spapr: Refactor spapr_drc_detach()
[qemu/kevin.git] / hw / ppc / spapr.c
blob16d450f21cbfbd4a9e2f6b4a8700167e84461721
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "qom/cpu.h"
48 #include "hw/boards.h"
49 #include "hw/ppc/ppc.h"
50 #include "hw/loader.h"
52 #include "hw/ppc/fdt.h"
53 #include "hw/ppc/spapr.h"
54 #include "hw/ppc/spapr_vio.h"
55 #include "hw/pci-host/spapr.h"
56 #include "hw/ppc/xics.h"
57 #include "hw/pci/msi.h"
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
64 #include "exec/address-spaces.h"
65 #include "hw/usb.h"
66 #include "qemu/config-file.h"
67 #include "qemu/error-report.h"
68 #include "trace.h"
69 #include "hw/nmi.h"
70 #include "hw/intc/intc.h"
72 #include "hw/compat.h"
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "qmp-commands.h"
77 #include <libfdt.h>
79 /* SLOF memory layout:
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
85 * and more
87 * We load our kernel at 4M, leaving space for SLOF initial image
89 #define FDT_MAX_SIZE 0x100000
90 #define RTAS_MAX_SIZE 0x10000
91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE 0x400000
93 #define FW_FILE_NAME "slof.bin"
94 #define FW_OVERHEAD 0x2800000
95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97 #define MIN_RMA_SLOF 128UL
99 #define PHANDLE_XICP 0x00001111
101 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
103 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
104 const char *type_ics,
105 int nr_irqs, Error **errp)
107 Error *local_err = NULL;
108 Object *obj;
110 obj = object_new(type_ics);
111 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
112 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
113 &error_abort);
114 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
115 if (local_err) {
116 goto error;
118 object_property_set_bool(obj, true, "realized", &local_err);
119 if (local_err) {
120 goto error;
123 return ICS_SIMPLE(obj);
125 error:
126 error_propagate(errp, local_err);
127 return NULL;
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
136 return false;
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 static inline int xics_max_server_number(void)
166 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
169 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
171 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
172 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
174 if (kvm_enabled()) {
175 if (machine_kernel_irqchip_allowed(machine) &&
176 !xics_kvm_init(spapr, errp)) {
177 spapr->icp_type = TYPE_KVM_ICP;
178 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
180 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
181 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
182 return;
186 if (!spapr->ics) {
187 xics_spapr_init(spapr);
188 spapr->icp_type = TYPE_ICP;
189 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
190 if (!spapr->ics) {
191 return;
195 if (smc->pre_2_10_has_unused_icps) {
196 int i;
198 for (i = 0; i < xics_max_server_number(); i++) {
199 /* Dummy entries get deregistered when real ICPState objects
200 * are registered during CPU core hotplug.
202 pre_2_10_vmstate_register_dummy_icp(i);
207 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
208 int smt_threads)
210 int i, ret = 0;
211 uint32_t servers_prop[smt_threads];
212 uint32_t gservers_prop[smt_threads * 2];
213 int index = ppc_get_vcpu_dt_id(cpu);
215 if (cpu->compat_pvr) {
216 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
217 if (ret < 0) {
218 return ret;
222 /* Build interrupt servers and gservers properties */
223 for (i = 0; i < smt_threads; i++) {
224 servers_prop[i] = cpu_to_be32(index + i);
225 /* Hack, direct the group queues back to cpu 0 */
226 gservers_prop[i*2] = cpu_to_be32(index + i);
227 gservers_prop[i*2 + 1] = 0;
229 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
230 servers_prop, sizeof(servers_prop));
231 if (ret < 0) {
232 return ret;
234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
235 gservers_prop, sizeof(gservers_prop));
237 return ret;
240 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
242 int index = ppc_get_vcpu_dt_id(cpu);
243 uint32_t associativity[] = {cpu_to_be32(0x5),
244 cpu_to_be32(0x0),
245 cpu_to_be32(0x0),
246 cpu_to_be32(0x0),
247 cpu_to_be32(cpu->node_id),
248 cpu_to_be32(index)};
250 /* Advertise NUMA via ibm,associativity */
251 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
252 sizeof(associativity));
255 /* Populate the "ibm,pa-features" property */
256 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
257 bool legacy_guest)
259 uint8_t pa_features_206[] = { 6, 0,
260 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
261 uint8_t pa_features_207[] = { 24, 0,
262 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
263 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
264 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
265 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
266 uint8_t pa_features_300[] = { 66, 0,
267 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
268 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
269 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
270 /* 6: DS207 */
271 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
272 /* 16: Vector */
273 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
274 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
275 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
276 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
277 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
278 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
279 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
280 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
281 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
282 /* 42: PM, 44: PC RA, 46: SC vec'd */
283 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
284 /* 48: SIMD, 50: QP BFP, 52: String */
285 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
286 /* 54: DecFP, 56: DecI, 58: SHA */
287 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
288 /* 60: NM atomic, 62: RNG */
289 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
291 uint8_t *pa_features;
292 size_t pa_size;
294 switch (POWERPC_MMU_VER(env->mmu_model)) {
295 case POWERPC_MMU_VER_2_06:
296 pa_features = pa_features_206;
297 pa_size = sizeof(pa_features_206);
298 break;
299 case POWERPC_MMU_VER_2_07:
300 pa_features = pa_features_207;
301 pa_size = sizeof(pa_features_207);
302 break;
303 case POWERPC_MMU_VER_3_00:
304 pa_features = pa_features_300;
305 pa_size = sizeof(pa_features_300);
306 break;
307 default:
308 return;
311 if (env->ci_large_pages) {
313 * Note: we keep CI large pages off by default because a 64K capable
314 * guest provisioned with large pages might otherwise try to map a qemu
315 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
316 * even if that qemu runs on a 4k host.
317 * We dd this bit back here if we are confident this is not an issue
319 pa_features[3] |= 0x20;
321 if (kvmppc_has_cap_htm() && pa_size > 24) {
322 pa_features[24] |= 0x80; /* Transactional memory support */
324 if (legacy_guest && pa_size > 40) {
325 /* Workaround for broken kernels that attempt (guest) radix
326 * mode when they can't handle it, if they see the radix bit set
327 * in pa-features. So hide it from them. */
328 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
331 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
334 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
336 int ret = 0, offset, cpus_offset;
337 CPUState *cs;
338 char cpu_model[32];
339 int smt = kvmppc_smt_threads();
340 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
342 CPU_FOREACH(cs) {
343 PowerPCCPU *cpu = POWERPC_CPU(cs);
344 CPUPPCState *env = &cpu->env;
345 DeviceClass *dc = DEVICE_GET_CLASS(cs);
346 int index = ppc_get_vcpu_dt_id(cpu);
347 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
349 if ((index % smt) != 0) {
350 continue;
353 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
355 cpus_offset = fdt_path_offset(fdt, "/cpus");
356 if (cpus_offset < 0) {
357 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
358 "cpus");
359 if (cpus_offset < 0) {
360 return cpus_offset;
363 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
364 if (offset < 0) {
365 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
366 if (offset < 0) {
367 return offset;
371 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
372 pft_size_prop, sizeof(pft_size_prop));
373 if (ret < 0) {
374 return ret;
377 if (nb_numa_nodes > 1) {
378 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
379 if (ret < 0) {
380 return ret;
384 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
385 if (ret < 0) {
386 return ret;
389 spapr_populate_pa_features(env, fdt, offset,
390 spapr->cas_legacy_guest_workaround);
392 return ret;
395 static hwaddr spapr_node0_size(void)
397 MachineState *machine = MACHINE(qdev_get_machine());
399 if (nb_numa_nodes) {
400 int i;
401 for (i = 0; i < nb_numa_nodes; ++i) {
402 if (numa_info[i].node_mem) {
403 return MIN(pow2floor(numa_info[i].node_mem),
404 machine->ram_size);
408 return machine->ram_size;
411 static void add_str(GString *s, const gchar *s1)
413 g_string_append_len(s, s1, strlen(s1) + 1);
416 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
417 hwaddr size)
419 uint32_t associativity[] = {
420 cpu_to_be32(0x4), /* length */
421 cpu_to_be32(0x0), cpu_to_be32(0x0),
422 cpu_to_be32(0x0), cpu_to_be32(nodeid)
424 char mem_name[32];
425 uint64_t mem_reg_property[2];
426 int off;
428 mem_reg_property[0] = cpu_to_be64(start);
429 mem_reg_property[1] = cpu_to_be64(size);
431 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
432 off = fdt_add_subnode(fdt, 0, mem_name);
433 _FDT(off);
434 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
435 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
436 sizeof(mem_reg_property))));
437 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
438 sizeof(associativity))));
439 return off;
442 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
444 MachineState *machine = MACHINE(spapr);
445 hwaddr mem_start, node_size;
446 int i, nb_nodes = nb_numa_nodes;
447 NodeInfo *nodes = numa_info;
448 NodeInfo ramnode;
450 /* No NUMA nodes, assume there is just one node with whole RAM */
451 if (!nb_numa_nodes) {
452 nb_nodes = 1;
453 ramnode.node_mem = machine->ram_size;
454 nodes = &ramnode;
457 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
458 if (!nodes[i].node_mem) {
459 continue;
461 if (mem_start >= machine->ram_size) {
462 node_size = 0;
463 } else {
464 node_size = nodes[i].node_mem;
465 if (node_size > machine->ram_size - mem_start) {
466 node_size = machine->ram_size - mem_start;
469 if (!mem_start) {
470 /* ppc_spapr_init() checks for rma_size <= node0_size already */
471 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
472 mem_start += spapr->rma_size;
473 node_size -= spapr->rma_size;
475 for ( ; node_size; ) {
476 hwaddr sizetmp = pow2floor(node_size);
478 /* mem_start != 0 here */
479 if (ctzl(mem_start) < ctzl(sizetmp)) {
480 sizetmp = 1ULL << ctzl(mem_start);
483 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
484 node_size -= sizetmp;
485 mem_start += sizetmp;
489 return 0;
492 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
493 sPAPRMachineState *spapr)
495 PowerPCCPU *cpu = POWERPC_CPU(cs);
496 CPUPPCState *env = &cpu->env;
497 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
498 int index = ppc_get_vcpu_dt_id(cpu);
499 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
500 0xffffffff, 0xffffffff};
501 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
502 : SPAPR_TIMEBASE_FREQ;
503 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
504 uint32_t page_sizes_prop[64];
505 size_t page_sizes_prop_size;
506 uint32_t vcpus_per_socket = smp_threads * smp_cores;
507 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
508 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
509 sPAPRDRConnector *drc;
510 int drc_index;
511 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
512 int i;
514 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
515 if (drc) {
516 drc_index = spapr_drc_index(drc);
517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
520 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
521 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
523 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
524 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
525 env->dcache_line_size)));
526 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
527 env->dcache_line_size)));
528 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
529 env->icache_line_size)));
530 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
531 env->icache_line_size)));
533 if (pcc->l1_dcache_size) {
534 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
535 pcc->l1_dcache_size)));
536 } else {
537 warn_report("Unknown L1 dcache size for cpu");
539 if (pcc->l1_icache_size) {
540 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
541 pcc->l1_icache_size)));
542 } else {
543 warn_report("Unknown L1 icache size for cpu");
546 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
547 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
548 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
549 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
550 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
551 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
553 if (env->spr_cb[SPR_PURR].oea_read) {
554 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
557 if (env->mmu_model & POWERPC_MMU_1TSEG) {
558 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
559 segs, sizeof(segs))));
562 /* Advertise VMX/VSX (vector extensions) if available
563 * 0 / no property == no vector extensions
564 * 1 == VMX / Altivec available
565 * 2 == VSX available */
566 if (env->insns_flags & PPC_ALTIVEC) {
567 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
569 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
572 /* Advertise DFP (Decimal Floating Point) if available
573 * 0 / no property == no DFP
574 * 1 == DFP available */
575 if (env->insns_flags2 & PPC2_DFP) {
576 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
579 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
580 sizeof(page_sizes_prop));
581 if (page_sizes_prop_size) {
582 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
583 page_sizes_prop, page_sizes_prop_size)));
586 spapr_populate_pa_features(env, fdt, offset, false);
588 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
589 cs->cpu_index / vcpus_per_socket)));
591 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
592 pft_size_prop, sizeof(pft_size_prop))));
594 if (nb_numa_nodes > 1) {
595 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
598 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
600 if (pcc->radix_page_info) {
601 for (i = 0; i < pcc->radix_page_info->count; i++) {
602 radix_AP_encodings[i] =
603 cpu_to_be32(pcc->radix_page_info->entries[i]);
605 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
606 radix_AP_encodings,
607 pcc->radix_page_info->count *
608 sizeof(radix_AP_encodings[0]))));
612 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
614 CPUState *cs;
615 int cpus_offset;
616 char *nodename;
617 int smt = kvmppc_smt_threads();
619 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
620 _FDT(cpus_offset);
621 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
622 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
625 * We walk the CPUs in reverse order to ensure that CPU DT nodes
626 * created by fdt_add_subnode() end up in the right order in FDT
627 * for the guest kernel the enumerate the CPUs correctly.
629 CPU_FOREACH_REVERSE(cs) {
630 PowerPCCPU *cpu = POWERPC_CPU(cs);
631 int index = ppc_get_vcpu_dt_id(cpu);
632 DeviceClass *dc = DEVICE_GET_CLASS(cs);
633 int offset;
635 if ((index % smt) != 0) {
636 continue;
639 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
640 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
641 g_free(nodename);
642 _FDT(offset);
643 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
649 * Adds ibm,dynamic-reconfiguration-memory node.
650 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
651 * of this device tree node.
653 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
655 MachineState *machine = MACHINE(spapr);
656 int ret, i, offset;
657 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
658 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
659 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
660 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
661 memory_region_size(&spapr->hotplug_memory.mr)) /
662 lmb_size;
663 uint32_t *int_buf, *cur_index, buf_len;
664 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
667 * Don't create the node if there is no hotpluggable memory
669 if (machine->ram_size == machine->maxram_size) {
670 return 0;
674 * Allocate enough buffer size to fit in ibm,dynamic-memory
675 * or ibm,associativity-lookup-arrays
677 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
678 * sizeof(uint32_t);
679 cur_index = int_buf = g_malloc0(buf_len);
681 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
683 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
684 sizeof(prop_lmb_size));
685 if (ret < 0) {
686 goto out;
689 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
690 if (ret < 0) {
691 goto out;
694 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
695 if (ret < 0) {
696 goto out;
699 /* ibm,dynamic-memory */
700 int_buf[0] = cpu_to_be32(nr_lmbs);
701 cur_index++;
702 for (i = 0; i < nr_lmbs; i++) {
703 uint64_t addr = i * lmb_size;
704 uint32_t *dynamic_memory = cur_index;
706 if (i >= hotplug_lmb_start) {
707 sPAPRDRConnector *drc;
709 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
710 g_assert(drc);
712 dynamic_memory[0] = cpu_to_be32(addr >> 32);
713 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
714 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
715 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
716 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
717 if (memory_region_present(get_system_memory(), addr)) {
718 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
719 } else {
720 dynamic_memory[5] = cpu_to_be32(0);
722 } else {
724 * LMB information for RMA, boot time RAM and gap b/n RAM and
725 * hotplug memory region -- all these are marked as reserved
726 * and as having no valid DRC.
728 dynamic_memory[0] = cpu_to_be32(addr >> 32);
729 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
730 dynamic_memory[2] = cpu_to_be32(0);
731 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
732 dynamic_memory[4] = cpu_to_be32(-1);
733 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
734 SPAPR_LMB_FLAGS_DRC_INVALID);
737 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
739 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
740 if (ret < 0) {
741 goto out;
744 /* ibm,associativity-lookup-arrays */
745 cur_index = int_buf;
746 int_buf[0] = cpu_to_be32(nr_nodes);
747 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
748 cur_index += 2;
749 for (i = 0; i < nr_nodes; i++) {
750 uint32_t associativity[] = {
751 cpu_to_be32(0x0),
752 cpu_to_be32(0x0),
753 cpu_to_be32(0x0),
754 cpu_to_be32(i)
756 memcpy(cur_index, associativity, sizeof(associativity));
757 cur_index += 4;
759 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
760 (cur_index - int_buf) * sizeof(uint32_t));
761 out:
762 g_free(int_buf);
763 return ret;
766 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
767 sPAPROptionVector *ov5_updates)
769 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
770 int ret = 0, offset;
772 /* Generate ibm,dynamic-reconfiguration-memory node if required */
773 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
774 g_assert(smc->dr_lmb_enabled);
775 ret = spapr_populate_drconf_memory(spapr, fdt);
776 if (ret) {
777 goto out;
781 /* /interrupt controller */
782 if (!spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)) {
783 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
786 offset = fdt_path_offset(fdt, "/chosen");
787 if (offset < 0) {
788 offset = fdt_add_subnode(fdt, 0, "chosen");
789 if (offset < 0) {
790 return offset;
793 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
794 "ibm,architecture-vec-5");
796 out:
797 return ret;
800 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
801 target_ulong addr, target_ulong size,
802 sPAPROptionVector *ov5_updates)
804 void *fdt, *fdt_skel;
805 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
807 size -= sizeof(hdr);
809 /* Create skeleton */
810 fdt_skel = g_malloc0(size);
811 _FDT((fdt_create(fdt_skel, size)));
812 _FDT((fdt_begin_node(fdt_skel, "")));
813 _FDT((fdt_end_node(fdt_skel)));
814 _FDT((fdt_finish(fdt_skel)));
815 fdt = g_malloc0(size);
816 _FDT((fdt_open_into(fdt_skel, fdt, size)));
817 g_free(fdt_skel);
819 /* Fixup cpu nodes */
820 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
822 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
823 return -1;
826 /* Pack resulting tree */
827 _FDT((fdt_pack(fdt)));
829 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
830 trace_spapr_cas_failed(size);
831 return -1;
834 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
835 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
836 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
837 g_free(fdt);
839 return 0;
842 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
844 int rtas;
845 GString *hypertas = g_string_sized_new(256);
846 GString *qemu_hypertas = g_string_sized_new(256);
847 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
848 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
849 memory_region_size(&spapr->hotplug_memory.mr);
850 uint32_t lrdr_capacity[] = {
851 cpu_to_be32(max_hotplug_addr >> 32),
852 cpu_to_be32(max_hotplug_addr & 0xffffffff),
853 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
854 cpu_to_be32(max_cpus / smp_threads),
857 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
859 /* hypertas */
860 add_str(hypertas, "hcall-pft");
861 add_str(hypertas, "hcall-term");
862 add_str(hypertas, "hcall-dabr");
863 add_str(hypertas, "hcall-interrupt");
864 add_str(hypertas, "hcall-tce");
865 add_str(hypertas, "hcall-vio");
866 add_str(hypertas, "hcall-splpar");
867 add_str(hypertas, "hcall-bulk");
868 add_str(hypertas, "hcall-set-mode");
869 add_str(hypertas, "hcall-sprg0");
870 add_str(hypertas, "hcall-copy");
871 add_str(hypertas, "hcall-debug");
872 add_str(qemu_hypertas, "hcall-memop1");
874 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
875 add_str(hypertas, "hcall-multi-tce");
877 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
878 hypertas->str, hypertas->len));
879 g_string_free(hypertas, TRUE);
880 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
881 qemu_hypertas->str, qemu_hypertas->len));
882 g_string_free(qemu_hypertas, TRUE);
884 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
885 refpoints, sizeof(refpoints)));
887 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
888 RTAS_ERROR_LOG_MAX));
889 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
890 RTAS_EVENT_SCAN_RATE));
892 if (msi_nonbroken) {
893 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
897 * According to PAPR, rtas ibm,os-term does not guarantee a return
898 * back to the guest cpu.
900 * While an additional ibm,extended-os-term property indicates
901 * that rtas call return will always occur. Set this property.
903 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
905 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
906 lrdr_capacity, sizeof(lrdr_capacity)));
908 spapr_dt_rtas_tokens(fdt, rtas);
911 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
912 * that the guest may request and thus the valid values for bytes 24..26 of
913 * option vector 5: */
914 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
916 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
918 char val[2 * 4] = {
919 23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */
920 24, 0x00, /* Hash/Radix, filled in below. */
921 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
922 26, 0x40, /* Radix options: GTSE == yes. */
925 if (kvm_enabled()) {
926 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
927 val[3] = 0x80; /* OV5_MMU_BOTH */
928 } else if (kvmppc_has_cap_mmu_radix()) {
929 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
930 } else {
931 val[3] = 0x00; /* Hash */
933 } else {
934 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
935 /* V3 MMU supports both hash and radix (with dynamic switching) */
936 val[3] = 0xC0;
937 } else {
938 /* Otherwise we can only do hash */
939 val[3] = 0x00;
942 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
943 val, sizeof(val)));
946 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
948 MachineState *machine = MACHINE(spapr);
949 int chosen;
950 const char *boot_device = machine->boot_order;
951 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
952 size_t cb = 0;
953 char *bootlist = get_boot_devices_list(&cb, true);
955 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
957 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
958 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
959 spapr->initrd_base));
960 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
961 spapr->initrd_base + spapr->initrd_size));
963 if (spapr->kernel_size) {
964 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
965 cpu_to_be64(spapr->kernel_size) };
967 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
968 &kprop, sizeof(kprop)));
969 if (spapr->kernel_le) {
970 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
973 if (boot_menu) {
974 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
976 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
977 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
978 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
980 if (cb && bootlist) {
981 int i;
983 for (i = 0; i < cb; i++) {
984 if (bootlist[i] == '\n') {
985 bootlist[i] = ' ';
988 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
991 if (boot_device && strlen(boot_device)) {
992 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
995 if (!spapr->has_graphics && stdout_path) {
996 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
999 spapr_dt_ov5_platform_support(fdt, chosen);
1001 g_free(stdout_path);
1002 g_free(bootlist);
1005 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1007 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1008 * KVM to work under pHyp with some guest co-operation */
1009 int hypervisor;
1010 uint8_t hypercall[16];
1012 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1013 /* indicate KVM hypercall interface */
1014 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1015 if (kvmppc_has_cap_fixup_hcalls()) {
1017 * Older KVM versions with older guest kernels were broken
1018 * with the magic page, don't allow the guest to map it.
1020 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1021 sizeof(hypercall))) {
1022 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1023 hypercall, sizeof(hypercall)));
1028 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1029 hwaddr rtas_addr,
1030 hwaddr rtas_size)
1032 MachineState *machine = MACHINE(qdev_get_machine());
1033 MachineClass *mc = MACHINE_GET_CLASS(machine);
1034 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1035 int ret;
1036 void *fdt;
1037 sPAPRPHBState *phb;
1038 char *buf;
1040 fdt = g_malloc0(FDT_MAX_SIZE);
1041 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1043 /* Root node */
1044 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1045 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1046 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1049 * Add info to guest to indentify which host is it being run on
1050 * and what is the uuid of the guest
1052 if (kvmppc_get_host_model(&buf)) {
1053 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1054 g_free(buf);
1056 if (kvmppc_get_host_serial(&buf)) {
1057 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1058 g_free(buf);
1061 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1063 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1064 if (qemu_uuid_set) {
1065 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1067 g_free(buf);
1069 if (qemu_get_vm_name()) {
1070 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1071 qemu_get_vm_name()));
1074 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1075 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1077 ret = spapr_populate_memory(spapr, fdt);
1078 if (ret < 0) {
1079 error_report("couldn't setup memory nodes in fdt");
1080 exit(1);
1083 /* /vdevice */
1084 spapr_dt_vdevice(spapr->vio_bus, fdt);
1086 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1087 ret = spapr_rng_populate_dt(fdt);
1088 if (ret < 0) {
1089 error_report("could not set up rng device in the fdt");
1090 exit(1);
1094 QLIST_FOREACH(phb, &spapr->phbs, list) {
1095 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1096 if (ret < 0) {
1097 error_report("couldn't setup PCI devices in fdt");
1098 exit(1);
1102 /* cpus */
1103 spapr_populate_cpus_dt_node(fdt, spapr);
1105 if (smc->dr_lmb_enabled) {
1106 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1109 if (mc->has_hotpluggable_cpus) {
1110 int offset = fdt_path_offset(fdt, "/cpus");
1111 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1112 SPAPR_DR_CONNECTOR_TYPE_CPU);
1113 if (ret < 0) {
1114 error_report("Couldn't set up CPU DR device tree properties");
1115 exit(1);
1119 /* /event-sources */
1120 spapr_dt_events(spapr, fdt);
1122 /* /rtas */
1123 spapr_dt_rtas(spapr, fdt);
1125 /* /chosen */
1126 spapr_dt_chosen(spapr, fdt);
1128 /* /hypervisor */
1129 if (kvm_enabled()) {
1130 spapr_dt_hypervisor(spapr, fdt);
1133 /* Build memory reserve map */
1134 if (spapr->kernel_size) {
1135 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1137 if (spapr->initrd_size) {
1138 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1141 /* ibm,client-architecture-support updates */
1142 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1143 if (ret < 0) {
1144 error_report("couldn't setup CAS properties fdt");
1145 exit(1);
1148 return fdt;
1151 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1153 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1156 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1157 PowerPCCPU *cpu)
1159 CPUPPCState *env = &cpu->env;
1161 /* The TCG path should also be holding the BQL at this point */
1162 g_assert(qemu_mutex_iothread_locked());
1164 if (msr_pr) {
1165 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1166 env->gpr[3] = H_PRIVILEGE;
1167 } else {
1168 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1172 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1174 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1176 return spapr->patb_entry;
1179 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1180 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1181 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1182 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1183 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1186 * Get the fd to access the kernel htab, re-opening it if necessary
1188 static int get_htab_fd(sPAPRMachineState *spapr)
1190 if (spapr->htab_fd >= 0) {
1191 return spapr->htab_fd;
1194 spapr->htab_fd = kvmppc_get_htab_fd(false);
1195 if (spapr->htab_fd < 0) {
1196 error_report("Unable to open fd for reading hash table from KVM: %s",
1197 strerror(errno));
1200 return spapr->htab_fd;
1203 void close_htab_fd(sPAPRMachineState *spapr)
1205 if (spapr->htab_fd >= 0) {
1206 close(spapr->htab_fd);
1208 spapr->htab_fd = -1;
1211 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1213 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1215 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1218 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1219 hwaddr ptex, int n)
1221 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1222 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1224 if (!spapr->htab) {
1226 * HTAB is controlled by KVM. Fetch into temporary buffer
1228 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1229 kvmppc_read_hptes(hptes, ptex, n);
1230 return hptes;
1234 * HTAB is controlled by QEMU. Just point to the internally
1235 * accessible PTEG.
1237 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1240 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1241 const ppc_hash_pte64_t *hptes,
1242 hwaddr ptex, int n)
1244 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1246 if (!spapr->htab) {
1247 g_free((void *)hptes);
1250 /* Nothing to do for qemu managed HPT */
1253 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1254 uint64_t pte0, uint64_t pte1)
1256 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1257 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1259 if (!spapr->htab) {
1260 kvmppc_write_hpte(ptex, pte0, pte1);
1261 } else {
1262 stq_p(spapr->htab + offset, pte0);
1263 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1267 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1269 int shift;
1271 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1272 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1273 * that's much more than is needed for Linux guests */
1274 shift = ctz64(pow2ceil(ramsize)) - 7;
1275 shift = MAX(shift, 18); /* Minimum architected size */
1276 shift = MIN(shift, 46); /* Maximum architected size */
1277 return shift;
1280 void spapr_free_hpt(sPAPRMachineState *spapr)
1282 g_free(spapr->htab);
1283 spapr->htab = NULL;
1284 spapr->htab_shift = 0;
1285 close_htab_fd(spapr);
1288 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1289 Error **errp)
1291 long rc;
1293 /* Clean up any HPT info from a previous boot */
1294 spapr_free_hpt(spapr);
1296 rc = kvmppc_reset_htab(shift);
1297 if (rc < 0) {
1298 /* kernel-side HPT needed, but couldn't allocate one */
1299 error_setg_errno(errp, errno,
1300 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1301 shift);
1302 /* This is almost certainly fatal, but if the caller really
1303 * wants to carry on with shift == 0, it's welcome to try */
1304 } else if (rc > 0) {
1305 /* kernel-side HPT allocated */
1306 if (rc != shift) {
1307 error_setg(errp,
1308 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1309 shift, rc);
1312 spapr->htab_shift = shift;
1313 spapr->htab = NULL;
1314 } else {
1315 /* kernel-side HPT not needed, allocate in userspace instead */
1316 size_t size = 1ULL << shift;
1317 int i;
1319 spapr->htab = qemu_memalign(size, size);
1320 if (!spapr->htab) {
1321 error_setg_errno(errp, errno,
1322 "Could not allocate HPT of order %d", shift);
1323 return;
1326 memset(spapr->htab, 0, size);
1327 spapr->htab_shift = shift;
1329 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1330 DIRTY_HPTE(HPTE(spapr->htab, i));
1335 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1337 spapr_reallocate_hpt(spapr,
1338 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1339 &error_fatal);
1340 if (spapr->vrma_adjust) {
1341 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1342 spapr->htab_shift);
1344 /* We're setting up a hash table, so that means we're not radix */
1345 spapr->patb_entry = 0;
1348 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1350 bool matched = false;
1352 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1353 matched = true;
1356 if (!matched) {
1357 error_report("Device %s is not supported by this machine yet.",
1358 qdev_fw_name(DEVICE(sbdev)));
1359 exit(1);
1363 static void ppc_spapr_reset(void)
1365 MachineState *machine = MACHINE(qdev_get_machine());
1366 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1367 PowerPCCPU *first_ppc_cpu;
1368 uint32_t rtas_limit;
1369 hwaddr rtas_addr, fdt_addr;
1370 void *fdt;
1371 int rc;
1373 /* Check for unknown sysbus devices */
1374 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1376 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1377 /* If using KVM with radix mode available, VCPUs can be started
1378 * without a HPT because KVM will start them in radix mode.
1379 * Set the GR bit in PATB so that we know there is no HPT. */
1380 spapr->patb_entry = PATBE1_GR;
1381 } else {
1382 spapr_setup_hpt_and_vrma(spapr);
1385 qemu_devices_reset();
1388 * We place the device tree and RTAS just below either the top of the RMA,
1389 * or just below 2GB, whichever is lowere, so that it can be
1390 * processed with 32-bit real mode code if necessary
1392 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1393 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1394 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1396 /* if this reset wasn't generated by CAS, we should reset our
1397 * negotiated options and start from scratch */
1398 if (!spapr->cas_reboot) {
1399 spapr_ovec_cleanup(spapr->ov5_cas);
1400 spapr->ov5_cas = spapr_ovec_new();
1402 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1405 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1407 spapr_load_rtas(spapr, fdt, rtas_addr);
1409 rc = fdt_pack(fdt);
1411 /* Should only fail if we've built a corrupted tree */
1412 assert(rc == 0);
1414 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1415 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1416 fdt_totalsize(fdt), FDT_MAX_SIZE);
1417 exit(1);
1420 /* Load the fdt */
1421 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1422 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1423 g_free(fdt);
1425 /* Set up the entry state */
1426 first_ppc_cpu = POWERPC_CPU(first_cpu);
1427 first_ppc_cpu->env.gpr[3] = fdt_addr;
1428 first_ppc_cpu->env.gpr[5] = 0;
1429 first_cpu->halted = 0;
1430 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1432 spapr->cas_reboot = false;
1435 static void spapr_create_nvram(sPAPRMachineState *spapr)
1437 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1438 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1440 if (dinfo) {
1441 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1442 &error_fatal);
1445 qdev_init_nofail(dev);
1447 spapr->nvram = (struct sPAPRNVRAM *)dev;
1450 static void spapr_rtc_create(sPAPRMachineState *spapr)
1452 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1453 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1454 &error_fatal);
1455 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1456 &error_fatal);
1457 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1458 "date", &error_fatal);
1461 /* Returns whether we want to use VGA or not */
1462 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1464 switch (vga_interface_type) {
1465 case VGA_NONE:
1466 return false;
1467 case VGA_DEVICE:
1468 return true;
1469 case VGA_STD:
1470 case VGA_VIRTIO:
1471 return pci_vga_init(pci_bus) != NULL;
1472 default:
1473 error_setg(errp,
1474 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1475 return false;
1479 static int spapr_post_load(void *opaque, int version_id)
1481 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1482 int err = 0;
1484 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1485 CPUState *cs;
1486 CPU_FOREACH(cs) {
1487 PowerPCCPU *cpu = POWERPC_CPU(cs);
1488 icp_resend(ICP(cpu->intc));
1492 /* In earlier versions, there was no separate qdev for the PAPR
1493 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1494 * So when migrating from those versions, poke the incoming offset
1495 * value into the RTC device */
1496 if (version_id < 3) {
1497 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1500 if (spapr->patb_entry) {
1501 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1502 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1503 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1505 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1506 if (err) {
1507 error_report("Process table config unsupported by the host");
1508 return -EINVAL;
1512 return err;
1515 static bool version_before_3(void *opaque, int version_id)
1517 return version_id < 3;
1520 static bool spapr_pending_events_needed(void *opaque)
1522 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1523 return !QTAILQ_EMPTY(&spapr->pending_events);
1526 static const VMStateDescription vmstate_spapr_event_entry = {
1527 .name = "spapr_event_log_entry",
1528 .version_id = 1,
1529 .minimum_version_id = 1,
1530 .fields = (VMStateField[]) {
1531 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1532 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1533 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1534 NULL, extended_length),
1535 VMSTATE_END_OF_LIST()
1539 static const VMStateDescription vmstate_spapr_pending_events = {
1540 .name = "spapr_pending_events",
1541 .version_id = 1,
1542 .minimum_version_id = 1,
1543 .needed = spapr_pending_events_needed,
1544 .fields = (VMStateField[]) {
1545 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1546 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1547 VMSTATE_END_OF_LIST()
1551 static bool spapr_ov5_cas_needed(void *opaque)
1553 sPAPRMachineState *spapr = opaque;
1554 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1555 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1556 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1557 bool cas_needed;
1559 /* Prior to the introduction of sPAPROptionVector, we had two option
1560 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1561 * Both of these options encode machine topology into the device-tree
1562 * in such a way that the now-booted OS should still be able to interact
1563 * appropriately with QEMU regardless of what options were actually
1564 * negotiatied on the source side.
1566 * As such, we can avoid migrating the CAS-negotiated options if these
1567 * are the only options available on the current machine/platform.
1568 * Since these are the only options available for pseries-2.7 and
1569 * earlier, this allows us to maintain old->new/new->old migration
1570 * compatibility.
1572 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1573 * via default pseries-2.8 machines and explicit command-line parameters.
1574 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1575 * of the actual CAS-negotiated values to continue working properly. For
1576 * example, availability of memory unplug depends on knowing whether
1577 * OV5_HP_EVT was negotiated via CAS.
1579 * Thus, for any cases where the set of available CAS-negotiatable
1580 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1581 * include the CAS-negotiated options in the migration stream.
1583 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1584 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1586 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1587 * the mask itself since in the future it's possible "legacy" bits may be
1588 * removed via machine options, which could generate a false positive
1589 * that breaks migration.
1591 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1592 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1594 spapr_ovec_cleanup(ov5_mask);
1595 spapr_ovec_cleanup(ov5_legacy);
1596 spapr_ovec_cleanup(ov5_removed);
1598 return cas_needed;
1601 static const VMStateDescription vmstate_spapr_ov5_cas = {
1602 .name = "spapr_option_vector_ov5_cas",
1603 .version_id = 1,
1604 .minimum_version_id = 1,
1605 .needed = spapr_ov5_cas_needed,
1606 .fields = (VMStateField[]) {
1607 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1608 vmstate_spapr_ovec, sPAPROptionVector),
1609 VMSTATE_END_OF_LIST()
1613 static bool spapr_patb_entry_needed(void *opaque)
1615 sPAPRMachineState *spapr = opaque;
1617 return !!spapr->patb_entry;
1620 static const VMStateDescription vmstate_spapr_patb_entry = {
1621 .name = "spapr_patb_entry",
1622 .version_id = 1,
1623 .minimum_version_id = 1,
1624 .needed = spapr_patb_entry_needed,
1625 .fields = (VMStateField[]) {
1626 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1627 VMSTATE_END_OF_LIST()
1631 static const VMStateDescription vmstate_spapr = {
1632 .name = "spapr",
1633 .version_id = 3,
1634 .minimum_version_id = 1,
1635 .post_load = spapr_post_load,
1636 .fields = (VMStateField[]) {
1637 /* used to be @next_irq */
1638 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1640 /* RTC offset */
1641 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1643 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1644 VMSTATE_END_OF_LIST()
1646 .subsections = (const VMStateDescription*[]) {
1647 &vmstate_spapr_ov5_cas,
1648 &vmstate_spapr_patb_entry,
1649 &vmstate_spapr_pending_events,
1650 NULL
1654 static int htab_save_setup(QEMUFile *f, void *opaque)
1656 sPAPRMachineState *spapr = opaque;
1658 /* "Iteration" header */
1659 if (!spapr->htab_shift) {
1660 qemu_put_be32(f, -1);
1661 } else {
1662 qemu_put_be32(f, spapr->htab_shift);
1665 if (spapr->htab) {
1666 spapr->htab_save_index = 0;
1667 spapr->htab_first_pass = true;
1668 } else {
1669 if (spapr->htab_shift) {
1670 assert(kvm_enabled());
1675 return 0;
1678 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1679 int64_t max_ns)
1681 bool has_timeout = max_ns != -1;
1682 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1683 int index = spapr->htab_save_index;
1684 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1686 assert(spapr->htab_first_pass);
1688 do {
1689 int chunkstart;
1691 /* Consume invalid HPTEs */
1692 while ((index < htabslots)
1693 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1694 CLEAN_HPTE(HPTE(spapr->htab, index));
1695 index++;
1698 /* Consume valid HPTEs */
1699 chunkstart = index;
1700 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1701 && HPTE_VALID(HPTE(spapr->htab, index))) {
1702 CLEAN_HPTE(HPTE(spapr->htab, index));
1703 index++;
1706 if (index > chunkstart) {
1707 int n_valid = index - chunkstart;
1709 qemu_put_be32(f, chunkstart);
1710 qemu_put_be16(f, n_valid);
1711 qemu_put_be16(f, 0);
1712 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1713 HASH_PTE_SIZE_64 * n_valid);
1715 if (has_timeout &&
1716 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1717 break;
1720 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1722 if (index >= htabslots) {
1723 assert(index == htabslots);
1724 index = 0;
1725 spapr->htab_first_pass = false;
1727 spapr->htab_save_index = index;
1730 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1731 int64_t max_ns)
1733 bool final = max_ns < 0;
1734 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1735 int examined = 0, sent = 0;
1736 int index = spapr->htab_save_index;
1737 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1739 assert(!spapr->htab_first_pass);
1741 do {
1742 int chunkstart, invalidstart;
1744 /* Consume non-dirty HPTEs */
1745 while ((index < htabslots)
1746 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1747 index++;
1748 examined++;
1751 chunkstart = index;
1752 /* Consume valid dirty HPTEs */
1753 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1754 && HPTE_DIRTY(HPTE(spapr->htab, index))
1755 && HPTE_VALID(HPTE(spapr->htab, index))) {
1756 CLEAN_HPTE(HPTE(spapr->htab, index));
1757 index++;
1758 examined++;
1761 invalidstart = index;
1762 /* Consume invalid dirty HPTEs */
1763 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1764 && HPTE_DIRTY(HPTE(spapr->htab, index))
1765 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1766 CLEAN_HPTE(HPTE(spapr->htab, index));
1767 index++;
1768 examined++;
1771 if (index > chunkstart) {
1772 int n_valid = invalidstart - chunkstart;
1773 int n_invalid = index - invalidstart;
1775 qemu_put_be32(f, chunkstart);
1776 qemu_put_be16(f, n_valid);
1777 qemu_put_be16(f, n_invalid);
1778 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1779 HASH_PTE_SIZE_64 * n_valid);
1780 sent += index - chunkstart;
1782 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1783 break;
1787 if (examined >= htabslots) {
1788 break;
1791 if (index >= htabslots) {
1792 assert(index == htabslots);
1793 index = 0;
1795 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1797 if (index >= htabslots) {
1798 assert(index == htabslots);
1799 index = 0;
1802 spapr->htab_save_index = index;
1804 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1807 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1808 #define MAX_KVM_BUF_SIZE 2048
1810 static int htab_save_iterate(QEMUFile *f, void *opaque)
1812 sPAPRMachineState *spapr = opaque;
1813 int fd;
1814 int rc = 0;
1816 /* Iteration header */
1817 if (!spapr->htab_shift) {
1818 qemu_put_be32(f, -1);
1819 return 0;
1820 } else {
1821 qemu_put_be32(f, 0);
1824 if (!spapr->htab) {
1825 assert(kvm_enabled());
1827 fd = get_htab_fd(spapr);
1828 if (fd < 0) {
1829 return fd;
1832 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1833 if (rc < 0) {
1834 return rc;
1836 } else if (spapr->htab_first_pass) {
1837 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1838 } else {
1839 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1842 /* End marker */
1843 qemu_put_be32(f, 0);
1844 qemu_put_be16(f, 0);
1845 qemu_put_be16(f, 0);
1847 return rc;
1850 static int htab_save_complete(QEMUFile *f, void *opaque)
1852 sPAPRMachineState *spapr = opaque;
1853 int fd;
1855 /* Iteration header */
1856 if (!spapr->htab_shift) {
1857 qemu_put_be32(f, -1);
1858 return 0;
1859 } else {
1860 qemu_put_be32(f, 0);
1863 if (!spapr->htab) {
1864 int rc;
1866 assert(kvm_enabled());
1868 fd = get_htab_fd(spapr);
1869 if (fd < 0) {
1870 return fd;
1873 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1874 if (rc < 0) {
1875 return rc;
1877 } else {
1878 if (spapr->htab_first_pass) {
1879 htab_save_first_pass(f, spapr, -1);
1881 htab_save_later_pass(f, spapr, -1);
1884 /* End marker */
1885 qemu_put_be32(f, 0);
1886 qemu_put_be16(f, 0);
1887 qemu_put_be16(f, 0);
1889 return 0;
1892 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1894 sPAPRMachineState *spapr = opaque;
1895 uint32_t section_hdr;
1896 int fd = -1;
1898 if (version_id < 1 || version_id > 1) {
1899 error_report("htab_load() bad version");
1900 return -EINVAL;
1903 section_hdr = qemu_get_be32(f);
1905 if (section_hdr == -1) {
1906 spapr_free_hpt(spapr);
1907 return 0;
1910 if (section_hdr) {
1911 Error *local_err = NULL;
1913 /* First section gives the htab size */
1914 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1915 if (local_err) {
1916 error_report_err(local_err);
1917 return -EINVAL;
1919 return 0;
1922 if (!spapr->htab) {
1923 assert(kvm_enabled());
1925 fd = kvmppc_get_htab_fd(true);
1926 if (fd < 0) {
1927 error_report("Unable to open fd to restore KVM hash table: %s",
1928 strerror(errno));
1932 while (true) {
1933 uint32_t index;
1934 uint16_t n_valid, n_invalid;
1936 index = qemu_get_be32(f);
1937 n_valid = qemu_get_be16(f);
1938 n_invalid = qemu_get_be16(f);
1940 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1941 /* End of Stream */
1942 break;
1945 if ((index + n_valid + n_invalid) >
1946 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1947 /* Bad index in stream */
1948 error_report(
1949 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1950 index, n_valid, n_invalid, spapr->htab_shift);
1951 return -EINVAL;
1954 if (spapr->htab) {
1955 if (n_valid) {
1956 qemu_get_buffer(f, HPTE(spapr->htab, index),
1957 HASH_PTE_SIZE_64 * n_valid);
1959 if (n_invalid) {
1960 memset(HPTE(spapr->htab, index + n_valid), 0,
1961 HASH_PTE_SIZE_64 * n_invalid);
1963 } else {
1964 int rc;
1966 assert(fd >= 0);
1968 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1969 if (rc < 0) {
1970 return rc;
1975 if (!spapr->htab) {
1976 assert(fd >= 0);
1977 close(fd);
1980 return 0;
1983 static void htab_save_cleanup(void *opaque)
1985 sPAPRMachineState *spapr = opaque;
1987 close_htab_fd(spapr);
1990 static SaveVMHandlers savevm_htab_handlers = {
1991 .save_setup = htab_save_setup,
1992 .save_live_iterate = htab_save_iterate,
1993 .save_live_complete_precopy = htab_save_complete,
1994 .save_cleanup = htab_save_cleanup,
1995 .load_state = htab_load,
1998 static void spapr_boot_set(void *opaque, const char *boot_device,
1999 Error **errp)
2001 MachineState *machine = MACHINE(qdev_get_machine());
2002 machine->boot_order = g_strdup(boot_device);
2005 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2007 MachineState *machine = MACHINE(spapr);
2008 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2009 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2010 int i;
2012 for (i = 0; i < nr_lmbs; i++) {
2013 uint64_t addr;
2015 addr = i * lmb_size + spapr->hotplug_memory.base;
2016 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2017 addr / lmb_size);
2022 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2023 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2024 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2026 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2028 int i;
2030 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2031 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2032 " is not aligned to %llu MiB",
2033 machine->ram_size,
2034 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2035 return;
2038 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2039 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2040 " is not aligned to %llu MiB",
2041 machine->ram_size,
2042 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2043 return;
2046 for (i = 0; i < nb_numa_nodes; i++) {
2047 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2048 error_setg(errp,
2049 "Node %d memory size 0x%" PRIx64
2050 " is not aligned to %llu MiB",
2051 i, numa_info[i].node_mem,
2052 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2053 return;
2058 /* find cpu slot in machine->possible_cpus by core_id */
2059 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2061 int index = id / smp_threads;
2063 if (index >= ms->possible_cpus->len) {
2064 return NULL;
2066 if (idx) {
2067 *idx = index;
2069 return &ms->possible_cpus->cpus[index];
2072 static void spapr_init_cpus(sPAPRMachineState *spapr)
2074 MachineState *machine = MACHINE(spapr);
2075 MachineClass *mc = MACHINE_GET_CLASS(machine);
2076 char *type = spapr_get_cpu_core_type(machine->cpu_model);
2077 int smt = kvmppc_smt_threads();
2078 const CPUArchIdList *possible_cpus;
2079 int boot_cores_nr = smp_cpus / smp_threads;
2080 int i;
2082 if (!type) {
2083 error_report("Unable to find sPAPR CPU Core definition");
2084 exit(1);
2087 possible_cpus = mc->possible_cpu_arch_ids(machine);
2088 if (mc->has_hotpluggable_cpus) {
2089 if (smp_cpus % smp_threads) {
2090 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2091 smp_cpus, smp_threads);
2092 exit(1);
2094 if (max_cpus % smp_threads) {
2095 error_report("max_cpus (%u) must be multiple of threads (%u)",
2096 max_cpus, smp_threads);
2097 exit(1);
2099 } else {
2100 if (max_cpus != smp_cpus) {
2101 error_report("This machine version does not support CPU hotplug");
2102 exit(1);
2104 boot_cores_nr = possible_cpus->len;
2107 for (i = 0; i < possible_cpus->len; i++) {
2108 int core_id = i * smp_threads;
2110 if (mc->has_hotpluggable_cpus) {
2111 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2112 (core_id / smp_threads) * smt);
2115 if (i < boot_cores_nr) {
2116 Object *core = object_new(type);
2117 int nr_threads = smp_threads;
2119 /* Handle the partially filled core for older machine types */
2120 if ((i + 1) * smp_threads >= smp_cpus) {
2121 nr_threads = smp_cpus - i * smp_threads;
2124 object_property_set_int(core, nr_threads, "nr-threads",
2125 &error_fatal);
2126 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2127 &error_fatal);
2128 object_property_set_bool(core, true, "realized", &error_fatal);
2131 g_free(type);
2134 /* pSeries LPAR / sPAPR hardware init */
2135 static void ppc_spapr_init(MachineState *machine)
2137 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2138 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2139 const char *kernel_filename = machine->kernel_filename;
2140 const char *initrd_filename = machine->initrd_filename;
2141 PCIHostState *phb;
2142 int i;
2143 MemoryRegion *sysmem = get_system_memory();
2144 MemoryRegion *ram = g_new(MemoryRegion, 1);
2145 MemoryRegion *rma_region;
2146 void *rma = NULL;
2147 hwaddr rma_alloc_size;
2148 hwaddr node0_size = spapr_node0_size();
2149 long load_limit, fw_size;
2150 char *filename;
2152 msi_nonbroken = true;
2154 QLIST_INIT(&spapr->phbs);
2155 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2157 /* Allocate RMA if necessary */
2158 rma_alloc_size = kvmppc_alloc_rma(&rma);
2160 if (rma_alloc_size == -1) {
2161 error_report("Unable to create RMA");
2162 exit(1);
2165 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2166 spapr->rma_size = rma_alloc_size;
2167 } else {
2168 spapr->rma_size = node0_size;
2170 /* With KVM, we don't actually know whether KVM supports an
2171 * unbounded RMA (PR KVM) or is limited by the hash table size
2172 * (HV KVM using VRMA), so we always assume the latter
2174 * In that case, we also limit the initial allocations for RTAS
2175 * etc... to 256M since we have no way to know what the VRMA size
2176 * is going to be as it depends on the size of the hash table
2177 * isn't determined yet.
2179 if (kvm_enabled()) {
2180 spapr->vrma_adjust = 1;
2181 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2184 /* Actually we don't support unbounded RMA anymore since we
2185 * added proper emulation of HV mode. The max we can get is
2186 * 16G which also happens to be what we configure for PAPR
2187 * mode so make sure we don't do anything bigger than that
2189 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2192 if (spapr->rma_size > node0_size) {
2193 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2194 spapr->rma_size);
2195 exit(1);
2198 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2199 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2201 /* Set up Interrupt Controller before we create the VCPUs */
2202 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2204 /* Set up containers for ibm,client-set-architecture negotiated options */
2205 spapr->ov5 = spapr_ovec_new();
2206 spapr->ov5_cas = spapr_ovec_new();
2208 if (smc->dr_lmb_enabled) {
2209 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2210 spapr_validate_node_memory(machine, &error_fatal);
2213 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2214 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2215 /* KVM and TCG always allow GTSE with radix... */
2216 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2218 /* ... but not with hash (currently). */
2220 /* advertise support for dedicated HP event source to guests */
2221 if (spapr->use_hotplug_event_source) {
2222 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2225 /* init CPUs */
2226 if (machine->cpu_model == NULL) {
2227 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2230 spapr_cpu_parse_features(spapr);
2232 spapr_init_cpus(spapr);
2234 if (kvm_enabled()) {
2235 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2236 kvmppc_enable_logical_ci_hcalls();
2237 kvmppc_enable_set_mode_hcall();
2239 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2240 kvmppc_enable_clear_ref_mod_hcalls();
2243 /* allocate RAM */
2244 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2245 machine->ram_size);
2246 memory_region_add_subregion(sysmem, 0, ram);
2248 if (rma_alloc_size && rma) {
2249 rma_region = g_new(MemoryRegion, 1);
2250 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2251 rma_alloc_size, rma);
2252 vmstate_register_ram_global(rma_region);
2253 memory_region_add_subregion(sysmem, 0, rma_region);
2256 /* initialize hotplug memory address space */
2257 if (machine->ram_size < machine->maxram_size) {
2258 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2260 * Limit the number of hotpluggable memory slots to half the number
2261 * slots that KVM supports, leaving the other half for PCI and other
2262 * devices. However ensure that number of slots doesn't drop below 32.
2264 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2265 SPAPR_MAX_RAM_SLOTS;
2267 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2268 max_memslots = SPAPR_MAX_RAM_SLOTS;
2270 if (machine->ram_slots > max_memslots) {
2271 error_report("Specified number of memory slots %"
2272 PRIu64" exceeds max supported %d",
2273 machine->ram_slots, max_memslots);
2274 exit(1);
2277 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2278 SPAPR_HOTPLUG_MEM_ALIGN);
2279 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2280 "hotplug-memory", hotplug_mem_size);
2281 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2282 &spapr->hotplug_memory.mr);
2285 if (smc->dr_lmb_enabled) {
2286 spapr_create_lmb_dr_connectors(spapr);
2289 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2290 if (!filename) {
2291 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2292 exit(1);
2294 spapr->rtas_size = get_image_size(filename);
2295 if (spapr->rtas_size < 0) {
2296 error_report("Could not get size of LPAR rtas '%s'", filename);
2297 exit(1);
2299 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2300 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2301 error_report("Could not load LPAR rtas '%s'", filename);
2302 exit(1);
2304 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2305 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2306 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2307 exit(1);
2309 g_free(filename);
2311 /* Set up RTAS event infrastructure */
2312 spapr_events_init(spapr);
2314 /* Set up the RTC RTAS interfaces */
2315 spapr_rtc_create(spapr);
2317 /* Set up VIO bus */
2318 spapr->vio_bus = spapr_vio_bus_init();
2320 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2321 if (serial_hds[i]) {
2322 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2326 /* We always have at least the nvram device on VIO */
2327 spapr_create_nvram(spapr);
2329 /* Set up PCI */
2330 spapr_pci_rtas_init();
2332 phb = spapr_create_phb(spapr, 0);
2334 for (i = 0; i < nb_nics; i++) {
2335 NICInfo *nd = &nd_table[i];
2337 if (!nd->model) {
2338 nd->model = g_strdup("ibmveth");
2341 if (strcmp(nd->model, "ibmveth") == 0) {
2342 spapr_vlan_create(spapr->vio_bus, nd);
2343 } else {
2344 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2348 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2349 spapr_vscsi_create(spapr->vio_bus);
2352 /* Graphics */
2353 if (spapr_vga_init(phb->bus, &error_fatal)) {
2354 spapr->has_graphics = true;
2355 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2358 if (machine->usb) {
2359 if (smc->use_ohci_by_default) {
2360 pci_create_simple(phb->bus, -1, "pci-ohci");
2361 } else {
2362 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2365 if (spapr->has_graphics) {
2366 USBBus *usb_bus = usb_bus_find(-1);
2368 usb_create_simple(usb_bus, "usb-kbd");
2369 usb_create_simple(usb_bus, "usb-mouse");
2373 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2374 error_report(
2375 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2376 MIN_RMA_SLOF);
2377 exit(1);
2380 if (kernel_filename) {
2381 uint64_t lowaddr = 0;
2383 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2384 NULL, NULL, &lowaddr, NULL, 1,
2385 PPC_ELF_MACHINE, 0, 0);
2386 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2387 spapr->kernel_size = load_elf(kernel_filename,
2388 translate_kernel_address, NULL, NULL,
2389 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2390 0, 0);
2391 spapr->kernel_le = spapr->kernel_size > 0;
2393 if (spapr->kernel_size < 0) {
2394 error_report("error loading %s: %s", kernel_filename,
2395 load_elf_strerror(spapr->kernel_size));
2396 exit(1);
2399 /* load initrd */
2400 if (initrd_filename) {
2401 /* Try to locate the initrd in the gap between the kernel
2402 * and the firmware. Add a bit of space just in case
2404 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2405 + 0x1ffff) & ~0xffff;
2406 spapr->initrd_size = load_image_targphys(initrd_filename,
2407 spapr->initrd_base,
2408 load_limit
2409 - spapr->initrd_base);
2410 if (spapr->initrd_size < 0) {
2411 error_report("could not load initial ram disk '%s'",
2412 initrd_filename);
2413 exit(1);
2418 if (bios_name == NULL) {
2419 bios_name = FW_FILE_NAME;
2421 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2422 if (!filename) {
2423 error_report("Could not find LPAR firmware '%s'", bios_name);
2424 exit(1);
2426 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2427 if (fw_size <= 0) {
2428 error_report("Could not load LPAR firmware '%s'", filename);
2429 exit(1);
2431 g_free(filename);
2433 /* FIXME: Should register things through the MachineState's qdev
2434 * interface, this is a legacy from the sPAPREnvironment structure
2435 * which predated MachineState but had a similar function */
2436 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2437 register_savevm_live(NULL, "spapr/htab", -1, 1,
2438 &savevm_htab_handlers, spapr);
2440 qemu_register_boot_set(spapr_boot_set, spapr);
2442 if (kvm_enabled()) {
2443 /* to stop and start vmclock */
2444 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2445 &spapr->tb);
2447 kvmppc_spapr_enable_inkernel_multitce();
2451 static int spapr_kvm_type(const char *vm_type)
2453 if (!vm_type) {
2454 return 0;
2457 if (!strcmp(vm_type, "HV")) {
2458 return 1;
2461 if (!strcmp(vm_type, "PR")) {
2462 return 2;
2465 error_report("Unknown kvm-type specified '%s'", vm_type);
2466 exit(1);
2470 * Implementation of an interface to adjust firmware path
2471 * for the bootindex property handling.
2473 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2474 DeviceState *dev)
2476 #define CAST(type, obj, name) \
2477 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2478 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2479 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2480 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2482 if (d) {
2483 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2484 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2485 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2487 if (spapr) {
2489 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2490 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2491 * in the top 16 bits of the 64-bit LUN
2493 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2494 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2495 (uint64_t)id << 48);
2496 } else if (virtio) {
2498 * We use SRP luns of the form 01000000 | (target << 8) | lun
2499 * in the top 32 bits of the 64-bit LUN
2500 * Note: the quote above is from SLOF and it is wrong,
2501 * the actual binding is:
2502 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2504 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2505 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2506 (uint64_t)id << 32);
2507 } else if (usb) {
2509 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2510 * in the top 32 bits of the 64-bit LUN
2512 unsigned usb_port = atoi(usb->port->path);
2513 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2514 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2515 (uint64_t)id << 32);
2520 * SLOF probes the USB devices, and if it recognizes that the device is a
2521 * storage device, it changes its name to "storage" instead of "usb-host",
2522 * and additionally adds a child node for the SCSI LUN, so the correct
2523 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2525 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2526 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2527 if (usb_host_dev_is_scsi_storage(usbdev)) {
2528 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2532 if (phb) {
2533 /* Replace "pci" with "pci@800000020000000" */
2534 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2537 if (vsc) {
2538 /* Same logic as virtio above */
2539 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2540 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2543 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2544 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2545 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2546 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2549 return NULL;
2552 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2554 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2556 return g_strdup(spapr->kvm_type);
2559 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2561 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2563 g_free(spapr->kvm_type);
2564 spapr->kvm_type = g_strdup(value);
2567 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2569 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2571 return spapr->use_hotplug_event_source;
2574 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2575 Error **errp)
2577 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2579 spapr->use_hotplug_event_source = value;
2582 static void spapr_machine_initfn(Object *obj)
2584 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2586 spapr->htab_fd = -1;
2587 spapr->use_hotplug_event_source = true;
2588 object_property_add_str(obj, "kvm-type",
2589 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2590 object_property_set_description(obj, "kvm-type",
2591 "Specifies the KVM virtualization mode (HV, PR)",
2592 NULL);
2593 object_property_add_bool(obj, "modern-hotplug-events",
2594 spapr_get_modern_hotplug_events,
2595 spapr_set_modern_hotplug_events,
2596 NULL);
2597 object_property_set_description(obj, "modern-hotplug-events",
2598 "Use dedicated hotplug event mechanism in"
2599 " place of standard EPOW events when possible"
2600 " (required for memory hot-unplug support)",
2601 NULL);
2603 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2604 "Maximum permitted CPU compatibility mode",
2605 &error_fatal);
2608 static void spapr_machine_finalizefn(Object *obj)
2610 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2612 g_free(spapr->kvm_type);
2615 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2617 cpu_synchronize_state(cs);
2618 ppc_cpu_do_system_reset(cs);
2621 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2623 CPUState *cs;
2625 CPU_FOREACH(cs) {
2626 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2630 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2631 uint32_t node, bool dedicated_hp_event_source,
2632 Error **errp)
2634 sPAPRDRConnector *drc;
2635 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2636 int i, fdt_offset, fdt_size;
2637 void *fdt;
2638 uint64_t addr = addr_start;
2639 bool hotplugged = spapr_drc_hotplugged(dev);
2640 Error *local_err = NULL;
2642 for (i = 0; i < nr_lmbs; i++) {
2643 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2644 addr / SPAPR_MEMORY_BLOCK_SIZE);
2645 g_assert(drc);
2647 fdt = create_device_tree(&fdt_size);
2648 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2649 SPAPR_MEMORY_BLOCK_SIZE);
2651 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2652 if (local_err) {
2653 while (addr > addr_start) {
2654 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2655 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2656 addr / SPAPR_MEMORY_BLOCK_SIZE);
2657 spapr_drc_detach(drc);
2659 g_free(fdt);
2660 error_propagate(errp, local_err);
2661 return;
2663 if (!hotplugged) {
2664 spapr_drc_reset(drc);
2666 addr += SPAPR_MEMORY_BLOCK_SIZE;
2668 /* send hotplug notification to the
2669 * guest only in case of hotplugged memory
2671 if (hotplugged) {
2672 if (dedicated_hp_event_source) {
2673 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2674 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2675 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2676 nr_lmbs,
2677 spapr_drc_index(drc));
2678 } else {
2679 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2680 nr_lmbs);
2685 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2686 uint32_t node, Error **errp)
2688 Error *local_err = NULL;
2689 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2690 PCDIMMDevice *dimm = PC_DIMM(dev);
2691 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2692 MemoryRegion *mr = ddc->get_memory_region(dimm);
2693 uint64_t align = memory_region_get_alignment(mr);
2694 uint64_t size = memory_region_size(mr);
2695 uint64_t addr;
2697 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2698 if (local_err) {
2699 goto out;
2702 addr = object_property_get_uint(OBJECT(dimm),
2703 PC_DIMM_ADDR_PROP, &local_err);
2704 if (local_err) {
2705 goto out_unplug;
2708 spapr_add_lmbs(dev, addr, size, node,
2709 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2710 &local_err);
2711 if (local_err) {
2712 goto out_unplug;
2715 return;
2717 out_unplug:
2718 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2719 out:
2720 error_propagate(errp, local_err);
2723 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2724 Error **errp)
2726 PCDIMMDevice *dimm = PC_DIMM(dev);
2727 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2728 MemoryRegion *mr = ddc->get_memory_region(dimm);
2729 uint64_t size = memory_region_size(mr);
2730 char *mem_dev;
2732 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2733 error_setg(errp, "Hotplugged memory size must be a multiple of "
2734 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2735 return;
2738 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2739 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2740 error_setg(errp, "Memory backend has bad page size. "
2741 "Use 'memory-backend-file' with correct mem-path.");
2742 goto out;
2745 out:
2746 g_free(mem_dev);
2749 struct sPAPRDIMMState {
2750 PCDIMMDevice *dimm;
2751 uint32_t nr_lmbs;
2752 QTAILQ_ENTRY(sPAPRDIMMState) next;
2755 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2756 PCDIMMDevice *dimm)
2758 sPAPRDIMMState *dimm_state = NULL;
2760 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2761 if (dimm_state->dimm == dimm) {
2762 break;
2765 return dimm_state;
2768 static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2769 sPAPRDIMMState *dimm_state)
2771 g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm));
2772 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next);
2775 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2776 sPAPRDIMMState *dimm_state)
2778 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2779 g_free(dimm_state);
2782 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2783 PCDIMMDevice *dimm)
2785 sPAPRDRConnector *drc;
2786 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2787 MemoryRegion *mr = ddc->get_memory_region(dimm);
2788 uint64_t size = memory_region_size(mr);
2789 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2790 uint32_t avail_lmbs = 0;
2791 uint64_t addr_start, addr;
2792 int i;
2793 sPAPRDIMMState *ds;
2795 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2796 &error_abort);
2798 addr = addr_start;
2799 for (i = 0; i < nr_lmbs; i++) {
2800 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2801 addr / SPAPR_MEMORY_BLOCK_SIZE);
2802 g_assert(drc);
2803 if (drc->dev) {
2804 avail_lmbs++;
2806 addr += SPAPR_MEMORY_BLOCK_SIZE;
2809 ds = g_malloc0(sizeof(sPAPRDIMMState));
2810 ds->nr_lmbs = avail_lmbs;
2811 ds->dimm = dimm;
2812 spapr_pending_dimm_unplugs_add(ms, ds);
2813 return ds;
2816 /* Callback to be called during DRC release. */
2817 void spapr_lmb_release(DeviceState *dev)
2819 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
2820 PCDIMMDevice *dimm = PC_DIMM(dev);
2821 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2822 MemoryRegion *mr = ddc->get_memory_region(dimm);
2823 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
2825 /* This information will get lost if a migration occurs
2826 * during the unplug process. In this case recover it. */
2827 if (ds == NULL) {
2828 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
2829 /* The DRC being examined by the caller at least must be counted */
2830 g_assert(ds->nr_lmbs);
2833 if (--ds->nr_lmbs) {
2834 return;
2837 spapr_pending_dimm_unplugs_remove(spapr, ds);
2840 * Now that all the LMBs have been removed by the guest, call the
2841 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2843 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
2844 object_unparent(OBJECT(dev));
2847 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2848 DeviceState *dev, Error **errp)
2850 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
2851 Error *local_err = NULL;
2852 PCDIMMDevice *dimm = PC_DIMM(dev);
2853 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2854 MemoryRegion *mr = ddc->get_memory_region(dimm);
2855 uint64_t size = memory_region_size(mr);
2856 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2857 uint64_t addr_start, addr;
2858 int i;
2859 sPAPRDRConnector *drc;
2860 sPAPRDIMMState *ds;
2862 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2863 &local_err);
2864 if (local_err) {
2865 goto out;
2868 ds = g_malloc0(sizeof(sPAPRDIMMState));
2869 ds->nr_lmbs = nr_lmbs;
2870 ds->dimm = dimm;
2871 spapr_pending_dimm_unplugs_add(spapr, ds);
2873 addr = addr_start;
2874 for (i = 0; i < nr_lmbs; i++) {
2875 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2876 addr / SPAPR_MEMORY_BLOCK_SIZE);
2877 g_assert(drc);
2879 spapr_drc_detach(drc);
2880 addr += SPAPR_MEMORY_BLOCK_SIZE;
2883 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2884 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2885 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2886 nr_lmbs, spapr_drc_index(drc));
2887 out:
2888 error_propagate(errp, local_err);
2891 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2892 sPAPRMachineState *spapr)
2894 PowerPCCPU *cpu = POWERPC_CPU(cs);
2895 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2896 int id = ppc_get_vcpu_dt_id(cpu);
2897 void *fdt;
2898 int offset, fdt_size;
2899 char *nodename;
2901 fdt = create_device_tree(&fdt_size);
2902 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2903 offset = fdt_add_subnode(fdt, 0, nodename);
2905 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2906 g_free(nodename);
2908 *fdt_offset = offset;
2909 return fdt;
2912 /* Callback to be called during DRC release. */
2913 void spapr_core_release(DeviceState *dev)
2915 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
2916 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
2917 CPUCore *cc = CPU_CORE(dev);
2918 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2920 if (smc->pre_2_10_has_unused_icps) {
2921 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
2922 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
2923 const char *typename = object_class_get_name(scc->cpu_class);
2924 size_t size = object_type_get_instance_size(typename);
2925 int i;
2927 for (i = 0; i < cc->nr_threads; i++) {
2928 CPUState *cs = CPU(sc->threads + i * size);
2930 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
2934 assert(core_slot);
2935 core_slot->cpu = NULL;
2936 object_unparent(OBJECT(dev));
2939 static
2940 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2941 Error **errp)
2943 int index;
2944 sPAPRDRConnector *drc;
2945 CPUCore *cc = CPU_CORE(dev);
2946 int smt = kvmppc_smt_threads();
2948 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2949 error_setg(errp, "Unable to find CPU core with core-id: %d",
2950 cc->core_id);
2951 return;
2953 if (index == 0) {
2954 error_setg(errp, "Boot CPU core may not be unplugged");
2955 return;
2958 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
2959 g_assert(drc);
2961 spapr_drc_detach(drc);
2963 spapr_hotplug_req_remove_by_index(drc);
2966 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2967 Error **errp)
2969 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2970 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2971 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2972 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2973 CPUCore *cc = CPU_CORE(dev);
2974 CPUState *cs = CPU(core->threads);
2975 sPAPRDRConnector *drc;
2976 Error *local_err = NULL;
2977 void *fdt = NULL;
2978 int fdt_offset = 0;
2979 int smt = kvmppc_smt_threads();
2980 CPUArchId *core_slot;
2981 int index;
2982 bool hotplugged = spapr_drc_hotplugged(dev);
2984 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2985 if (!core_slot) {
2986 error_setg(errp, "Unable to find CPU core with core-id: %d",
2987 cc->core_id);
2988 return;
2990 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
2992 g_assert(drc || !mc->has_hotpluggable_cpus);
2994 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2996 if (drc) {
2997 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2998 if (local_err) {
2999 g_free(fdt);
3000 error_propagate(errp, local_err);
3001 return;
3004 if (hotplugged) {
3006 * Send hotplug notification interrupt to the guest only
3007 * in case of hotplugged CPUs.
3009 spapr_hotplug_req_add_by_index(drc);
3010 } else {
3011 spapr_drc_reset(drc);
3015 core_slot->cpu = OBJECT(dev);
3017 if (smc->pre_2_10_has_unused_icps) {
3018 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3019 const char *typename = object_class_get_name(scc->cpu_class);
3020 size_t size = object_type_get_instance_size(typename);
3021 int i;
3023 for (i = 0; i < cc->nr_threads; i++) {
3024 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3025 void *obj = sc->threads + i * size;
3027 cs = CPU(obj);
3028 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3033 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3034 Error **errp)
3036 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3037 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3038 Error *local_err = NULL;
3039 CPUCore *cc = CPU_CORE(dev);
3040 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
3041 const char *type = object_get_typename(OBJECT(dev));
3042 CPUArchId *core_slot;
3043 int index;
3045 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3046 error_setg(&local_err, "CPU hotplug not supported for this machine");
3047 goto out;
3050 if (strcmp(base_core_type, type)) {
3051 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3052 goto out;
3055 if (cc->core_id % smp_threads) {
3056 error_setg(&local_err, "invalid core id %d", cc->core_id);
3057 goto out;
3061 * In general we should have homogeneous threads-per-core, but old
3062 * (pre hotplug support) machine types allow the last core to have
3063 * reduced threads as a compatibility hack for when we allowed
3064 * total vcpus not a multiple of threads-per-core.
3066 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3067 error_setg(errp, "invalid nr-threads %d, must be %d",
3068 cc->nr_threads, smp_threads);
3069 return;
3072 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3073 if (!core_slot) {
3074 error_setg(&local_err, "core id %d out of range", cc->core_id);
3075 goto out;
3078 if (core_slot->cpu) {
3079 error_setg(&local_err, "core %d already populated", cc->core_id);
3080 goto out;
3083 numa_cpu_pre_plug(core_slot, dev, &local_err);
3085 out:
3086 g_free(base_core_type);
3087 error_propagate(errp, local_err);
3090 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3091 DeviceState *dev, Error **errp)
3093 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
3095 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3096 int node;
3098 if (!smc->dr_lmb_enabled) {
3099 error_setg(errp, "Memory hotplug not supported for this machine");
3100 return;
3102 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3103 if (*errp) {
3104 return;
3106 if (node < 0 || node >= MAX_NODES) {
3107 error_setg(errp, "Invaild node %d", node);
3108 return;
3112 * Currently PowerPC kernel doesn't allow hot-adding memory to
3113 * memory-less node, but instead will silently add the memory
3114 * to the first node that has some memory. This causes two
3115 * unexpected behaviours for the user.
3117 * - Memory gets hotplugged to a different node than what the user
3118 * specified.
3119 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3120 * to memory-less node, a reboot will set things accordingly
3121 * and the previously hotplugged memory now ends in the right node.
3122 * This appears as if some memory moved from one node to another.
3124 * So until kernel starts supporting memory hotplug to memory-less
3125 * nodes, just prevent such attempts upfront in QEMU.
3127 if (nb_numa_nodes && !numa_info[node].node_mem) {
3128 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3129 node);
3130 return;
3133 spapr_memory_plug(hotplug_dev, dev, node, errp);
3134 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3135 spapr_core_plug(hotplug_dev, dev, errp);
3139 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3140 DeviceState *dev, Error **errp)
3142 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3143 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3145 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3146 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3147 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3148 } else {
3149 /* NOTE: this means there is a window after guest reset, prior to
3150 * CAS negotiation, where unplug requests will fail due to the
3151 * capability not being detected yet. This is a bit different than
3152 * the case with PCI unplug, where the events will be queued and
3153 * eventually handled by the guest after boot
3155 error_setg(errp, "Memory hot unplug not supported for this guest");
3157 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3158 if (!mc->has_hotpluggable_cpus) {
3159 error_setg(errp, "CPU hot unplug not supported on this machine");
3160 return;
3162 spapr_core_unplug_request(hotplug_dev, dev, errp);
3166 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3167 DeviceState *dev, Error **errp)
3169 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3170 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3171 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3172 spapr_core_pre_plug(hotplug_dev, dev, errp);
3176 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3177 DeviceState *dev)
3179 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3180 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3181 return HOTPLUG_HANDLER(machine);
3183 return NULL;
3186 static CpuInstanceProperties
3187 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3189 CPUArchId *core_slot;
3190 MachineClass *mc = MACHINE_GET_CLASS(machine);
3192 /* make sure possible_cpu are intialized */
3193 mc->possible_cpu_arch_ids(machine);
3194 /* get CPU core slot containing thread that matches cpu_index */
3195 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3196 assert(core_slot);
3197 return core_slot->props;
3200 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3202 int i;
3203 int spapr_max_cores = max_cpus / smp_threads;
3204 MachineClass *mc = MACHINE_GET_CLASS(machine);
3206 if (!mc->has_hotpluggable_cpus) {
3207 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3209 if (machine->possible_cpus) {
3210 assert(machine->possible_cpus->len == spapr_max_cores);
3211 return machine->possible_cpus;
3214 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3215 sizeof(CPUArchId) * spapr_max_cores);
3216 machine->possible_cpus->len = spapr_max_cores;
3217 for (i = 0; i < machine->possible_cpus->len; i++) {
3218 int core_id = i * smp_threads;
3220 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3221 machine->possible_cpus->cpus[i].arch_id = core_id;
3222 machine->possible_cpus->cpus[i].props.has_core_id = true;
3223 machine->possible_cpus->cpus[i].props.core_id = core_id;
3225 /* default distribution of CPUs over NUMA nodes */
3226 if (nb_numa_nodes) {
3227 /* preset values but do not enable them i.e. 'has_node_id = false',
3228 * numa init code will enable them later if manual mapping wasn't
3229 * present on CLI */
3230 machine->possible_cpus->cpus[i].props.node_id =
3231 core_id / smp_threads / smp_cores % nb_numa_nodes;
3234 return machine->possible_cpus;
3237 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3238 uint64_t *buid, hwaddr *pio,
3239 hwaddr *mmio32, hwaddr *mmio64,
3240 unsigned n_dma, uint32_t *liobns, Error **errp)
3243 * New-style PHB window placement.
3245 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3246 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3247 * windows.
3249 * Some guest kernels can't work with MMIO windows above 1<<46
3250 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3252 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3253 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3254 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3255 * 1TiB 64-bit MMIO windows for each PHB.
3257 const uint64_t base_buid = 0x800000020000000ULL;
3258 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3259 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3260 int i;
3262 /* Sanity check natural alignments */
3263 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3264 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3265 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3266 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3267 /* Sanity check bounds */
3268 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3269 SPAPR_PCI_MEM32_WIN_SIZE);
3270 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3271 SPAPR_PCI_MEM64_WIN_SIZE);
3273 if (index >= SPAPR_MAX_PHBS) {
3274 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3275 SPAPR_MAX_PHBS - 1);
3276 return;
3279 *buid = base_buid + index;
3280 for (i = 0; i < n_dma; ++i) {
3281 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3284 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3285 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3286 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3289 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3291 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3293 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3296 static void spapr_ics_resend(XICSFabric *dev)
3298 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3300 ics_resend(spapr->ics);
3303 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3305 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3307 return cpu ? ICP(cpu->intc) : NULL;
3310 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3311 Monitor *mon)
3313 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3314 CPUState *cs;
3316 CPU_FOREACH(cs) {
3317 PowerPCCPU *cpu = POWERPC_CPU(cs);
3319 icp_pic_print_info(ICP(cpu->intc), mon);
3322 ics_pic_print_info(spapr->ics, mon);
3325 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3327 MachineClass *mc = MACHINE_CLASS(oc);
3328 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3329 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3330 NMIClass *nc = NMI_CLASS(oc);
3331 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3332 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3333 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3334 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3336 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3339 * We set up the default / latest behaviour here. The class_init
3340 * functions for the specific versioned machine types can override
3341 * these details for backwards compatibility
3343 mc->init = ppc_spapr_init;
3344 mc->reset = ppc_spapr_reset;
3345 mc->block_default_type = IF_SCSI;
3346 mc->max_cpus = 1024;
3347 mc->no_parallel = 1;
3348 mc->default_boot_order = "";
3349 mc->default_ram_size = 512 * M_BYTE;
3350 mc->kvm_type = spapr_kvm_type;
3351 mc->has_dynamic_sysbus = true;
3352 mc->pci_allow_0_address = true;
3353 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3354 hc->pre_plug = spapr_machine_device_pre_plug;
3355 hc->plug = spapr_machine_device_plug;
3356 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3357 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3358 hc->unplug_request = spapr_machine_device_unplug_request;
3360 smc->dr_lmb_enabled = true;
3361 smc->tcg_default_cpu = "POWER8";
3362 mc->has_hotpluggable_cpus = true;
3363 fwc->get_dev_path = spapr_get_fw_dev_path;
3364 nc->nmi_monitor_handler = spapr_nmi;
3365 smc->phb_placement = spapr_phb_placement;
3366 vhc->hypercall = emulate_spapr_hypercall;
3367 vhc->hpt_mask = spapr_hpt_mask;
3368 vhc->map_hptes = spapr_map_hptes;
3369 vhc->unmap_hptes = spapr_unmap_hptes;
3370 vhc->store_hpte = spapr_store_hpte;
3371 vhc->get_patbe = spapr_get_patbe;
3372 xic->ics_get = spapr_ics_get;
3373 xic->ics_resend = spapr_ics_resend;
3374 xic->icp_get = spapr_icp_get;
3375 ispc->print_info = spapr_pic_print_info;
3376 /* Force NUMA node memory size to be a multiple of
3377 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3378 * in which LMBs are represented and hot-added
3380 mc->numa_mem_align_shift = 28;
3383 static const TypeInfo spapr_machine_info = {
3384 .name = TYPE_SPAPR_MACHINE,
3385 .parent = TYPE_MACHINE,
3386 .abstract = true,
3387 .instance_size = sizeof(sPAPRMachineState),
3388 .instance_init = spapr_machine_initfn,
3389 .instance_finalize = spapr_machine_finalizefn,
3390 .class_size = sizeof(sPAPRMachineClass),
3391 .class_init = spapr_machine_class_init,
3392 .interfaces = (InterfaceInfo[]) {
3393 { TYPE_FW_PATH_PROVIDER },
3394 { TYPE_NMI },
3395 { TYPE_HOTPLUG_HANDLER },
3396 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3397 { TYPE_XICS_FABRIC },
3398 { TYPE_INTERRUPT_STATS_PROVIDER },
3403 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3404 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3405 void *data) \
3407 MachineClass *mc = MACHINE_CLASS(oc); \
3408 spapr_machine_##suffix##_class_options(mc); \
3409 if (latest) { \
3410 mc->alias = "pseries"; \
3411 mc->is_default = 1; \
3414 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3416 MachineState *machine = MACHINE(obj); \
3417 spapr_machine_##suffix##_instance_options(machine); \
3419 static const TypeInfo spapr_machine_##suffix##_info = { \
3420 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3421 .parent = TYPE_SPAPR_MACHINE, \
3422 .class_init = spapr_machine_##suffix##_class_init, \
3423 .instance_init = spapr_machine_##suffix##_instance_init, \
3424 }; \
3425 static void spapr_machine_register_##suffix(void) \
3427 type_register(&spapr_machine_##suffix##_info); \
3429 type_init(spapr_machine_register_##suffix)
3432 * pseries-2.10
3434 static void spapr_machine_2_10_instance_options(MachineState *machine)
3438 static void spapr_machine_2_10_class_options(MachineClass *mc)
3440 /* Defaults for the latest behaviour inherited from the base class */
3443 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3446 * pseries-2.9
3448 #define SPAPR_COMPAT_2_9 \
3449 HW_COMPAT_2_9 \
3451 .driver = TYPE_POWERPC_CPU, \
3452 .property = "pre-2.10-migration", \
3453 .value = "on", \
3454 }, \
3456 static void spapr_machine_2_9_instance_options(MachineState *machine)
3458 spapr_machine_2_10_instance_options(machine);
3461 static void spapr_machine_2_9_class_options(MachineClass *mc)
3463 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3465 spapr_machine_2_10_class_options(mc);
3466 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3467 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3468 smc->pre_2_10_has_unused_icps = true;
3471 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3474 * pseries-2.8
3476 #define SPAPR_COMPAT_2_8 \
3477 HW_COMPAT_2_8 \
3479 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3480 .property = "pcie-extended-configuration-space", \
3481 .value = "off", \
3484 static void spapr_machine_2_8_instance_options(MachineState *machine)
3486 spapr_machine_2_9_instance_options(machine);
3489 static void spapr_machine_2_8_class_options(MachineClass *mc)
3491 spapr_machine_2_9_class_options(mc);
3492 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3493 mc->numa_mem_align_shift = 23;
3496 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3499 * pseries-2.7
3501 #define SPAPR_COMPAT_2_7 \
3502 HW_COMPAT_2_7 \
3504 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3505 .property = "mem_win_size", \
3506 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3507 }, \
3509 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3510 .property = "mem64_win_size", \
3511 .value = "0", \
3512 }, \
3514 .driver = TYPE_POWERPC_CPU, \
3515 .property = "pre-2.8-migration", \
3516 .value = "on", \
3517 }, \
3519 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3520 .property = "pre-2.8-migration", \
3521 .value = "on", \
3524 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3525 uint64_t *buid, hwaddr *pio,
3526 hwaddr *mmio32, hwaddr *mmio64,
3527 unsigned n_dma, uint32_t *liobns, Error **errp)
3529 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3530 const uint64_t base_buid = 0x800000020000000ULL;
3531 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3532 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3533 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3534 const uint32_t max_index = 255;
3535 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3537 uint64_t ram_top = MACHINE(spapr)->ram_size;
3538 hwaddr phb0_base, phb_base;
3539 int i;
3541 /* Do we have hotpluggable memory? */
3542 if (MACHINE(spapr)->maxram_size > ram_top) {
3543 /* Can't just use maxram_size, because there may be an
3544 * alignment gap between normal and hotpluggable memory
3545 * regions */
3546 ram_top = spapr->hotplug_memory.base +
3547 memory_region_size(&spapr->hotplug_memory.mr);
3550 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3552 if (index > max_index) {
3553 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3554 max_index);
3555 return;
3558 *buid = base_buid + index;
3559 for (i = 0; i < n_dma; ++i) {
3560 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3563 phb_base = phb0_base + index * phb_spacing;
3564 *pio = phb_base + pio_offset;
3565 *mmio32 = phb_base + mmio_offset;
3567 * We don't set the 64-bit MMIO window, relying on the PHB's
3568 * fallback behaviour of automatically splitting a large "32-bit"
3569 * window into contiguous 32-bit and 64-bit windows
3573 static void spapr_machine_2_7_instance_options(MachineState *machine)
3575 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3577 spapr_machine_2_8_instance_options(machine);
3578 spapr->use_hotplug_event_source = false;
3581 static void spapr_machine_2_7_class_options(MachineClass *mc)
3583 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3585 spapr_machine_2_8_class_options(mc);
3586 smc->tcg_default_cpu = "POWER7";
3587 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3588 smc->phb_placement = phb_placement_2_7;
3591 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3594 * pseries-2.6
3596 #define SPAPR_COMPAT_2_6 \
3597 HW_COMPAT_2_6 \
3599 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3600 .property = "ddw",\
3601 .value = stringify(off),\
3604 static void spapr_machine_2_6_instance_options(MachineState *machine)
3606 spapr_machine_2_7_instance_options(machine);
3609 static void spapr_machine_2_6_class_options(MachineClass *mc)
3611 spapr_machine_2_7_class_options(mc);
3612 mc->has_hotpluggable_cpus = false;
3613 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3616 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3619 * pseries-2.5
3621 #define SPAPR_COMPAT_2_5 \
3622 HW_COMPAT_2_5 \
3624 .driver = "spapr-vlan", \
3625 .property = "use-rx-buffer-pools", \
3626 .value = "off", \
3629 static void spapr_machine_2_5_instance_options(MachineState *machine)
3631 spapr_machine_2_6_instance_options(machine);
3634 static void spapr_machine_2_5_class_options(MachineClass *mc)
3636 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3638 spapr_machine_2_6_class_options(mc);
3639 smc->use_ohci_by_default = true;
3640 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3643 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3646 * pseries-2.4
3648 #define SPAPR_COMPAT_2_4 \
3649 HW_COMPAT_2_4
3651 static void spapr_machine_2_4_instance_options(MachineState *machine)
3653 spapr_machine_2_5_instance_options(machine);
3656 static void spapr_machine_2_4_class_options(MachineClass *mc)
3658 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3660 spapr_machine_2_5_class_options(mc);
3661 smc->dr_lmb_enabled = false;
3662 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3665 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3668 * pseries-2.3
3670 #define SPAPR_COMPAT_2_3 \
3671 HW_COMPAT_2_3 \
3673 .driver = "spapr-pci-host-bridge",\
3674 .property = "dynamic-reconfiguration",\
3675 .value = "off",\
3678 static void spapr_machine_2_3_instance_options(MachineState *machine)
3680 spapr_machine_2_4_instance_options(machine);
3683 static void spapr_machine_2_3_class_options(MachineClass *mc)
3685 spapr_machine_2_4_class_options(mc);
3686 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3688 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3691 * pseries-2.2
3694 #define SPAPR_COMPAT_2_2 \
3695 HW_COMPAT_2_2 \
3697 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3698 .property = "mem_win_size",\
3699 .value = "0x20000000",\
3702 static void spapr_machine_2_2_instance_options(MachineState *machine)
3704 spapr_machine_2_3_instance_options(machine);
3705 machine->suppress_vmdesc = true;
3708 static void spapr_machine_2_2_class_options(MachineClass *mc)
3710 spapr_machine_2_3_class_options(mc);
3711 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3713 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3716 * pseries-2.1
3718 #define SPAPR_COMPAT_2_1 \
3719 HW_COMPAT_2_1
3721 static void spapr_machine_2_1_instance_options(MachineState *machine)
3723 spapr_machine_2_2_instance_options(machine);
3726 static void spapr_machine_2_1_class_options(MachineClass *mc)
3728 spapr_machine_2_2_class_options(mc);
3729 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3731 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3733 static void spapr_machine_register_types(void)
3735 type_register_static(&spapr_machine_info);
3738 type_init(spapr_machine_register_types)