2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
33 #include "hw/fw-path-provider.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
48 #include "hw/boards.h"
49 #include "hw/ppc/ppc.h"
50 #include "hw/loader.h"
52 #include "hw/ppc/fdt.h"
53 #include "hw/ppc/spapr.h"
54 #include "hw/ppc/spapr_vio.h"
55 #include "hw/pci-host/spapr.h"
56 #include "hw/ppc/xics.h"
57 #include "hw/pci/msi.h"
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
64 #include "exec/address-spaces.h"
66 #include "qemu/config-file.h"
67 #include "qemu/error-report.h"
70 #include "hw/intc/intc.h"
72 #include "hw/compat.h"
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "qmp-commands.h"
79 /* SLOF memory layout:
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
87 * We load our kernel at 4M, leaving space for SLOF initial image
89 #define FDT_MAX_SIZE 0x100000
90 #define RTAS_MAX_SIZE 0x10000
91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE 0x400000
93 #define FW_FILE_NAME "slof.bin"
94 #define FW_OVERHEAD 0x2800000
95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97 #define MIN_RMA_SLOF 128UL
99 #define PHANDLE_XICP 0x00001111
101 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
103 static ICSState
*spapr_ics_create(sPAPRMachineState
*spapr
,
104 const char *type_ics
,
105 int nr_irqs
, Error
**errp
)
107 Error
*local_err
= NULL
;
110 obj
= object_new(type_ics
);
111 object_property_add_child(OBJECT(spapr
), "ics", obj
, &error_abort
);
112 object_property_add_const_link(obj
, ICS_PROP_XICS
, OBJECT(spapr
),
114 object_property_set_int(obj
, nr_irqs
, "nr-irqs", &local_err
);
118 object_property_set_bool(obj
, true, "realized", &local_err
);
123 return ICS_SIMPLE(obj
);
126 error_propagate(errp
, local_err
);
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
140 .name
= "icp/server",
142 .minimum_version_id
= 1,
143 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
144 .fields
= (VMStateField
[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i
)
154 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
155 (void *)(uintptr_t) i
);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
160 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
161 (void *)(uintptr_t) i
);
164 static inline int xics_max_server_number(void)
166 return DIV_ROUND_UP(max_cpus
* kvmppc_smt_threads(), smp_threads
);
169 static void xics_system_init(MachineState
*machine
, int nr_irqs
, Error
**errp
)
171 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
172 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
175 if (machine_kernel_irqchip_allowed(machine
) &&
176 !xics_kvm_init(spapr
, errp
)) {
177 spapr
->icp_type
= TYPE_KVM_ICP
;
178 spapr
->ics
= spapr_ics_create(spapr
, TYPE_ICS_KVM
, nr_irqs
, errp
);
180 if (machine_kernel_irqchip_required(machine
) && !spapr
->ics
) {
181 error_prepend(errp
, "kernel_irqchip requested but unavailable: ");
187 xics_spapr_init(spapr
);
188 spapr
->icp_type
= TYPE_ICP
;
189 spapr
->ics
= spapr_ics_create(spapr
, TYPE_ICS_SIMPLE
, nr_irqs
, errp
);
195 if (smc
->pre_2_10_has_unused_icps
) {
198 for (i
= 0; i
< xics_max_server_number(); i
++) {
199 /* Dummy entries get deregistered when real ICPState objects
200 * are registered during CPU core hotplug.
202 pre_2_10_vmstate_register_dummy_icp(i
);
207 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
211 uint32_t servers_prop
[smt_threads
];
212 uint32_t gservers_prop
[smt_threads
* 2];
213 int index
= ppc_get_vcpu_dt_id(cpu
);
215 if (cpu
->compat_pvr
) {
216 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
222 /* Build interrupt servers and gservers properties */
223 for (i
= 0; i
< smt_threads
; i
++) {
224 servers_prop
[i
] = cpu_to_be32(index
+ i
);
225 /* Hack, direct the group queues back to cpu 0 */
226 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
227 gservers_prop
[i
*2 + 1] = 0;
229 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
230 servers_prop
, sizeof(servers_prop
));
234 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
235 gservers_prop
, sizeof(gservers_prop
));
240 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
)
242 int index
= ppc_get_vcpu_dt_id(cpu
);
243 uint32_t associativity
[] = {cpu_to_be32(0x5),
247 cpu_to_be32(cpu
->node_id
),
250 /* Advertise NUMA via ibm,associativity */
251 return fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
252 sizeof(associativity
));
255 /* Populate the "ibm,pa-features" property */
256 static void spapr_populate_pa_features(CPUPPCState
*env
, void *fdt
, int offset
,
259 uint8_t pa_features_206
[] = { 6, 0,
260 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
261 uint8_t pa_features_207
[] = { 24, 0,
262 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
263 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
264 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
265 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
266 uint8_t pa_features_300
[] = { 66, 0,
267 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
268 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
269 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
271 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
273 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
274 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
275 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
276 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
277 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
278 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
279 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
280 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
281 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
282 /* 42: PM, 44: PC RA, 46: SC vec'd */
283 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
284 /* 48: SIMD, 50: QP BFP, 52: String */
285 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
286 /* 54: DecFP, 56: DecI, 58: SHA */
287 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
288 /* 60: NM atomic, 62: RNG */
289 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
291 uint8_t *pa_features
;
294 switch (POWERPC_MMU_VER(env
->mmu_model
)) {
295 case POWERPC_MMU_VER_2_06
:
296 pa_features
= pa_features_206
;
297 pa_size
= sizeof(pa_features_206
);
299 case POWERPC_MMU_VER_2_07
:
300 pa_features
= pa_features_207
;
301 pa_size
= sizeof(pa_features_207
);
303 case POWERPC_MMU_VER_3_00
:
304 pa_features
= pa_features_300
;
305 pa_size
= sizeof(pa_features_300
);
311 if (env
->ci_large_pages
) {
313 * Note: we keep CI large pages off by default because a 64K capable
314 * guest provisioned with large pages might otherwise try to map a qemu
315 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
316 * even if that qemu runs on a 4k host.
317 * We dd this bit back here if we are confident this is not an issue
319 pa_features
[3] |= 0x20;
321 if (kvmppc_has_cap_htm() && pa_size
> 24) {
322 pa_features
[24] |= 0x80; /* Transactional memory support */
324 if (legacy_guest
&& pa_size
> 40) {
325 /* Workaround for broken kernels that attempt (guest) radix
326 * mode when they can't handle it, if they see the radix bit set
327 * in pa-features. So hide it from them. */
328 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
331 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
334 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
336 int ret
= 0, offset
, cpus_offset
;
339 int smt
= kvmppc_smt_threads();
340 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
343 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
344 CPUPPCState
*env
= &cpu
->env
;
345 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
346 int index
= ppc_get_vcpu_dt_id(cpu
);
347 int compat_smt
= MIN(smp_threads
, ppc_compat_max_threads(cpu
));
349 if ((index
% smt
) != 0) {
353 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
355 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
356 if (cpus_offset
< 0) {
357 cpus_offset
= fdt_add_subnode(fdt
, fdt_path_offset(fdt
, "/"),
359 if (cpus_offset
< 0) {
363 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
365 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
371 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
372 pft_size_prop
, sizeof(pft_size_prop
));
377 if (nb_numa_nodes
> 1) {
378 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
);
384 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
);
389 spapr_populate_pa_features(env
, fdt
, offset
,
390 spapr
->cas_legacy_guest_workaround
);
395 static hwaddr
spapr_node0_size(void)
397 MachineState
*machine
= MACHINE(qdev_get_machine());
401 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
402 if (numa_info
[i
].node_mem
) {
403 return MIN(pow2floor(numa_info
[i
].node_mem
),
408 return machine
->ram_size
;
411 static void add_str(GString
*s
, const gchar
*s1
)
413 g_string_append_len(s
, s1
, strlen(s1
) + 1);
416 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
419 uint32_t associativity
[] = {
420 cpu_to_be32(0x4), /* length */
421 cpu_to_be32(0x0), cpu_to_be32(0x0),
422 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
425 uint64_t mem_reg_property
[2];
428 mem_reg_property
[0] = cpu_to_be64(start
);
429 mem_reg_property
[1] = cpu_to_be64(size
);
431 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
432 off
= fdt_add_subnode(fdt
, 0, mem_name
);
434 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
435 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
436 sizeof(mem_reg_property
))));
437 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
438 sizeof(associativity
))));
442 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
444 MachineState
*machine
= MACHINE(spapr
);
445 hwaddr mem_start
, node_size
;
446 int i
, nb_nodes
= nb_numa_nodes
;
447 NodeInfo
*nodes
= numa_info
;
450 /* No NUMA nodes, assume there is just one node with whole RAM */
451 if (!nb_numa_nodes
) {
453 ramnode
.node_mem
= machine
->ram_size
;
457 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
458 if (!nodes
[i
].node_mem
) {
461 if (mem_start
>= machine
->ram_size
) {
464 node_size
= nodes
[i
].node_mem
;
465 if (node_size
> machine
->ram_size
- mem_start
) {
466 node_size
= machine
->ram_size
- mem_start
;
470 /* ppc_spapr_init() checks for rma_size <= node0_size already */
471 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
472 mem_start
+= spapr
->rma_size
;
473 node_size
-= spapr
->rma_size
;
475 for ( ; node_size
; ) {
476 hwaddr sizetmp
= pow2floor(node_size
);
478 /* mem_start != 0 here */
479 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
480 sizetmp
= 1ULL << ctzl(mem_start
);
483 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
484 node_size
-= sizetmp
;
485 mem_start
+= sizetmp
;
492 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
493 sPAPRMachineState
*spapr
)
495 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
496 CPUPPCState
*env
= &cpu
->env
;
497 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
498 int index
= ppc_get_vcpu_dt_id(cpu
);
499 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
500 0xffffffff, 0xffffffff};
501 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
502 : SPAPR_TIMEBASE_FREQ
;
503 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
504 uint32_t page_sizes_prop
[64];
505 size_t page_sizes_prop_size
;
506 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
507 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
508 int compat_smt
= MIN(smp_threads
, ppc_compat_max_threads(cpu
));
509 sPAPRDRConnector
*drc
;
511 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
514 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
516 drc_index
= spapr_drc_index(drc
);
517 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
520 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
521 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
523 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
524 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
525 env
->dcache_line_size
)));
526 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
527 env
->dcache_line_size
)));
528 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
529 env
->icache_line_size
)));
530 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
531 env
->icache_line_size
)));
533 if (pcc
->l1_dcache_size
) {
534 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
535 pcc
->l1_dcache_size
)));
537 warn_report("Unknown L1 dcache size for cpu");
539 if (pcc
->l1_icache_size
) {
540 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
541 pcc
->l1_icache_size
)));
543 warn_report("Unknown L1 icache size for cpu");
546 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
547 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
548 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", env
->slb_nr
)));
549 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", env
->slb_nr
)));
550 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
551 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
553 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
554 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
557 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
558 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
559 segs
, sizeof(segs
))));
562 /* Advertise VMX/VSX (vector extensions) if available
563 * 0 / no property == no vector extensions
564 * 1 == VMX / Altivec available
565 * 2 == VSX available */
566 if (env
->insns_flags
& PPC_ALTIVEC
) {
567 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
569 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", vmx
)));
572 /* Advertise DFP (Decimal Floating Point) if available
573 * 0 / no property == no DFP
574 * 1 == DFP available */
575 if (env
->insns_flags2
& PPC2_DFP
) {
576 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
579 page_sizes_prop_size
= ppc_create_page_sizes_prop(env
, page_sizes_prop
,
580 sizeof(page_sizes_prop
));
581 if (page_sizes_prop_size
) {
582 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
583 page_sizes_prop
, page_sizes_prop_size
)));
586 spapr_populate_pa_features(env
, fdt
, offset
, false);
588 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
589 cs
->cpu_index
/ vcpus_per_socket
)));
591 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
592 pft_size_prop
, sizeof(pft_size_prop
))));
594 if (nb_numa_nodes
> 1) {
595 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
));
598 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
600 if (pcc
->radix_page_info
) {
601 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
602 radix_AP_encodings
[i
] =
603 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
605 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
607 pcc
->radix_page_info
->count
*
608 sizeof(radix_AP_encodings
[0]))));
612 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
617 int smt
= kvmppc_smt_threads();
619 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
621 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
622 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
625 * We walk the CPUs in reverse order to ensure that CPU DT nodes
626 * created by fdt_add_subnode() end up in the right order in FDT
627 * for the guest kernel the enumerate the CPUs correctly.
629 CPU_FOREACH_REVERSE(cs
) {
630 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
631 int index
= ppc_get_vcpu_dt_id(cpu
);
632 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
635 if ((index
% smt
) != 0) {
639 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
640 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
643 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
649 * Adds ibm,dynamic-reconfiguration-memory node.
650 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
651 * of this device tree node.
653 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
655 MachineState
*machine
= MACHINE(spapr
);
657 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
658 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
659 uint32_t hotplug_lmb_start
= spapr
->hotplug_memory
.base
/ lmb_size
;
660 uint32_t nr_lmbs
= (spapr
->hotplug_memory
.base
+
661 memory_region_size(&spapr
->hotplug_memory
.mr
)) /
663 uint32_t *int_buf
, *cur_index
, buf_len
;
664 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
667 * Don't create the node if there is no hotpluggable memory
669 if (machine
->ram_size
== machine
->maxram_size
) {
674 * Allocate enough buffer size to fit in ibm,dynamic-memory
675 * or ibm,associativity-lookup-arrays
677 buf_len
= MAX(nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1, nr_nodes
* 4 + 2)
679 cur_index
= int_buf
= g_malloc0(buf_len
);
681 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
683 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
684 sizeof(prop_lmb_size
));
689 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
694 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
699 /* ibm,dynamic-memory */
700 int_buf
[0] = cpu_to_be32(nr_lmbs
);
702 for (i
= 0; i
< nr_lmbs
; i
++) {
703 uint64_t addr
= i
* lmb_size
;
704 uint32_t *dynamic_memory
= cur_index
;
706 if (i
>= hotplug_lmb_start
) {
707 sPAPRDRConnector
*drc
;
709 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
712 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
713 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
714 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
715 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
716 dynamic_memory
[4] = cpu_to_be32(numa_get_node(addr
, NULL
));
717 if (memory_region_present(get_system_memory(), addr
)) {
718 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
720 dynamic_memory
[5] = cpu_to_be32(0);
724 * LMB information for RMA, boot time RAM and gap b/n RAM and
725 * hotplug memory region -- all these are marked as reserved
726 * and as having no valid DRC.
728 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
729 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
730 dynamic_memory
[2] = cpu_to_be32(0);
731 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
732 dynamic_memory
[4] = cpu_to_be32(-1);
733 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
734 SPAPR_LMB_FLAGS_DRC_INVALID
);
737 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
739 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
744 /* ibm,associativity-lookup-arrays */
746 int_buf
[0] = cpu_to_be32(nr_nodes
);
747 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
749 for (i
= 0; i
< nr_nodes
; i
++) {
750 uint32_t associativity
[] = {
756 memcpy(cur_index
, associativity
, sizeof(associativity
));
759 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
760 (cur_index
- int_buf
) * sizeof(uint32_t));
766 static int spapr_dt_cas_updates(sPAPRMachineState
*spapr
, void *fdt
,
767 sPAPROptionVector
*ov5_updates
)
769 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
772 /* Generate ibm,dynamic-reconfiguration-memory node if required */
773 if (spapr_ovec_test(ov5_updates
, OV5_DRCONF_MEMORY
)) {
774 g_assert(smc
->dr_lmb_enabled
);
775 ret
= spapr_populate_drconf_memory(spapr
, fdt
);
781 /* /interrupt controller */
782 if (!spapr_ovec_test(ov5_updates
, OV5_XIVE_EXPLOIT
)) {
783 spapr_dt_xics(xics_max_server_number(), fdt
, PHANDLE_XICP
);
786 offset
= fdt_path_offset(fdt
, "/chosen");
788 offset
= fdt_add_subnode(fdt
, 0, "chosen");
793 ret
= spapr_ovec_populate_dt(fdt
, offset
, spapr
->ov5_cas
,
794 "ibm,architecture-vec-5");
800 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
801 target_ulong addr
, target_ulong size
,
802 sPAPROptionVector
*ov5_updates
)
804 void *fdt
, *fdt_skel
;
805 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
809 /* Create skeleton */
810 fdt_skel
= g_malloc0(size
);
811 _FDT((fdt_create(fdt_skel
, size
)));
812 _FDT((fdt_begin_node(fdt_skel
, "")));
813 _FDT((fdt_end_node(fdt_skel
)));
814 _FDT((fdt_finish(fdt_skel
)));
815 fdt
= g_malloc0(size
);
816 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
819 /* Fixup cpu nodes */
820 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
822 if (spapr_dt_cas_updates(spapr
, fdt
, ov5_updates
)) {
826 /* Pack resulting tree */
827 _FDT((fdt_pack(fdt
)));
829 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
830 trace_spapr_cas_failed(size
);
834 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
835 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
836 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
842 static void spapr_dt_rtas(sPAPRMachineState
*spapr
, void *fdt
)
845 GString
*hypertas
= g_string_sized_new(256);
846 GString
*qemu_hypertas
= g_string_sized_new(256);
847 uint32_t refpoints
[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
848 uint64_t max_hotplug_addr
= spapr
->hotplug_memory
.base
+
849 memory_region_size(&spapr
->hotplug_memory
.mr
);
850 uint32_t lrdr_capacity
[] = {
851 cpu_to_be32(max_hotplug_addr
>> 32),
852 cpu_to_be32(max_hotplug_addr
& 0xffffffff),
853 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
854 cpu_to_be32(max_cpus
/ smp_threads
),
857 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
860 add_str(hypertas
, "hcall-pft");
861 add_str(hypertas
, "hcall-term");
862 add_str(hypertas
, "hcall-dabr");
863 add_str(hypertas
, "hcall-interrupt");
864 add_str(hypertas
, "hcall-tce");
865 add_str(hypertas
, "hcall-vio");
866 add_str(hypertas
, "hcall-splpar");
867 add_str(hypertas
, "hcall-bulk");
868 add_str(hypertas
, "hcall-set-mode");
869 add_str(hypertas
, "hcall-sprg0");
870 add_str(hypertas
, "hcall-copy");
871 add_str(hypertas
, "hcall-debug");
872 add_str(qemu_hypertas
, "hcall-memop1");
874 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
875 add_str(hypertas
, "hcall-multi-tce");
877 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
878 hypertas
->str
, hypertas
->len
));
879 g_string_free(hypertas
, TRUE
);
880 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
881 qemu_hypertas
->str
, qemu_hypertas
->len
));
882 g_string_free(qemu_hypertas
, TRUE
);
884 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
885 refpoints
, sizeof(refpoints
)));
887 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
888 RTAS_ERROR_LOG_MAX
));
889 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
890 RTAS_EVENT_SCAN_RATE
));
893 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
897 * According to PAPR, rtas ibm,os-term does not guarantee a return
898 * back to the guest cpu.
900 * While an additional ibm,extended-os-term property indicates
901 * that rtas call return will always occur. Set this property.
903 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
905 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
906 lrdr_capacity
, sizeof(lrdr_capacity
)));
908 spapr_dt_rtas_tokens(fdt
, rtas
);
911 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
912 * that the guest may request and thus the valid values for bytes 24..26 of
913 * option vector 5: */
914 static void spapr_dt_ov5_platform_support(void *fdt
, int chosen
)
916 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
919 23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */
920 24, 0x00, /* Hash/Radix, filled in below. */
921 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
922 26, 0x40, /* Radix options: GTSE == yes. */
926 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
927 val
[3] = 0x80; /* OV5_MMU_BOTH */
928 } else if (kvmppc_has_cap_mmu_radix()) {
929 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
931 val
[3] = 0x00; /* Hash */
934 if (first_ppc_cpu
->env
.mmu_model
& POWERPC_MMU_V3
) {
935 /* V3 MMU supports both hash and radix (with dynamic switching) */
938 /* Otherwise we can only do hash */
942 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
946 static void spapr_dt_chosen(sPAPRMachineState
*spapr
, void *fdt
)
948 MachineState
*machine
= MACHINE(spapr
);
950 const char *boot_device
= machine
->boot_order
;
951 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
953 char *bootlist
= get_boot_devices_list(&cb
, true);
955 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
957 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs", machine
->kernel_cmdline
));
958 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
959 spapr
->initrd_base
));
960 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
961 spapr
->initrd_base
+ spapr
->initrd_size
));
963 if (spapr
->kernel_size
) {
964 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
965 cpu_to_be64(spapr
->kernel_size
) };
967 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
968 &kprop
, sizeof(kprop
)));
969 if (spapr
->kernel_le
) {
970 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
974 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
976 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
977 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
978 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
980 if (cb
&& bootlist
) {
983 for (i
= 0; i
< cb
; i
++) {
984 if (bootlist
[i
] == '\n') {
988 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
991 if (boot_device
&& strlen(boot_device
)) {
992 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
995 if (!spapr
->has_graphics
&& stdout_path
) {
996 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
999 spapr_dt_ov5_platform_support(fdt
, chosen
);
1001 g_free(stdout_path
);
1005 static void spapr_dt_hypervisor(sPAPRMachineState
*spapr
, void *fdt
)
1007 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1008 * KVM to work under pHyp with some guest co-operation */
1010 uint8_t hypercall
[16];
1012 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1013 /* indicate KVM hypercall interface */
1014 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1015 if (kvmppc_has_cap_fixup_hcalls()) {
1017 * Older KVM versions with older guest kernels were broken
1018 * with the magic page, don't allow the guest to map it.
1020 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1021 sizeof(hypercall
))) {
1022 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1023 hypercall
, sizeof(hypercall
)));
1028 static void *spapr_build_fdt(sPAPRMachineState
*spapr
,
1032 MachineState
*machine
= MACHINE(qdev_get_machine());
1033 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1034 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1040 fdt
= g_malloc0(FDT_MAX_SIZE
);
1041 _FDT((fdt_create_empty_tree(fdt
, FDT_MAX_SIZE
)));
1044 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1045 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1046 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1049 * Add info to guest to indentify which host is it being run on
1050 * and what is the uuid of the guest
1052 if (kvmppc_get_host_model(&buf
)) {
1053 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1056 if (kvmppc_get_host_serial(&buf
)) {
1057 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1061 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1063 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1064 if (qemu_uuid_set
) {
1065 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1069 if (qemu_get_vm_name()) {
1070 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1071 qemu_get_vm_name()));
1074 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1075 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1077 ret
= spapr_populate_memory(spapr
, fdt
);
1079 error_report("couldn't setup memory nodes in fdt");
1084 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1086 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1087 ret
= spapr_rng_populate_dt(fdt
);
1089 error_report("could not set up rng device in the fdt");
1094 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1095 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
1097 error_report("couldn't setup PCI devices in fdt");
1103 spapr_populate_cpus_dt_node(fdt
, spapr
);
1105 if (smc
->dr_lmb_enabled
) {
1106 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1109 if (mc
->has_hotpluggable_cpus
) {
1110 int offset
= fdt_path_offset(fdt
, "/cpus");
1111 ret
= spapr_drc_populate_dt(fdt
, offset
, NULL
,
1112 SPAPR_DR_CONNECTOR_TYPE_CPU
);
1114 error_report("Couldn't set up CPU DR device tree properties");
1119 /* /event-sources */
1120 spapr_dt_events(spapr
, fdt
);
1123 spapr_dt_rtas(spapr
, fdt
);
1126 spapr_dt_chosen(spapr
, fdt
);
1129 if (kvm_enabled()) {
1130 spapr_dt_hypervisor(spapr
, fdt
);
1133 /* Build memory reserve map */
1134 if (spapr
->kernel_size
) {
1135 _FDT((fdt_add_mem_rsv(fdt
, KERNEL_LOAD_ADDR
, spapr
->kernel_size
)));
1137 if (spapr
->initrd_size
) {
1138 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
, spapr
->initrd_size
)));
1141 /* ibm,client-architecture-support updates */
1142 ret
= spapr_dt_cas_updates(spapr
, fdt
, spapr
->ov5_cas
);
1144 error_report("couldn't setup CAS properties fdt");
1151 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1153 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1156 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1159 CPUPPCState
*env
= &cpu
->env
;
1161 /* The TCG path should also be holding the BQL at this point */
1162 g_assert(qemu_mutex_iothread_locked());
1165 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1166 env
->gpr
[3] = H_PRIVILEGE
;
1168 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1172 static uint64_t spapr_get_patbe(PPCVirtualHypervisor
*vhyp
)
1174 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1176 return spapr
->patb_entry
;
1179 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1180 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1181 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1182 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1183 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1186 * Get the fd to access the kernel htab, re-opening it if necessary
1188 static int get_htab_fd(sPAPRMachineState
*spapr
)
1190 if (spapr
->htab_fd
>= 0) {
1191 return spapr
->htab_fd
;
1194 spapr
->htab_fd
= kvmppc_get_htab_fd(false);
1195 if (spapr
->htab_fd
< 0) {
1196 error_report("Unable to open fd for reading hash table from KVM: %s",
1200 return spapr
->htab_fd
;
1203 void close_htab_fd(sPAPRMachineState
*spapr
)
1205 if (spapr
->htab_fd
>= 0) {
1206 close(spapr
->htab_fd
);
1208 spapr
->htab_fd
= -1;
1211 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1213 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1215 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1218 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1221 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1222 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1226 * HTAB is controlled by KVM. Fetch into temporary buffer
1228 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1229 kvmppc_read_hptes(hptes
, ptex
, n
);
1234 * HTAB is controlled by QEMU. Just point to the internally
1237 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1240 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1241 const ppc_hash_pte64_t
*hptes
,
1244 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1247 g_free((void *)hptes
);
1250 /* Nothing to do for qemu managed HPT */
1253 static void spapr_store_hpte(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1254 uint64_t pte0
, uint64_t pte1
)
1256 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1257 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1260 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1262 stq_p(spapr
->htab
+ offset
, pte0
);
1263 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1267 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1271 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1272 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1273 * that's much more than is needed for Linux guests */
1274 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1275 shift
= MAX(shift
, 18); /* Minimum architected size */
1276 shift
= MIN(shift
, 46); /* Maximum architected size */
1280 void spapr_free_hpt(sPAPRMachineState
*spapr
)
1282 g_free(spapr
->htab
);
1284 spapr
->htab_shift
= 0;
1285 close_htab_fd(spapr
);
1288 static void spapr_reallocate_hpt(sPAPRMachineState
*spapr
, int shift
,
1293 /* Clean up any HPT info from a previous boot */
1294 spapr_free_hpt(spapr
);
1296 rc
= kvmppc_reset_htab(shift
);
1298 /* kernel-side HPT needed, but couldn't allocate one */
1299 error_setg_errno(errp
, errno
,
1300 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1302 /* This is almost certainly fatal, but if the caller really
1303 * wants to carry on with shift == 0, it's welcome to try */
1304 } else if (rc
> 0) {
1305 /* kernel-side HPT allocated */
1308 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1312 spapr
->htab_shift
= shift
;
1315 /* kernel-side HPT not needed, allocate in userspace instead */
1316 size_t size
= 1ULL << shift
;
1319 spapr
->htab
= qemu_memalign(size
, size
);
1321 error_setg_errno(errp
, errno
,
1322 "Could not allocate HPT of order %d", shift
);
1326 memset(spapr
->htab
, 0, size
);
1327 spapr
->htab_shift
= shift
;
1329 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1330 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1335 void spapr_setup_hpt_and_vrma(sPAPRMachineState
*spapr
)
1337 spapr_reallocate_hpt(spapr
,
1338 spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
),
1340 if (spapr
->vrma_adjust
) {
1341 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(),
1344 /* We're setting up a hash table, so that means we're not radix */
1345 spapr
->patb_entry
= 0;
1348 static void find_unknown_sysbus_device(SysBusDevice
*sbdev
, void *opaque
)
1350 bool matched
= false;
1352 if (object_dynamic_cast(OBJECT(sbdev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
1357 error_report("Device %s is not supported by this machine yet.",
1358 qdev_fw_name(DEVICE(sbdev
)));
1363 static void ppc_spapr_reset(void)
1365 MachineState
*machine
= MACHINE(qdev_get_machine());
1366 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1367 PowerPCCPU
*first_ppc_cpu
;
1368 uint32_t rtas_limit
;
1369 hwaddr rtas_addr
, fdt_addr
;
1373 /* Check for unknown sysbus devices */
1374 foreach_dynamic_sysbus_device(find_unknown_sysbus_device
, NULL
);
1376 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1377 /* If using KVM with radix mode available, VCPUs can be started
1378 * without a HPT because KVM will start them in radix mode.
1379 * Set the GR bit in PATB so that we know there is no HPT. */
1380 spapr
->patb_entry
= PATBE1_GR
;
1382 spapr_setup_hpt_and_vrma(spapr
);
1385 qemu_devices_reset();
1388 * We place the device tree and RTAS just below either the top of the RMA,
1389 * or just below 2GB, whichever is lowere, so that it can be
1390 * processed with 32-bit real mode code if necessary
1392 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1393 rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1394 fdt_addr
= rtas_addr
- FDT_MAX_SIZE
;
1396 /* if this reset wasn't generated by CAS, we should reset our
1397 * negotiated options and start from scratch */
1398 if (!spapr
->cas_reboot
) {
1399 spapr_ovec_cleanup(spapr
->ov5_cas
);
1400 spapr
->ov5_cas
= spapr_ovec_new();
1402 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1405 fdt
= spapr_build_fdt(spapr
, rtas_addr
, spapr
->rtas_size
);
1407 spapr_load_rtas(spapr
, fdt
, rtas_addr
);
1411 /* Should only fail if we've built a corrupted tree */
1414 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
1415 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1416 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
1421 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1422 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1425 /* Set up the entry state */
1426 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1427 first_ppc_cpu
->env
.gpr
[3] = fdt_addr
;
1428 first_ppc_cpu
->env
.gpr
[5] = 0;
1429 first_cpu
->halted
= 0;
1430 first_ppc_cpu
->env
.nip
= SPAPR_ENTRY_POINT
;
1432 spapr
->cas_reboot
= false;
1435 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1437 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1438 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1441 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1445 qdev_init_nofail(dev
);
1447 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1450 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1452 object_initialize(&spapr
->rtc
, sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
);
1453 object_property_add_child(OBJECT(spapr
), "rtc", OBJECT(&spapr
->rtc
),
1455 object_property_set_bool(OBJECT(&spapr
->rtc
), true, "realized",
1457 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1458 "date", &error_fatal
);
1461 /* Returns whether we want to use VGA or not */
1462 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1464 switch (vga_interface_type
) {
1471 return pci_vga_init(pci_bus
) != NULL
;
1474 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1479 static int spapr_post_load(void *opaque
, int version_id
)
1481 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1484 if (!object_dynamic_cast(OBJECT(spapr
->ics
), TYPE_ICS_KVM
)) {
1487 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1488 icp_resend(ICP(cpu
->intc
));
1492 /* In earlier versions, there was no separate qdev for the PAPR
1493 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1494 * So when migrating from those versions, poke the incoming offset
1495 * value into the RTC device */
1496 if (version_id
< 3) {
1497 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1500 if (spapr
->patb_entry
) {
1501 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1502 bool radix
= !!(spapr
->patb_entry
& PATBE1_GR
);
1503 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1505 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1507 error_report("Process table config unsupported by the host");
1515 static bool version_before_3(void *opaque
, int version_id
)
1517 return version_id
< 3;
1520 static bool spapr_pending_events_needed(void *opaque
)
1522 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1523 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1526 static const VMStateDescription vmstate_spapr_event_entry
= {
1527 .name
= "spapr_event_log_entry",
1529 .minimum_version_id
= 1,
1530 .fields
= (VMStateField
[]) {
1531 VMSTATE_UINT32(summary
, sPAPREventLogEntry
),
1532 VMSTATE_UINT32(extended_length
, sPAPREventLogEntry
),
1533 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, sPAPREventLogEntry
, 0,
1534 NULL
, extended_length
),
1535 VMSTATE_END_OF_LIST()
1539 static const VMStateDescription vmstate_spapr_pending_events
= {
1540 .name
= "spapr_pending_events",
1542 .minimum_version_id
= 1,
1543 .needed
= spapr_pending_events_needed
,
1544 .fields
= (VMStateField
[]) {
1545 VMSTATE_QTAILQ_V(pending_events
, sPAPRMachineState
, 1,
1546 vmstate_spapr_event_entry
, sPAPREventLogEntry
, next
),
1547 VMSTATE_END_OF_LIST()
1551 static bool spapr_ov5_cas_needed(void *opaque
)
1553 sPAPRMachineState
*spapr
= opaque
;
1554 sPAPROptionVector
*ov5_mask
= spapr_ovec_new();
1555 sPAPROptionVector
*ov5_legacy
= spapr_ovec_new();
1556 sPAPROptionVector
*ov5_removed
= spapr_ovec_new();
1559 /* Prior to the introduction of sPAPROptionVector, we had two option
1560 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1561 * Both of these options encode machine topology into the device-tree
1562 * in such a way that the now-booted OS should still be able to interact
1563 * appropriately with QEMU regardless of what options were actually
1564 * negotiatied on the source side.
1566 * As such, we can avoid migrating the CAS-negotiated options if these
1567 * are the only options available on the current machine/platform.
1568 * Since these are the only options available for pseries-2.7 and
1569 * earlier, this allows us to maintain old->new/new->old migration
1572 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1573 * via default pseries-2.8 machines and explicit command-line parameters.
1574 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1575 * of the actual CAS-negotiated values to continue working properly. For
1576 * example, availability of memory unplug depends on knowing whether
1577 * OV5_HP_EVT was negotiated via CAS.
1579 * Thus, for any cases where the set of available CAS-negotiatable
1580 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1581 * include the CAS-negotiated options in the migration stream.
1583 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1584 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1586 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1587 * the mask itself since in the future it's possible "legacy" bits may be
1588 * removed via machine options, which could generate a false positive
1589 * that breaks migration.
1591 spapr_ovec_intersect(ov5_legacy
, spapr
->ov5
, ov5_mask
);
1592 cas_needed
= spapr_ovec_diff(ov5_removed
, spapr
->ov5
, ov5_legacy
);
1594 spapr_ovec_cleanup(ov5_mask
);
1595 spapr_ovec_cleanup(ov5_legacy
);
1596 spapr_ovec_cleanup(ov5_removed
);
1601 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1602 .name
= "spapr_option_vector_ov5_cas",
1604 .minimum_version_id
= 1,
1605 .needed
= spapr_ov5_cas_needed
,
1606 .fields
= (VMStateField
[]) {
1607 VMSTATE_STRUCT_POINTER_V(ov5_cas
, sPAPRMachineState
, 1,
1608 vmstate_spapr_ovec
, sPAPROptionVector
),
1609 VMSTATE_END_OF_LIST()
1613 static bool spapr_patb_entry_needed(void *opaque
)
1615 sPAPRMachineState
*spapr
= opaque
;
1617 return !!spapr
->patb_entry
;
1620 static const VMStateDescription vmstate_spapr_patb_entry
= {
1621 .name
= "spapr_patb_entry",
1623 .minimum_version_id
= 1,
1624 .needed
= spapr_patb_entry_needed
,
1625 .fields
= (VMStateField
[]) {
1626 VMSTATE_UINT64(patb_entry
, sPAPRMachineState
),
1627 VMSTATE_END_OF_LIST()
1631 static const VMStateDescription vmstate_spapr
= {
1634 .minimum_version_id
= 1,
1635 .post_load
= spapr_post_load
,
1636 .fields
= (VMStateField
[]) {
1637 /* used to be @next_irq */
1638 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1641 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1643 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1644 VMSTATE_END_OF_LIST()
1646 .subsections
= (const VMStateDescription
*[]) {
1647 &vmstate_spapr_ov5_cas
,
1648 &vmstate_spapr_patb_entry
,
1649 &vmstate_spapr_pending_events
,
1654 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1656 sPAPRMachineState
*spapr
= opaque
;
1658 /* "Iteration" header */
1659 if (!spapr
->htab_shift
) {
1660 qemu_put_be32(f
, -1);
1662 qemu_put_be32(f
, spapr
->htab_shift
);
1666 spapr
->htab_save_index
= 0;
1667 spapr
->htab_first_pass
= true;
1669 if (spapr
->htab_shift
) {
1670 assert(kvm_enabled());
1678 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1681 bool has_timeout
= max_ns
!= -1;
1682 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1683 int index
= spapr
->htab_save_index
;
1684 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1686 assert(spapr
->htab_first_pass
);
1691 /* Consume invalid HPTEs */
1692 while ((index
< htabslots
)
1693 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1694 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1698 /* Consume valid HPTEs */
1700 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1701 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1702 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1706 if (index
> chunkstart
) {
1707 int n_valid
= index
- chunkstart
;
1709 qemu_put_be32(f
, chunkstart
);
1710 qemu_put_be16(f
, n_valid
);
1711 qemu_put_be16(f
, 0);
1712 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1713 HASH_PTE_SIZE_64
* n_valid
);
1716 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1720 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
1722 if (index
>= htabslots
) {
1723 assert(index
== htabslots
);
1725 spapr
->htab_first_pass
= false;
1727 spapr
->htab_save_index
= index
;
1730 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1733 bool final
= max_ns
< 0;
1734 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1735 int examined
= 0, sent
= 0;
1736 int index
= spapr
->htab_save_index
;
1737 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1739 assert(!spapr
->htab_first_pass
);
1742 int chunkstart
, invalidstart
;
1744 /* Consume non-dirty HPTEs */
1745 while ((index
< htabslots
)
1746 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
1752 /* Consume valid dirty HPTEs */
1753 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1754 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1755 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1756 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1761 invalidstart
= index
;
1762 /* Consume invalid dirty HPTEs */
1763 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
1764 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1765 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1766 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1771 if (index
> chunkstart
) {
1772 int n_valid
= invalidstart
- chunkstart
;
1773 int n_invalid
= index
- invalidstart
;
1775 qemu_put_be32(f
, chunkstart
);
1776 qemu_put_be16(f
, n_valid
);
1777 qemu_put_be16(f
, n_invalid
);
1778 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1779 HASH_PTE_SIZE_64
* n_valid
);
1780 sent
+= index
- chunkstart
;
1782 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1787 if (examined
>= htabslots
) {
1791 if (index
>= htabslots
) {
1792 assert(index
== htabslots
);
1795 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
1797 if (index
>= htabslots
) {
1798 assert(index
== htabslots
);
1802 spapr
->htab_save_index
= index
;
1804 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
1807 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1808 #define MAX_KVM_BUF_SIZE 2048
1810 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
1812 sPAPRMachineState
*spapr
= opaque
;
1816 /* Iteration header */
1817 if (!spapr
->htab_shift
) {
1818 qemu_put_be32(f
, -1);
1821 qemu_put_be32(f
, 0);
1825 assert(kvm_enabled());
1827 fd
= get_htab_fd(spapr
);
1832 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
1836 } else if (spapr
->htab_first_pass
) {
1837 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
1839 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
1843 qemu_put_be32(f
, 0);
1844 qemu_put_be16(f
, 0);
1845 qemu_put_be16(f
, 0);
1850 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
1852 sPAPRMachineState
*spapr
= opaque
;
1855 /* Iteration header */
1856 if (!spapr
->htab_shift
) {
1857 qemu_put_be32(f
, -1);
1860 qemu_put_be32(f
, 0);
1866 assert(kvm_enabled());
1868 fd
= get_htab_fd(spapr
);
1873 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
1878 if (spapr
->htab_first_pass
) {
1879 htab_save_first_pass(f
, spapr
, -1);
1881 htab_save_later_pass(f
, spapr
, -1);
1885 qemu_put_be32(f
, 0);
1886 qemu_put_be16(f
, 0);
1887 qemu_put_be16(f
, 0);
1892 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
1894 sPAPRMachineState
*spapr
= opaque
;
1895 uint32_t section_hdr
;
1898 if (version_id
< 1 || version_id
> 1) {
1899 error_report("htab_load() bad version");
1903 section_hdr
= qemu_get_be32(f
);
1905 if (section_hdr
== -1) {
1906 spapr_free_hpt(spapr
);
1911 Error
*local_err
= NULL
;
1913 /* First section gives the htab size */
1914 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
1916 error_report_err(local_err
);
1923 assert(kvm_enabled());
1925 fd
= kvmppc_get_htab_fd(true);
1927 error_report("Unable to open fd to restore KVM hash table: %s",
1934 uint16_t n_valid
, n_invalid
;
1936 index
= qemu_get_be32(f
);
1937 n_valid
= qemu_get_be16(f
);
1938 n_invalid
= qemu_get_be16(f
);
1940 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
1945 if ((index
+ n_valid
+ n_invalid
) >
1946 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
1947 /* Bad index in stream */
1949 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1950 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
1956 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
1957 HASH_PTE_SIZE_64
* n_valid
);
1960 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
1961 HASH_PTE_SIZE_64
* n_invalid
);
1968 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
1983 static void htab_save_cleanup(void *opaque
)
1985 sPAPRMachineState
*spapr
= opaque
;
1987 close_htab_fd(spapr
);
1990 static SaveVMHandlers savevm_htab_handlers
= {
1991 .save_setup
= htab_save_setup
,
1992 .save_live_iterate
= htab_save_iterate
,
1993 .save_live_complete_precopy
= htab_save_complete
,
1994 .save_cleanup
= htab_save_cleanup
,
1995 .load_state
= htab_load
,
1998 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2001 MachineState
*machine
= MACHINE(qdev_get_machine());
2002 machine
->boot_order
= g_strdup(boot_device
);
2005 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
2007 MachineState
*machine
= MACHINE(spapr
);
2008 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2009 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2012 for (i
= 0; i
< nr_lmbs
; i
++) {
2015 addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;
2016 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2022 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2023 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2024 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2026 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2030 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2031 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2032 " is not aligned to %llu MiB",
2034 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2038 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2039 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2040 " is not aligned to %llu MiB",
2042 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2046 for (i
= 0; i
< nb_numa_nodes
; i
++) {
2047 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2049 "Node %d memory size 0x%" PRIx64
2050 " is not aligned to %llu MiB",
2051 i
, numa_info
[i
].node_mem
,
2052 SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2058 /* find cpu slot in machine->possible_cpus by core_id */
2059 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2061 int index
= id
/ smp_threads
;
2063 if (index
>= ms
->possible_cpus
->len
) {
2069 return &ms
->possible_cpus
->cpus
[index
];
2072 static void spapr_init_cpus(sPAPRMachineState
*spapr
)
2074 MachineState
*machine
= MACHINE(spapr
);
2075 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2076 char *type
= spapr_get_cpu_core_type(machine
->cpu_model
);
2077 int smt
= kvmppc_smt_threads();
2078 const CPUArchIdList
*possible_cpus
;
2079 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2083 error_report("Unable to find sPAPR CPU Core definition");
2087 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2088 if (mc
->has_hotpluggable_cpus
) {
2089 if (smp_cpus
% smp_threads
) {
2090 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2091 smp_cpus
, smp_threads
);
2094 if (max_cpus
% smp_threads
) {
2095 error_report("max_cpus (%u) must be multiple of threads (%u)",
2096 max_cpus
, smp_threads
);
2100 if (max_cpus
!= smp_cpus
) {
2101 error_report("This machine version does not support CPU hotplug");
2104 boot_cores_nr
= possible_cpus
->len
;
2107 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2108 int core_id
= i
* smp_threads
;
2110 if (mc
->has_hotpluggable_cpus
) {
2111 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2112 (core_id
/ smp_threads
) * smt
);
2115 if (i
< boot_cores_nr
) {
2116 Object
*core
= object_new(type
);
2117 int nr_threads
= smp_threads
;
2119 /* Handle the partially filled core for older machine types */
2120 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2121 nr_threads
= smp_cpus
- i
* smp_threads
;
2124 object_property_set_int(core
, nr_threads
, "nr-threads",
2126 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
2128 object_property_set_bool(core
, true, "realized", &error_fatal
);
2134 /* pSeries LPAR / sPAPR hardware init */
2135 static void ppc_spapr_init(MachineState
*machine
)
2137 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
2138 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2139 const char *kernel_filename
= machine
->kernel_filename
;
2140 const char *initrd_filename
= machine
->initrd_filename
;
2143 MemoryRegion
*sysmem
= get_system_memory();
2144 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
2145 MemoryRegion
*rma_region
;
2147 hwaddr rma_alloc_size
;
2148 hwaddr node0_size
= spapr_node0_size();
2149 long load_limit
, fw_size
;
2152 msi_nonbroken
= true;
2154 QLIST_INIT(&spapr
->phbs
);
2155 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2157 /* Allocate RMA if necessary */
2158 rma_alloc_size
= kvmppc_alloc_rma(&rma
);
2160 if (rma_alloc_size
== -1) {
2161 error_report("Unable to create RMA");
2165 if (rma_alloc_size
&& (rma_alloc_size
< node0_size
)) {
2166 spapr
->rma_size
= rma_alloc_size
;
2168 spapr
->rma_size
= node0_size
;
2170 /* With KVM, we don't actually know whether KVM supports an
2171 * unbounded RMA (PR KVM) or is limited by the hash table size
2172 * (HV KVM using VRMA), so we always assume the latter
2174 * In that case, we also limit the initial allocations for RTAS
2175 * etc... to 256M since we have no way to know what the VRMA size
2176 * is going to be as it depends on the size of the hash table
2177 * isn't determined yet.
2179 if (kvm_enabled()) {
2180 spapr
->vrma_adjust
= 1;
2181 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
2184 /* Actually we don't support unbounded RMA anymore since we
2185 * added proper emulation of HV mode. The max we can get is
2186 * 16G which also happens to be what we configure for PAPR
2187 * mode so make sure we don't do anything bigger than that
2189 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x400000000ull
);
2192 if (spapr
->rma_size
> node0_size
) {
2193 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
2198 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2199 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2201 /* Set up Interrupt Controller before we create the VCPUs */
2202 xics_system_init(machine
, XICS_IRQS_SPAPR
, &error_fatal
);
2204 /* Set up containers for ibm,client-set-architecture negotiated options */
2205 spapr
->ov5
= spapr_ovec_new();
2206 spapr
->ov5_cas
= spapr_ovec_new();
2208 if (smc
->dr_lmb_enabled
) {
2209 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2210 spapr_validate_node_memory(machine
, &error_fatal
);
2213 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2214 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2215 /* KVM and TCG always allow GTSE with radix... */
2216 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2218 /* ... but not with hash (currently). */
2220 /* advertise support for dedicated HP event source to guests */
2221 if (spapr
->use_hotplug_event_source
) {
2222 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2226 if (machine
->cpu_model
== NULL
) {
2227 machine
->cpu_model
= kvm_enabled() ? "host" : smc
->tcg_default_cpu
;
2230 spapr_cpu_parse_features(spapr
);
2232 spapr_init_cpus(spapr
);
2234 if (kvm_enabled()) {
2235 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2236 kvmppc_enable_logical_ci_hcalls();
2237 kvmppc_enable_set_mode_hcall();
2239 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2240 kvmppc_enable_clear_ref_mod_hcalls();
2244 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
2246 memory_region_add_subregion(sysmem
, 0, ram
);
2248 if (rma_alloc_size
&& rma
) {
2249 rma_region
= g_new(MemoryRegion
, 1);
2250 memory_region_init_ram_ptr(rma_region
, NULL
, "ppc_spapr.rma",
2251 rma_alloc_size
, rma
);
2252 vmstate_register_ram_global(rma_region
);
2253 memory_region_add_subregion(sysmem
, 0, rma_region
);
2256 /* initialize hotplug memory address space */
2257 if (machine
->ram_size
< machine
->maxram_size
) {
2258 ram_addr_t hotplug_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2260 * Limit the number of hotpluggable memory slots to half the number
2261 * slots that KVM supports, leaving the other half for PCI and other
2262 * devices. However ensure that number of slots doesn't drop below 32.
2264 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2265 SPAPR_MAX_RAM_SLOTS
;
2267 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2268 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2270 if (machine
->ram_slots
> max_memslots
) {
2271 error_report("Specified number of memory slots %"
2272 PRIu64
" exceeds max supported %d",
2273 machine
->ram_slots
, max_memslots
);
2277 spapr
->hotplug_memory
.base
= ROUND_UP(machine
->ram_size
,
2278 SPAPR_HOTPLUG_MEM_ALIGN
);
2279 memory_region_init(&spapr
->hotplug_memory
.mr
, OBJECT(spapr
),
2280 "hotplug-memory", hotplug_mem_size
);
2281 memory_region_add_subregion(sysmem
, spapr
->hotplug_memory
.base
,
2282 &spapr
->hotplug_memory
.mr
);
2285 if (smc
->dr_lmb_enabled
) {
2286 spapr_create_lmb_dr_connectors(spapr
);
2289 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
2291 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2294 spapr
->rtas_size
= get_image_size(filename
);
2295 if (spapr
->rtas_size
< 0) {
2296 error_report("Could not get size of LPAR rtas '%s'", filename
);
2299 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
2300 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
2301 error_report("Could not load LPAR rtas '%s'", filename
);
2304 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
2305 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2306 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
2311 /* Set up RTAS event infrastructure */
2312 spapr_events_init(spapr
);
2314 /* Set up the RTC RTAS interfaces */
2315 spapr_rtc_create(spapr
);
2317 /* Set up VIO bus */
2318 spapr
->vio_bus
= spapr_vio_bus_init();
2320 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
2321 if (serial_hds
[i
]) {
2322 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
2326 /* We always have at least the nvram device on VIO */
2327 spapr_create_nvram(spapr
);
2330 spapr_pci_rtas_init();
2332 phb
= spapr_create_phb(spapr
, 0);
2334 for (i
= 0; i
< nb_nics
; i
++) {
2335 NICInfo
*nd
= &nd_table
[i
];
2338 nd
->model
= g_strdup("ibmveth");
2341 if (strcmp(nd
->model
, "ibmveth") == 0) {
2342 spapr_vlan_create(spapr
->vio_bus
, nd
);
2344 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2348 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2349 spapr_vscsi_create(spapr
->vio_bus
);
2353 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2354 spapr
->has_graphics
= true;
2355 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2359 if (smc
->use_ohci_by_default
) {
2360 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2362 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2365 if (spapr
->has_graphics
) {
2366 USBBus
*usb_bus
= usb_bus_find(-1);
2368 usb_create_simple(usb_bus
, "usb-kbd");
2369 usb_create_simple(usb_bus
, "usb-mouse");
2373 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
2375 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2380 if (kernel_filename
) {
2381 uint64_t lowaddr
= 0;
2383 spapr
->kernel_size
= load_elf(kernel_filename
, translate_kernel_address
,
2384 NULL
, NULL
, &lowaddr
, NULL
, 1,
2385 PPC_ELF_MACHINE
, 0, 0);
2386 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2387 spapr
->kernel_size
= load_elf(kernel_filename
,
2388 translate_kernel_address
, NULL
, NULL
,
2389 &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
2391 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2393 if (spapr
->kernel_size
< 0) {
2394 error_report("error loading %s: %s", kernel_filename
,
2395 load_elf_strerror(spapr
->kernel_size
));
2400 if (initrd_filename
) {
2401 /* Try to locate the initrd in the gap between the kernel
2402 * and the firmware. Add a bit of space just in case
2404 spapr
->initrd_base
= (KERNEL_LOAD_ADDR
+ spapr
->kernel_size
2405 + 0x1ffff) & ~0xffff;
2406 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2409 - spapr
->initrd_base
);
2410 if (spapr
->initrd_size
< 0) {
2411 error_report("could not load initial ram disk '%s'",
2418 if (bios_name
== NULL
) {
2419 bios_name
= FW_FILE_NAME
;
2421 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2423 error_report("Could not find LPAR firmware '%s'", bios_name
);
2426 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2428 error_report("Could not load LPAR firmware '%s'", filename
);
2433 /* FIXME: Should register things through the MachineState's qdev
2434 * interface, this is a legacy from the sPAPREnvironment structure
2435 * which predated MachineState but had a similar function */
2436 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2437 register_savevm_live(NULL
, "spapr/htab", -1, 1,
2438 &savevm_htab_handlers
, spapr
);
2440 qemu_register_boot_set(spapr_boot_set
, spapr
);
2442 if (kvm_enabled()) {
2443 /* to stop and start vmclock */
2444 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
2447 kvmppc_spapr_enable_inkernel_multitce();
2451 static int spapr_kvm_type(const char *vm_type
)
2457 if (!strcmp(vm_type
, "HV")) {
2461 if (!strcmp(vm_type
, "PR")) {
2465 error_report("Unknown kvm-type specified '%s'", vm_type
);
2470 * Implementation of an interface to adjust firmware path
2471 * for the bootindex property handling.
2473 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2476 #define CAST(type, obj, name) \
2477 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2478 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2479 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2480 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
2483 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2484 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2485 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2489 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2490 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2491 * in the top 16 bits of the 64-bit LUN
2493 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2494 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2495 (uint64_t)id
<< 48);
2496 } else if (virtio
) {
2498 * We use SRP luns of the form 01000000 | (target << 8) | lun
2499 * in the top 32 bits of the 64-bit LUN
2500 * Note: the quote above is from SLOF and it is wrong,
2501 * the actual binding is:
2502 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2504 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2505 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2506 (uint64_t)id
<< 32);
2509 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2510 * in the top 32 bits of the 64-bit LUN
2512 unsigned usb_port
= atoi(usb
->port
->path
);
2513 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2514 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2515 (uint64_t)id
<< 32);
2520 * SLOF probes the USB devices, and if it recognizes that the device is a
2521 * storage device, it changes its name to "storage" instead of "usb-host",
2522 * and additionally adds a child node for the SCSI LUN, so the correct
2523 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2525 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
2526 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
2527 if (usb_host_dev_is_scsi_storage(usbdev
)) {
2528 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
2533 /* Replace "pci" with "pci@800000020000000" */
2534 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2538 /* Same logic as virtio above */
2539 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
2540 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
2543 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
2544 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2545 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
2546 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
2552 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2554 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2556 return g_strdup(spapr
->kvm_type
);
2559 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2561 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2563 g_free(spapr
->kvm_type
);
2564 spapr
->kvm_type
= g_strdup(value
);
2567 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
2569 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2571 return spapr
->use_hotplug_event_source
;
2574 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
2577 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2579 spapr
->use_hotplug_event_source
= value
;
2582 static void spapr_machine_initfn(Object
*obj
)
2584 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2586 spapr
->htab_fd
= -1;
2587 spapr
->use_hotplug_event_source
= true;
2588 object_property_add_str(obj
, "kvm-type",
2589 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
2590 object_property_set_description(obj
, "kvm-type",
2591 "Specifies the KVM virtualization mode (HV, PR)",
2593 object_property_add_bool(obj
, "modern-hotplug-events",
2594 spapr_get_modern_hotplug_events
,
2595 spapr_set_modern_hotplug_events
,
2597 object_property_set_description(obj
, "modern-hotplug-events",
2598 "Use dedicated hotplug event mechanism in"
2599 " place of standard EPOW events when possible"
2600 " (required for memory hot-unplug support)",
2603 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
2604 "Maximum permitted CPU compatibility mode",
2608 static void spapr_machine_finalizefn(Object
*obj
)
2610 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2612 g_free(spapr
->kvm_type
);
2615 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
2617 cpu_synchronize_state(cs
);
2618 ppc_cpu_do_system_reset(cs
);
2621 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
2626 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
2630 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
2631 uint32_t node
, bool dedicated_hp_event_source
,
2634 sPAPRDRConnector
*drc
;
2635 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
2636 int i
, fdt_offset
, fdt_size
;
2638 uint64_t addr
= addr_start
;
2639 bool hotplugged
= spapr_drc_hotplugged(dev
);
2640 Error
*local_err
= NULL
;
2642 for (i
= 0; i
< nr_lmbs
; i
++) {
2643 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
2644 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
2647 fdt
= create_device_tree(&fdt_size
);
2648 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
2649 SPAPR_MEMORY_BLOCK_SIZE
);
2651 spapr_drc_attach(drc
, dev
, fdt
, fdt_offset
, &local_err
);
2653 while (addr
> addr_start
) {
2654 addr
-= SPAPR_MEMORY_BLOCK_SIZE
;
2655 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
2656 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
2657 spapr_drc_detach(drc
);
2660 error_propagate(errp
, local_err
);
2664 spapr_drc_reset(drc
);
2666 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2668 /* send hotplug notification to the
2669 * guest only in case of hotplugged memory
2672 if (dedicated_hp_event_source
) {
2673 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
2674 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
2675 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2677 spapr_drc_index(drc
));
2679 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2685 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2686 uint32_t node
, Error
**errp
)
2688 Error
*local_err
= NULL
;
2689 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2690 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2691 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2692 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2693 uint64_t align
= memory_region_get_alignment(mr
);
2694 uint64_t size
= memory_region_size(mr
);
2697 pc_dimm_memory_plug(dev
, &ms
->hotplug_memory
, mr
, align
, &local_err
);
2702 addr
= object_property_get_uint(OBJECT(dimm
),
2703 PC_DIMM_ADDR_PROP
, &local_err
);
2708 spapr_add_lmbs(dev
, addr
, size
, node
,
2709 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
2718 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2720 error_propagate(errp
, local_err
);
2723 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2726 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2727 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2728 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2729 uint64_t size
= memory_region_size(mr
);
2732 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2733 error_setg(errp
, "Hotplugged memory size must be a multiple of "
2734 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE
/ M_BYTE
);
2738 mem_dev
= object_property_get_str(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
, NULL
);
2739 if (mem_dev
&& !kvmppc_is_mem_backend_page_size_ok(mem_dev
)) {
2740 error_setg(errp
, "Memory backend has bad page size. "
2741 "Use 'memory-backend-file' with correct mem-path.");
2749 struct sPAPRDIMMState
{
2752 QTAILQ_ENTRY(sPAPRDIMMState
) next
;
2755 static sPAPRDIMMState
*spapr_pending_dimm_unplugs_find(sPAPRMachineState
*s
,
2758 sPAPRDIMMState
*dimm_state
= NULL
;
2760 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
2761 if (dimm_state
->dimm
== dimm
) {
2768 static void spapr_pending_dimm_unplugs_add(sPAPRMachineState
*spapr
,
2769 sPAPRDIMMState
*dimm_state
)
2771 g_assert(!spapr_pending_dimm_unplugs_find(spapr
, dimm_state
->dimm
));
2772 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
2775 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState
*spapr
,
2776 sPAPRDIMMState
*dimm_state
)
2778 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
2782 static sPAPRDIMMState
*spapr_recover_pending_dimm_state(sPAPRMachineState
*ms
,
2785 sPAPRDRConnector
*drc
;
2786 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2787 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2788 uint64_t size
= memory_region_size(mr
);
2789 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
2790 uint32_t avail_lmbs
= 0;
2791 uint64_t addr_start
, addr
;
2795 addr_start
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
2799 for (i
= 0; i
< nr_lmbs
; i
++) {
2800 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
2801 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
2806 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2809 ds
= g_malloc0(sizeof(sPAPRDIMMState
));
2810 ds
->nr_lmbs
= avail_lmbs
;
2812 spapr_pending_dimm_unplugs_add(ms
, ds
);
2816 /* Callback to be called during DRC release. */
2817 void spapr_lmb_release(DeviceState
*dev
)
2819 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_hotplug_handler(dev
));
2820 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2821 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2822 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2823 sPAPRDIMMState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
2825 /* This information will get lost if a migration occurs
2826 * during the unplug process. In this case recover it. */
2828 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
2829 /* The DRC being examined by the caller at least must be counted */
2830 g_assert(ds
->nr_lmbs
);
2833 if (--ds
->nr_lmbs
) {
2837 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
2840 * Now that all the LMBs have been removed by the guest, call the
2841 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2843 pc_dimm_memory_unplug(dev
, &spapr
->hotplug_memory
, mr
);
2844 object_unparent(OBJECT(dev
));
2847 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
2848 DeviceState
*dev
, Error
**errp
)
2850 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
2851 Error
*local_err
= NULL
;
2852 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2853 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2854 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2855 uint64_t size
= memory_region_size(mr
);
2856 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
2857 uint64_t addr_start
, addr
;
2859 sPAPRDRConnector
*drc
;
2862 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
2868 ds
= g_malloc0(sizeof(sPAPRDIMMState
));
2869 ds
->nr_lmbs
= nr_lmbs
;
2871 spapr_pending_dimm_unplugs_add(spapr
, ds
);
2874 for (i
= 0; i
< nr_lmbs
; i
++) {
2875 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
2876 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
2879 spapr_drc_detach(drc
);
2880 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2883 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
2884 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
2885 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2886 nr_lmbs
, spapr_drc_index(drc
));
2888 error_propagate(errp
, local_err
);
2891 static void *spapr_populate_hotplug_cpu_dt(CPUState
*cs
, int *fdt_offset
,
2892 sPAPRMachineState
*spapr
)
2894 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2895 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
2896 int id
= ppc_get_vcpu_dt_id(cpu
);
2898 int offset
, fdt_size
;
2901 fdt
= create_device_tree(&fdt_size
);
2902 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
2903 offset
= fdt_add_subnode(fdt
, 0, nodename
);
2905 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
2908 *fdt_offset
= offset
;
2912 /* Callback to be called during DRC release. */
2913 void spapr_core_release(DeviceState
*dev
)
2915 MachineState
*ms
= MACHINE(qdev_get_hotplug_handler(dev
));
2916 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
2917 CPUCore
*cc
= CPU_CORE(dev
);
2918 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
2920 if (smc
->pre_2_10_has_unused_icps
) {
2921 sPAPRCPUCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
2922 sPAPRCPUCoreClass
*scc
= SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc
));
2923 const char *typename
= object_class_get_name(scc
->cpu_class
);
2924 size_t size
= object_type_get_instance_size(typename
);
2927 for (i
= 0; i
< cc
->nr_threads
; i
++) {
2928 CPUState
*cs
= CPU(sc
->threads
+ i
* size
);
2930 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
2935 core_slot
->cpu
= NULL
;
2936 object_unparent(OBJECT(dev
));
2940 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2944 sPAPRDRConnector
*drc
;
2945 CPUCore
*cc
= CPU_CORE(dev
);
2946 int smt
= kvmppc_smt_threads();
2948 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
2949 error_setg(errp
, "Unable to find CPU core with core-id: %d",
2954 error_setg(errp
, "Boot CPU core may not be unplugged");
2958 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
* smt
);
2961 spapr_drc_detach(drc
);
2963 spapr_hotplug_req_remove_by_index(drc
);
2966 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2969 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
2970 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
2971 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
2972 sPAPRCPUCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
2973 CPUCore
*cc
= CPU_CORE(dev
);
2974 CPUState
*cs
= CPU(core
->threads
);
2975 sPAPRDRConnector
*drc
;
2976 Error
*local_err
= NULL
;
2979 int smt
= kvmppc_smt_threads();
2980 CPUArchId
*core_slot
;
2982 bool hotplugged
= spapr_drc_hotplugged(dev
);
2984 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
2986 error_setg(errp
, "Unable to find CPU core with core-id: %d",
2990 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
* smt
);
2992 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
2994 fdt
= spapr_populate_hotplug_cpu_dt(cs
, &fdt_offset
, spapr
);
2997 spapr_drc_attach(drc
, dev
, fdt
, fdt_offset
, &local_err
);
3000 error_propagate(errp
, local_err
);
3006 * Send hotplug notification interrupt to the guest only
3007 * in case of hotplugged CPUs.
3009 spapr_hotplug_req_add_by_index(drc
);
3011 spapr_drc_reset(drc
);
3015 core_slot
->cpu
= OBJECT(dev
);
3017 if (smc
->pre_2_10_has_unused_icps
) {
3018 sPAPRCPUCoreClass
*scc
= SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc
));
3019 const char *typename
= object_class_get_name(scc
->cpu_class
);
3020 size_t size
= object_type_get_instance_size(typename
);
3023 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3024 sPAPRCPUCore
*sc
= SPAPR_CPU_CORE(dev
);
3025 void *obj
= sc
->threads
+ i
* size
;
3028 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3033 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3036 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3037 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3038 Error
*local_err
= NULL
;
3039 CPUCore
*cc
= CPU_CORE(dev
);
3040 char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_model
);
3041 const char *type
= object_get_typename(OBJECT(dev
));
3042 CPUArchId
*core_slot
;
3045 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3046 error_setg(&local_err
, "CPU hotplug not supported for this machine");
3050 if (strcmp(base_core_type
, type
)) {
3051 error_setg(&local_err
, "CPU core type should be %s", base_core_type
);
3055 if (cc
->core_id
% smp_threads
) {
3056 error_setg(&local_err
, "invalid core id %d", cc
->core_id
);
3061 * In general we should have homogeneous threads-per-core, but old
3062 * (pre hotplug support) machine types allow the last core to have
3063 * reduced threads as a compatibility hack for when we allowed
3064 * total vcpus not a multiple of threads-per-core.
3066 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3067 error_setg(errp
, "invalid nr-threads %d, must be %d",
3068 cc
->nr_threads
, smp_threads
);
3072 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3074 error_setg(&local_err
, "core id %d out of range", cc
->core_id
);
3078 if (core_slot
->cpu
) {
3079 error_setg(&local_err
, "core %d already populated", cc
->core_id
);
3083 numa_cpu_pre_plug(core_slot
, dev
, &local_err
);
3086 g_free(base_core_type
);
3087 error_propagate(errp
, local_err
);
3090 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
3091 DeviceState
*dev
, Error
**errp
)
3093 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
3095 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3098 if (!smc
->dr_lmb_enabled
) {
3099 error_setg(errp
, "Memory hotplug not supported for this machine");
3102 node
= object_property_get_uint(OBJECT(dev
), PC_DIMM_NODE_PROP
, errp
);
3106 if (node
< 0 || node
>= MAX_NODES
) {
3107 error_setg(errp
, "Invaild node %d", node
);
3112 * Currently PowerPC kernel doesn't allow hot-adding memory to
3113 * memory-less node, but instead will silently add the memory
3114 * to the first node that has some memory. This causes two
3115 * unexpected behaviours for the user.
3117 * - Memory gets hotplugged to a different node than what the user
3119 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3120 * to memory-less node, a reboot will set things accordingly
3121 * and the previously hotplugged memory now ends in the right node.
3122 * This appears as if some memory moved from one node to another.
3124 * So until kernel starts supporting memory hotplug to memory-less
3125 * nodes, just prevent such attempts upfront in QEMU.
3127 if (nb_numa_nodes
&& !numa_info
[node
].node_mem
) {
3128 error_setg(errp
, "Can't hotplug memory to memory-less node %d",
3133 spapr_memory_plug(hotplug_dev
, dev
, node
, errp
);
3134 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3135 spapr_core_plug(hotplug_dev
, dev
, errp
);
3139 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
3140 DeviceState
*dev
, Error
**errp
)
3142 sPAPRMachineState
*sms
= SPAPR_MACHINE(qdev_get_machine());
3143 MachineClass
*mc
= MACHINE_GET_CLASS(qdev_get_machine());
3145 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3146 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
3147 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
3149 /* NOTE: this means there is a window after guest reset, prior to
3150 * CAS negotiation, where unplug requests will fail due to the
3151 * capability not being detected yet. This is a bit different than
3152 * the case with PCI unplug, where the events will be queued and
3153 * eventually handled by the guest after boot
3155 error_setg(errp
, "Memory hot unplug not supported for this guest");
3157 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3158 if (!mc
->has_hotpluggable_cpus
) {
3159 error_setg(errp
, "CPU hot unplug not supported on this machine");
3162 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
3166 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
3167 DeviceState
*dev
, Error
**errp
)
3169 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3170 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
3171 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3172 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
3176 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
3179 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
3180 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3181 return HOTPLUG_HANDLER(machine
);
3186 static CpuInstanceProperties
3187 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
3189 CPUArchId
*core_slot
;
3190 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
3192 /* make sure possible_cpu are intialized */
3193 mc
->possible_cpu_arch_ids(machine
);
3194 /* get CPU core slot containing thread that matches cpu_index */
3195 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
3197 return core_slot
->props
;
3200 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
3203 int spapr_max_cores
= max_cpus
/ smp_threads
;
3204 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
3206 if (!mc
->has_hotpluggable_cpus
) {
3207 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
3209 if (machine
->possible_cpus
) {
3210 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
3211 return machine
->possible_cpus
;
3214 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
3215 sizeof(CPUArchId
) * spapr_max_cores
);
3216 machine
->possible_cpus
->len
= spapr_max_cores
;
3217 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
3218 int core_id
= i
* smp_threads
;
3220 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
3221 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
3222 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
3223 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
3225 /* default distribution of CPUs over NUMA nodes */
3226 if (nb_numa_nodes
) {
3227 /* preset values but do not enable them i.e. 'has_node_id = false',
3228 * numa init code will enable them later if manual mapping wasn't
3230 machine
->possible_cpus
->cpus
[i
].props
.node_id
=
3231 core_id
/ smp_threads
/ smp_cores
% nb_numa_nodes
;
3234 return machine
->possible_cpus
;
3237 static void spapr_phb_placement(sPAPRMachineState
*spapr
, uint32_t index
,
3238 uint64_t *buid
, hwaddr
*pio
,
3239 hwaddr
*mmio32
, hwaddr
*mmio64
,
3240 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
3243 * New-style PHB window placement.
3245 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3246 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3249 * Some guest kernels can't work with MMIO windows above 1<<46
3250 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3252 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3253 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3254 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3255 * 1TiB 64-bit MMIO windows for each PHB.
3257 const uint64_t base_buid
= 0x800000020000000ULL
;
3258 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3259 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3262 /* Sanity check natural alignments */
3263 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
3264 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
3265 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
3266 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
3267 /* Sanity check bounds */
3268 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
3269 SPAPR_PCI_MEM32_WIN_SIZE
);
3270 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
3271 SPAPR_PCI_MEM64_WIN_SIZE
);
3273 if (index
>= SPAPR_MAX_PHBS
) {
3274 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
3275 SPAPR_MAX_PHBS
- 1);
3279 *buid
= base_buid
+ index
;
3280 for (i
= 0; i
< n_dma
; ++i
) {
3281 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3284 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
3285 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
3286 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
3289 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
3291 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3293 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
3296 static void spapr_ics_resend(XICSFabric
*dev
)
3298 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3300 ics_resend(spapr
->ics
);
3303 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int cpu_dt_id
)
3305 PowerPCCPU
*cpu
= ppc_get_vcpu_by_dt_id(cpu_dt_id
);
3307 return cpu
? ICP(cpu
->intc
) : NULL
;
3310 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
3313 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3317 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3319 icp_pic_print_info(ICP(cpu
->intc
), mon
);
3322 ics_pic_print_info(spapr
->ics
, mon
);
3325 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
3327 MachineClass
*mc
= MACHINE_CLASS(oc
);
3328 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
3329 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
3330 NMIClass
*nc
= NMI_CLASS(oc
);
3331 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
3332 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
3333 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
3334 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
3336 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
3339 * We set up the default / latest behaviour here. The class_init
3340 * functions for the specific versioned machine types can override
3341 * these details for backwards compatibility
3343 mc
->init
= ppc_spapr_init
;
3344 mc
->reset
= ppc_spapr_reset
;
3345 mc
->block_default_type
= IF_SCSI
;
3346 mc
->max_cpus
= 1024;
3347 mc
->no_parallel
= 1;
3348 mc
->default_boot_order
= "";
3349 mc
->default_ram_size
= 512 * M_BYTE
;
3350 mc
->kvm_type
= spapr_kvm_type
;
3351 mc
->has_dynamic_sysbus
= true;
3352 mc
->pci_allow_0_address
= true;
3353 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
3354 hc
->pre_plug
= spapr_machine_device_pre_plug
;
3355 hc
->plug
= spapr_machine_device_plug
;
3356 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
3357 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
3358 hc
->unplug_request
= spapr_machine_device_unplug_request
;
3360 smc
->dr_lmb_enabled
= true;
3361 smc
->tcg_default_cpu
= "POWER8";
3362 mc
->has_hotpluggable_cpus
= true;
3363 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
3364 nc
->nmi_monitor_handler
= spapr_nmi
;
3365 smc
->phb_placement
= spapr_phb_placement
;
3366 vhc
->hypercall
= emulate_spapr_hypercall
;
3367 vhc
->hpt_mask
= spapr_hpt_mask
;
3368 vhc
->map_hptes
= spapr_map_hptes
;
3369 vhc
->unmap_hptes
= spapr_unmap_hptes
;
3370 vhc
->store_hpte
= spapr_store_hpte
;
3371 vhc
->get_patbe
= spapr_get_patbe
;
3372 xic
->ics_get
= spapr_ics_get
;
3373 xic
->ics_resend
= spapr_ics_resend
;
3374 xic
->icp_get
= spapr_icp_get
;
3375 ispc
->print_info
= spapr_pic_print_info
;
3376 /* Force NUMA node memory size to be a multiple of
3377 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3378 * in which LMBs are represented and hot-added
3380 mc
->numa_mem_align_shift
= 28;
3383 static const TypeInfo spapr_machine_info
= {
3384 .name
= TYPE_SPAPR_MACHINE
,
3385 .parent
= TYPE_MACHINE
,
3387 .instance_size
= sizeof(sPAPRMachineState
),
3388 .instance_init
= spapr_machine_initfn
,
3389 .instance_finalize
= spapr_machine_finalizefn
,
3390 .class_size
= sizeof(sPAPRMachineClass
),
3391 .class_init
= spapr_machine_class_init
,
3392 .interfaces
= (InterfaceInfo
[]) {
3393 { TYPE_FW_PATH_PROVIDER
},
3395 { TYPE_HOTPLUG_HANDLER
},
3396 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
3397 { TYPE_XICS_FABRIC
},
3398 { TYPE_INTERRUPT_STATS_PROVIDER
},
3403 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3404 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3407 MachineClass *mc = MACHINE_CLASS(oc); \
3408 spapr_machine_##suffix##_class_options(mc); \
3410 mc->alias = "pseries"; \
3411 mc->is_default = 1; \
3414 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3416 MachineState *machine = MACHINE(obj); \
3417 spapr_machine_##suffix##_instance_options(machine); \
3419 static const TypeInfo spapr_machine_##suffix##_info = { \
3420 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3421 .parent = TYPE_SPAPR_MACHINE, \
3422 .class_init = spapr_machine_##suffix##_class_init, \
3423 .instance_init = spapr_machine_##suffix##_instance_init, \
3425 static void spapr_machine_register_##suffix(void) \
3427 type_register(&spapr_machine_##suffix##_info); \
3429 type_init(spapr_machine_register_##suffix)
3434 static void spapr_machine_2_10_instance_options(MachineState
*machine
)
3438 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
3440 /* Defaults for the latest behaviour inherited from the base class */
3443 DEFINE_SPAPR_MACHINE(2_10
, "2.10", true);
3448 #define SPAPR_COMPAT_2_9 \
3451 .driver = TYPE_POWERPC_CPU, \
3452 .property = "pre-2.10-migration", \
3456 static void spapr_machine_2_9_instance_options(MachineState *machine)
3458 spapr_machine_2_10_instance_options(machine
);
3461 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
3463 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3465 spapr_machine_2_10_class_options(mc
);
3466 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_9
);
3467 mc
->numa_auto_assign_ram
= numa_legacy_auto_assign_ram
;
3468 smc
->pre_2_10_has_unused_icps
= true;
3471 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
3476 #define SPAPR_COMPAT_2_8 \
3479 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3480 .property = "pcie-extended-configuration-space", \
3484 static void spapr_machine_2_8_instance_options(MachineState
*machine
)
3486 spapr_machine_2_9_instance_options(machine
);
3489 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
3491 spapr_machine_2_9_class_options(mc
);
3492 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_8
);
3493 mc
->numa_mem_align_shift
= 23;
3496 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
3501 #define SPAPR_COMPAT_2_7 \
3504 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3505 .property = "mem_win_size", \
3506 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3509 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3510 .property = "mem64_win_size", \
3514 .driver = TYPE_POWERPC_CPU, \
3515 .property = "pre-2.8-migration", \
3519 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3520 .property = "pre-2.8-migration", \
3524 static void phb_placement_2_7(sPAPRMachineState
*spapr
, uint32_t index
,
3525 uint64_t *buid
, hwaddr
*pio
,
3526 hwaddr
*mmio32
, hwaddr
*mmio64
,
3527 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
3529 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3530 const uint64_t base_buid
= 0x800000020000000ULL
;
3531 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
3532 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
3533 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
3534 const uint32_t max_index
= 255;
3535 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
3537 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
3538 hwaddr phb0_base
, phb_base
;
3541 /* Do we have hotpluggable memory? */
3542 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
3543 /* Can't just use maxram_size, because there may be an
3544 * alignment gap between normal and hotpluggable memory
3546 ram_top
= spapr
->hotplug_memory
.base
+
3547 memory_region_size(&spapr
->hotplug_memory
.mr
);
3550 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
3552 if (index
> max_index
) {
3553 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
3558 *buid
= base_buid
+ index
;
3559 for (i
= 0; i
< n_dma
; ++i
) {
3560 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3563 phb_base
= phb0_base
+ index
* phb_spacing
;
3564 *pio
= phb_base
+ pio_offset
;
3565 *mmio32
= phb_base
+ mmio_offset
;
3567 * We don't set the 64-bit MMIO window, relying on the PHB's
3568 * fallback behaviour of automatically splitting a large "32-bit"
3569 * window into contiguous 32-bit and 64-bit windows
3573 static void spapr_machine_2_7_instance_options(MachineState
*machine
)
3575 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
3577 spapr_machine_2_8_instance_options(machine
);
3578 spapr
->use_hotplug_event_source
= false;
3581 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
3583 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3585 spapr_machine_2_8_class_options(mc
);
3586 smc
->tcg_default_cpu
= "POWER7";
3587 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_7
);
3588 smc
->phb_placement
= phb_placement_2_7
;
3591 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
3596 #define SPAPR_COMPAT_2_6 \
3599 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3601 .value = stringify(off),\
3604 static void spapr_machine_2_6_instance_options(MachineState
*machine
)
3606 spapr_machine_2_7_instance_options(machine
);
3609 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
3611 spapr_machine_2_7_class_options(mc
);
3612 mc
->has_hotpluggable_cpus
= false;
3613 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_6
);
3616 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
3621 #define SPAPR_COMPAT_2_5 \
3624 .driver = "spapr-vlan", \
3625 .property = "use-rx-buffer-pools", \
3629 static void spapr_machine_2_5_instance_options(MachineState
*machine
)
3631 spapr_machine_2_6_instance_options(machine
);
3634 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
3636 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3638 spapr_machine_2_6_class_options(mc
);
3639 smc
->use_ohci_by_default
= true;
3640 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_5
);
3643 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
3648 #define SPAPR_COMPAT_2_4 \
3651 static void spapr_machine_2_4_instance_options(MachineState
*machine
)
3653 spapr_machine_2_5_instance_options(machine
);
3656 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
3658 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3660 spapr_machine_2_5_class_options(mc
);
3661 smc
->dr_lmb_enabled
= false;
3662 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_4
);
3665 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
3670 #define SPAPR_COMPAT_2_3 \
3673 .driver = "spapr-pci-host-bridge",\
3674 .property = "dynamic-reconfiguration",\
3678 static void spapr_machine_2_3_instance_options(MachineState
*machine
)
3680 spapr_machine_2_4_instance_options(machine
);
3683 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
3685 spapr_machine_2_4_class_options(mc
);
3686 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_3
);
3688 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
3694 #define SPAPR_COMPAT_2_2 \
3697 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3698 .property = "mem_win_size",\
3699 .value = "0x20000000",\
3702 static void spapr_machine_2_2_instance_options(MachineState
*machine
)
3704 spapr_machine_2_3_instance_options(machine
);
3705 machine
->suppress_vmdesc
= true;
3708 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
3710 spapr_machine_2_3_class_options(mc
);
3711 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_2
);
3713 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
3718 #define SPAPR_COMPAT_2_1 \
3721 static void spapr_machine_2_1_instance_options(MachineState
*machine
)
3723 spapr_machine_2_2_instance_options(machine
);
3726 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
3728 spapr_machine_2_2_class_options(mc
);
3729 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_1
);
3731 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
3733 static void spapr_machine_register_types(void)
3735 type_register_static(&spapr_machine_info
);
3738 type_init(spapr_machine_register_types
)