excp
;
50 env
->exception
.syndrome
= syndrome
;
51 env
->exception
.target_el
= target_el
;
55 void raise_exception_ra(CPUARMState
*env
, uint32_t excp
, uint32_t syndrome
,
56 uint32_t target_el
, uintptr_t ra
)
58 CPUState
*cs
= env_cpu(env
);
61 * restore_state_to_opc() will set env->exception.syndrome, so
62 * we must restore CPU state here before setting the syndrome
63 * the caller passed us, and cannot use cpu_loop_exit_restore().
65 cpu_restore_state(cs
, ra
, true);
66 raise_exception(env
, excp
, syndrome
, target_el
);
69 uint64_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t desc
,
70 uint64_t ireg
, uint64_t def
)
72 uint64_t tmp
, val
= 0;
73 uint32_t maxindex
= ((desc
& 3) + 1) * 8;
74 uint32_t base_reg
= desc
>> 2;
75 uint32_t shift
, index
, reg
;
77 for (shift
= 0; shift
< 64; shift
+= 8) {
78 index
= (ireg
>> shift
) & 0xff;
79 if (index
< maxindex
) {
80 reg
= base_reg
+ (index
>> 3);
81 tmp
= *aa32_vfp_dreg(env
, reg
);
82 tmp
= ((tmp
>> ((index
& 7) << 3)) & 0xff) << shift
;
84 tmp
= def
& (0xffull
<< shift
);
91 void HELPER(v8m_stackcheck
)(CPUARMState
*env
, uint32_t newvalue
)
94 * Perform the v8M stack limit check for SP updates from translated code,
95 * raising an exception if the limit is breached.
97 if (newvalue
< v7m_sp_limit(env
)) {
99 * Stack limit exceptions are a rare case, so rather than syncing
100 * PC/condbits before the call, we use raise_exception_ra() so
101 * that cpu_restore_state() will sort them out.
103 raise_exception_ra(env
, EXCP_STKOF
, 0, 1, GETPC());
107 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
109 uint32_t res
= a
+ b
;
110 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
115 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
117 uint32_t res
= a
+ b
;
118 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
120 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
125 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
127 uint32_t res
= a
- b
;
128 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
130 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
135 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
137 uint32_t res
= a
+ b
;
145 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
147 uint32_t res
= a
- b
;
155 /* Signed saturation. */
156 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
162 mask
= (1u << shift
) - 1;
166 } else if (top
< -1) {
173 /* Unsigned saturation. */
174 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
178 max
= (1u << shift
) - 1;
182 } else if (val
> max
) {
189 /* Signed saturate. */
190 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
192 return do_ssat(env
, x
, shift
);
195 /* Dual halfword signed saturate. */
196 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
200 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
201 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
205 /* Unsigned saturate. */
206 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
208 return do_usat(env
, x
, shift
);
211 /* Dual halfword unsigned saturate. */
212 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
216 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
217 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
221 void HELPER(setend
)(CPUARMState
*env
)
223 env
->uncached_cpsr
^= CPSR_E
;
224 arm_rebuild_hflags(env
);
227 #ifndef CONFIG_USER_ONLY
228 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
229 * The function returns the target EL (1-3) if the instruction is to be trapped;
230 * otherwise it returns 0 indicating it is not trapped.
232 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
234 int cur_el
= arm_current_el(env
);
237 if (arm_feature(env
, ARM_FEATURE_M
)) {
238 /* M profile cores can never trap WFI/WFE. */
242 /* If we are currently in EL0 then we need to check if SCTLR is set up for
243 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
245 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
248 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
249 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
250 /* Secure EL0 and Secure PL1 is at EL3 */
256 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
261 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
262 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
263 * bits will be zero indicating no trap.
266 mask
= is_wfe
? HCR_TWE
: HCR_TWI
;
267 if (arm_hcr_el2_eff(env
) & mask
) {
272 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
274 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
275 if (env
->cp15
.scr_el3
& mask
) {
284 void HELPER(wfi
)(CPUARMState
*env
, uint32_t insn_len
)
286 #ifdef CONFIG_USER_ONLY
288 * WFI in the user-mode emulator is technically permitted but not
289 * something any real-world code would do. AArch64 Linux kernels
290 * trap it via SCTRL_EL1.nTWI and make it an (expensive) NOP;
291 * AArch32 kernels don't trap it so it will delay a bit.
292 * For QEMU, make it NOP here, because trying to raise EXCP_HLT
293 * would trigger an abort.
297 CPUState
*cs
= env_cpu(env
);
298 int target_el
= check_wfx_trap(env
, false);
300 if (cpu_has_work(cs
)) {
301 /* Don't bother to go into our "low power state" if
302 * we would just wake up immediately.
311 env
->regs
[15] -= insn_len
;
314 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0, insn_len
== 2),
318 cs
->exception_index
= EXCP_HLT
;
324 void HELPER(wfe
)(CPUARMState
*env
)
326 /* This is a hint instruction that is semantically different
327 * from YIELD even though we currently implement it identically.
328 * Don't actually halt the CPU, just yield back to top
329 * level loop. This is not going into a "low power state"
330 * (ie halting until some event occurs), so we never take
331 * a configurable trap to a different exception level.
336 void HELPER(yield
)(CPUARMState
*env
)
338 CPUState
*cs
= env_cpu(env
);
340 /* This is a non-trappable hint instruction that generally indicates
341 * that the guest is currently busy-looping. Yield control back to the
342 * top level loop so that a more deserving VCPU has a chance to run.
344 cs
->exception_index
= EXCP_YIELD
;
348 /* Raise an internal-to-QEMU exception. This is limited to only
349 * those EXCP values which are special cases for QEMU to interrupt
350 * execution and not to be used for exceptions which are passed to
351 * the guest (those must all have syndrome information and thus should
352 * use exception_with_syndrome).
354 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
356 CPUState
*cs
= env_cpu(env
);
358 assert(excp_is_internal(excp
));
359 cs
->exception_index
= excp
;
363 /* Raise an exception with the specified syndrome register value */
364 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
365 uint32_t syndrome
, uint32_t target_el
)
367 raise_exception(env
, excp
, syndrome
, target_el
);
370 /* Raise an EXCP_BKPT with the specified syndrome register value,
371 * targeting the correct exception level for debug exceptions.
373 void HELPER(exception_bkpt_insn
)(CPUARMState
*env
, uint32_t syndrome
)
375 int debug_el
= arm_debug_target_el(env
);
376 int cur_el
= arm_current_el(env
);
378 /* FSR will only be used if the debug target EL is AArch32. */
379 env
->exception
.fsr
= arm_debug_exception_fsr(env
);
380 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
381 * values to the guest that it shouldn't be able to see at its
382 * exception/security level.
384 env
->exception
.vaddress
= 0;
386 * Other kinds of architectural debug exception are ignored if
387 * they target an exception level below the current one (in QEMU
388 * this is checked by arm_generate_debug_exceptions()). Breakpoint
389 * instructions are special because they always generate an exception
390 * to somewhere: if they can't go to the configured debug exception
391 * level they are taken to the current exception level.
393 if (debug_el
< cur_el
) {
396 raise_exception(env
, EXCP_BKPT
, syndrome
, debug_el
);
399 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
401 return cpsr_read(env
) & ~CPSR_EXEC
;
404 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
406 cpsr_write(env
, val
, mask
, CPSRWriteByInstr
);
407 /* TODO: Not all cpsr bits are relevant to hflags. */
408 arm_rebuild_hflags(env
);
411 /* Write the CPSR for a 32-bit exception return */
412 void HELPER(cpsr_write_eret
)(CPUARMState
*env
, uint32_t val
)
416 qemu_mutex_lock_iothread();
417 arm_call_pre_el_change_hook(env_archcpu(env
));
418 qemu_mutex_unlock_iothread();
420 mask
= aarch32_cpsr_valid_mask(env
->features
, &env_archcpu(env
)->isar
);
421 cpsr_write(env
, val
, mask
, CPSRWriteExceptionReturn
);
423 /* Generated code has already stored the new PC value, but
424 * without masking out its low bits, because which bits need
425 * masking depends on whether we're returning to Thumb or ARM
426 * state. Do the masking now.
428 env
->regs
[15] &= (env
->thumb
? ~1 : ~3);
429 arm_rebuild_hflags(env
);
431 qemu_mutex_lock_iothread();
432 arm_call_el_change_hook(env_archcpu(env
));
433 qemu_mutex_unlock_iothread();
436 /* Access to user mode registers from privileged modes. */
437 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
442 val
= env
->banked_r13
[BANK_USRSYS
];
443 } else if (regno
== 14) {
444 val
= env
->banked_r14
[BANK_USRSYS
];
445 } else if (regno
>= 8
446 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
447 val
= env
->usr_regs
[regno
- 8];
449 val
= env
->regs
[regno
];
454 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
457 env
->banked_r13
[BANK_USRSYS
] = val
;
458 } else if (regno
== 14) {
459 env
->banked_r14
[BANK_USRSYS
] = val
;
460 } else if (regno
>= 8
461 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
462 env
->usr_regs
[regno
- 8] = val
;
464 env
->regs
[regno
] = val
;
468 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
470 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
473 env
->banked_r13
[bank_number(mode
)] = val
;
477 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
479 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_SYS
) {
480 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
481 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
483 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
484 exception_target_el(env
));
487 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
488 return env
->regs
[13];
490 return env
->banked_r13
[bank_number(mode
)];
494 static void msr_mrs_banked_exc_checks(CPUARMState
*env
, uint32_t tgtmode
,
497 /* Raise an exception if the requested access is one of the UNPREDICTABLE
498 * cases; otherwise return. This broadly corresponds to the pseudocode
499 * BankedRegisterAccessValid() and SPSRAccessValid(),
500 * except that we have already handled some cases at translate time.
502 int curmode
= env
->uncached_cpsr
& CPSR_M
;
505 /* ELR_Hyp: a special case because access from tgtmode is OK */
506 if (curmode
!= ARM_CPU_MODE_HYP
&& curmode
!= ARM_CPU_MODE_MON
) {
512 if (curmode
== tgtmode
) {
516 if (tgtmode
== ARM_CPU_MODE_USR
) {
519 if (curmode
!= ARM_CPU_MODE_FIQ
) {
524 if (curmode
== ARM_CPU_MODE_SYS
) {
529 if (curmode
== ARM_CPU_MODE_HYP
|| curmode
== ARM_CPU_MODE_SYS
) {
538 if (tgtmode
== ARM_CPU_MODE_HYP
) {
539 /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
540 if (curmode
!= ARM_CPU_MODE_MON
) {
548 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
549 exception_target_el(env
));
552 void HELPER(msr_banked
)(CPUARMState
*env
, uint32_t value
, uint32_t tgtmode
,
555 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
559 env
->banked_spsr
[bank_number(tgtmode
)] = value
;
561 case 17: /* ELR_Hyp */
562 env
->elr_el
[2] = value
;
565 env
->banked_r13
[bank_number(tgtmode
)] = value
;
568 env
->banked_r14
[r14_bank_number(tgtmode
)] = value
;
572 case ARM_CPU_MODE_USR
:
573 env
->usr_regs
[regno
- 8] = value
;
575 case ARM_CPU_MODE_FIQ
:
576 env
->fiq_regs
[regno
- 8] = value
;
579 g_assert_not_reached();
583 g_assert_not_reached();
587 uint32_t HELPER(mrs_banked
)(CPUARMState
*env
, uint32_t tgtmode
, uint32_t regno
)
589 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
593 return env
->banked_spsr
[bank_number(tgtmode
)];
594 case 17: /* ELR_Hyp */
595 return env
->elr_el
[2];
597 return env
->banked_r13
[bank_number(tgtmode
)];
599 return env
->banked_r14
[r14_bank_number(tgtmode
)];
602 case ARM_CPU_MODE_USR
:
603 return env
->usr_regs
[regno
- 8];
604 case ARM_CPU_MODE_FIQ
:
605 return env
->fiq_regs
[regno
- 8];
607 g_assert_not_reached();
610 g_assert_not_reached();
614 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
,
617 const ARMCPRegInfo
*ri
= rip
;
620 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
621 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
622 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
626 * Check for an EL2 trap due to HSTR_EL2. We expect EL0 accesses
627 * to sysregs non accessible at EL0 to have UNDEF-ed already.
629 if (!is_a64(env
) && arm_current_el(env
) < 2 && ri
->cp
== 15 &&
630 (arm_hcr_el2_eff(env
) & (HCR_E2H
| HCR_TGE
)) != (HCR_E2H
| HCR_TGE
)) {
631 uint32_t mask
= 1 << ri
->crn
;
633 if (ri
->type
& ARM_CP_64BIT
) {
637 /* T4 and T14 are RES0 */
638 mask
&= ~((1 << 4) | (1 << 14));
640 if (env
->cp15
.hstr_el2
& mask
) {
650 switch (ri
->accessfn(env
, ri
, isread
)) {
654 target_el
= exception_target_el(env
);
656 case CP_ACCESS_TRAP_EL2
:
657 /* Requesting a trap to EL2 when we're in EL3 is
658 * a bug in the access function.
660 assert(arm_current_el(env
) != 3);
663 case CP_ACCESS_TRAP_EL3
:
666 case CP_ACCESS_TRAP_UNCATEGORIZED
:
667 target_el
= exception_target_el(env
);
668 syndrome
= syn_uncategorized();
670 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2
:
672 syndrome
= syn_uncategorized();
674 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3
:
676 syndrome
= syn_uncategorized();
678 case CP_ACCESS_TRAP_FP_EL2
:
680 /* Since we are an implementation that takes exceptions on a trapped
681 * conditional insn only if the insn has passed its condition code
682 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
683 * (which is also the required value for AArch64 traps).
685 syndrome
= syn_fp_access_trap(1, 0xe, false);
687 case CP_ACCESS_TRAP_FP_EL3
:
689 syndrome
= syn_fp_access_trap(1, 0xe, false);
692 g_assert_not_reached();
696 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
699 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
701 const ARMCPRegInfo
*ri
= rip
;
703 if (ri
->type
& ARM_CP_IO
) {
704 qemu_mutex_lock_iothread();
705 ri
->writefn(env
, ri
, value
);
706 qemu_mutex_unlock_iothread();
708 ri
->writefn(env
, ri
, value
);
712 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
714 const ARMCPRegInfo
*ri
= rip
;
717 if (ri
->type
& ARM_CP_IO
) {
718 qemu_mutex_lock_iothread();
719 res
= ri
->readfn(env
, ri
);
720 qemu_mutex_unlock_iothread();
722 res
= ri
->readfn(env
, ri
);
728 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
730 const ARMCPRegInfo
*ri
= rip
;
732 if (ri
->type
& ARM_CP_IO
) {
733 qemu_mutex_lock_iothread();
734 ri
->writefn(env
, ri
, value
);
735 qemu_mutex_unlock_iothread();
737 ri
->writefn(env
, ri
, value
);
741 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
743 const ARMCPRegInfo
*ri
= rip
;
746 if (ri
->type
& ARM_CP_IO
) {
747 qemu_mutex_lock_iothread();
748 res
= ri
->readfn(env
, ri
);
749 qemu_mutex_unlock_iothread();
751 res
= ri
->readfn(env
, ri
);
757 void HELPER(pre_hvc
)(CPUARMState
*env
)
759 ARMCPU
*cpu
= env_archcpu(env
);
760 int cur_el
= arm_current_el(env
);
761 /* FIXME: Use actual secure state. */
765 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
766 /* If PSCI is enabled and this looks like a valid PSCI call then
767 * that overrides the architecturally mandated HVC behaviour.
772 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
773 /* If EL2 doesn't exist, HVC always UNDEFs */
775 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
776 /* EL3.HCE has priority over EL2.HCD. */
777 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
779 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
782 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
783 * For ARMv8/AArch64, HVC is allowed in EL3.
784 * Note that we've already trapped HVC from EL0 at translation
787 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
792 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
793 exception_target_el(env
));
797 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
799 ARMCPU
*cpu
= env_archcpu(env
);
800 int cur_el
= arm_current_el(env
);
801 bool secure
= arm_is_secure(env
);
802 bool smd_flag
= env
->cp15
.scr_el3
& SCR_SMD
;
805 * SMC behaviour is summarized in the following table.
806 * This helper handles the "Trap to EL2" and "Undef insn" cases.
807 * The "Trap to EL3" and "PSCI call" cases are handled in the exception
810 * -> ARM_FEATURE_EL3 and !SMD
811 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
813 * Conduit SMC, valid call Trap to EL2 PSCI Call
814 * Conduit SMC, inval call Trap to EL2 Trap to EL3
815 * Conduit not SMC Trap to EL2 Trap to EL3
818 * -> ARM_FEATURE_EL3 and SMD
819 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
821 * Conduit SMC, valid call Trap to EL2 PSCI Call
822 * Conduit SMC, inval call Trap to EL2 Undef insn
823 * Conduit not SMC Trap to EL2 Undef insn
826 * -> !ARM_FEATURE_EL3
827 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
829 * Conduit SMC, valid call Trap to EL2 PSCI Call
830 * Conduit SMC, inval call Trap to EL2 Undef insn
831 * Conduit not SMC Undef insn Undef insn
834 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
835 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
836 * extensions, SMD only applies to NS state.
837 * On ARMv7 without the Virtualization extensions, the SMD bit
838 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
839 * so we need not special case this here.
841 bool smd
= arm_feature(env
, ARM_FEATURE_AARCH64
) ? smd_flag
842 : smd_flag
&& !secure
;
844 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
845 cpu
->psci_conduit
!= QEMU_PSCI_CONDUIT_SMC
) {
846 /* If we have no EL3 then SMC always UNDEFs and can't be
847 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
848 * firmware within QEMU, and we want an EL2 guest to be able
849 * to forbid its EL1 from making PSCI calls into QEMU's
850 * "firmware" via HCR.TSC, so for these purposes treat
851 * PSCI-via-SMC as implying an EL3.
852 * This handles the very last line of the previous table.
854 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
855 exception_target_el(env
));
858 if (cur_el
== 1 && (arm_hcr_el2_eff(env
) & HCR_TSC
)) {
859 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
860 * We also want an EL2 guest to be able to forbid its EL1 from
861 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
862 * This handles all the "Trap to EL2" cases of the previous table.
864 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
867 /* Catch the two remaining "Undef insn" cases of the previous table:
868 * - PSCI conduit is SMC but we don't have a valid PCSI call,
869 * - We don't have EL3 or SMD is set.
871 if (!arm_is_psci_call(cpu
, EXCP_SMC
) &&
872 (smd
|| !arm_feature(env
, ARM_FEATURE_EL3
))) {
873 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
874 exception_target_el(env
));
878 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
879 The only way to do that in TCG is a conditional branch, which clobbers
880 all our temporaries. For now implement these as helper functions. */
882 /* Similarly for variable shift instructions. */
884 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
886 int shift
= i
& 0xff;
893 } else if (shift
!= 0) {
894 env
->CF
= (x
>> (32 - shift
)) & 1;
900 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
902 int shift
= i
& 0xff;
905 env
->CF
= (x
>> 31) & 1;
909 } else if (shift
!= 0) {
910 env
->CF
= (x
>> (shift
- 1)) & 1;
916 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
918 int shift
= i
& 0xff;
920 env
->CF
= (x
>> 31) & 1;
921 return (int32_t)x
>> 31;
922 } else if (shift
!= 0) {
923 env
->CF
= (x
>> (shift
- 1)) & 1;
924 return (int32_t)x
>> shift
;
929 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
933 shift
= shift1
& 0x1f;
936 env
->CF
= (x
>> 31) & 1;
939 env
->CF
= (x
>> (shift
- 1)) & 1;
940 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));
944 void HELPER(probe_access
)(CPUARMState
*env
, target_ulong ptr
,
945 uint32_t access_type
, uint32_t mmu_idx
,
948 uint32_t in_page
= -((uint32_t)ptr
| TARGET_PAGE_SIZE
);
949 uintptr_t ra
= GETPC();
951 if (likely(size
<= in_page
)) {
952 probe_access(env
, ptr
, size
, access_type
, mmu_idx
, ra
);
954 probe_access(env
, ptr
, in_page
, access_type
, mmu_idx
, ra
);
955 probe_access(env
, ptr
+ in_page
, size
- in_page
,
956 access_type
, mmu_idx
, ra
);