2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
37 #include "migration/vmstate.h"
40 static void cpu_ppc_tb_stop (CPUPPCState
*env
);
41 static void cpu_ppc_tb_start (CPUPPCState
*env
);
43 void ppc_set_irq(PowerPCCPU
*cpu
, int irq
, int level
)
45 CPUPPCState
*env
= &cpu
->env
;
46 unsigned int old_pending
;
48 /* We may already have the BQL if coming from the reset path */
49 QEMU_IOTHREAD_LOCK_GUARD();
51 old_pending
= env
->pending_interrupts
;
54 env
->pending_interrupts
|= irq
;
56 env
->pending_interrupts
&= ~irq
;
59 if (old_pending
!= env
->pending_interrupts
) {
60 ppc_maybe_interrupt(env
);
61 kvmppc_set_interrupt(cpu
, irq
, level
);
64 trace_ppc_irq_set_exit(env
, irq
, level
, env
->pending_interrupts
,
65 CPU(cpu
)->interrupt_request
);
68 /* PowerPC 6xx / 7xx internal IRQ controller */
69 static void ppc6xx_set_irq(void *opaque
, int pin
, int level
)
71 PowerPCCPU
*cpu
= opaque
;
72 CPUPPCState
*env
= &cpu
->env
;
75 trace_ppc_irq_set(env
, pin
, level
);
77 cur_level
= (env
->irq_input_state
>> pin
) & 1;
78 /* Don't generate spurious events */
79 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
80 CPUState
*cs
= CPU(cpu
);
83 case PPC6xx_INPUT_TBEN
:
84 /* Level sensitive - active high */
85 trace_ppc_irq_set_state("time base", level
);
87 cpu_ppc_tb_start(env
);
92 case PPC6xx_INPUT_INT
:
93 /* Level sensitive - active high */
94 trace_ppc_irq_set_state("external IRQ", level
);
95 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
97 case PPC6xx_INPUT_SMI
:
98 /* Level sensitive - active high */
99 trace_ppc_irq_set_state("SMI IRQ", level
);
100 ppc_set_irq(cpu
, PPC_INTERRUPT_SMI
, level
);
102 case PPC6xx_INPUT_MCP
:
103 /* Negative edge sensitive */
104 /* XXX: TODO: actual reaction may depends on HID0 status
105 * 603/604/740/750: check HID0[EMCP]
107 if (cur_level
== 1 && level
== 0) {
108 trace_ppc_irq_set_state("machine check", 1);
109 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
112 case PPC6xx_INPUT_CKSTP_IN
:
113 /* Level sensitive - active low */
114 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
115 /* XXX: Note that the only way to restart the CPU is to reset it */
117 trace_ppc_irq_cpu("stop");
121 case PPC6xx_INPUT_HRESET
:
122 /* Level sensitive - active low */
124 trace_ppc_irq_reset("CPU");
125 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
128 case PPC6xx_INPUT_SRESET
:
129 trace_ppc_irq_set_state("RESET IRQ", level
);
130 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
133 g_assert_not_reached();
136 env
->irq_input_state
|= 1 << pin
;
138 env
->irq_input_state
&= ~(1 << pin
);
142 void ppc6xx_irq_init(PowerPCCPU
*cpu
)
144 qdev_init_gpio_in(DEVICE(cpu
), ppc6xx_set_irq
, PPC6xx_INPUT_NB
);
147 #if defined(TARGET_PPC64)
148 /* PowerPC 970 internal IRQ controller */
149 static void ppc970_set_irq(void *opaque
, int pin
, int level
)
151 PowerPCCPU
*cpu
= opaque
;
152 CPUPPCState
*env
= &cpu
->env
;
155 trace_ppc_irq_set(env
, pin
, level
);
157 cur_level
= (env
->irq_input_state
>> pin
) & 1;
158 /* Don't generate spurious events */
159 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
160 CPUState
*cs
= CPU(cpu
);
163 case PPC970_INPUT_INT
:
164 /* Level sensitive - active high */
165 trace_ppc_irq_set_state("external IRQ", level
);
166 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
168 case PPC970_INPUT_THINT
:
169 /* Level sensitive - active high */
170 trace_ppc_irq_set_state("SMI IRQ", level
);
171 ppc_set_irq(cpu
, PPC_INTERRUPT_THERM
, level
);
173 case PPC970_INPUT_MCP
:
174 /* Negative edge sensitive */
175 /* XXX: TODO: actual reaction may depends on HID0 status
176 * 603/604/740/750: check HID0[EMCP]
178 if (cur_level
== 1 && level
== 0) {
179 trace_ppc_irq_set_state("machine check", 1);
180 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
183 case PPC970_INPUT_CKSTP
:
184 /* Level sensitive - active low */
185 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
187 trace_ppc_irq_cpu("stop");
190 trace_ppc_irq_cpu("restart");
195 case PPC970_INPUT_HRESET
:
196 /* Level sensitive - active low */
198 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
201 case PPC970_INPUT_SRESET
:
202 trace_ppc_irq_set_state("RESET IRQ", level
);
203 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
205 case PPC970_INPUT_TBEN
:
206 trace_ppc_irq_set_state("TBEN IRQ", level
);
210 g_assert_not_reached();
213 env
->irq_input_state
|= 1 << pin
;
215 env
->irq_input_state
&= ~(1 << pin
);
219 void ppc970_irq_init(PowerPCCPU
*cpu
)
221 qdev_init_gpio_in(DEVICE(cpu
), ppc970_set_irq
, PPC970_INPUT_NB
);
224 /* POWER7 internal IRQ controller */
225 static void power7_set_irq(void *opaque
, int pin
, int level
)
227 PowerPCCPU
*cpu
= opaque
;
229 trace_ppc_irq_set(&cpu
->env
, pin
, level
);
232 case POWER7_INPUT_INT
:
233 /* Level sensitive - active high */
234 trace_ppc_irq_set_state("external IRQ", level
);
235 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
238 g_assert_not_reached();
242 void ppcPOWER7_irq_init(PowerPCCPU
*cpu
)
244 qdev_init_gpio_in(DEVICE(cpu
), power7_set_irq
, POWER7_INPUT_NB
);
247 /* POWER9 internal IRQ controller */
248 static void power9_set_irq(void *opaque
, int pin
, int level
)
250 PowerPCCPU
*cpu
= opaque
;
252 trace_ppc_irq_set(&cpu
->env
, pin
, level
);
255 case POWER9_INPUT_INT
:
256 /* Level sensitive - active high */
257 trace_ppc_irq_set_state("external IRQ", level
);
258 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
260 case POWER9_INPUT_HINT
:
261 /* Level sensitive - active high */
262 trace_ppc_irq_set_state("HV external IRQ", level
);
263 ppc_set_irq(cpu
, PPC_INTERRUPT_HVIRT
, level
);
266 g_assert_not_reached();
271 void ppcPOWER9_irq_init(PowerPCCPU
*cpu
)
273 qdev_init_gpio_in(DEVICE(cpu
), power9_set_irq
, POWER9_INPUT_NB
);
275 #endif /* defined(TARGET_PPC64) */
277 void ppc40x_core_reset(PowerPCCPU
*cpu
)
279 CPUPPCState
*env
= &cpu
->env
;
282 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC core\n");
283 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
284 dbsr
= env
->spr
[SPR_40x_DBSR
];
287 env
->spr
[SPR_40x_DBSR
] = dbsr
;
290 void ppc40x_chip_reset(PowerPCCPU
*cpu
)
292 CPUPPCState
*env
= &cpu
->env
;
295 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC chip\n");
296 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
297 /* XXX: TODO reset all internal peripherals */
298 dbsr
= env
->spr
[SPR_40x_DBSR
];
301 env
->spr
[SPR_40x_DBSR
] = dbsr
;
304 void ppc40x_system_reset(PowerPCCPU
*cpu
)
306 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC system\n");
307 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
310 void store_40x_dbcr0(CPUPPCState
*env
, uint32_t val
)
312 PowerPCCPU
*cpu
= env_archcpu(env
);
314 qemu_mutex_lock_iothread();
316 switch ((val
>> 28) & 0x3) {
322 ppc40x_core_reset(cpu
);
326 ppc40x_chip_reset(cpu
);
330 ppc40x_system_reset(cpu
);
334 qemu_mutex_unlock_iothread();
337 /* PowerPC 40x internal IRQ controller */
338 static void ppc40x_set_irq(void *opaque
, int pin
, int level
)
340 PowerPCCPU
*cpu
= opaque
;
341 CPUPPCState
*env
= &cpu
->env
;
344 trace_ppc_irq_set(env
, pin
, level
);
346 cur_level
= (env
->irq_input_state
>> pin
) & 1;
347 /* Don't generate spurious events */
348 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
349 CPUState
*cs
= CPU(cpu
);
352 case PPC40x_INPUT_RESET_SYS
:
354 trace_ppc_irq_reset("system");
355 ppc40x_system_reset(cpu
);
358 case PPC40x_INPUT_RESET_CHIP
:
360 trace_ppc_irq_reset("chip");
361 ppc40x_chip_reset(cpu
);
364 case PPC40x_INPUT_RESET_CORE
:
365 /* XXX: TODO: update DBSR[MRR] */
367 trace_ppc_irq_reset("core");
368 ppc40x_core_reset(cpu
);
371 case PPC40x_INPUT_CINT
:
372 /* Level sensitive - active high */
373 trace_ppc_irq_set_state("critical IRQ", level
);
374 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
376 case PPC40x_INPUT_INT
:
377 /* Level sensitive - active high */
378 trace_ppc_irq_set_state("external IRQ", level
);
379 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
381 case PPC40x_INPUT_HALT
:
382 /* Level sensitive - active low */
384 trace_ppc_irq_cpu("stop");
387 trace_ppc_irq_cpu("restart");
392 case PPC40x_INPUT_DEBUG
:
393 /* Level sensitive - active high */
394 trace_ppc_irq_set_state("debug pin", level
);
395 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
398 g_assert_not_reached();
401 env
->irq_input_state
|= 1 << pin
;
403 env
->irq_input_state
&= ~(1 << pin
);
407 void ppc40x_irq_init(PowerPCCPU
*cpu
)
409 qdev_init_gpio_in(DEVICE(cpu
), ppc40x_set_irq
, PPC40x_INPUT_NB
);
412 /* PowerPC E500 internal IRQ controller */
413 static void ppce500_set_irq(void *opaque
, int pin
, int level
)
415 PowerPCCPU
*cpu
= opaque
;
416 CPUPPCState
*env
= &cpu
->env
;
419 trace_ppc_irq_set(env
, pin
, level
);
421 cur_level
= (env
->irq_input_state
>> pin
) & 1;
422 /* Don't generate spurious events */
423 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
425 case PPCE500_INPUT_MCK
:
427 trace_ppc_irq_reset("system");
428 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
431 case PPCE500_INPUT_RESET_CORE
:
433 trace_ppc_irq_reset("core");
434 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, level
);
437 case PPCE500_INPUT_CINT
:
438 /* Level sensitive - active high */
439 trace_ppc_irq_set_state("critical IRQ", level
);
440 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
442 case PPCE500_INPUT_INT
:
443 /* Level sensitive - active high */
444 trace_ppc_irq_set_state("core IRQ", level
);
445 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
447 case PPCE500_INPUT_DEBUG
:
448 /* Level sensitive - active high */
449 trace_ppc_irq_set_state("debug pin", level
);
450 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
453 g_assert_not_reached();
456 env
->irq_input_state
|= 1 << pin
;
458 env
->irq_input_state
&= ~(1 << pin
);
462 void ppce500_irq_init(PowerPCCPU
*cpu
)
464 qdev_init_gpio_in(DEVICE(cpu
), ppce500_set_irq
, PPCE500_INPUT_NB
);
467 /* Enable or Disable the E500 EPR capability */
468 void ppce500_set_mpic_proxy(bool enabled
)
473 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
475 cpu
->env
.mpic_proxy
= enabled
;
477 kvmppc_set_mpic_proxy(cpu
, enabled
);
482 /*****************************************************************************/
483 /* PowerPC time base and decrementer emulation */
485 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
487 /* TB time in tb periods */
488 return muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
) + tb_offset
;
491 uint64_t cpu_ppc_load_tbl (CPUPPCState
*env
)
493 ppc_tb_t
*tb_env
= env
->tb_env
;
497 return env
->spr
[SPR_TBL
];
500 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
501 trace_ppc_tb_load(tb
);
506 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState
*env
)
508 ppc_tb_t
*tb_env
= env
->tb_env
;
511 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
512 trace_ppc_tb_load(tb
);
517 uint32_t cpu_ppc_load_tbu (CPUPPCState
*env
)
520 return env
->spr
[SPR_TBU
];
523 return _cpu_ppc_load_tbu(env
);
526 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
527 int64_t *tb_offsetp
, uint64_t value
)
529 *tb_offsetp
= value
-
530 muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
);
532 trace_ppc_tb_store(value
, *tb_offsetp
);
535 void cpu_ppc_store_tbl (CPUPPCState
*env
, uint32_t value
)
537 ppc_tb_t
*tb_env
= env
->tb_env
;
538 int64_t clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
541 tb
= cpu_ppc_get_tb(tb_env
, clock
, tb_env
->tb_offset
);
542 tb
&= 0xFFFFFFFF00000000ULL
;
543 cpu_ppc_store_tb(tb_env
, clock
, &tb_env
->tb_offset
, tb
| (uint64_t)value
);
546 static inline void _cpu_ppc_store_tbu(CPUPPCState
*env
, uint32_t value
)
548 ppc_tb_t
*tb_env
= env
->tb_env
;
549 int64_t clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
552 tb
= cpu_ppc_get_tb(tb_env
, clock
, tb_env
->tb_offset
);
553 tb
&= 0x00000000FFFFFFFFULL
;
554 cpu_ppc_store_tb(tb_env
, clock
, &tb_env
->tb_offset
,
555 ((uint64_t)value
<< 32) | tb
);
558 void cpu_ppc_store_tbu (CPUPPCState
*env
, uint32_t value
)
560 _cpu_ppc_store_tbu(env
, value
);
563 uint64_t cpu_ppc_load_atbl (CPUPPCState
*env
)
565 ppc_tb_t
*tb_env
= env
->tb_env
;
568 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
569 trace_ppc_tb_load(tb
);
574 uint32_t cpu_ppc_load_atbu (CPUPPCState
*env
)
576 ppc_tb_t
*tb_env
= env
->tb_env
;
579 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
580 trace_ppc_tb_load(tb
);
585 void cpu_ppc_store_atbl (CPUPPCState
*env
, uint32_t value
)
587 ppc_tb_t
*tb_env
= env
->tb_env
;
588 int64_t clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
591 tb
= cpu_ppc_get_tb(tb_env
, clock
, tb_env
->atb_offset
);
592 tb
&= 0xFFFFFFFF00000000ULL
;
593 cpu_ppc_store_tb(tb_env
, clock
, &tb_env
->atb_offset
, tb
| (uint64_t)value
);
596 void cpu_ppc_store_atbu (CPUPPCState
*env
, uint32_t value
)
598 ppc_tb_t
*tb_env
= env
->tb_env
;
599 int64_t clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
602 tb
= cpu_ppc_get_tb(tb_env
, clock
, tb_env
->atb_offset
);
603 tb
&= 0x00000000FFFFFFFFULL
;
604 cpu_ppc_store_tb(tb_env
, clock
, &tb_env
->atb_offset
,
605 ((uint64_t)value
<< 32) | tb
);
608 uint64_t cpu_ppc_load_vtb(CPUPPCState
*env
)
610 ppc_tb_t
*tb_env
= env
->tb_env
;
612 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
616 void cpu_ppc_store_vtb(CPUPPCState
*env
, uint64_t value
)
618 ppc_tb_t
*tb_env
= env
->tb_env
;
620 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
621 &tb_env
->vtb_offset
, value
);
624 void cpu_ppc_store_tbu40(CPUPPCState
*env
, uint64_t value
)
626 ppc_tb_t
*tb_env
= env
->tb_env
;
627 int64_t clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
630 tb
= cpu_ppc_get_tb(tb_env
, clock
, tb_env
->tb_offset
);
632 tb
|= (value
& ~0xFFFFFFUL
);
633 cpu_ppc_store_tb(tb_env
, clock
, &tb_env
->tb_offset
, tb
);
636 static void cpu_ppc_tb_stop (CPUPPCState
*env
)
638 ppc_tb_t
*tb_env
= env
->tb_env
;
639 uint64_t tb
, atb
, vmclk
;
641 /* If the time base is already frozen, do nothing */
642 if (tb_env
->tb_freq
!= 0) {
643 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
644 /* Get the time base */
645 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
646 /* Get the alternate time base */
647 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
648 /* Store the time base value (ie compute the current offset) */
649 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
650 /* Store the alternate time base value (compute the current offset) */
651 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
652 /* Set the time base frequency to zero */
654 /* Now, the time bases are frozen to tb_offset / atb_offset value */
658 static void cpu_ppc_tb_start (CPUPPCState
*env
)
660 ppc_tb_t
*tb_env
= env
->tb_env
;
661 uint64_t tb
, atb
, vmclk
;
663 /* If the time base is not frozen, do nothing */
664 if (tb_env
->tb_freq
== 0) {
665 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
666 /* Get the time base from tb_offset */
667 tb
= tb_env
->tb_offset
;
668 /* Get the alternate time base from atb_offset */
669 atb
= tb_env
->atb_offset
;
670 /* Restore the tb frequency from the decrementer frequency */
671 tb_env
->tb_freq
= tb_env
->decr_freq
;
672 /* Store the time base value */
673 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
674 /* Store the alternate time base value */
675 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
679 bool ppc_decr_clear_on_delivery(CPUPPCState
*env
)
681 ppc_tb_t
*tb_env
= env
->tb_env
;
682 int flags
= PPC_DECR_UNDERFLOW_TRIGGERED
| PPC_DECR_UNDERFLOW_LEVEL
;
683 return ((tb_env
->flags
& flags
) == PPC_DECR_UNDERFLOW_TRIGGERED
);
686 static inline int64_t _cpu_ppc_load_decr(CPUPPCState
*env
, uint64_t next
)
688 ppc_tb_t
*tb_env
= env
->tb_env
;
691 diff
= next
- qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
693 decr
= muldiv64(diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
694 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
697 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
699 trace_ppc_decr_load(decr
);
704 target_ulong
cpu_ppc_load_decr(CPUPPCState
*env
)
706 ppc_tb_t
*tb_env
= env
->tb_env
;
710 return env
->spr
[SPR_DECR
];
713 decr
= _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
716 * If large decrementer is enabled then the decrementer is signed extened
717 * to 64 bits, otherwise it is a 32 bit value.
719 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
722 return (uint32_t) decr
;
725 target_ulong
cpu_ppc_load_hdecr(CPUPPCState
*env
)
727 PowerPCCPU
*cpu
= env_archcpu(env
);
728 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
729 ppc_tb_t
*tb_env
= env
->tb_env
;
732 hdecr
= _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
735 * If we have a large decrementer (POWER9 or later) then hdecr is sign
736 * extended to 64 bits, otherwise it is 32 bits.
738 if (pcc
->lrg_decr_bits
> 32) {
741 return (uint32_t) hdecr
;
744 uint64_t cpu_ppc_load_purr (CPUPPCState
*env
)
746 ppc_tb_t
*tb_env
= env
->tb_env
;
748 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
749 tb_env
->purr_offset
);
752 /* When decrementer expires,
753 * all we need to do is generate or queue a CPU exception
755 static inline void cpu_ppc_decr_excp(PowerPCCPU
*cpu
)
758 trace_ppc_decr_excp("raise");
759 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 1);
762 static inline void cpu_ppc_decr_lower(PowerPCCPU
*cpu
)
764 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 0);
767 static inline void cpu_ppc_hdecr_excp(PowerPCCPU
*cpu
)
769 CPUPPCState
*env
= &cpu
->env
;
772 trace_ppc_decr_excp("raise HV");
774 /* The architecture specifies that we don't deliver HDEC
775 * interrupts in a PM state. Not only they don't cause a
776 * wakeup but they also get effectively discarded.
778 if (!env
->resume_as_sreset
) {
779 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 1);
783 static inline void cpu_ppc_hdecr_lower(PowerPCCPU
*cpu
)
785 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 0);
788 static void __cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint64_t *nextp
,
790 void (*raise_excp
)(void *),
791 void (*lower_excp
)(PowerPCCPU
*),
792 uint32_t flags
, target_ulong decr
,
793 target_ulong value
, int nr_bits
)
795 CPUPPCState
*env
= &cpu
->env
;
796 ppc_tb_t
*tb_env
= env
->tb_env
;
798 int64_t signed_value
;
801 /* Truncate value to decr_width and sign extend for simplicity */
802 value
= extract64(value
, 0, nr_bits
);
803 decr
= extract64(decr
, 0, nr_bits
);
804 signed_value
= sextract64(value
, 0, nr_bits
);
805 signed_decr
= sextract64(decr
, 0, nr_bits
);
807 trace_ppc_decr_store(nr_bits
, decr
, value
);
810 /* KVM handles decrementer exceptions, we don't need our own timer */
815 * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt.
817 * On MSB level based DEC implementations the MSB always means the interrupt
818 * is pending, so raise it on those.
820 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
821 * an edge interrupt, so raise it here too.
823 if (((flags
& PPC_DECR_UNDERFLOW_LEVEL
) && signed_value
< 0) ||
824 ((flags
& PPC_DECR_UNDERFLOW_TRIGGERED
) && signed_value
< 0
825 && signed_decr
>= 0)) {
830 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
831 if (signed_value
>= 0 && (flags
& PPC_DECR_UNDERFLOW_LEVEL
)) {
835 /* Calculate the next timer event */
836 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
837 next
= now
+ muldiv64(value
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
841 timer_mod(timer
, next
);
844 static inline void _cpu_ppc_store_decr(PowerPCCPU
*cpu
, target_ulong decr
,
845 target_ulong value
, int nr_bits
)
847 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
849 __cpu_ppc_store_decr(cpu
, &tb_env
->decr_next
, tb_env
->decr_timer
,
850 tb_env
->decr_timer
->cb
, &cpu_ppc_decr_lower
,
851 tb_env
->flags
, decr
, value
, nr_bits
);
854 void cpu_ppc_store_decr(CPUPPCState
*env
, target_ulong value
)
856 PowerPCCPU
*cpu
= env_archcpu(env
);
857 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
860 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
861 nr_bits
= pcc
->lrg_decr_bits
;
864 _cpu_ppc_store_decr(cpu
, cpu_ppc_load_decr(env
), value
, nr_bits
);
867 static void cpu_ppc_decr_cb(void *opaque
)
869 PowerPCCPU
*cpu
= opaque
;
871 cpu_ppc_decr_excp(cpu
);
874 static inline void _cpu_ppc_store_hdecr(PowerPCCPU
*cpu
, target_ulong hdecr
,
875 target_ulong value
, int nr_bits
)
877 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
879 if (tb_env
->hdecr_timer
!= NULL
) {
880 /* HDECR (Book3S 64bit) is edge-based, not level like DECR */
881 __cpu_ppc_store_decr(cpu
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
882 tb_env
->hdecr_timer
->cb
, &cpu_ppc_hdecr_lower
,
883 PPC_DECR_UNDERFLOW_TRIGGERED
,
884 hdecr
, value
, nr_bits
);
888 void cpu_ppc_store_hdecr(CPUPPCState
*env
, target_ulong value
)
890 PowerPCCPU
*cpu
= env_archcpu(env
);
891 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
893 _cpu_ppc_store_hdecr(cpu
, cpu_ppc_load_hdecr(env
), value
,
897 static void cpu_ppc_hdecr_cb(void *opaque
)
899 PowerPCCPU
*cpu
= opaque
;
901 cpu_ppc_hdecr_excp(cpu
);
904 void cpu_ppc_store_purr(CPUPPCState
*env
, uint64_t value
)
906 ppc_tb_t
*tb_env
= env
->tb_env
;
908 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
909 &tb_env
->purr_offset
, value
);
912 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
914 CPUPPCState
*env
= opaque
;
915 PowerPCCPU
*cpu
= env_archcpu(env
);
916 ppc_tb_t
*tb_env
= env
->tb_env
;
918 tb_env
->tb_freq
= freq
;
919 tb_env
->decr_freq
= freq
;
920 /* There is a bug in Linux 2.4 kernels:
921 * if a decrementer exception is pending when it enables msr_ee at startup,
922 * it's not ready to handle it...
924 _cpu_ppc_store_decr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 32);
925 _cpu_ppc_store_hdecr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 32);
926 cpu_ppc_store_purr(env
, 0x0000000000000000ULL
);
929 static void timebase_save(PPCTimebase
*tb
)
931 uint64_t ticks
= cpu_get_host_ticks();
932 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
934 if (!first_ppc_cpu
->env
.tb_env
) {
935 error_report("No timebase object");
939 /* not used anymore, we keep it for compatibility */
940 tb
->time_of_the_day_ns
= qemu_clock_get_ns(QEMU_CLOCK_HOST
);
942 * tb_offset is only expected to be changed by QEMU so
943 * there is no need to update it from KVM here
945 tb
->guest_timebase
= ticks
+ first_ppc_cpu
->env
.tb_env
->tb_offset
;
947 tb
->runstate_paused
=
948 runstate_check(RUN_STATE_PAUSED
) || runstate_check(RUN_STATE_SAVE_VM
);
951 static void timebase_load(PPCTimebase
*tb
)
954 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
955 int64_t tb_off_adj
, tb_off
;
958 if (!first_ppc_cpu
->env
.tb_env
) {
959 error_report("No timebase object");
963 freq
= first_ppc_cpu
->env
.tb_env
->tb_freq
;
965 tb_off_adj
= tb
->guest_timebase
- cpu_get_host_ticks();
967 tb_off
= first_ppc_cpu
->env
.tb_env
->tb_offset
;
968 trace_ppc_tb_adjust(tb_off
, tb_off_adj
, tb_off_adj
- tb_off
,
969 (tb_off_adj
- tb_off
) / freq
);
971 /* Set new offset to all CPUs */
973 PowerPCCPU
*pcpu
= POWERPC_CPU(cpu
);
974 pcpu
->env
.tb_env
->tb_offset
= tb_off_adj
;
975 kvmppc_set_reg_tb_offset(pcpu
, pcpu
->env
.tb_env
->tb_offset
);
979 void cpu_ppc_clock_vm_state_change(void *opaque
, bool running
,
982 PPCTimebase
*tb
= opaque
;
992 * When migrating a running guest, read the clock just
993 * before migration, so that the guest clock counts
994 * during the events between:
1000 * This reduces clock difference on migration from 5s
1001 * to 0.1s (when max_downtime == 5s), because sending the
1002 * final pages of memory (which happens between vm_stop()
1003 * and pre_save()) takes max_downtime.
1005 static int timebase_pre_save(void *opaque
)
1007 PPCTimebase
*tb
= opaque
;
1009 /* guest_timebase won't be overridden in case of paused guest or savevm */
1010 if (!tb
->runstate_paused
) {
1017 const VMStateDescription vmstate_ppc_timebase
= {
1020 .minimum_version_id
= 1,
1021 .pre_save
= timebase_pre_save
,
1022 .fields
= (VMStateField
[]) {
1023 VMSTATE_UINT64(guest_timebase
, PPCTimebase
),
1024 VMSTATE_INT64(time_of_the_day_ns
, PPCTimebase
),
1025 VMSTATE_END_OF_LIST()
1029 /* Set up (once) timebase frequency (in Hz) */
1030 clk_setup_cb
cpu_ppc_tb_init (CPUPPCState
*env
, uint32_t freq
)
1032 PowerPCCPU
*cpu
= env_archcpu(env
);
1035 tb_env
= g_new0(ppc_tb_t
, 1);
1036 env
->tb_env
= tb_env
;
1037 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1038 if (is_book3s_arch2x(env
)) {
1039 /* All Book3S 64bit CPUs implement level based DEC logic */
1040 tb_env
->flags
|= PPC_DECR_UNDERFLOW_LEVEL
;
1042 /* Create new timer */
1043 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_decr_cb
, cpu
);
1044 if (env
->has_hv_mode
&& !cpu
->vhyp
) {
1045 tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_hdecr_cb
,
1048 tb_env
->hdecr_timer
= NULL
;
1050 cpu_ppc_set_tb_clk(env
, freq
);
1052 return &cpu_ppc_set_tb_clk
;
1055 void cpu_ppc_tb_free(CPUPPCState
*env
)
1057 timer_free(env
->tb_env
->decr_timer
);
1058 timer_free(env
->tb_env
->hdecr_timer
);
1059 g_free(env
->tb_env
);
1062 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1063 void cpu_ppc_hdecr_init(CPUPPCState
*env
)
1065 PowerPCCPU
*cpu
= env_archcpu(env
);
1067 assert(env
->tb_env
->hdecr_timer
== NULL
);
1069 env
->tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
1070 &cpu_ppc_hdecr_cb
, cpu
);
1073 void cpu_ppc_hdecr_exit(CPUPPCState
*env
)
1075 PowerPCCPU
*cpu
= env_archcpu(env
);
1077 timer_free(env
->tb_env
->hdecr_timer
);
1078 env
->tb_env
->hdecr_timer
= NULL
;
1080 cpu_ppc_hdecr_lower(cpu
);
1083 /*****************************************************************************/
1084 /* PowerPC 40x timers */
1086 /* PIT, FIT & WDT */
1087 typedef struct ppc40x_timer_t ppc40x_timer_t
;
1088 struct ppc40x_timer_t
{
1089 uint64_t pit_reload
; /* PIT auto-reload value */
1090 uint64_t fit_next
; /* Tick for next FIT interrupt */
1091 QEMUTimer
*fit_timer
;
1092 uint64_t wdt_next
; /* Tick for next WDT interrupt */
1093 QEMUTimer
*wdt_timer
;
1095 /* 405 have the PIT, 440 have a DECR. */
1096 unsigned int decr_excp
;
1099 /* Fixed interval timer */
1100 static void cpu_4xx_fit_cb (void *opaque
)
1102 PowerPCCPU
*cpu
= opaque
;
1103 CPUPPCState
*env
= &cpu
->env
;
1105 ppc40x_timer_t
*ppc40x_timer
;
1108 tb_env
= env
->tb_env
;
1109 ppc40x_timer
= tb_env
->opaque
;
1110 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1111 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
1125 /* Cannot occur, but makes gcc happy */
1128 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->tb_freq
);
1131 timer_mod(ppc40x_timer
->fit_timer
, next
);
1132 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
1133 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1) {
1134 ppc_set_irq(cpu
, PPC_INTERRUPT_FIT
, 1);
1136 trace_ppc4xx_fit((int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
1137 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1140 /* Programmable interval timer */
1141 static void start_stop_pit (CPUPPCState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
1143 ppc40x_timer_t
*ppc40x_timer
;
1146 ppc40x_timer
= tb_env
->opaque
;
1147 if (ppc40x_timer
->pit_reload
<= 1 ||
1148 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
1149 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
1151 trace_ppc4xx_pit_stop();
1152 timer_del(tb_env
->decr_timer
);
1154 trace_ppc4xx_pit_start(ppc40x_timer
->pit_reload
);
1155 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1156 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
1157 NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1159 next
+= tb_env
->decr_next
- now
;
1162 timer_mod(tb_env
->decr_timer
, next
);
1163 tb_env
->decr_next
= next
;
1167 static void cpu_4xx_pit_cb (void *opaque
)
1169 PowerPCCPU
*cpu
= opaque
;
1170 CPUPPCState
*env
= &cpu
->env
;
1172 ppc40x_timer_t
*ppc40x_timer
;
1174 tb_env
= env
->tb_env
;
1175 ppc40x_timer
= tb_env
->opaque
;
1176 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
1177 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) {
1178 ppc_set_irq(cpu
, ppc40x_timer
->decr_excp
, 1);
1180 start_stop_pit(env
, tb_env
, 1);
1181 trace_ppc4xx_pit((int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
1182 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
1183 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
1184 ppc40x_timer
->pit_reload
);
1187 /* Watchdog timer */
1188 static void cpu_4xx_wdt_cb (void *opaque
)
1190 PowerPCCPU
*cpu
= opaque
;
1191 CPUPPCState
*env
= &cpu
->env
;
1193 ppc40x_timer_t
*ppc40x_timer
;
1196 tb_env
= env
->tb_env
;
1197 ppc40x_timer
= tb_env
->opaque
;
1198 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1199 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
1213 /* Cannot occur, but makes gcc happy */
1216 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1219 trace_ppc4xx_wdt(env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1220 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
1223 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1224 ppc40x_timer
->wdt_next
= next
;
1225 env
->spr
[SPR_40x_TSR
] |= 1U << 31;
1228 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1229 ppc40x_timer
->wdt_next
= next
;
1230 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
1231 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1) {
1232 ppc_set_irq(cpu
, PPC_INTERRUPT_WDT
, 1);
1236 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1237 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1238 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1242 case 0x1: /* Core reset */
1243 ppc40x_core_reset(cpu
);
1245 case 0x2: /* Chip reset */
1246 ppc40x_chip_reset(cpu
);
1248 case 0x3: /* System reset */
1249 ppc40x_system_reset(cpu
);
1255 void store_40x_pit (CPUPPCState
*env
, target_ulong val
)
1258 ppc40x_timer_t
*ppc40x_timer
;
1260 tb_env
= env
->tb_env
;
1261 ppc40x_timer
= tb_env
->opaque
;
1262 trace_ppc40x_store_pit(val
);
1263 ppc40x_timer
->pit_reload
= val
;
1264 start_stop_pit(env
, tb_env
, 0);
1267 target_ulong
load_40x_pit (CPUPPCState
*env
)
1269 return cpu_ppc_load_decr(env
);
1272 void store_40x_tsr(CPUPPCState
*env
, target_ulong val
)
1274 PowerPCCPU
*cpu
= env_archcpu(env
);
1276 trace_ppc40x_store_tcr(val
);
1278 env
->spr
[SPR_40x_TSR
] &= ~(val
& 0xFC000000);
1279 if (val
& 0x80000000) {
1280 ppc_set_irq(cpu
, PPC_INTERRUPT_PIT
, 0);
1284 void store_40x_tcr(CPUPPCState
*env
, target_ulong val
)
1286 PowerPCCPU
*cpu
= env_archcpu(env
);
1289 trace_ppc40x_store_tsr(val
);
1291 tb_env
= env
->tb_env
;
1292 env
->spr
[SPR_40x_TCR
] = val
& 0xFFC00000;
1293 start_stop_pit(env
, tb_env
, 1);
1294 cpu_4xx_wdt_cb(cpu
);
1297 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1299 CPUPPCState
*env
= opaque
;
1300 ppc_tb_t
*tb_env
= env
->tb_env
;
1302 trace_ppc40x_set_tb_clk(freq
);
1303 tb_env
->tb_freq
= freq
;
1304 tb_env
->decr_freq
= freq
;
1305 /* XXX: we should also update all timers */
1308 clk_setup_cb
ppc_40x_timers_init (CPUPPCState
*env
, uint32_t freq
,
1309 unsigned int decr_excp
)
1312 ppc40x_timer_t
*ppc40x_timer
;
1313 PowerPCCPU
*cpu
= env_archcpu(env
);
1315 trace_ppc40x_timers_init(freq
);
1317 tb_env
= g_new0(ppc_tb_t
, 1);
1318 ppc40x_timer
= g_new0(ppc40x_timer_t
, 1);
1320 env
->tb_env
= tb_env
;
1321 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1322 tb_env
->tb_freq
= freq
;
1323 tb_env
->decr_freq
= freq
;
1324 tb_env
->opaque
= ppc40x_timer
;
1326 /* We use decr timer for PIT */
1327 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_pit_cb
, cpu
);
1328 ppc40x_timer
->fit_timer
=
1329 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_fit_cb
, cpu
);
1330 ppc40x_timer
->wdt_timer
=
1331 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_wdt_cb
, cpu
);
1332 ppc40x_timer
->decr_excp
= decr_excp
;
1334 return &ppc_40x_set_tb_clk
;
1337 /*****************************************************************************/
1338 /* Embedded PowerPC Device Control Registers */
1339 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1341 dcr_read_cb dcr_read
;
1342 dcr_write_cb dcr_write
;
1346 /* XXX: on 460, DCR addresses are 32 bits wide,
1347 * using DCRIPR to get the 22 upper bits of the DCR address
1349 #define DCRN_NB 1024
1351 ppc_dcrn_t dcrn
[DCRN_NB
];
1352 int (*read_error
)(int dcrn
);
1353 int (*write_error
)(int dcrn
);
1356 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1360 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1362 dcr
= &dcr_env
->dcrn
[dcrn
];
1363 if (dcr
->dcr_read
== NULL
)
1365 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1366 trace_ppc_dcr_read(dcrn
, *valp
);
1371 if (dcr_env
->read_error
!= NULL
)
1372 return (*dcr_env
->read_error
)(dcrn
);
1377 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1381 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1383 dcr
= &dcr_env
->dcrn
[dcrn
];
1384 if (dcr
->dcr_write
== NULL
)
1386 trace_ppc_dcr_write(dcrn
, val
);
1387 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1392 if (dcr_env
->write_error
!= NULL
)
1393 return (*dcr_env
->write_error
)(dcrn
);
1398 int ppc_dcr_register (CPUPPCState
*env
, int dcrn
, void *opaque
,
1399 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1404 dcr_env
= env
->dcr_env
;
1405 if (dcr_env
== NULL
)
1407 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1409 dcr
= &dcr_env
->dcrn
[dcrn
];
1410 if (dcr
->opaque
!= NULL
||
1411 dcr
->dcr_read
!= NULL
||
1412 dcr
->dcr_write
!= NULL
)
1414 dcr
->opaque
= opaque
;
1415 dcr
->dcr_read
= dcr_read
;
1416 dcr
->dcr_write
= dcr_write
;
1421 int ppc_dcr_init (CPUPPCState
*env
, int (*read_error
)(int dcrn
),
1422 int (*write_error
)(int dcrn
))
1426 dcr_env
= g_new0(ppc_dcr_t
, 1);
1427 dcr_env
->read_error
= read_error
;
1428 dcr_env
->write_error
= write_error
;
1429 env
->dcr_env
= dcr_env
;
1434 /*****************************************************************************/
1436 int ppc_cpu_pir(PowerPCCPU
*cpu
)
1438 CPUPPCState
*env
= &cpu
->env
;
1439 return env
->spr_cb
[SPR_PIR
].default_value
;
1442 int ppc_cpu_tir(PowerPCCPU
*cpu
)
1444 CPUPPCState
*env
= &cpu
->env
;
1445 return env
->spr_cb
[SPR_TIR
].default_value
;
1448 PowerPCCPU
*ppc_get_vcpu_by_pir(int pir
)
1453 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1455 if (ppc_cpu_pir(cpu
) == pir
) {
1463 void ppc_irq_reset(PowerPCCPU
*cpu
)
1465 CPUPPCState
*env
= &cpu
->env
;
1467 env
->irq_input_state
= 0;
1468 kvmppc_set_interrupt(cpu
, PPC_INTERRUPT_EXT
, 0);