tests/qtest/bios-tables-test: Check for virtio-iommu device before using it
[qemu/kevin.git] / hw / i386 / x86.c
bloba88a126123be2c48aa7f435967453dcd2b436885
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu/datadir.h"
29 #include "qapi/error.h"
30 #include "qapi/qapi-visit-common.h"
31 #include "qapi/clone-visitor.h"
32 #include "qapi/qapi-visit-machine.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/whpx.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/replay.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/cpu-timers.h"
40 #include "sysemu/xen.h"
41 #include "trace.h"
43 #include "hw/i386/x86.h"
44 #include "target/i386/cpu.h"
45 #include "hw/i386/topology.h"
46 #include "hw/i386/fw_cfg.h"
47 #include "hw/intc/i8259.h"
48 #include "hw/rtc/mc146818rtc.h"
49 #include "target/i386/sev.h"
51 #include "hw/acpi/cpu_hotplug.h"
52 #include "hw/irq.h"
53 #include "hw/nmi.h"
54 #include "hw/loader.h"
55 #include "multiboot.h"
56 #include "elf.h"
57 #include "standard-headers/asm-x86/bootparam.h"
58 #include CONFIG_DEVICES
59 #include "kvm/kvm_i386.h"
61 #ifdef CONFIG_XEN_EMU
62 #include "hw/xen/xen.h"
63 #include "hw/i386/kvm/xen_evtchn.h"
64 #endif
66 /* Physical Address of PVH entry point read from kernel ELF NOTE */
67 static size_t pvh_start_addr;
69 static void init_topo_info(X86CPUTopoInfo *topo_info,
70 const X86MachineState *x86ms)
72 MachineState *ms = MACHINE(x86ms);
74 topo_info->dies_per_pkg = ms->smp.dies;
75 topo_info->cores_per_die = ms->smp.cores;
76 topo_info->threads_per_core = ms->smp.threads;
80 * Calculates initial APIC ID for a specific CPU index
82 * Currently we need to be able to calculate the APIC ID from the CPU index
83 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
84 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
85 * all CPUs up to max_cpus.
87 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
88 unsigned int cpu_index)
90 X86CPUTopoInfo topo_info;
92 init_topo_info(&topo_info, x86ms);
94 return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
98 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
100 Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
102 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
103 goto out;
105 qdev_realize(DEVICE(cpu), NULL, errp);
107 out:
108 object_unref(cpu);
111 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
113 int i;
114 const CPUArchIdList *possible_cpus;
115 MachineState *ms = MACHINE(x86ms);
116 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
118 x86_cpu_set_default_version(default_cpu_version);
121 * Calculates the limit to CPU APIC ID values
123 * Limit for the APIC ID value, so that all
124 * CPU APIC IDs are < x86ms->apic_id_limit.
126 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
128 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
129 ms->smp.max_cpus - 1) + 1;
132 * Can we support APIC ID 255 or higher?
134 * Under Xen: yes.
135 * With userspace emulated lapic: no
136 * With KVM's in-kernel lapic: only if X2APIC API is enabled.
138 if (x86ms->apic_id_limit > 255 && !xen_enabled() &&
139 (!kvm_irqchip_in_kernel() || !kvm_enable_x2apic())) {
140 error_report("current -smp configuration requires kernel "
141 "irqchip and X2APIC API support.");
142 exit(EXIT_FAILURE);
145 if (kvm_enabled()) {
146 kvm_set_max_apic_id(x86ms->apic_id_limit);
149 possible_cpus = mc->possible_cpu_arch_ids(ms);
150 for (i = 0; i < ms->smp.cpus; i++) {
151 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
155 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count)
157 MC146818RtcState *rtc = MC146818_RTC(s);
159 if (cpus_count > 0xff) {
161 * If the number of CPUs can't be represented in 8 bits, the
162 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
163 * to make old BIOSes fail more predictably.
165 mc146818rtc_set_cmos_data(rtc, 0x5f, 0);
166 } else {
167 mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1);
171 static int x86_apic_cmp(const void *a, const void *b)
173 CPUArchId *apic_a = (CPUArchId *)a;
174 CPUArchId *apic_b = (CPUArchId *)b;
176 return apic_a->arch_id - apic_b->arch_id;
180 * returns pointer to CPUArchId descriptor that matches CPU's apic_id
181 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
182 * entry corresponding to CPU's apic_id returns NULL.
184 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
186 CPUArchId apic_id, *found_cpu;
188 apic_id.arch_id = id;
189 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
190 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
191 x86_apic_cmp);
192 if (found_cpu && idx) {
193 *idx = found_cpu - ms->possible_cpus->cpus;
195 return found_cpu;
198 void x86_cpu_plug(HotplugHandler *hotplug_dev,
199 DeviceState *dev, Error **errp)
201 CPUArchId *found_cpu;
202 Error *local_err = NULL;
203 X86CPU *cpu = X86_CPU(dev);
204 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
206 if (x86ms->acpi_dev) {
207 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
208 if (local_err) {
209 goto out;
213 /* increment the number of CPUs */
214 x86ms->boot_cpus++;
215 if (x86ms->rtc) {
216 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
218 if (x86ms->fw_cfg) {
219 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
222 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
223 found_cpu->cpu = OBJECT(dev);
224 out:
225 error_propagate(errp, local_err);
228 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
229 DeviceState *dev, Error **errp)
231 int idx = -1;
232 X86CPU *cpu = X86_CPU(dev);
233 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
235 if (!x86ms->acpi_dev) {
236 error_setg(errp, "CPU hot unplug not supported without ACPI");
237 return;
240 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
241 assert(idx != -1);
242 if (idx == 0) {
243 error_setg(errp, "Boot CPU is unpluggable");
244 return;
247 hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
248 errp);
251 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
252 DeviceState *dev, Error **errp)
254 CPUArchId *found_cpu;
255 Error *local_err = NULL;
256 X86CPU *cpu = X86_CPU(dev);
257 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
259 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
260 if (local_err) {
261 goto out;
264 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
265 found_cpu->cpu = NULL;
266 qdev_unrealize(dev);
268 /* decrement the number of CPUs */
269 x86ms->boot_cpus--;
270 /* Update the number of CPUs in CMOS */
271 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
272 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
273 out:
274 error_propagate(errp, local_err);
277 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
278 DeviceState *dev, Error **errp)
280 int idx;
281 CPUState *cs;
282 CPUArchId *cpu_slot;
283 X86CPUTopoIDs topo_ids;
284 X86CPU *cpu = X86_CPU(dev);
285 CPUX86State *env = &cpu->env;
286 MachineState *ms = MACHINE(hotplug_dev);
287 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
288 unsigned int smp_cores = ms->smp.cores;
289 unsigned int smp_threads = ms->smp.threads;
290 X86CPUTopoInfo topo_info;
292 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
293 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
294 ms->cpu_type);
295 return;
298 if (x86ms->acpi_dev) {
299 Error *local_err = NULL;
301 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
302 &local_err);
303 if (local_err) {
304 error_propagate(errp, local_err);
305 return;
309 init_topo_info(&topo_info, x86ms);
311 env->nr_dies = ms->smp.dies;
314 * If APIC ID is not set,
315 * set it based on socket/die/core/thread properties.
317 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
318 int max_socket = (ms->smp.max_cpus - 1) /
319 smp_threads / smp_cores / ms->smp.dies;
322 * die-id was optional in QEMU 4.0 and older, so keep it optional
323 * if there's only one die per socket.
325 if (cpu->die_id < 0 && ms->smp.dies == 1) {
326 cpu->die_id = 0;
329 if (cpu->socket_id < 0) {
330 error_setg(errp, "CPU socket-id is not set");
331 return;
332 } else if (cpu->socket_id > max_socket) {
333 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
334 cpu->socket_id, max_socket);
335 return;
337 if (cpu->die_id < 0) {
338 error_setg(errp, "CPU die-id is not set");
339 return;
340 } else if (cpu->die_id > ms->smp.dies - 1) {
341 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
342 cpu->die_id, ms->smp.dies - 1);
343 return;
345 if (cpu->core_id < 0) {
346 error_setg(errp, "CPU core-id is not set");
347 return;
348 } else if (cpu->core_id > (smp_cores - 1)) {
349 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
350 cpu->core_id, smp_cores - 1);
351 return;
353 if (cpu->thread_id < 0) {
354 error_setg(errp, "CPU thread-id is not set");
355 return;
356 } else if (cpu->thread_id > (smp_threads - 1)) {
357 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
358 cpu->thread_id, smp_threads - 1);
359 return;
362 topo_ids.pkg_id = cpu->socket_id;
363 topo_ids.die_id = cpu->die_id;
364 topo_ids.core_id = cpu->core_id;
365 topo_ids.smt_id = cpu->thread_id;
366 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
369 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
370 if (!cpu_slot) {
371 MachineState *ms = MACHINE(x86ms);
373 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
374 error_setg(errp,
375 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
376 " APIC ID %" PRIu32 ", valid index range 0:%d",
377 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
378 cpu->apic_id, ms->possible_cpus->len - 1);
379 return;
382 if (cpu_slot->cpu) {
383 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
384 idx, cpu->apic_id);
385 return;
388 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
389 * so that machine_query_hotpluggable_cpus would show correct values
391 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
392 * once -smp refactoring is complete and there will be CPU private
393 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
394 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
395 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
396 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
397 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
398 topo_ids.pkg_id);
399 return;
401 cpu->socket_id = topo_ids.pkg_id;
403 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
404 error_setg(errp, "property die-id: %u doesn't match set apic-id:"
405 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
406 return;
408 cpu->die_id = topo_ids.die_id;
410 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
411 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
412 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
413 topo_ids.core_id);
414 return;
416 cpu->core_id = topo_ids.core_id;
418 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
419 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
420 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
421 topo_ids.smt_id);
422 return;
424 cpu->thread_id = topo_ids.smt_id;
426 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
427 !kvm_hv_vpindex_settable()) {
428 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
429 return;
432 cs = CPU(cpu);
433 cs->cpu_index = idx;
435 numa_cpu_pre_plug(cpu_slot, dev, errp);
438 CpuInstanceProperties
439 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
441 MachineClass *mc = MACHINE_GET_CLASS(ms);
442 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
444 assert(cpu_index < possible_cpus->len);
445 return possible_cpus->cpus[cpu_index].props;
448 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
450 X86CPUTopoIDs topo_ids;
451 X86MachineState *x86ms = X86_MACHINE(ms);
452 X86CPUTopoInfo topo_info;
454 init_topo_info(&topo_info, x86ms);
456 assert(idx < ms->possible_cpus->len);
457 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
458 &topo_info, &topo_ids);
459 return topo_ids.pkg_id % ms->numa_state->num_nodes;
462 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
464 X86MachineState *x86ms = X86_MACHINE(ms);
465 unsigned int max_cpus = ms->smp.max_cpus;
466 X86CPUTopoInfo topo_info;
467 int i;
469 if (ms->possible_cpus) {
471 * make sure that max_cpus hasn't changed since the first use, i.e.
472 * -smp hasn't been parsed after it
474 assert(ms->possible_cpus->len == max_cpus);
475 return ms->possible_cpus;
478 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
479 sizeof(CPUArchId) * max_cpus);
480 ms->possible_cpus->len = max_cpus;
482 init_topo_info(&topo_info, x86ms);
484 for (i = 0; i < ms->possible_cpus->len; i++) {
485 X86CPUTopoIDs topo_ids;
487 ms->possible_cpus->cpus[i].type = ms->cpu_type;
488 ms->possible_cpus->cpus[i].vcpus_count = 1;
489 ms->possible_cpus->cpus[i].arch_id =
490 x86_cpu_apic_id_from_index(x86ms, i);
491 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
492 &topo_info, &topo_ids);
493 ms->possible_cpus->cpus[i].props.has_socket_id = true;
494 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
495 if (ms->smp.dies > 1) {
496 ms->possible_cpus->cpus[i].props.has_die_id = true;
497 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
499 ms->possible_cpus->cpus[i].props.has_core_id = true;
500 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
501 ms->possible_cpus->cpus[i].props.has_thread_id = true;
502 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
504 return ms->possible_cpus;
507 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
509 /* cpu index isn't used */
510 CPUState *cs;
512 CPU_FOREACH(cs) {
513 X86CPU *cpu = X86_CPU(cs);
515 if (!cpu->apic_state) {
516 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
517 } else {
518 apic_deliver_nmi(cpu->apic_state);
523 static long get_file_size(FILE *f)
525 long where, size;
527 /* XXX: on Unix systems, using fstat() probably makes more sense */
529 where = ftell(f);
530 fseek(f, 0, SEEK_END);
531 size = ftell(f);
532 fseek(f, where, SEEK_SET);
534 return size;
537 /* TSC handling */
538 uint64_t cpu_get_tsc(CPUX86State *env)
540 return cpus_get_elapsed_ticks();
543 /* IRQ handling */
544 static void pic_irq_request(void *opaque, int irq, int level)
546 CPUState *cs = first_cpu;
547 X86CPU *cpu = X86_CPU(cs);
549 trace_x86_pic_interrupt(irq, level);
550 if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
551 !whpx_apic_in_platform()) {
552 CPU_FOREACH(cs) {
553 cpu = X86_CPU(cs);
554 if (apic_accept_pic_intr(cpu->apic_state)) {
555 apic_deliver_pic_intr(cpu->apic_state, level);
558 } else {
559 if (level) {
560 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
561 } else {
562 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
567 qemu_irq x86_allocate_cpu_irq(void)
569 return qemu_allocate_irq(pic_irq_request, NULL, 0);
572 int cpu_get_pic_interrupt(CPUX86State *env)
574 X86CPU *cpu = env_archcpu(env);
575 int intno;
577 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
578 intno = apic_get_interrupt(cpu->apic_state);
579 if (intno >= 0) {
580 return intno;
582 /* read the irq from the PIC */
583 if (!apic_accept_pic_intr(cpu->apic_state)) {
584 return -1;
588 intno = pic_read_irq(isa_pic);
589 return intno;
592 DeviceState *cpu_get_current_apic(void)
594 if (current_cpu) {
595 X86CPU *cpu = X86_CPU(current_cpu);
596 return cpu->apic_state;
597 } else {
598 return NULL;
602 void gsi_handler(void *opaque, int n, int level)
604 GSIState *s = opaque;
606 trace_x86_gsi_interrupt(n, level);
607 switch (n) {
608 case 0 ... ISA_NUM_IRQS - 1:
609 if (s->i8259_irq[n]) {
610 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
611 qemu_set_irq(s->i8259_irq[n], level);
613 /* fall through */
614 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
615 #ifdef CONFIG_XEN_EMU
617 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC
618 * routing actually works properly under Xen). And then to
619 * *either* the PIRQ handling or the I/OAPIC depending on
620 * whether the former wants it.
622 if (xen_mode == XEN_EMULATE && xen_evtchn_set_gsi(n, level)) {
623 break;
625 #endif
626 qemu_set_irq(s->ioapic_irq[n], level);
627 break;
628 case IO_APIC_SECONDARY_IRQBASE
629 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
630 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
631 break;
635 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
637 DeviceState *dev;
638 SysBusDevice *d;
639 unsigned int i;
641 assert(parent_name);
642 if (kvm_ioapic_in_kernel()) {
643 dev = qdev_new(TYPE_KVM_IOAPIC);
644 } else {
645 dev = qdev_new(TYPE_IOAPIC);
647 object_property_add_child(object_resolve_path(parent_name, NULL),
648 "ioapic", OBJECT(dev));
649 d = SYS_BUS_DEVICE(dev);
650 sysbus_realize_and_unref(d, &error_fatal);
651 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
653 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
654 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
658 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
660 DeviceState *dev;
661 SysBusDevice *d;
662 unsigned int i;
664 dev = qdev_new(TYPE_IOAPIC);
665 d = SYS_BUS_DEVICE(dev);
666 sysbus_realize_and_unref(d, &error_fatal);
667 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
669 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
670 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
672 return dev;
675 struct setup_data {
676 uint64_t next;
677 uint32_t type;
678 uint32_t len;
679 uint8_t data[];
680 } __attribute__((packed));
684 * The entry point into the kernel for PVH boot is different from
685 * the native entry point. The PVH entry is defined by the x86/HVM
686 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
688 * This function is passed to load_elf() when it is called from
689 * load_elfboot() which then additionally checks for an ELF Note of
690 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
691 * parse the PVH entry address from the ELF Note.
693 * Due to trickery in elf_opts.h, load_elf() is actually available as
694 * load_elf32() or load_elf64() and this routine needs to be able
695 * to deal with being called as 32 or 64 bit.
697 * The address of the PVH entry point is saved to the 'pvh_start_addr'
698 * global variable. (although the entry point is 32-bit, the kernel
699 * binary can be either 32-bit or 64-bit).
701 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
703 size_t *elf_note_data_addr;
705 /* Check if ELF Note header passed in is valid */
706 if (arg1 == NULL) {
707 return 0;
710 if (is64) {
711 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
712 uint64_t nhdr_size64 = sizeof(struct elf64_note);
713 uint64_t phdr_align = *(uint64_t *)arg2;
714 uint64_t nhdr_namesz = nhdr64->n_namesz;
716 elf_note_data_addr =
717 ((void *)nhdr64) + nhdr_size64 +
718 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
720 pvh_start_addr = *elf_note_data_addr;
721 } else {
722 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
723 uint32_t nhdr_size32 = sizeof(struct elf32_note);
724 uint32_t phdr_align = *(uint32_t *)arg2;
725 uint32_t nhdr_namesz = nhdr32->n_namesz;
727 elf_note_data_addr =
728 ((void *)nhdr32) + nhdr_size32 +
729 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
731 pvh_start_addr = *(uint32_t *)elf_note_data_addr;
734 return pvh_start_addr;
737 static bool load_elfboot(const char *kernel_filename,
738 int kernel_file_size,
739 uint8_t *header,
740 size_t pvh_xen_start_addr,
741 FWCfgState *fw_cfg)
743 uint32_t flags = 0;
744 uint32_t mh_load_addr = 0;
745 uint32_t elf_kernel_size = 0;
746 uint64_t elf_entry;
747 uint64_t elf_low, elf_high;
748 int kernel_size;
750 if (ldl_p(header) != 0x464c457f) {
751 return false; /* no elfboot */
754 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
755 flags = elf_is64 ?
756 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
758 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
759 error_report("elfboot unsupported flags = %x", flags);
760 exit(1);
763 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
764 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
765 NULL, &elf_note_type, &elf_entry,
766 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
767 0, 0);
769 if (kernel_size < 0) {
770 error_report("Error while loading elf kernel");
771 exit(1);
773 mh_load_addr = elf_low;
774 elf_kernel_size = elf_high - elf_low;
776 if (pvh_start_addr == 0) {
777 error_report("Error loading uncompressed kernel without PVH ELF Note");
778 exit(1);
780 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
781 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
782 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
784 return true;
787 void x86_load_linux(X86MachineState *x86ms,
788 FWCfgState *fw_cfg,
789 int acpi_data_size,
790 bool pvh_enabled)
792 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
793 uint16_t protocol;
794 int setup_size, kernel_size, cmdline_size;
795 int dtb_size, setup_data_offset;
796 uint32_t initrd_max;
797 uint8_t header[8192], *setup, *kernel;
798 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
799 FILE *f;
800 char *vmode;
801 MachineState *machine = MACHINE(x86ms);
802 struct setup_data *setup_data;
803 const char *kernel_filename = machine->kernel_filename;
804 const char *initrd_filename = machine->initrd_filename;
805 const char *dtb_filename = machine->dtb;
806 const char *kernel_cmdline = machine->kernel_cmdline;
807 SevKernelLoaderContext sev_load_ctx = {};
809 /* Align to 16 bytes as a paranoia measure */
810 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
812 /* load the kernel header */
813 f = fopen(kernel_filename, "rb");
814 if (!f) {
815 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
816 kernel_filename, strerror(errno));
817 exit(1);
820 kernel_size = get_file_size(f);
821 if (!kernel_size ||
822 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
823 MIN(ARRAY_SIZE(header), kernel_size)) {
824 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
825 kernel_filename, strerror(errno));
826 exit(1);
829 /* kernel protocol version */
830 if (ldl_p(header + 0x202) == 0x53726448) {
831 protocol = lduw_p(header + 0x206);
832 } else {
834 * This could be a multiboot kernel. If it is, let's stop treating it
835 * like a Linux kernel.
836 * Note: some multiboot images could be in the ELF format (the same of
837 * PVH), so we try multiboot first since we check the multiboot magic
838 * header before to load it.
840 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
841 kernel_cmdline, kernel_size, header)) {
842 return;
845 * Check if the file is an uncompressed kernel file (ELF) and load it,
846 * saving the PVH entry point used by the x86/HVM direct boot ABI.
847 * If load_elfboot() is successful, populate the fw_cfg info.
849 if (pvh_enabled &&
850 load_elfboot(kernel_filename, kernel_size,
851 header, pvh_start_addr, fw_cfg)) {
852 fclose(f);
854 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
855 strlen(kernel_cmdline) + 1);
856 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
858 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
859 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
860 header, sizeof(header));
862 /* load initrd */
863 if (initrd_filename) {
864 GMappedFile *mapped_file;
865 gsize initrd_size;
866 gchar *initrd_data;
867 GError *gerr = NULL;
869 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
870 if (!mapped_file) {
871 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
872 initrd_filename, gerr->message);
873 exit(1);
875 x86ms->initrd_mapped_file = mapped_file;
877 initrd_data = g_mapped_file_get_contents(mapped_file);
878 initrd_size = g_mapped_file_get_length(mapped_file);
879 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
880 if (initrd_size >= initrd_max) {
881 fprintf(stderr, "qemu: initrd is too large, cannot support."
882 "(max: %"PRIu32", need %"PRId64")\n",
883 initrd_max, (uint64_t)initrd_size);
884 exit(1);
887 initrd_addr = (initrd_max - initrd_size) & ~4095;
889 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
890 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
891 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
892 initrd_size);
895 option_rom[nb_option_roms].bootindex = 0;
896 option_rom[nb_option_roms].name = "pvh.bin";
897 nb_option_roms++;
899 return;
901 protocol = 0;
904 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
905 /* Low kernel */
906 real_addr = 0x90000;
907 cmdline_addr = 0x9a000 - cmdline_size;
908 prot_addr = 0x10000;
909 } else if (protocol < 0x202) {
910 /* High but ancient kernel */
911 real_addr = 0x90000;
912 cmdline_addr = 0x9a000 - cmdline_size;
913 prot_addr = 0x100000;
914 } else {
915 /* High and recent kernel */
916 real_addr = 0x10000;
917 cmdline_addr = 0x20000;
918 prot_addr = 0x100000;
921 /* highest address for loading the initrd */
922 if (protocol >= 0x20c &&
923 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
925 * Linux has supported initrd up to 4 GB for a very long time (2007,
926 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
927 * though it only sets initrd_max to 2 GB to "work around bootloader
928 * bugs". Luckily, QEMU firmware(which does something like bootloader)
929 * has supported this.
931 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
932 * be loaded into any address.
934 * In addition, initrd_max is uint32_t simply because QEMU doesn't
935 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
936 * field).
938 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
940 initrd_max = UINT32_MAX;
941 } else if (protocol >= 0x203) {
942 initrd_max = ldl_p(header + 0x22c);
943 } else {
944 initrd_max = 0x37ffffff;
947 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
948 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
951 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
952 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
953 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
954 sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
955 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
957 if (protocol >= 0x202) {
958 stl_p(header + 0x228, cmdline_addr);
959 } else {
960 stw_p(header + 0x20, 0xA33F);
961 stw_p(header + 0x22, cmdline_addr - real_addr);
964 /* handle vga= parameter */
965 vmode = strstr(kernel_cmdline, "vga=");
966 if (vmode) {
967 unsigned int video_mode;
968 const char *end;
969 int ret;
970 /* skip "vga=" */
971 vmode += 4;
972 if (!strncmp(vmode, "normal", 6)) {
973 video_mode = 0xffff;
974 } else if (!strncmp(vmode, "ext", 3)) {
975 video_mode = 0xfffe;
976 } else if (!strncmp(vmode, "ask", 3)) {
977 video_mode = 0xfffd;
978 } else {
979 ret = qemu_strtoui(vmode, &end, 0, &video_mode);
980 if (ret != 0 || (*end && *end != ' ')) {
981 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
982 exit(1);
985 stw_p(header + 0x1fa, video_mode);
988 /* loader type */
990 * High nybble = B reserved for QEMU; low nybble is revision number.
991 * If this code is substantially changed, you may want to consider
992 * incrementing the revision.
994 if (protocol >= 0x200) {
995 header[0x210] = 0xB0;
997 /* heap */
998 if (protocol >= 0x201) {
999 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1000 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
1003 /* load initrd */
1004 if (initrd_filename) {
1005 GMappedFile *mapped_file;
1006 gsize initrd_size;
1007 gchar *initrd_data;
1008 GError *gerr = NULL;
1010 if (protocol < 0x200) {
1011 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1012 exit(1);
1015 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
1016 if (!mapped_file) {
1017 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1018 initrd_filename, gerr->message);
1019 exit(1);
1021 x86ms->initrd_mapped_file = mapped_file;
1023 initrd_data = g_mapped_file_get_contents(mapped_file);
1024 initrd_size = g_mapped_file_get_length(mapped_file);
1025 if (initrd_size >= initrd_max) {
1026 fprintf(stderr, "qemu: initrd is too large, cannot support."
1027 "(max: %"PRIu32", need %"PRId64")\n",
1028 initrd_max, (uint64_t)initrd_size);
1029 exit(1);
1032 initrd_addr = (initrd_max - initrd_size) & ~4095;
1034 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1035 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1036 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1037 sev_load_ctx.initrd_data = initrd_data;
1038 sev_load_ctx.initrd_size = initrd_size;
1040 stl_p(header + 0x218, initrd_addr);
1041 stl_p(header + 0x21c, initrd_size);
1044 /* load kernel and setup */
1045 setup_size = header[0x1f1];
1046 if (setup_size == 0) {
1047 setup_size = 4;
1049 setup_size = (setup_size + 1) * 512;
1050 if (setup_size > kernel_size) {
1051 fprintf(stderr, "qemu: invalid kernel header\n");
1052 exit(1);
1054 kernel_size -= setup_size;
1056 setup = g_malloc(setup_size);
1057 kernel = g_malloc(kernel_size);
1058 fseek(f, 0, SEEK_SET);
1059 if (fread(setup, 1, setup_size, f) != setup_size) {
1060 fprintf(stderr, "fread() failed\n");
1061 exit(1);
1063 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1064 fprintf(stderr, "fread() failed\n");
1065 exit(1);
1067 fclose(f);
1069 /* append dtb to kernel */
1070 if (dtb_filename) {
1071 if (protocol < 0x209) {
1072 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1073 exit(1);
1076 dtb_size = get_image_size(dtb_filename);
1077 if (dtb_size <= 0) {
1078 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1079 dtb_filename, strerror(errno));
1080 exit(1);
1083 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1084 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1085 kernel = g_realloc(kernel, kernel_size);
1087 stq_p(header + 0x250, prot_addr + setup_data_offset);
1089 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1090 setup_data->next = 0;
1091 setup_data->type = cpu_to_le32(SETUP_DTB);
1092 setup_data->len = cpu_to_le32(dtb_size);
1094 load_image_size(dtb_filename, setup_data->data, dtb_size);
1098 * If we're starting an encrypted VM, it will be OVMF based, which uses the
1099 * efi stub for booting and doesn't require any values to be placed in the
1100 * kernel header. We therefore don't update the header so the hash of the
1101 * kernel on the other side of the fw_cfg interface matches the hash of the
1102 * file the user passed in.
1104 if (!sev_enabled()) {
1105 memcpy(setup, header, MIN(sizeof(header), setup_size));
1108 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1109 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1110 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1111 sev_load_ctx.kernel_data = (char *)kernel;
1112 sev_load_ctx.kernel_size = kernel_size;
1114 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1115 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1116 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1117 sev_load_ctx.setup_data = (char *)setup;
1118 sev_load_ctx.setup_size = setup_size;
1120 if (sev_enabled()) {
1121 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1124 option_rom[nb_option_roms].bootindex = 0;
1125 option_rom[nb_option_roms].name = "linuxboot.bin";
1126 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1127 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1129 nb_option_roms++;
1132 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1133 MemoryRegion *rom_memory, bool isapc_ram_fw)
1135 const char *bios_name;
1136 char *filename;
1137 MemoryRegion *bios, *isa_bios;
1138 int bios_size, isa_bios_size;
1139 ssize_t ret;
1141 /* BIOS load */
1142 bios_name = ms->firmware ?: default_firmware;
1143 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1144 if (filename) {
1145 bios_size = get_image_size(filename);
1146 } else {
1147 bios_size = -1;
1149 if (bios_size <= 0 ||
1150 (bios_size % 65536) != 0) {
1151 goto bios_error;
1153 bios = g_malloc(sizeof(*bios));
1154 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1155 if (sev_enabled()) {
1157 * The concept of a "reset" simply doesn't exist for
1158 * confidential computing guests, we have to destroy and
1159 * re-launch them instead. So there is no need to register
1160 * the firmware as rom to properly re-initialize on reset.
1161 * Just go for a straight file load instead.
1163 void *ptr = memory_region_get_ram_ptr(bios);
1164 load_image_size(filename, ptr, bios_size);
1165 x86_firmware_configure(ptr, bios_size);
1166 } else {
1167 if (!isapc_ram_fw) {
1168 memory_region_set_readonly(bios, true);
1170 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1171 if (ret != 0) {
1172 goto bios_error;
1175 g_free(filename);
1177 /* map the last 128KB of the BIOS in ISA space */
1178 isa_bios_size = MIN(bios_size, 128 * KiB);
1179 isa_bios = g_malloc(sizeof(*isa_bios));
1180 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1181 bios_size - isa_bios_size, isa_bios_size);
1182 memory_region_add_subregion_overlap(rom_memory,
1183 0x100000 - isa_bios_size,
1184 isa_bios,
1186 if (!isapc_ram_fw) {
1187 memory_region_set_readonly(isa_bios, true);
1190 /* map all the bios at the top of memory */
1191 memory_region_add_subregion(rom_memory,
1192 (uint32_t)(-bios_size),
1193 bios);
1194 return;
1196 bios_error:
1197 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1198 exit(1);
1201 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1203 bool smm_available = false;
1205 if (x86ms->smm == ON_OFF_AUTO_OFF) {
1206 return false;
1209 if (tcg_enabled() || qtest_enabled()) {
1210 smm_available = true;
1211 } else if (kvm_enabled()) {
1212 smm_available = kvm_has_smm();
1215 if (smm_available) {
1216 return true;
1219 if (x86ms->smm == ON_OFF_AUTO_ON) {
1220 error_report("System Management Mode not supported by this hypervisor.");
1221 exit(1);
1223 return false;
1226 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1227 void *opaque, Error **errp)
1229 X86MachineState *x86ms = X86_MACHINE(obj);
1230 OnOffAuto smm = x86ms->smm;
1232 visit_type_OnOffAuto(v, name, &smm, errp);
1235 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1236 void *opaque, Error **errp)
1238 X86MachineState *x86ms = X86_MACHINE(obj);
1240 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1243 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1245 if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1246 return false;
1248 return true;
1251 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1252 void *opaque, Error **errp)
1254 X86MachineState *x86ms = X86_MACHINE(obj);
1255 OnOffAuto acpi = x86ms->acpi;
1257 visit_type_OnOffAuto(v, name, &acpi, errp);
1260 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1261 void *opaque, Error **errp)
1263 X86MachineState *x86ms = X86_MACHINE(obj);
1265 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1268 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name,
1269 void *opaque, Error **errp)
1271 X86MachineState *x86ms = X86_MACHINE(obj);
1272 OnOffAuto pit = x86ms->pit;
1274 visit_type_OnOffAuto(v, name, &pit, errp);
1277 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name,
1278 void *opaque, Error **errp)
1280 X86MachineState *x86ms = X86_MACHINE(obj);;
1282 visit_type_OnOffAuto(v, name, &x86ms->pit, errp);
1285 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name,
1286 void *opaque, Error **errp)
1288 X86MachineState *x86ms = X86_MACHINE(obj);
1289 OnOffAuto pic = x86ms->pic;
1291 visit_type_OnOffAuto(v, name, &pic, errp);
1294 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name,
1295 void *opaque, Error **errp)
1297 X86MachineState *x86ms = X86_MACHINE(obj);
1299 visit_type_OnOffAuto(v, name, &x86ms->pic, errp);
1302 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1304 X86MachineState *x86ms = X86_MACHINE(obj);
1306 return g_strdup(x86ms->oem_id);
1309 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1311 X86MachineState *x86ms = X86_MACHINE(obj);
1312 size_t len = strlen(value);
1314 if (len > 6) {
1315 error_setg(errp,
1316 "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1317 "6 bytes in size");
1318 return;
1321 strncpy(x86ms->oem_id, value, 6);
1324 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1326 X86MachineState *x86ms = X86_MACHINE(obj);
1328 return g_strdup(x86ms->oem_table_id);
1331 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1332 Error **errp)
1334 X86MachineState *x86ms = X86_MACHINE(obj);
1335 size_t len = strlen(value);
1337 if (len > 8) {
1338 error_setg(errp,
1339 "User specified "X86_MACHINE_OEM_TABLE_ID
1340 " value is bigger than "
1341 "8 bytes in size");
1342 return;
1344 strncpy(x86ms->oem_table_id, value, 8);
1347 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1348 const char *name, void *opaque, Error **errp)
1350 X86MachineState *x86ms = X86_MACHINE(obj);
1351 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1353 visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1356 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1357 const char *name, void *opaque, Error **errp)
1359 X86MachineState *x86ms = X86_MACHINE(obj);
1361 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1364 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1365 void *opaque, Error **errp)
1367 X86MachineState *x86ms = X86_MACHINE(obj);
1368 SgxEPCList *list = x86ms->sgx_epc_list;
1370 visit_type_SgxEPCList(v, name, &list, errp);
1373 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1374 void *opaque, Error **errp)
1376 X86MachineState *x86ms = X86_MACHINE(obj);
1377 SgxEPCList *list;
1379 list = x86ms->sgx_epc_list;
1380 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1382 qapi_free_SgxEPCList(list);
1385 static void x86_machine_initfn(Object *obj)
1387 X86MachineState *x86ms = X86_MACHINE(obj);
1389 x86ms->smm = ON_OFF_AUTO_AUTO;
1390 x86ms->acpi = ON_OFF_AUTO_AUTO;
1391 x86ms->pit = ON_OFF_AUTO_AUTO;
1392 x86ms->pic = ON_OFF_AUTO_AUTO;
1393 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1394 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1395 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1396 x86ms->bus_lock_ratelimit = 0;
1397 x86ms->above_4g_mem_start = 4 * GiB;
1400 static void x86_machine_class_init(ObjectClass *oc, void *data)
1402 MachineClass *mc = MACHINE_CLASS(oc);
1403 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1404 NMIClass *nc = NMI_CLASS(oc);
1406 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1407 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1408 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1409 x86mc->save_tsc_khz = true;
1410 x86mc->fwcfg_dma_enabled = true;
1411 nc->nmi_monitor_handler = x86_nmi;
1413 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1414 x86_machine_get_smm, x86_machine_set_smm,
1415 NULL, NULL);
1416 object_class_property_set_description(oc, X86_MACHINE_SMM,
1417 "Enable SMM");
1419 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1420 x86_machine_get_acpi, x86_machine_set_acpi,
1421 NULL, NULL);
1422 object_class_property_set_description(oc, X86_MACHINE_ACPI,
1423 "Enable ACPI");
1425 object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto",
1426 x86_machine_get_pit,
1427 x86_machine_set_pit,
1428 NULL, NULL);
1429 object_class_property_set_description(oc, X86_MACHINE_PIT,
1430 "Enable i8254 PIT");
1432 object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto",
1433 x86_machine_get_pic,
1434 x86_machine_set_pic,
1435 NULL, NULL);
1436 object_class_property_set_description(oc, X86_MACHINE_PIC,
1437 "Enable i8259 PIC");
1439 object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1440 x86_machine_get_oem_id,
1441 x86_machine_set_oem_id);
1442 object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1443 "Override the default value of field OEMID "
1444 "in ACPI table header."
1445 "The string may be up to 6 bytes in size");
1448 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1449 x86_machine_get_oem_table_id,
1450 x86_machine_set_oem_table_id);
1451 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1452 "Override the default value of field OEM Table ID "
1453 "in ACPI table header."
1454 "The string may be up to 8 bytes in size");
1456 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1457 x86_machine_get_bus_lock_ratelimit,
1458 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1459 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1460 "Set the ratelimit for the bus locks acquired in VMs");
1462 object_class_property_add(oc, "sgx-epc", "SgxEPC",
1463 machine_get_sgx_epc, machine_set_sgx_epc,
1464 NULL, NULL);
1465 object_class_property_set_description(oc, "sgx-epc",
1466 "SGX EPC device");
1469 static const TypeInfo x86_machine_info = {
1470 .name = TYPE_X86_MACHINE,
1471 .parent = TYPE_MACHINE,
1472 .abstract = true,
1473 .instance_size = sizeof(X86MachineState),
1474 .instance_init = x86_machine_initfn,
1475 .class_size = sizeof(X86MachineClass),
1476 .class_init = x86_machine_class_init,
1477 .interfaces = (InterfaceInfo[]) {
1478 { TYPE_NMI },
1483 static void x86_machine_register_types(void)
1485 type_register_static(&x86_machine_info);
1488 type_init(x86_machine_register_types)