net/rocker: Fix the unusual macro name
[qemu/kevin.git] / hw / intc / armv7m_nvic.c
blob1fecfd63776637f68c1e6d1fe311d75109af870c
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
26 /* IRQ number counting:
28 * the num-irq property counts the number of external IRQ lines
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
50 #define NVIC_FIRST_IRQ 16
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
53 /* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
56 #define NVIC_NOEXC_PRIO 0x100
58 static const uint8_t nvic_id[] = {
59 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 static int nvic_pending_prio(NVICState *s)
64 /* return the priority of the current pending interrupt,
65 * or NVIC_NOEXC_PRIO if no interrupt is pending
67 return s->vectpending ? s->vectors[s->vectpending].prio : NVIC_NOEXC_PRIO;
70 /* Return the value of the ISCR RETTOBASE bit:
71 * 1 if there is exactly one active exception
72 * 0 if there is more than one active exception
73 * UNKNOWN if there are no active exceptions (we choose 1,
74 * which matches the choice Cortex-M3 is documented as making).
76 * NB: some versions of the documentation talk about this
77 * counting "active exceptions other than the one shown by IPSR";
78 * this is only different in the obscure corner case where guest
79 * code has manually deactivated an exception and is about
80 * to fail an exception-return integrity check. The definition
81 * above is the one from the v8M ARM ARM and is also in line
82 * with the behaviour documented for the Cortex-M3.
84 static bool nvic_rettobase(NVICState *s)
86 int irq, nhand = 0;
88 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
89 if (s->vectors[irq].active) {
90 nhand++;
91 if (nhand == 2) {
92 return 0;
97 return 1;
100 /* Return the value of the ISCR ISRPENDING bit:
101 * 1 if an external interrupt is pending
102 * 0 if no external interrupt is pending
104 static bool nvic_isrpending(NVICState *s)
106 int irq;
108 /* We can shortcut if the highest priority pending interrupt
109 * happens to be external or if there is nothing pending.
111 if (s->vectpending > NVIC_FIRST_IRQ) {
112 return true;
114 if (s->vectpending == 0) {
115 return false;
118 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
119 if (s->vectors[irq].pending) {
120 return true;
123 return false;
126 /* Return a mask word which clears the subpriority bits from
127 * a priority value for an M-profile exception, leaving only
128 * the group priority.
130 static inline uint32_t nvic_gprio_mask(NVICState *s)
132 return ~0U << (s->prigroup + 1);
135 /* Recompute vectpending and exception_prio */
136 static void nvic_recompute_state(NVICState *s)
138 int i;
139 int pend_prio = NVIC_NOEXC_PRIO;
140 int active_prio = NVIC_NOEXC_PRIO;
141 int pend_irq = 0;
143 for (i = 1; i < s->num_irq; i++) {
144 VecInfo *vec = &s->vectors[i];
146 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
147 pend_prio = vec->prio;
148 pend_irq = i;
150 if (vec->active && vec->prio < active_prio) {
151 active_prio = vec->prio;
155 s->vectpending = pend_irq;
156 s->exception_prio = active_prio & nvic_gprio_mask(s);
158 trace_nvic_recompute_state(s->vectpending, s->exception_prio);
161 /* Return the current execution priority of the CPU
162 * (equivalent to the pseudocode ExecutionPriority function).
163 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
165 static inline int nvic_exec_prio(NVICState *s)
167 CPUARMState *env = &s->cpu->env;
168 int running;
170 if (env->v7m.faultmask[env->v7m.secure]) {
171 running = -1;
172 } else if (env->v7m.primask[env->v7m.secure]) {
173 running = 0;
174 } else if (env->v7m.basepri[env->v7m.secure] > 0) {
175 running = env->v7m.basepri[env->v7m.secure] & nvic_gprio_mask(s);
176 } else {
177 running = NVIC_NOEXC_PRIO; /* lower than any possible priority */
179 /* consider priority of active handler */
180 return MIN(running, s->exception_prio);
183 bool armv7m_nvic_can_take_pending_exception(void *opaque)
185 NVICState *s = opaque;
187 return nvic_exec_prio(s) > nvic_pending_prio(s);
190 int armv7m_nvic_raw_execution_priority(void *opaque)
192 NVICState *s = opaque;
194 return s->exception_prio;
197 /* caller must call nvic_irq_update() after this */
198 static void set_prio(NVICState *s, unsigned irq, uint8_t prio)
200 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
201 assert(irq < s->num_irq);
203 s->vectors[irq].prio = prio;
205 trace_nvic_set_prio(irq, prio);
208 /* Recompute state and assert irq line accordingly.
209 * Must be called after changes to:
210 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
211 * prigroup
213 static void nvic_irq_update(NVICState *s)
215 int lvl;
216 int pend_prio;
218 nvic_recompute_state(s);
219 pend_prio = nvic_pending_prio(s);
221 /* Raise NVIC output if this IRQ would be taken, except that we
222 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
223 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
224 * to those CPU registers don't cause us to recalculate the NVIC
225 * pending info.
227 lvl = (pend_prio < s->exception_prio);
228 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
229 qemu_set_irq(s->excpout, lvl);
232 static void armv7m_nvic_clear_pending(void *opaque, int irq)
234 NVICState *s = (NVICState *)opaque;
235 VecInfo *vec;
237 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
239 vec = &s->vectors[irq];
240 trace_nvic_clear_pending(irq, vec->enabled, vec->prio);
241 if (vec->pending) {
242 vec->pending = 0;
243 nvic_irq_update(s);
247 void armv7m_nvic_set_pending(void *opaque, int irq)
249 NVICState *s = (NVICState *)opaque;
250 VecInfo *vec;
252 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
254 vec = &s->vectors[irq];
255 trace_nvic_set_pending(irq, vec->enabled, vec->prio);
258 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
259 /* If a synchronous exception is pending then it may be
260 * escalated to HardFault if:
261 * * it is equal or lower priority to current execution
262 * * it is disabled
263 * (ie we need to take it immediately but we can't do so).
264 * Asynchronous exceptions (and interrupts) simply remain pending.
266 * For QEMU, we don't have any imprecise (asynchronous) faults,
267 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
268 * synchronous.
269 * Debug exceptions are awkward because only Debug exceptions
270 * resulting from the BKPT instruction should be escalated,
271 * but we don't currently implement any Debug exceptions other
272 * than those that result from BKPT, so we treat all debug exceptions
273 * as needing escalation.
275 * This all means we can identify whether to escalate based only on
276 * the exception number and don't (yet) need the caller to explicitly
277 * tell us whether this exception is synchronous or not.
279 int running = nvic_exec_prio(s);
280 bool escalate = false;
282 if (vec->prio >= running) {
283 trace_nvic_escalate_prio(irq, vec->prio, running);
284 escalate = true;
285 } else if (!vec->enabled) {
286 trace_nvic_escalate_disabled(irq);
287 escalate = true;
290 if (escalate) {
291 if (running < 0) {
292 /* We want to escalate to HardFault but we can't take a
293 * synchronous HardFault at this point either. This is a
294 * Lockup condition due to a guest bug. We don't model
295 * Lockup, so report via cpu_abort() instead.
297 cpu_abort(&s->cpu->parent_obj,
298 "Lockup: can't escalate %d to HardFault "
299 "(current priority %d)\n", irq, running);
302 /* We can do the escalation, so we take HardFault instead */
303 irq = ARMV7M_EXCP_HARD;
304 vec = &s->vectors[irq];
305 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
309 if (!vec->pending) {
310 vec->pending = 1;
311 nvic_irq_update(s);
315 /* Make pending IRQ active. */
316 void armv7m_nvic_acknowledge_irq(void *opaque)
318 NVICState *s = (NVICState *)opaque;
319 CPUARMState *env = &s->cpu->env;
320 const int pending = s->vectpending;
321 const int running = nvic_exec_prio(s);
322 int pendgroupprio;
323 VecInfo *vec;
325 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
327 vec = &s->vectors[pending];
329 assert(vec->enabled);
330 assert(vec->pending);
332 pendgroupprio = vec->prio & nvic_gprio_mask(s);
333 assert(pendgroupprio < running);
335 trace_nvic_acknowledge_irq(pending, vec->prio);
337 vec->active = 1;
338 vec->pending = 0;
340 env->v7m.exception = s->vectpending;
342 nvic_irq_update(s);
345 int armv7m_nvic_complete_irq(void *opaque, int irq)
347 NVICState *s = (NVICState *)opaque;
348 VecInfo *vec;
349 int ret;
351 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
353 vec = &s->vectors[irq];
355 trace_nvic_complete_irq(irq);
357 if (!vec->active) {
358 /* Tell the caller this was an illegal exception return */
359 return -1;
362 ret = nvic_rettobase(s);
364 vec->active = 0;
365 if (vec->level) {
366 /* Re-pend the exception if it's still held high; only
367 * happens for extenal IRQs
369 assert(irq >= NVIC_FIRST_IRQ);
370 vec->pending = 1;
373 nvic_irq_update(s);
375 return ret;
378 /* callback when external interrupt line is changed */
379 static void set_irq_level(void *opaque, int n, int level)
381 NVICState *s = opaque;
382 VecInfo *vec;
384 n += NVIC_FIRST_IRQ;
386 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
388 trace_nvic_set_irq_level(n, level);
390 /* The pending status of an external interrupt is
391 * latched on rising edge and exception handler return.
393 * Pulsing the IRQ will always run the handler
394 * once, and the handler will re-run until the
395 * level is low when the handler completes.
397 vec = &s->vectors[n];
398 if (level != vec->level) {
399 vec->level = level;
400 if (level) {
401 armv7m_nvic_set_pending(s, n);
406 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
408 ARMCPU *cpu = s->cpu;
409 uint32_t val;
411 switch (offset) {
412 case 4: /* Interrupt Control Type. */
413 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
414 case 0xd00: /* CPUID Base. */
415 return cpu->midr;
416 case 0xd04: /* Interrupt Control State. */
417 /* VECTACTIVE */
418 val = cpu->env.v7m.exception;
419 /* VECTPENDING */
420 val |= (s->vectpending & 0xff) << 12;
421 /* ISRPENDING - set if any external IRQ is pending */
422 if (nvic_isrpending(s)) {
423 val |= (1 << 22);
425 /* RETTOBASE - set if only one handler is active */
426 if (nvic_rettobase(s)) {
427 val |= (1 << 11);
429 /* PENDSTSET */
430 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
431 val |= (1 << 26);
433 /* PENDSVSET */
434 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
435 val |= (1 << 28);
437 /* NMIPENDSET */
438 if (s->vectors[ARMV7M_EXCP_NMI].pending) {
439 val |= (1 << 31);
441 /* ISRPREEMPT not implemented */
442 return val;
443 case 0xd08: /* Vector Table Offset. */
444 return cpu->env.v7m.vecbase[attrs.secure];
445 case 0xd0c: /* Application Interrupt/Reset Control. */
446 return 0xfa050000 | (s->prigroup << 8);
447 case 0xd10: /* System Control. */
448 /* TODO: Implement SLEEPONEXIT. */
449 return 0;
450 case 0xd14: /* Configuration Control. */
451 /* The BFHFNMIGN bit is the only non-banked bit; we
452 * keep it in the non-secure copy of the register.
454 val = cpu->env.v7m.ccr[attrs.secure];
455 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
456 return val;
457 case 0xd24: /* System Handler Status. */
458 val = 0;
459 if (s->vectors[ARMV7M_EXCP_MEM].active) {
460 val |= (1 << 0);
462 if (s->vectors[ARMV7M_EXCP_BUS].active) {
463 val |= (1 << 1);
465 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
466 val |= (1 << 3);
468 if (s->vectors[ARMV7M_EXCP_SVC].active) {
469 val |= (1 << 7);
471 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
472 val |= (1 << 8);
474 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
475 val |= (1 << 10);
477 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
478 val |= (1 << 11);
480 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
481 val |= (1 << 12);
483 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
484 val |= (1 << 13);
486 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
487 val |= (1 << 14);
489 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
490 val |= (1 << 15);
492 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
493 val |= (1 << 16);
495 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
496 val |= (1 << 17);
498 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
499 val |= (1 << 18);
501 return val;
502 case 0xd28: /* Configurable Fault Status. */
503 /* The BFSR bits [15:8] are shared between security states
504 * and we store them in the NS copy
506 val = cpu->env.v7m.cfsr[attrs.secure];
507 val |= cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
508 return val;
509 case 0xd2c: /* Hard Fault Status. */
510 return cpu->env.v7m.hfsr;
511 case 0xd30: /* Debug Fault Status. */
512 return cpu->env.v7m.dfsr;
513 case 0xd34: /* MMFAR MemManage Fault Address */
514 return cpu->env.v7m.mmfar[attrs.secure];
515 case 0xd38: /* Bus Fault Address. */
516 return cpu->env.v7m.bfar;
517 case 0xd3c: /* Aux Fault Status. */
518 /* TODO: Implement fault status registers. */
519 qemu_log_mask(LOG_UNIMP,
520 "Aux Fault status registers unimplemented\n");
521 return 0;
522 case 0xd40: /* PFR0. */
523 return 0x00000030;
524 case 0xd44: /* PRF1. */
525 return 0x00000200;
526 case 0xd48: /* DFR0. */
527 return 0x00100000;
528 case 0xd4c: /* AFR0. */
529 return 0x00000000;
530 case 0xd50: /* MMFR0. */
531 return 0x00000030;
532 case 0xd54: /* MMFR1. */
533 return 0x00000000;
534 case 0xd58: /* MMFR2. */
535 return 0x00000000;
536 case 0xd5c: /* MMFR3. */
537 return 0x00000000;
538 case 0xd60: /* ISAR0. */
539 return 0x01141110;
540 case 0xd64: /* ISAR1. */
541 return 0x02111000;
542 case 0xd68: /* ISAR2. */
543 return 0x21112231;
544 case 0xd6c: /* ISAR3. */
545 return 0x01111110;
546 case 0xd70: /* ISAR4. */
547 return 0x01310102;
548 /* TODO: Implement debug registers. */
549 case 0xd90: /* MPU_TYPE */
550 /* Unified MPU; if the MPU is not present this value is zero */
551 return cpu->pmsav7_dregion << 8;
552 break;
553 case 0xd94: /* MPU_CTRL */
554 return cpu->env.v7m.mpu_ctrl[attrs.secure];
555 case 0xd98: /* MPU_RNR */
556 return cpu->env.pmsav7.rnr[attrs.secure];
557 case 0xd9c: /* MPU_RBAR */
558 case 0xda4: /* MPU_RBAR_A1 */
559 case 0xdac: /* MPU_RBAR_A2 */
560 case 0xdb4: /* MPU_RBAR_A3 */
562 int region = cpu->env.pmsav7.rnr[attrs.secure];
564 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
565 /* PMSAv8M handling of the aliases is different from v7M:
566 * aliases A1, A2, A3 override the low two bits of the region
567 * number in MPU_RNR, and there is no 'region' field in the
568 * RBAR register.
570 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
571 if (aliasno) {
572 region = deposit32(region, 0, 2, aliasno);
574 if (region >= cpu->pmsav7_dregion) {
575 return 0;
577 return cpu->env.pmsav8.rbar[attrs.secure][region];
580 if (region >= cpu->pmsav7_dregion) {
581 return 0;
583 return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf);
585 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
586 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
587 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
588 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
590 int region = cpu->env.pmsav7.rnr[attrs.secure];
592 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
593 /* PMSAv8M handling of the aliases is different from v7M:
594 * aliases A1, A2, A3 override the low two bits of the region
595 * number in MPU_RNR.
597 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
598 if (aliasno) {
599 region = deposit32(region, 0, 2, aliasno);
601 if (region >= cpu->pmsav7_dregion) {
602 return 0;
604 return cpu->env.pmsav8.rlar[attrs.secure][region];
607 if (region >= cpu->pmsav7_dregion) {
608 return 0;
610 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
611 (cpu->env.pmsav7.drsr[region] & 0xffff);
613 case 0xdc0: /* MPU_MAIR0 */
614 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
615 goto bad_offset;
617 return cpu->env.pmsav8.mair0[attrs.secure];
618 case 0xdc4: /* MPU_MAIR1 */
619 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
620 goto bad_offset;
622 return cpu->env.pmsav8.mair1[attrs.secure];
623 default:
624 bad_offset:
625 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
626 return 0;
630 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
631 MemTxAttrs attrs)
633 ARMCPU *cpu = s->cpu;
635 switch (offset) {
636 case 0xd04: /* Interrupt Control State. */
637 if (value & (1 << 31)) {
638 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
640 if (value & (1 << 28)) {
641 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
642 } else if (value & (1 << 27)) {
643 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV);
645 if (value & (1 << 26)) {
646 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
647 } else if (value & (1 << 25)) {
648 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK);
650 break;
651 case 0xd08: /* Vector Table Offset. */
652 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
653 break;
654 case 0xd0c: /* Application Interrupt/Reset Control. */
655 if ((value >> 16) == 0x05fa) {
656 if (value & 4) {
657 qemu_irq_pulse(s->sysresetreq);
659 if (value & 2) {
660 qemu_log_mask(LOG_GUEST_ERROR,
661 "Setting VECTCLRACTIVE when not in DEBUG mode "
662 "is UNPREDICTABLE\n");
664 if (value & 1) {
665 qemu_log_mask(LOG_GUEST_ERROR,
666 "Setting VECTRESET when not in DEBUG mode "
667 "is UNPREDICTABLE\n");
669 s->prigroup = extract32(value, 8, 3);
670 nvic_irq_update(s);
672 break;
673 case 0xd10: /* System Control. */
674 /* TODO: Implement control registers. */
675 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
676 break;
677 case 0xd14: /* Configuration Control. */
678 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
679 value &= (R_V7M_CCR_STKALIGN_MASK |
680 R_V7M_CCR_BFHFNMIGN_MASK |
681 R_V7M_CCR_DIV_0_TRP_MASK |
682 R_V7M_CCR_UNALIGN_TRP_MASK |
683 R_V7M_CCR_USERSETMPEND_MASK |
684 R_V7M_CCR_NONBASETHRDENA_MASK);
686 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
687 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
688 value |= R_V7M_CCR_NONBASETHRDENA_MASK
689 | R_V7M_CCR_STKALIGN_MASK;
691 if (attrs.secure) {
692 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
693 cpu->env.v7m.ccr[M_REG_NS] =
694 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
695 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
696 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
699 cpu->env.v7m.ccr[attrs.secure] = value;
700 break;
701 case 0xd24: /* System Handler Control. */
702 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
703 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
704 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
705 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
706 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
707 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
708 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
709 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
710 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
711 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
712 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
713 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
714 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
715 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
716 nvic_irq_update(s);
717 break;
718 case 0xd28: /* Configurable Fault Status. */
719 cpu->env.v7m.cfsr[attrs.secure] &= ~value; /* W1C */
720 if (attrs.secure) {
721 /* The BFSR bits [15:8] are shared between security states
722 * and we store them in the NS copy.
724 cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
726 break;
727 case 0xd2c: /* Hard Fault Status. */
728 cpu->env.v7m.hfsr &= ~value; /* W1C */
729 break;
730 case 0xd30: /* Debug Fault Status. */
731 cpu->env.v7m.dfsr &= ~value; /* W1C */
732 break;
733 case 0xd34: /* Mem Manage Address. */
734 cpu->env.v7m.mmfar[attrs.secure] = value;
735 return;
736 case 0xd38: /* Bus Fault Address. */
737 cpu->env.v7m.bfar = value;
738 return;
739 case 0xd3c: /* Aux Fault Status. */
740 qemu_log_mask(LOG_UNIMP,
741 "NVIC: Aux fault status registers unimplemented\n");
742 break;
743 case 0xd90: /* MPU_TYPE */
744 return; /* RO */
745 case 0xd94: /* MPU_CTRL */
746 if ((value &
747 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
748 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
749 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
750 "UNPREDICTABLE\n");
752 cpu->env.v7m.mpu_ctrl[attrs.secure]
753 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
754 R_V7M_MPU_CTRL_HFNMIENA_MASK |
755 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
756 tlb_flush(CPU(cpu));
757 break;
758 case 0xd98: /* MPU_RNR */
759 if (value >= cpu->pmsav7_dregion) {
760 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
761 PRIu32 "/%" PRIu32 "\n",
762 value, cpu->pmsav7_dregion);
763 } else {
764 cpu->env.pmsav7.rnr[attrs.secure] = value;
766 break;
767 case 0xd9c: /* MPU_RBAR */
768 case 0xda4: /* MPU_RBAR_A1 */
769 case 0xdac: /* MPU_RBAR_A2 */
770 case 0xdb4: /* MPU_RBAR_A3 */
772 int region;
774 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
775 /* PMSAv8M handling of the aliases is different from v7M:
776 * aliases A1, A2, A3 override the low two bits of the region
777 * number in MPU_RNR, and there is no 'region' field in the
778 * RBAR register.
780 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
782 region = cpu->env.pmsav7.rnr[attrs.secure];
783 if (aliasno) {
784 region = deposit32(region, 0, 2, aliasno);
786 if (region >= cpu->pmsav7_dregion) {
787 return;
789 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
790 tlb_flush(CPU(cpu));
791 return;
794 if (value & (1 << 4)) {
795 /* VALID bit means use the region number specified in this
796 * value and also update MPU_RNR.REGION with that value.
798 region = extract32(value, 0, 4);
799 if (region >= cpu->pmsav7_dregion) {
800 qemu_log_mask(LOG_GUEST_ERROR,
801 "MPU region out of range %u/%" PRIu32 "\n",
802 region, cpu->pmsav7_dregion);
803 return;
805 cpu->env.pmsav7.rnr[attrs.secure] = region;
806 } else {
807 region = cpu->env.pmsav7.rnr[attrs.secure];
810 if (region >= cpu->pmsav7_dregion) {
811 return;
814 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
815 tlb_flush(CPU(cpu));
816 break;
818 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
819 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
820 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
821 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
823 int region = cpu->env.pmsav7.rnr[attrs.secure];
825 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
826 /* PMSAv8M handling of the aliases is different from v7M:
827 * aliases A1, A2, A3 override the low two bits of the region
828 * number in MPU_RNR.
830 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
832 region = cpu->env.pmsav7.rnr[attrs.secure];
833 if (aliasno) {
834 region = deposit32(region, 0, 2, aliasno);
836 if (region >= cpu->pmsav7_dregion) {
837 return;
839 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
840 tlb_flush(CPU(cpu));
841 return;
844 if (region >= cpu->pmsav7_dregion) {
845 return;
848 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
849 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
850 tlb_flush(CPU(cpu));
851 break;
853 case 0xdc0: /* MPU_MAIR0 */
854 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
855 goto bad_offset;
857 if (cpu->pmsav7_dregion) {
858 /* Register is RES0 if no MPU regions are implemented */
859 cpu->env.pmsav8.mair0[attrs.secure] = value;
861 /* We don't need to do anything else because memory attributes
862 * only affect cacheability, and we don't implement caching.
864 break;
865 case 0xdc4: /* MPU_MAIR1 */
866 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
867 goto bad_offset;
869 if (cpu->pmsav7_dregion) {
870 /* Register is RES0 if no MPU regions are implemented */
871 cpu->env.pmsav8.mair1[attrs.secure] = value;
873 /* We don't need to do anything else because memory attributes
874 * only affect cacheability, and we don't implement caching.
876 break;
877 case 0xf00: /* Software Triggered Interrupt Register */
879 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
880 if (excnum < s->num_irq) {
881 armv7m_nvic_set_pending(s, excnum);
883 break;
885 default:
886 bad_offset:
887 qemu_log_mask(LOG_GUEST_ERROR,
888 "NVIC: Bad write offset 0x%x\n", offset);
892 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
894 /* Return true if unprivileged access to this register is permitted. */
895 switch (offset) {
896 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
897 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
898 * controls access even though the CPU is in Secure state (I_QDKX).
900 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
901 default:
902 /* All other user accesses cause a BusFault unconditionally */
903 return false;
907 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
908 uint64_t *data, unsigned size,
909 MemTxAttrs attrs)
911 NVICState *s = (NVICState *)opaque;
912 uint32_t offset = addr;
913 unsigned i, startvec, end;
914 uint32_t val;
916 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
917 /* Generate BusFault for unprivileged accesses */
918 return MEMTX_ERROR;
921 switch (offset) {
922 /* reads of set and clear both return the status */
923 case 0x100 ... 0x13f: /* NVIC Set enable */
924 offset += 0x80;
925 /* fall through */
926 case 0x180 ... 0x1bf: /* NVIC Clear enable */
927 val = 0;
928 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
930 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
931 if (s->vectors[startvec + i].enabled) {
932 val |= (1 << i);
935 break;
936 case 0x200 ... 0x23f: /* NVIC Set pend */
937 offset += 0x80;
938 /* fall through */
939 case 0x280 ... 0x2bf: /* NVIC Clear pend */
940 val = 0;
941 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
942 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
943 if (s->vectors[startvec + i].pending) {
944 val |= (1 << i);
947 break;
948 case 0x300 ... 0x33f: /* NVIC Active */
949 val = 0;
950 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
952 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
953 if (s->vectors[startvec + i].active) {
954 val |= (1 << i);
957 break;
958 case 0x400 ... 0x5ef: /* NVIC Priority */
959 val = 0;
960 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
962 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
963 val |= s->vectors[startvec + i].prio << (8 * i);
965 break;
966 case 0xd18 ... 0xd23: /* System Handler Priority. */
967 val = 0;
968 for (i = 0; i < size; i++) {
969 val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8);
971 break;
972 case 0xfe0 ... 0xfff: /* ID. */
973 if (offset & 3) {
974 val = 0;
975 } else {
976 val = nvic_id[(offset - 0xfe0) >> 2];
978 break;
979 default:
980 if (size == 4) {
981 val = nvic_readl(s, offset, attrs);
982 } else {
983 qemu_log_mask(LOG_GUEST_ERROR,
984 "NVIC: Bad read of size %d at offset 0x%x\n",
985 size, offset);
986 val = 0;
990 trace_nvic_sysreg_read(addr, val, size);
991 *data = val;
992 return MEMTX_OK;
995 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
996 uint64_t value, unsigned size,
997 MemTxAttrs attrs)
999 NVICState *s = (NVICState *)opaque;
1000 uint32_t offset = addr;
1001 unsigned i, startvec, end;
1002 unsigned setval = 0;
1004 trace_nvic_sysreg_write(addr, value, size);
1006 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1007 /* Generate BusFault for unprivileged accesses */
1008 return MEMTX_ERROR;
1011 switch (offset) {
1012 case 0x100 ... 0x13f: /* NVIC Set enable */
1013 offset += 0x80;
1014 setval = 1;
1015 /* fall through */
1016 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1017 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1019 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1020 if (value & (1 << i)) {
1021 s->vectors[startvec + i].enabled = setval;
1024 nvic_irq_update(s);
1025 return MEMTX_OK;
1026 case 0x200 ... 0x23f: /* NVIC Set pend */
1027 /* the special logic in armv7m_nvic_set_pending()
1028 * is not needed since IRQs are never escalated
1030 offset += 0x80;
1031 setval = 1;
1032 /* fall through */
1033 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1034 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1036 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1037 if (value & (1 << i)) {
1038 s->vectors[startvec + i].pending = setval;
1041 nvic_irq_update(s);
1042 return MEMTX_OK;
1043 case 0x300 ... 0x33f: /* NVIC Active */
1044 return MEMTX_OK; /* R/O */
1045 case 0x400 ... 0x5ef: /* NVIC Priority */
1046 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1048 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1049 set_prio(s, startvec + i, (value >> (i * 8)) & 0xff);
1051 nvic_irq_update(s);
1052 return MEMTX_OK;
1053 case 0xd18 ... 0xd23: /* System Handler Priority. */
1054 for (i = 0; i < size; i++) {
1055 unsigned hdlidx = (offset - 0xd14) + i;
1056 set_prio(s, hdlidx, (value >> (i * 8)) & 0xff);
1058 nvic_irq_update(s);
1059 return MEMTX_OK;
1061 if (size == 4) {
1062 nvic_writel(s, offset, value, attrs);
1063 return MEMTX_OK;
1065 qemu_log_mask(LOG_GUEST_ERROR,
1066 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1067 /* This is UNPREDICTABLE; treat as RAZ/WI */
1068 return MEMTX_OK;
1071 static const MemoryRegionOps nvic_sysreg_ops = {
1072 .read_with_attrs = nvic_sysreg_read,
1073 .write_with_attrs = nvic_sysreg_write,
1074 .endianness = DEVICE_NATIVE_ENDIAN,
1077 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1078 uint64_t value, unsigned size,
1079 MemTxAttrs attrs)
1081 if (attrs.secure) {
1082 /* S accesses to the alias act like NS accesses to the real region */
1083 attrs.secure = 0;
1084 return nvic_sysreg_write(opaque, addr, value, size, attrs);
1085 } else {
1086 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1087 if (attrs.user) {
1088 return MEMTX_ERROR;
1090 return MEMTX_OK;
1094 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1095 uint64_t *data, unsigned size,
1096 MemTxAttrs attrs)
1098 if (attrs.secure) {
1099 /* S accesses to the alias act like NS accesses to the real region */
1100 attrs.secure = 0;
1101 return nvic_sysreg_read(opaque, addr, data, size, attrs);
1102 } else {
1103 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1104 if (attrs.user) {
1105 return MEMTX_ERROR;
1107 *data = 0;
1108 return MEMTX_OK;
1112 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1113 .read_with_attrs = nvic_sysreg_ns_read,
1114 .write_with_attrs = nvic_sysreg_ns_write,
1115 .endianness = DEVICE_NATIVE_ENDIAN,
1118 static int nvic_post_load(void *opaque, int version_id)
1120 NVICState *s = opaque;
1121 unsigned i;
1123 /* Check for out of range priority settings */
1124 if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 ||
1125 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1126 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1127 return 1;
1129 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1130 if (s->vectors[i].prio & ~0xff) {
1131 return 1;
1135 nvic_recompute_state(s);
1137 return 0;
1140 static const VMStateDescription vmstate_VecInfo = {
1141 .name = "armv7m_nvic_info",
1142 .version_id = 1,
1143 .minimum_version_id = 1,
1144 .fields = (VMStateField[]) {
1145 VMSTATE_INT16(prio, VecInfo),
1146 VMSTATE_UINT8(enabled, VecInfo),
1147 VMSTATE_UINT8(pending, VecInfo),
1148 VMSTATE_UINT8(active, VecInfo),
1149 VMSTATE_UINT8(level, VecInfo),
1150 VMSTATE_END_OF_LIST()
1154 static const VMStateDescription vmstate_nvic = {
1155 .name = "armv7m_nvic",
1156 .version_id = 4,
1157 .minimum_version_id = 4,
1158 .post_load = &nvic_post_load,
1159 .fields = (VMStateField[]) {
1160 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
1161 vmstate_VecInfo, VecInfo),
1162 VMSTATE_UINT32(prigroup, NVICState),
1163 VMSTATE_END_OF_LIST()
1167 static Property props_nvic[] = {
1168 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
1169 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
1170 DEFINE_PROP_END_OF_LIST()
1173 static void armv7m_nvic_reset(DeviceState *dev)
1175 NVICState *s = NVIC(dev);
1177 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
1178 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1179 /* MEM, BUS, and USAGE are enabled through
1180 * the System Handler Control register
1182 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
1183 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
1184 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1185 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1187 s->vectors[ARMV7M_EXCP_RESET].prio = -3;
1188 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
1189 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
1191 /* Strictly speaking the reset handler should be enabled.
1192 * However, we don't simulate soft resets through the NVIC,
1193 * and the reset vector should never be pended.
1194 * So we leave it disabled to catch logic errors.
1197 s->exception_prio = NVIC_NOEXC_PRIO;
1198 s->vectpending = 0;
1201 static void nvic_systick_trigger(void *opaque, int n, int level)
1203 NVICState *s = opaque;
1205 if (level) {
1206 /* SysTick just asked us to pend its exception.
1207 * (This is different from an external interrupt line's
1208 * behaviour.)
1210 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
1214 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
1216 NVICState *s = NVIC(dev);
1217 SysBusDevice *systick_sbd;
1218 Error *err = NULL;
1219 int regionlen;
1221 s->cpu = ARM_CPU(qemu_get_cpu(0));
1222 assert(s->cpu);
1224 if (s->num_irq > NVIC_MAX_IRQ) {
1225 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
1226 return;
1229 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
1231 /* include space for internal exception vectors */
1232 s->num_irq += NVIC_FIRST_IRQ;
1234 object_property_set_bool(OBJECT(&s->systick), true, "realized", &err);
1235 if (err != NULL) {
1236 error_propagate(errp, err);
1237 return;
1239 systick_sbd = SYS_BUS_DEVICE(&s->systick);
1240 sysbus_connect_irq(systick_sbd, 0,
1241 qdev_get_gpio_in_named(dev, "systick-trigger", 0));
1243 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
1244 * and looks like this:
1245 * 0x004 - ICTR
1246 * 0x010 - 0xff - systick
1247 * 0x100..0x7ec - NVIC
1248 * 0x7f0..0xcff - Reserved
1249 * 0xd00..0xd3c - SCS registers
1250 * 0xd40..0xeff - Reserved or Not implemented
1251 * 0xf00 - STIR
1253 * Some registers within this space are banked between security states.
1254 * In v8M there is a second range 0xe002e000..0xe002efff which is the
1255 * NonSecure alias SCS; secure accesses to this behave like NS accesses
1256 * to the main SCS range, and non-secure accesses (including when
1257 * the security extension is not implemented) are RAZ/WI.
1258 * Note that both the main SCS range and the alias range are defined
1259 * to be exempt from memory attribution (R_BLJT) and so the memory
1260 * transaction attribute always matches the current CPU security
1261 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
1262 * wrappers we change attrs.secure to indicate the NS access; so
1263 * generally code determining which banked register to use should
1264 * use attrs.secure; code determining actual behaviour of the system
1265 * should use env->v7m.secure.
1267 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
1268 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
1269 /* The system register region goes at the bottom of the priority
1270 * stack as it covers the whole page.
1272 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
1273 "nvic_sysregs", 0x1000);
1274 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
1275 memory_region_add_subregion_overlap(&s->container, 0x10,
1276 sysbus_mmio_get_region(systick_sbd, 0),
1279 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
1280 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
1281 &nvic_sysreg_ns_ops, s,
1282 "nvic_sysregs_ns", 0x1000);
1283 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
1286 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
1289 static void armv7m_nvic_instance_init(Object *obj)
1291 /* We have a different default value for the num-irq property
1292 * than our superclass. This function runs after qdev init
1293 * has set the defaults from the Property array and before
1294 * any user-specified property setting, so just modify the
1295 * value in the GICState struct.
1297 DeviceState *dev = DEVICE(obj);
1298 NVICState *nvic = NVIC(obj);
1299 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1301 object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK);
1302 qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default());
1304 sysbus_init_irq(sbd, &nvic->excpout);
1305 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
1306 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1);
1309 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
1311 DeviceClass *dc = DEVICE_CLASS(klass);
1313 dc->vmsd = &vmstate_nvic;
1314 dc->props = props_nvic;
1315 dc->reset = armv7m_nvic_reset;
1316 dc->realize = armv7m_nvic_realize;
1319 static const TypeInfo armv7m_nvic_info = {
1320 .name = TYPE_NVIC,
1321 .parent = TYPE_SYS_BUS_DEVICE,
1322 .instance_init = armv7m_nvic_instance_init,
1323 .instance_size = sizeof(NVICState),
1324 .class_init = armv7m_nvic_class_init,
1325 .class_size = sizeof(SysBusDeviceClass),
1328 static void armv7m_nvic_register_types(void)
1330 type_register_static(&armv7m_nvic_info);
1333 type_init(armv7m_nvic_register_types)