2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
19 #include "qemu-common.h"
20 #include "qapi/error.h"
22 #include "qemu/timer.h"
23 #include "qemu/error-report.h"
24 #include "qemu/host-utils.h"
25 #include "qemu/main-loop.h"
26 #include "exec/gdbstub.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/kvm_int.h"
31 #include "internals.h"
32 #include "hw/acpi/acpi.h"
33 #include "hw/acpi/ghes.h"
34 #include "hw/arm/virt.h"
36 static bool have_guest_debug
;
39 * Although the ARM implementation of hardware assisted debugging
40 * allows for different breakpoints per-core, the current GDB
41 * interface treats them as a global pool of registers (which seems to
42 * be the case for x86, ppc and s390). As a result we store one copy
43 * of registers which is used for all active cores.
45 * Write access is serialised by virtue of the GDB protocol which
46 * updates things. Read access (i.e. when the values are copied to the
47 * vCPU) is also gated by GDB's run control.
49 * This is not unreasonable as most of the time debugging kernels you
50 * never know which core will eventually execute your function.
58 /* The watchpoint registers can cover more area than the requested
59 * watchpoint so we need to store the additional information
60 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
61 * when the watchpoint is hit.
66 CPUWatchpoint details
;
69 /* Maximum and current break/watch point counts */
70 int max_hw_bps
, max_hw_wps
;
71 GArray
*hw_breakpoints
, *hw_watchpoints
;
73 #define cur_hw_wps (hw_watchpoints->len)
74 #define cur_hw_bps (hw_breakpoints->len)
75 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
76 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
79 * kvm_arm_init_debug() - check for guest debug capabilities
82 * kvm_check_extension returns the number of debug registers we have
83 * or 0 if we have none.
86 static void kvm_arm_init_debug(CPUState
*cs
)
88 have_guest_debug
= kvm_check_extension(cs
->kvm_state
,
89 KVM_CAP_SET_GUEST_DEBUG
);
91 max_hw_wps
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GUEST_DEBUG_HW_WPS
);
92 hw_watchpoints
= g_array_sized_new(true, true,
93 sizeof(HWWatchpoint
), max_hw_wps
);
95 max_hw_bps
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GUEST_DEBUG_HW_BPS
);
96 hw_breakpoints
= g_array_sized_new(true, true,
97 sizeof(HWBreakpoint
), max_hw_bps
);
102 * insert_hw_breakpoint()
103 * @addr: address of breakpoint
105 * See ARM ARM D2.9.1 for details but here we are only going to create
106 * simple un-linked breakpoints (i.e. we don't chain breakpoints
107 * together to match address and context or vmid). The hardware is
108 * capable of fancier matching but that will require exposing that
109 * fanciness to GDB's interface
111 * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
113 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
114 * +------+------+-------+-----+----+------+-----+------+-----+---+
115 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
116 * +------+------+-------+-----+----+------+-----+------+-----+---+
118 * BT: Breakpoint type (0 = unlinked address match)
119 * LBN: Linked BP number (0 = unused)
120 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
121 * BAS: Byte Address Select (RES1 for AArch64)
124 * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
126 * 63 53 52 49 48 2 1 0
127 * +------+-----------+----------+-----+
128 * | RESS | VA[52:49] | VA[48:2] | 0 0 |
129 * +------+-----------+----------+-----+
131 * Depending on the addressing mode bits the top bits of the register
132 * are a sign extension of the highest applicable VA bit. Some
133 * versions of GDB don't do it correctly so we ensure they are correct
134 * here so future PC comparisons will work properly.
137 static int insert_hw_breakpoint(target_ulong addr
)
140 .bcr
= 0x1, /* BCR E=1, enable */
141 .bvr
= sextract64(addr
, 0, 53)
144 if (cur_hw_bps
>= max_hw_bps
) {
148 brk
.bcr
= deposit32(brk
.bcr
, 1, 2, 0x3); /* PMC = 11 */
149 brk
.bcr
= deposit32(brk
.bcr
, 5, 4, 0xf); /* BAS = RES1 */
151 g_array_append_val(hw_breakpoints
, brk
);
157 * delete_hw_breakpoint()
158 * @pc: address of breakpoint
160 * Delete a breakpoint and shuffle any above down
163 static int delete_hw_breakpoint(target_ulong pc
)
166 for (i
= 0; i
< hw_breakpoints
->len
; i
++) {
167 HWBreakpoint
*brk
= get_hw_bp(i
);
168 if (brk
->bvr
== pc
) {
169 g_array_remove_index(hw_breakpoints
, i
);
177 * insert_hw_watchpoint()
178 * @addr: address of watch point
180 * @type: type of watch point
182 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
183 * stuff if we want to. The watch points can be linked with the break
184 * points above to make them context aware. However for simplicity
185 * currently we only deal with simple read/write watch points.
187 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
189 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
190 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
191 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
192 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
194 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
195 * WT: 0 - unlinked, 1 - linked (not currently used)
196 * LBN: Linked BP number (not currently used)
197 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
198 * BAS: Byte Address Select
199 * LSC: Load/Store control (01: load, 10: store, 11: both)
202 * The bottom 2 bits of the value register are masked. Therefore to
203 * break on any sizes smaller than an unaligned word you need to set
204 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
205 * need to ensure you mask the address as required and set BAS=0xff
208 static int insert_hw_watchpoint(target_ulong addr
,
209 target_ulong len
, int type
)
212 .wcr
= 1, /* E=1, enable */
213 .wvr
= addr
& (~0x7ULL
),
214 .details
= { .vaddr
= addr
, .len
= len
}
217 if (cur_hw_wps
>= max_hw_wps
) {
222 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
223 * valid whether EL3 is implemented or not
225 wp
.wcr
= deposit32(wp
.wcr
, 1, 2, 3);
228 case GDB_WATCHPOINT_READ
:
229 wp
.wcr
= deposit32(wp
.wcr
, 3, 2, 1);
230 wp
.details
.flags
= BP_MEM_READ
;
232 case GDB_WATCHPOINT_WRITE
:
233 wp
.wcr
= deposit32(wp
.wcr
, 3, 2, 2);
234 wp
.details
.flags
= BP_MEM_WRITE
;
236 case GDB_WATCHPOINT_ACCESS
:
237 wp
.wcr
= deposit32(wp
.wcr
, 3, 2, 3);
238 wp
.details
.flags
= BP_MEM_ACCESS
;
241 g_assert_not_reached();
245 /* we align the address and set the bits in BAS */
246 int off
= addr
& 0x7;
247 int bas
= (1 << len
) - 1;
249 wp
.wcr
= deposit32(wp
.wcr
, 5 + off
, 8 - off
, bas
);
251 /* For ranges above 8 bytes we need to be a power of 2 */
252 if (is_power_of_2(len
)) {
253 int bits
= ctz64(len
);
255 wp
.wvr
&= ~((1 << bits
) - 1);
256 wp
.wcr
= deposit32(wp
.wcr
, 24, 4, bits
);
257 wp
.wcr
= deposit32(wp
.wcr
, 5, 8, 0xff);
263 g_array_append_val(hw_watchpoints
, wp
);
268 static bool check_watchpoint_in_range(int i
, target_ulong addr
)
270 HWWatchpoint
*wp
= get_hw_wp(i
);
271 uint64_t addr_top
, addr_bottom
= wp
->wvr
;
272 int bas
= extract32(wp
->wcr
, 5, 8);
273 int mask
= extract32(wp
->wcr
, 24, 4);
276 addr_top
= addr_bottom
+ (1 << mask
);
278 /* BAS must be contiguous but can offset against the base
279 * address in DBGWVR */
280 addr_bottom
= addr_bottom
+ ctz32(bas
);
281 addr_top
= addr_bottom
+ clo32(bas
);
284 if (addr
>= addr_bottom
&& addr
<= addr_top
) {
292 * delete_hw_watchpoint()
293 * @addr: address of breakpoint
295 * Delete a breakpoint and shuffle any above down
298 static int delete_hw_watchpoint(target_ulong addr
,
299 target_ulong len
, int type
)
302 for (i
= 0; i
< cur_hw_wps
; i
++) {
303 if (check_watchpoint_in_range(i
, addr
)) {
304 g_array_remove_index(hw_watchpoints
, i
);
312 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
313 target_ulong len
, int type
)
316 case GDB_BREAKPOINT_HW
:
317 return insert_hw_breakpoint(addr
);
319 case GDB_WATCHPOINT_READ
:
320 case GDB_WATCHPOINT_WRITE
:
321 case GDB_WATCHPOINT_ACCESS
:
322 return insert_hw_watchpoint(addr
, len
, type
);
328 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
329 target_ulong len
, int type
)
332 case GDB_BREAKPOINT_HW
:
333 return delete_hw_breakpoint(addr
);
334 case GDB_WATCHPOINT_READ
:
335 case GDB_WATCHPOINT_WRITE
:
336 case GDB_WATCHPOINT_ACCESS
:
337 return delete_hw_watchpoint(addr
, len
, type
);
344 void kvm_arch_remove_all_hw_breakpoints(void)
346 if (cur_hw_wps
> 0) {
347 g_array_remove_range(hw_watchpoints
, 0, cur_hw_wps
);
349 if (cur_hw_bps
> 0) {
350 g_array_remove_range(hw_breakpoints
, 0, cur_hw_bps
);
354 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch
*ptr
)
357 memset(ptr
, 0, sizeof(struct kvm_guest_debug_arch
));
359 for (i
= 0; i
< max_hw_wps
; i
++) {
360 HWWatchpoint
*wp
= get_hw_wp(i
);
361 ptr
->dbg_wcr
[i
] = wp
->wcr
;
362 ptr
->dbg_wvr
[i
] = wp
->wvr
;
364 for (i
= 0; i
< max_hw_bps
; i
++) {
365 HWBreakpoint
*bp
= get_hw_bp(i
);
366 ptr
->dbg_bcr
[i
] = bp
->bcr
;
367 ptr
->dbg_bvr
[i
] = bp
->bvr
;
371 bool kvm_arm_hw_debug_active(CPUState
*cs
)
373 return ((cur_hw_wps
> 0) || (cur_hw_bps
> 0));
376 static bool find_hw_breakpoint(CPUState
*cpu
, target_ulong pc
)
380 for (i
= 0; i
< cur_hw_bps
; i
++) {
381 HWBreakpoint
*bp
= get_hw_bp(i
);
389 static CPUWatchpoint
*find_hw_watchpoint(CPUState
*cpu
, target_ulong addr
)
393 for (i
= 0; i
< cur_hw_wps
; i
++) {
394 if (check_watchpoint_in_range(i
, addr
)) {
395 return &get_hw_wp(i
)->details
;
401 static bool kvm_arm_set_device_attr(CPUState
*cs
, struct kvm_device_attr
*attr
,
406 err
= kvm_vcpu_ioctl(cs
, KVM_HAS_DEVICE_ATTR
, attr
);
408 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name
, strerror(-err
));
412 err
= kvm_vcpu_ioctl(cs
, KVM_SET_DEVICE_ATTR
, attr
);
414 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name
, strerror(-err
));
421 void kvm_arm_pmu_init(CPUState
*cs
)
423 struct kvm_device_attr attr
= {
424 .group
= KVM_ARM_VCPU_PMU_V3_CTRL
,
425 .attr
= KVM_ARM_VCPU_PMU_V3_INIT
,
428 if (!ARM_CPU(cs
)->has_pmu
) {
431 if (!kvm_arm_set_device_attr(cs
, &attr
, "PMU")) {
432 error_report("failed to init PMU");
437 void kvm_arm_pmu_set_irq(CPUState
*cs
, int irq
)
439 struct kvm_device_attr attr
= {
440 .group
= KVM_ARM_VCPU_PMU_V3_CTRL
,
441 .addr
= (intptr_t)&irq
,
442 .attr
= KVM_ARM_VCPU_PMU_V3_IRQ
,
445 if (!ARM_CPU(cs
)->has_pmu
) {
448 if (!kvm_arm_set_device_attr(cs
, &attr
, "PMU")) {
449 error_report("failed to set irq for PMU");
454 void kvm_arm_pvtime_init(CPUState
*cs
, uint64_t ipa
)
456 struct kvm_device_attr attr
= {
457 .group
= KVM_ARM_VCPU_PVTIME_CTRL
,
458 .attr
= KVM_ARM_VCPU_PVTIME_IPA
,
459 .addr
= (uint64_t)&ipa
,
462 if (ARM_CPU(cs
)->kvm_steal_time
== ON_OFF_AUTO_OFF
) {
465 if (!kvm_arm_set_device_attr(cs
, &attr
, "PVTIME IPA")) {
466 error_report("failed to init PVTIME IPA");
471 static int read_sys_reg32(int fd
, uint32_t *pret
, uint64_t id
)
474 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)&ret
};
477 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
);
478 err
= ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
486 static int read_sys_reg64(int fd
, uint64_t *pret
, uint64_t id
)
488 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)pret
};
490 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
);
491 return ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
494 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures
*ahcf
)
496 /* Identify the feature bits corresponding to the host CPU, and
497 * fill out the ARMHostCPUClass fields accordingly. To do this
498 * we have to create a scratch VM, create a single CPU inside it,
499 * and then query that CPU for the relevant ID registers.
503 uint64_t features
= 0;
507 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
508 * we know these will only support creating one kind of guest CPU,
509 * which is its preferred CPU type. Fortunately these old kernels
510 * support only a very limited number of CPUs.
512 static const uint32_t cpus_to_try
[] = {
513 KVM_ARM_TARGET_AEM_V8
,
514 KVM_ARM_TARGET_FOUNDATION_V8
,
515 KVM_ARM_TARGET_CORTEX_A57
,
516 QEMU_KVM_ARM_TARGET_NONE
519 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
520 * to use the preferred target
522 struct kvm_vcpu_init init
= { .target
= -1, };
524 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
528 ahcf
->target
= init
.target
;
529 ahcf
->dtb_compatible
= "arm,arm-v8";
531 err
= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64pfr0
,
532 ARM64_SYS_REG(3, 0, 0, 4, 0));
533 if (unlikely(err
< 0)) {
535 * Before v4.15, the kernel only exposed a limited number of system
536 * registers, not including any of the interesting AArch64 ID regs.
537 * For the most part we could leave these fields as zero with minimal
538 * effect, since this does not affect the values seen by the guest.
540 * However, it could cause problems down the line for QEMU,
541 * so provide a minimal v8.0 default.
543 * ??? Could read MIDR and use knowledge from cpu64.c.
544 * ??? Could map a page of memory into our temp guest and
545 * run the tiniest of hand-crafted kernels to extract
546 * the values seen by the guest.
547 * ??? Either of these sounds like too much effort just
548 * to work around running a modern host kernel.
550 ahcf
->isar
.id_aa64pfr0
= 0x00000011; /* EL1&0, AArch64 only */
553 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64pfr1
,
554 ARM64_SYS_REG(3, 0, 0, 4, 1));
555 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64dfr0
,
556 ARM64_SYS_REG(3, 0, 0, 5, 0));
557 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64dfr1
,
558 ARM64_SYS_REG(3, 0, 0, 5, 1));
559 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64isar0
,
560 ARM64_SYS_REG(3, 0, 0, 6, 0));
561 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64isar1
,
562 ARM64_SYS_REG(3, 0, 0, 6, 1));
563 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr0
,
564 ARM64_SYS_REG(3, 0, 0, 7, 0));
565 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr1
,
566 ARM64_SYS_REG(3, 0, 0, 7, 1));
567 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr2
,
568 ARM64_SYS_REG(3, 0, 0, 7, 2));
571 * Note that if AArch32 support is not present in the host,
572 * the AArch32 sysregs are present to be read, but will
573 * return UNKNOWN values. This is neither better nor worse
574 * than skipping the reads and leaving 0, as we must avoid
575 * considering the values in every case.
577 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr0
,
578 ARM64_SYS_REG(3, 0, 0, 1, 0));
579 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr1
,
580 ARM64_SYS_REG(3, 0, 0, 1, 1));
581 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_pfr2
,
582 ARM64_SYS_REG(3, 0, 0, 3, 4));
583 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_dfr0
,
584 ARM64_SYS_REG(3, 0, 0, 1, 2));
585 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr0
,
586 ARM64_SYS_REG(3, 0, 0, 1, 4));
587 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr1
,
588 ARM64_SYS_REG(3, 0, 0, 1, 5));
589 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr2
,
590 ARM64_SYS_REG(3, 0, 0, 1, 6));
591 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr3
,
592 ARM64_SYS_REG(3, 0, 0, 1, 7));
593 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar0
,
594 ARM64_SYS_REG(3, 0, 0, 2, 0));
595 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar1
,
596 ARM64_SYS_REG(3, 0, 0, 2, 1));
597 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar2
,
598 ARM64_SYS_REG(3, 0, 0, 2, 2));
599 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar3
,
600 ARM64_SYS_REG(3, 0, 0, 2, 3));
601 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar4
,
602 ARM64_SYS_REG(3, 0, 0, 2, 4));
603 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar5
,
604 ARM64_SYS_REG(3, 0, 0, 2, 5));
605 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr4
,
606 ARM64_SYS_REG(3, 0, 0, 2, 6));
607 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar6
,
608 ARM64_SYS_REG(3, 0, 0, 2, 7));
610 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr0
,
611 ARM64_SYS_REG(3, 0, 0, 3, 0));
612 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr1
,
613 ARM64_SYS_REG(3, 0, 0, 3, 1));
614 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr2
,
615 ARM64_SYS_REG(3, 0, 0, 3, 2));
618 * DBGDIDR is a bit complicated because the kernel doesn't
619 * provide an accessor for it in 64-bit mode, which is what this
620 * scratch VM is in, and there's no architected "64-bit sysreg
621 * which reads the same as the 32-bit register" the way there is
622 * for other ID registers. Instead we synthesize a value from the
623 * AArch64 ID_AA64DFR0, the same way the kernel code in
624 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
625 * We only do this if the CPU supports AArch32 at EL1.
627 if (FIELD_EX32(ahcf
->isar
.id_aa64pfr0
, ID_AA64PFR0
, EL1
) >= 2) {
628 int wrps
= FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, WRPS
);
629 int brps
= FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, BRPS
);
631 FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, CTX_CMPS
);
632 int version
= 6; /* ARMv8 debug architecture */
634 !!FIELD_EX32(ahcf
->isar
.id_aa64pfr0
, ID_AA64PFR0
, EL3
);
635 uint32_t dbgdidr
= 0;
637 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, WRPS
, wrps
);
638 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, BRPS
, brps
);
639 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, CTX_CMPS
, ctx_cmps
);
640 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, VERSION
, version
);
641 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, NSUHD_IMP
, has_el3
);
642 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, SE_IMP
, has_el3
);
643 dbgdidr
|= (1 << 15); /* RES1 bit */
644 ahcf
->isar
.dbgdidr
= dbgdidr
;
648 sve_supported
= ioctl(fdarray
[0], KVM_CHECK_EXTENSION
, KVM_CAP_ARM_SVE
) > 0;
650 /* Add feature bits that can't appear until after VCPU init. */
652 t
= ahcf
->isar
.id_aa64pfr0
;
653 t
= FIELD_DP64(t
, ID_AA64PFR0
, SVE
, 1);
654 ahcf
->isar
.id_aa64pfr0
= t
;
657 * Before v5.1, KVM did not support SVE and did not expose
658 * ID_AA64ZFR0_EL1 even as RAZ. After v5.1, KVM still does
659 * not expose the register to "user" requests like this
660 * unless the host supports SVE.
662 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64zfr0
,
663 ARM64_SYS_REG(3, 0, 0, 4, 4));
666 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
673 * We can assume any KVM supporting CPU is at least a v8
674 * with VFPv4+Neon; this in turn implies most of the other
677 features
|= 1ULL << ARM_FEATURE_V8
;
678 features
|= 1ULL << ARM_FEATURE_NEON
;
679 features
|= 1ULL << ARM_FEATURE_AARCH64
;
680 features
|= 1ULL << ARM_FEATURE_PMU
;
681 features
|= 1ULL << ARM_FEATURE_GENERIC_TIMER
;
683 ahcf
->features
= features
;
688 void kvm_arm_steal_time_finalize(ARMCPU
*cpu
, Error
**errp
)
690 bool has_steal_time
= kvm_arm_steal_time_supported();
692 if (cpu
->kvm_steal_time
== ON_OFF_AUTO_AUTO
) {
693 if (!has_steal_time
|| !arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
694 cpu
->kvm_steal_time
= ON_OFF_AUTO_OFF
;
696 cpu
->kvm_steal_time
= ON_OFF_AUTO_ON
;
698 } else if (cpu
->kvm_steal_time
== ON_OFF_AUTO_ON
) {
699 if (!has_steal_time
) {
700 error_setg(errp
, "'kvm-steal-time' cannot be enabled "
703 } else if (!arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
705 * DEN0057A chapter 2 says "This specification only covers
706 * systems in which the Execution state of the hypervisor
707 * as well as EL1 of virtual machines is AArch64.". And,
708 * to ensure that, the smc/hvc calls are only specified as
711 error_setg(errp
, "'kvm-steal-time' cannot be enabled "
712 "for AArch32 guests");
718 bool kvm_arm_aarch32_supported(void)
720 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_EL1_32BIT
);
723 bool kvm_arm_sve_supported(void)
725 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_SVE
);
728 bool kvm_arm_steal_time_supported(void)
730 return kvm_check_extension(kvm_state
, KVM_CAP_STEAL_TIME
);
733 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN
!= 1);
735 void kvm_arm_sve_get_vls(CPUState
*cs
, unsigned long *map
)
737 /* Only call this function if kvm_arm_sve_supported() returns true. */
738 static uint64_t vls
[KVM_ARM64_SVE_VLS_WORDS
];
743 bitmap_clear(map
, 0, ARM_MAX_VQ
);
746 * KVM ensures all host CPUs support the same set of vector lengths.
747 * So we only need to create the scratch VCPUs once and then cache
751 struct kvm_vcpu_init init
= {
753 .features
[0] = (1 << KVM_ARM_VCPU_SVE
),
755 struct kvm_one_reg reg
= {
756 .id
= KVM_REG_ARM64_SVE_VLS
,
757 .addr
= (uint64_t)&vls
[0],
763 if (!kvm_arm_create_scratch_host_vcpu(NULL
, fdarray
, &init
)) {
764 error_report("failed to create scratch VCPU with SVE enabled");
767 ret
= ioctl(fdarray
[2], KVM_GET_ONE_REG
, ®
);
768 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
770 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
775 for (i
= KVM_ARM64_SVE_VLS_WORDS
- 1; i
>= 0; --i
) {
777 vq
= 64 - clz64(vls
[i
]) + i
* 64;
781 if (vq
> ARM_MAX_VQ
) {
782 warn_report("KVM supports vector lengths larger than "
787 for (i
= 0; i
< KVM_ARM64_SVE_VLS_WORDS
; ++i
) {
791 for (j
= 1; j
<= 64; ++j
) {
793 if (vq
> ARM_MAX_VQ
) {
796 if (vls
[i
] & (1UL << (j
- 1))) {
797 set_bit(vq
- 1, map
);
803 static int kvm_arm_sve_set_vls(CPUState
*cs
)
805 uint64_t vls
[KVM_ARM64_SVE_VLS_WORDS
] = {0};
806 struct kvm_one_reg reg
= {
807 .id
= KVM_REG_ARM64_SVE_VLS
,
808 .addr
= (uint64_t)&vls
[0],
810 ARMCPU
*cpu
= ARM_CPU(cs
);
814 assert(cpu
->sve_max_vq
<= KVM_ARM64_SVE_VQ_MAX
);
816 for (vq
= 1; vq
<= cpu
->sve_max_vq
; ++vq
) {
817 if (test_bit(vq
- 1, cpu
->sve_vq_map
)) {
824 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
827 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
829 int kvm_arch_init_vcpu(CPUState
*cs
)
833 ARMCPU
*cpu
= ARM_CPU(cs
);
834 CPUARMState
*env
= &cpu
->env
;
836 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
||
837 !object_dynamic_cast(OBJECT(cpu
), TYPE_AARCH64_CPU
)) {
838 error_report("KVM is not supported for this guest CPU type");
842 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change
, cs
);
844 /* Determine init features for this CPU */
845 memset(cpu
->kvm_init_features
, 0, sizeof(cpu
->kvm_init_features
));
846 if (cs
->start_powered_off
) {
847 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_POWER_OFF
;
849 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PSCI_0_2
)) {
850 cpu
->psci_version
= 2;
851 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2
;
853 if (!arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
854 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT
;
856 if (!kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PMU_V3
)) {
857 cpu
->has_pmu
= false;
860 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PMU_V3
;
862 env
->features
&= ~(1ULL << ARM_FEATURE_PMU
);
864 if (cpu_isar_feature(aa64_sve
, cpu
)) {
865 assert(kvm_arm_sve_supported());
866 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_SVE
;
869 /* Do KVM_ARM_VCPU_INIT ioctl */
870 ret
= kvm_arm_vcpu_init(cs
);
875 if (cpu_isar_feature(aa64_sve
, cpu
)) {
876 ret
= kvm_arm_sve_set_vls(cs
);
880 ret
= kvm_arm_vcpu_finalize(cs
, KVM_ARM_VCPU_SVE
);
887 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
888 * Currently KVM has its own idea about MPIDR assignment, so we
889 * override our defaults with what we get from KVM.
891 ret
= kvm_get_one_reg(cs
, ARM64_SYS_REG(ARM_CPU_ID_MPIDR
), &mpidr
);
895 cpu
->mp_affinity
= mpidr
& ARM64_AFFINITY_MASK
;
897 kvm_arm_init_debug(cs
);
899 /* Check whether user space can specify guest syndrome value */
900 kvm_arm_init_serror_injection(cs
);
902 return kvm_arm_init_cpreg_list(cpu
);
905 int kvm_arch_destroy_vcpu(CPUState
*cs
)
910 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx
)
912 /* Return true if the regidx is a register we should synchronize
913 * via the cpreg_tuples array (ie is not a core or sve reg that
914 * we sync by hand in kvm_arch_get/put_registers())
916 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
917 case KVM_REG_ARM_CORE
:
918 case KVM_REG_ARM64_SVE
:
925 typedef struct CPRegStateLevel
{
930 /* All system registers not listed in the following table are assumed to be
931 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
932 * often, you must add it to this table with a state of either
933 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
935 static const CPRegStateLevel non_runtime_cpregs
[] = {
936 { KVM_REG_ARM_TIMER_CNT
, KVM_PUT_FULL_STATE
},
939 int kvm_arm_cpreg_level(uint64_t regidx
)
943 for (i
= 0; i
< ARRAY_SIZE(non_runtime_cpregs
); i
++) {
944 const CPRegStateLevel
*l
= &non_runtime_cpregs
[i
];
945 if (l
->regidx
== regidx
) {
950 return KVM_PUT_RUNTIME_STATE
;
953 /* Callers must hold the iothread mutex lock */
954 static void kvm_inject_arm_sea(CPUState
*c
)
956 ARMCPU
*cpu
= ARM_CPU(c
);
957 CPUARMState
*env
= &cpu
->env
;
961 c
->exception_index
= EXCP_DATA_ABORT
;
962 env
->exception
.target_el
= 1;
965 * Set the DFSC to synchronous external abort and set FnV to not valid,
966 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
968 same_el
= arm_current_el(env
) == env
->exception
.target_el
;
969 esr
= syn_data_abort_no_iss(same_el
, 1, 0, 0, 0, 0, 0x10);
971 env
->exception
.syndrome
= esr
;
973 arm_cpu_do_interrupt(c
);
976 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
977 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
979 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
980 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
982 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
983 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
985 static int kvm_arch_put_fpsimd(CPUState
*cs
)
987 CPUARMState
*env
= &ARM_CPU(cs
)->env
;
988 struct kvm_one_reg reg
;
991 for (i
= 0; i
< 32; i
++) {
992 uint64_t *q
= aa64_vfp_qreg(env
, i
);
993 #ifdef HOST_WORDS_BIGENDIAN
994 uint64_t fp_val
[2] = { q
[1], q
[0] };
995 reg
.addr
= (uintptr_t)fp_val
;
997 reg
.addr
= (uintptr_t)q
;
999 reg
.id
= AARCH64_SIMD_CORE_REG(fp_regs
.vregs
[i
]);
1000 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1010 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1011 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1012 * code the slice index to zero for now as it's unlikely we'll need more than
1013 * one slice for quite some time.
1015 static int kvm_arch_put_sve(CPUState
*cs
)
1017 ARMCPU
*cpu
= ARM_CPU(cs
);
1018 CPUARMState
*env
= &cpu
->env
;
1019 uint64_t tmp
[ARM_MAX_VQ
* 2];
1021 struct kvm_one_reg reg
;
1024 for (n
= 0; n
< KVM_ARM64_SVE_NUM_ZREGS
; ++n
) {
1025 r
= sve_bswap64(tmp
, &env
->vfp
.zregs
[n
].d
[0], cpu
->sve_max_vq
* 2);
1026 reg
.addr
= (uintptr_t)r
;
1027 reg
.id
= KVM_REG_ARM64_SVE_ZREG(n
, 0);
1028 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1034 for (n
= 0; n
< KVM_ARM64_SVE_NUM_PREGS
; ++n
) {
1035 r
= sve_bswap64(tmp
, r
= &env
->vfp
.pregs
[n
].p
[0],
1036 DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1037 reg
.addr
= (uintptr_t)r
;
1038 reg
.id
= KVM_REG_ARM64_SVE_PREG(n
, 0);
1039 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1045 r
= sve_bswap64(tmp
, &env
->vfp
.pregs
[FFR_PRED_NUM
].p
[0],
1046 DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1047 reg
.addr
= (uintptr_t)r
;
1048 reg
.id
= KVM_REG_ARM64_SVE_FFR(0);
1049 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1057 int kvm_arch_put_registers(CPUState
*cs
, int level
)
1059 struct kvm_one_reg reg
;
1065 ARMCPU
*cpu
= ARM_CPU(cs
);
1066 CPUARMState
*env
= &cpu
->env
;
1068 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
1069 * AArch64 registers before pushing them out to 64-bit KVM.
1072 aarch64_sync_32_to_64(env
);
1075 for (i
= 0; i
< 31; i
++) {
1076 reg
.id
= AARCH64_CORE_REG(regs
.regs
[i
]);
1077 reg
.addr
= (uintptr_t) &env
->xregs
[i
];
1078 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1084 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1085 * QEMU side we keep the current SP in xregs[31] as well.
1087 aarch64_save_sp(env
, 1);
1089 reg
.id
= AARCH64_CORE_REG(regs
.sp
);
1090 reg
.addr
= (uintptr_t) &env
->sp_el
[0];
1091 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1096 reg
.id
= AARCH64_CORE_REG(sp_el1
);
1097 reg
.addr
= (uintptr_t) &env
->sp_el
[1];
1098 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1103 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1105 val
= pstate_read(env
);
1107 val
= cpsr_read(env
);
1109 reg
.id
= AARCH64_CORE_REG(regs
.pstate
);
1110 reg
.addr
= (uintptr_t) &val
;
1111 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1116 reg
.id
= AARCH64_CORE_REG(regs
.pc
);
1117 reg
.addr
= (uintptr_t) &env
->pc
;
1118 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1123 reg
.id
= AARCH64_CORE_REG(elr_el1
);
1124 reg
.addr
= (uintptr_t) &env
->elr_el
[1];
1125 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1130 /* Saved Program State Registers
1132 * Before we restore from the banked_spsr[] array we need to
1133 * ensure that any modifications to env->spsr are correctly
1134 * reflected in the banks.
1136 el
= arm_current_el(env
);
1137 if (el
> 0 && !is_a64(env
)) {
1138 i
= bank_number(env
->uncached_cpsr
& CPSR_M
);
1139 env
->banked_spsr
[i
] = env
->spsr
;
1142 /* KVM 0-4 map to QEMU banks 1-5 */
1143 for (i
= 0; i
< KVM_NR_SPSR
; i
++) {
1144 reg
.id
= AARCH64_CORE_REG(spsr
[i
]);
1145 reg
.addr
= (uintptr_t) &env
->banked_spsr
[i
+ 1];
1146 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1152 if (cpu_isar_feature(aa64_sve
, cpu
)) {
1153 ret
= kvm_arch_put_sve(cs
);
1155 ret
= kvm_arch_put_fpsimd(cs
);
1161 reg
.addr
= (uintptr_t)(&fpr
);
1162 fpr
= vfp_get_fpsr(env
);
1163 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpsr
);
1164 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1169 reg
.addr
= (uintptr_t)(&fpr
);
1170 fpr
= vfp_get_fpcr(env
);
1171 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpcr
);
1172 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1177 write_cpustate_to_list(cpu
, true);
1179 if (!write_list_to_kvmstate(cpu
, level
)) {
1184 * Setting VCPU events should be triggered after syncing the registers
1185 * to avoid overwriting potential changes made by KVM upon calling
1186 * KVM_SET_VCPU_EVENTS ioctl
1188 ret
= kvm_put_vcpu_events(cpu
);
1193 kvm_arm_sync_mpstate_to_kvm(cpu
);
1198 static int kvm_arch_get_fpsimd(CPUState
*cs
)
1200 CPUARMState
*env
= &ARM_CPU(cs
)->env
;
1201 struct kvm_one_reg reg
;
1204 for (i
= 0; i
< 32; i
++) {
1205 uint64_t *q
= aa64_vfp_qreg(env
, i
);
1206 reg
.id
= AARCH64_SIMD_CORE_REG(fp_regs
.vregs
[i
]);
1207 reg
.addr
= (uintptr_t)q
;
1208 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1212 #ifdef HOST_WORDS_BIGENDIAN
1214 t
= q
[0], q
[0] = q
[1], q
[1] = t
;
1223 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1224 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1225 * code the slice index to zero for now as it's unlikely we'll need more than
1226 * one slice for quite some time.
1228 static int kvm_arch_get_sve(CPUState
*cs
)
1230 ARMCPU
*cpu
= ARM_CPU(cs
);
1231 CPUARMState
*env
= &cpu
->env
;
1232 struct kvm_one_reg reg
;
1236 for (n
= 0; n
< KVM_ARM64_SVE_NUM_ZREGS
; ++n
) {
1237 r
= &env
->vfp
.zregs
[n
].d
[0];
1238 reg
.addr
= (uintptr_t)r
;
1239 reg
.id
= KVM_REG_ARM64_SVE_ZREG(n
, 0);
1240 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1244 sve_bswap64(r
, r
, cpu
->sve_max_vq
* 2);
1247 for (n
= 0; n
< KVM_ARM64_SVE_NUM_PREGS
; ++n
) {
1248 r
= &env
->vfp
.pregs
[n
].p
[0];
1249 reg
.addr
= (uintptr_t)r
;
1250 reg
.id
= KVM_REG_ARM64_SVE_PREG(n
, 0);
1251 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1255 sve_bswap64(r
, r
, DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1258 r
= &env
->vfp
.pregs
[FFR_PRED_NUM
].p
[0];
1259 reg
.addr
= (uintptr_t)r
;
1260 reg
.id
= KVM_REG_ARM64_SVE_FFR(0);
1261 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1265 sve_bswap64(r
, r
, DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1270 int kvm_arch_get_registers(CPUState
*cs
)
1272 struct kvm_one_reg reg
;
1278 ARMCPU
*cpu
= ARM_CPU(cs
);
1279 CPUARMState
*env
= &cpu
->env
;
1281 for (i
= 0; i
< 31; i
++) {
1282 reg
.id
= AARCH64_CORE_REG(regs
.regs
[i
]);
1283 reg
.addr
= (uintptr_t) &env
->xregs
[i
];
1284 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1290 reg
.id
= AARCH64_CORE_REG(regs
.sp
);
1291 reg
.addr
= (uintptr_t) &env
->sp_el
[0];
1292 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1297 reg
.id
= AARCH64_CORE_REG(sp_el1
);
1298 reg
.addr
= (uintptr_t) &env
->sp_el
[1];
1299 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1304 reg
.id
= AARCH64_CORE_REG(regs
.pstate
);
1305 reg
.addr
= (uintptr_t) &val
;
1306 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1311 env
->aarch64
= ((val
& PSTATE_nRW
) == 0);
1313 pstate_write(env
, val
);
1315 cpsr_write(env
, val
, 0xffffffff, CPSRWriteRaw
);
1318 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1319 * QEMU side we keep the current SP in xregs[31] as well.
1321 aarch64_restore_sp(env
, 1);
1323 reg
.id
= AARCH64_CORE_REG(regs
.pc
);
1324 reg
.addr
= (uintptr_t) &env
->pc
;
1325 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1330 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1331 * incoming AArch64 regs received from 64-bit KVM.
1332 * We must perform this after all of the registers have been acquired from
1336 aarch64_sync_64_to_32(env
);
1339 reg
.id
= AARCH64_CORE_REG(elr_el1
);
1340 reg
.addr
= (uintptr_t) &env
->elr_el
[1];
1341 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1346 /* Fetch the SPSR registers
1348 * KVM SPSRs 0-4 map to QEMU banks 1-5
1350 for (i
= 0; i
< KVM_NR_SPSR
; i
++) {
1351 reg
.id
= AARCH64_CORE_REG(spsr
[i
]);
1352 reg
.addr
= (uintptr_t) &env
->banked_spsr
[i
+ 1];
1353 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1359 el
= arm_current_el(env
);
1360 if (el
> 0 && !is_a64(env
)) {
1361 i
= bank_number(env
->uncached_cpsr
& CPSR_M
);
1362 env
->spsr
= env
->banked_spsr
[i
];
1365 if (cpu_isar_feature(aa64_sve
, cpu
)) {
1366 ret
= kvm_arch_get_sve(cs
);
1368 ret
= kvm_arch_get_fpsimd(cs
);
1374 reg
.addr
= (uintptr_t)(&fpr
);
1375 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpsr
);
1376 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1380 vfp_set_fpsr(env
, fpr
);
1382 reg
.addr
= (uintptr_t)(&fpr
);
1383 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpcr
);
1384 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1388 vfp_set_fpcr(env
, fpr
);
1390 ret
= kvm_get_vcpu_events(cpu
);
1395 if (!write_kvmstate_to_list(cpu
)) {
1398 /* Note that it's OK to have registers which aren't in CPUState,
1399 * so we can ignore a failure return here.
1401 write_list_to_cpustate(cpu
);
1403 kvm_arm_sync_mpstate_to_qemu(cpu
);
1405 /* TODO: other registers */
1409 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
1411 ram_addr_t ram_addr
;
1413 Object
*obj
= qdev_get_machine();
1414 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1415 bool acpi_enabled
= virt_is_acpi_enabled(vms
);
1417 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
1419 if (acpi_enabled
&& addr
&&
1420 object_property_get_bool(obj
, "ras", NULL
)) {
1421 ram_addr
= qemu_ram_addr_from_host(addr
);
1422 if (ram_addr
!= RAM_ADDR_INVALID
&&
1423 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
1424 kvm_hwpoison_page_add(ram_addr
);
1426 * If this is a BUS_MCEERR_AR, we know we have been called
1427 * synchronously from the vCPU thread, so we can easily
1428 * synchronize the state and inject an error.
1430 * TODO: we currently don't tell the guest at all about
1431 * BUS_MCEERR_AO. In that case we might either be being
1432 * called synchronously from the vCPU thread, or a bit
1433 * later from the main thread, so doing the injection of
1434 * the error would be more complicated.
1436 if (code
== BUS_MCEERR_AR
) {
1437 kvm_cpu_synchronize_state(c
);
1438 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA
, paddr
)) {
1439 kvm_inject_arm_sea(c
);
1441 error_report("failed to record the error");
1447 if (code
== BUS_MCEERR_AO
) {
1448 error_report("Hardware memory error at addr %p for memory used by "
1449 "QEMU itself instead of guest system!", addr
);
1453 if (code
== BUS_MCEERR_AR
) {
1454 error_report("Hardware memory error!");
1459 /* C6.6.29 BRK instruction */
1460 static const uint32_t brk_insn
= 0xd4200000;
1462 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1464 if (have_guest_debug
) {
1465 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 4, 0) ||
1466 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&brk_insn
, 4, 1)) {
1471 error_report("guest debug not supported on this kernel");
1476 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1478 static uint32_t brk
;
1480 if (have_guest_debug
) {
1481 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&brk
, 4, 0) ||
1483 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 4, 1)) {
1488 error_report("guest debug not supported on this kernel");
1493 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1495 * To minimise translating between kernel and user-space the kernel
1496 * ABI just provides user-space with the full exception syndrome
1497 * register value to be decoded in QEMU.
1500 bool kvm_arm_handle_debug(CPUState
*cs
, struct kvm_debug_exit_arch
*debug_exit
)
1502 int hsr_ec
= syn_get_ec(debug_exit
->hsr
);
1503 ARMCPU
*cpu
= ARM_CPU(cs
);
1504 CPUARMState
*env
= &cpu
->env
;
1506 /* Ensure PC is synchronised */
1507 kvm_cpu_synchronize_state(cs
);
1510 case EC_SOFTWARESTEP
:
1511 if (cs
->singlestep_enabled
) {
1515 * The kernel should have suppressed the guest's ability to
1516 * single step at this point so something has gone wrong.
1518 error_report("%s: guest single-step while debugging unsupported"
1519 " (%"PRIx64
", %"PRIx32
")",
1520 __func__
, env
->pc
, debug_exit
->hsr
);
1525 if (kvm_find_sw_breakpoint(cs
, env
->pc
)) {
1530 if (find_hw_breakpoint(cs
, env
->pc
)) {
1536 CPUWatchpoint
*wp
= find_hw_watchpoint(cs
, debug_exit
->far
);
1538 cs
->watchpoint_hit
= wp
;
1544 error_report("%s: unhandled debug exit (%"PRIx32
", %"PRIx64
")",
1545 __func__
, debug_exit
->hsr
, env
->pc
);
1548 /* If we are not handling the debug exception it must belong to
1549 * the guest. Let's re-use the existing TCG interrupt code to set
1550 * everything up properly.
1552 cs
->exception_index
= EXCP_BKPT
;
1553 env
->exception
.syndrome
= debug_exit
->hsr
;
1554 env
->exception
.vaddress
= debug_exit
->far
;
1555 env
->exception
.target_el
= 1;
1556 qemu_mutex_lock_iothread();
1557 arm_cpu_do_interrupt(cs
);
1558 qemu_mutex_unlock_iothread();
1563 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1564 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1569 * AARCH64: DFSC, bits [5:0]
1573 * FS[3:0] - DFSR[3:0]
1577 #define ESR_DFSC(aarch64, lpae, v) \
1578 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1579 : (((v) >> 6) | ((v) & 0x1F)))
1581 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1582 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1584 bool kvm_arm_verify_ext_dabt_pending(CPUState
*cs
)
1588 if (!kvm_get_one_reg(cs
, ARM64_REG_ESR_EL1
, &dfsr_val
)) {
1589 ARMCPU
*cpu
= ARM_CPU(cs
);
1590 CPUARMState
*env
= &cpu
->env
;
1591 int aarch64_mode
= arm_feature(env
, ARM_FEATURE_AARCH64
);
1594 if (!aarch64_mode
) {
1597 if (!kvm_get_one_reg(cs
, ARM64_REG_TCR_EL1
, &ttbcr
)) {
1598 lpae
= arm_feature(env
, ARM_FEATURE_LPAE
)
1599 && (ttbcr
& TTBCR_EAE
);
1603 * The verification here is based on the DFSC bits
1604 * of the ESR_EL1 reg only
1606 return (ESR_DFSC(aarch64_mode
, lpae
, dfsr_val
) ==
1607 ESR_DFSC_EXTABT(aarch64_mode
, lpae
));