2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu/datadir.h"
29 #include "qapi/error.h"
30 #include "qapi/qapi-visit-common.h"
31 #include "qapi/clone-visitor.h"
32 #include "qapi/qapi-visit-machine.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/whpx.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/replay.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/cpu-timers.h"
40 #include "sysemu/xen.h"
43 #include "hw/i386/x86.h"
44 #include "target/i386/cpu.h"
45 #include "hw/i386/topology.h"
46 #include "hw/i386/fw_cfg.h"
47 #include "hw/intc/i8259.h"
48 #include "hw/rtc/mc146818rtc.h"
49 #include "target/i386/sev.h"
51 #include "hw/acpi/cpu_hotplug.h"
54 #include "hw/loader.h"
55 #include "multiboot.h"
57 #include "standard-headers/asm-x86/bootparam.h"
58 #include CONFIG_DEVICES
59 #include "kvm/kvm_i386.h"
62 #include "hw/xen/xen.h"
63 #include "hw/i386/kvm/xen_evtchn.h"
66 /* Physical Address of PVH entry point read from kernel ELF NOTE */
67 static size_t pvh_start_addr
;
69 static void init_topo_info(X86CPUTopoInfo
*topo_info
,
70 const X86MachineState
*x86ms
)
72 MachineState
*ms
= MACHINE(x86ms
);
74 topo_info
->dies_per_pkg
= ms
->smp
.dies
;
75 topo_info
->cores_per_die
= ms
->smp
.cores
;
76 topo_info
->threads_per_core
= ms
->smp
.threads
;
80 * Calculates initial APIC ID for a specific CPU index
82 * Currently we need to be able to calculate the APIC ID from the CPU index
83 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
84 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
85 * all CPUs up to max_cpus.
87 uint32_t x86_cpu_apic_id_from_index(X86MachineState
*x86ms
,
88 unsigned int cpu_index
)
90 X86CPUTopoInfo topo_info
;
92 init_topo_info(&topo_info
, x86ms
);
94 return x86_apicid_from_cpu_idx(&topo_info
, cpu_index
);
98 void x86_cpu_new(X86MachineState
*x86ms
, int64_t apic_id
, Error
**errp
)
100 Object
*cpu
= object_new(MACHINE(x86ms
)->cpu_type
);
102 if (!object_property_set_uint(cpu
, "apic-id", apic_id
, errp
)) {
105 qdev_realize(DEVICE(cpu
), NULL
, errp
);
111 void x86_cpus_init(X86MachineState
*x86ms
, int default_cpu_version
)
114 const CPUArchIdList
*possible_cpus
;
115 MachineState
*ms
= MACHINE(x86ms
);
116 MachineClass
*mc
= MACHINE_GET_CLASS(x86ms
);
118 x86_cpu_set_default_version(default_cpu_version
);
121 * Calculates the limit to CPU APIC ID values
123 * Limit for the APIC ID value, so that all
124 * CPU APIC IDs are < x86ms->apic_id_limit.
126 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
128 x86ms
->apic_id_limit
= x86_cpu_apic_id_from_index(x86ms
,
129 ms
->smp
.max_cpus
- 1) + 1;
132 * Can we support APIC ID 255 or higher?
135 * With userspace emulated lapic: no
136 * With KVM's in-kernel lapic: only if X2APIC API is enabled.
138 if (x86ms
->apic_id_limit
> 255 && !xen_enabled() &&
139 (!kvm_irqchip_in_kernel() || !kvm_enable_x2apic())) {
140 error_report("current -smp configuration requires kernel "
141 "irqchip and X2APIC API support.");
146 kvm_set_max_apic_id(x86ms
->apic_id_limit
);
149 possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
150 for (i
= 0; i
< ms
->smp
.cpus
; i
++) {
151 x86_cpu_new(x86ms
, possible_cpus
->cpus
[i
].arch_id
, &error_fatal
);
155 void x86_rtc_set_cpus_count(ISADevice
*s
, uint16_t cpus_count
)
157 MC146818RtcState
*rtc
= MC146818_RTC(s
);
159 if (cpus_count
> 0xff) {
161 * If the number of CPUs can't be represented in 8 bits, the
162 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
163 * to make old BIOSes fail more predictably.
165 mc146818rtc_set_cmos_data(rtc
, 0x5f, 0);
167 mc146818rtc_set_cmos_data(rtc
, 0x5f, cpus_count
- 1);
171 static int x86_apic_cmp(const void *a
, const void *b
)
173 CPUArchId
*apic_a
= (CPUArchId
*)a
;
174 CPUArchId
*apic_b
= (CPUArchId
*)b
;
176 return apic_a
->arch_id
- apic_b
->arch_id
;
180 * returns pointer to CPUArchId descriptor that matches CPU's apic_id
181 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
182 * entry corresponding to CPU's apic_id returns NULL.
184 CPUArchId
*x86_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
186 CPUArchId apic_id
, *found_cpu
;
188 apic_id
.arch_id
= id
;
189 found_cpu
= bsearch(&apic_id
, ms
->possible_cpus
->cpus
,
190 ms
->possible_cpus
->len
, sizeof(*ms
->possible_cpus
->cpus
),
192 if (found_cpu
&& idx
) {
193 *idx
= found_cpu
- ms
->possible_cpus
->cpus
;
198 void x86_cpu_plug(HotplugHandler
*hotplug_dev
,
199 DeviceState
*dev
, Error
**errp
)
201 CPUArchId
*found_cpu
;
202 Error
*local_err
= NULL
;
203 X86CPU
*cpu
= X86_CPU(dev
);
204 X86MachineState
*x86ms
= X86_MACHINE(hotplug_dev
);
206 if (x86ms
->acpi_dev
) {
207 hotplug_handler_plug(x86ms
->acpi_dev
, dev
, &local_err
);
213 /* increment the number of CPUs */
216 x86_rtc_set_cpus_count(x86ms
->rtc
, x86ms
->boot_cpus
);
219 fw_cfg_modify_i16(x86ms
->fw_cfg
, FW_CFG_NB_CPUS
, x86ms
->boot_cpus
);
222 found_cpu
= x86_find_cpu_slot(MACHINE(x86ms
), cpu
->apic_id
, NULL
);
223 found_cpu
->cpu
= OBJECT(dev
);
225 error_propagate(errp
, local_err
);
228 void x86_cpu_unplug_request_cb(HotplugHandler
*hotplug_dev
,
229 DeviceState
*dev
, Error
**errp
)
232 X86CPU
*cpu
= X86_CPU(dev
);
233 X86MachineState
*x86ms
= X86_MACHINE(hotplug_dev
);
235 if (!x86ms
->acpi_dev
) {
236 error_setg(errp
, "CPU hot unplug not supported without ACPI");
240 x86_find_cpu_slot(MACHINE(x86ms
), cpu
->apic_id
, &idx
);
243 error_setg(errp
, "Boot CPU is unpluggable");
247 hotplug_handler_unplug_request(x86ms
->acpi_dev
, dev
,
251 void x86_cpu_unplug_cb(HotplugHandler
*hotplug_dev
,
252 DeviceState
*dev
, Error
**errp
)
254 CPUArchId
*found_cpu
;
255 Error
*local_err
= NULL
;
256 X86CPU
*cpu
= X86_CPU(dev
);
257 X86MachineState
*x86ms
= X86_MACHINE(hotplug_dev
);
259 hotplug_handler_unplug(x86ms
->acpi_dev
, dev
, &local_err
);
264 found_cpu
= x86_find_cpu_slot(MACHINE(x86ms
), cpu
->apic_id
, NULL
);
265 found_cpu
->cpu
= NULL
;
268 /* decrement the number of CPUs */
270 /* Update the number of CPUs in CMOS */
271 x86_rtc_set_cpus_count(x86ms
->rtc
, x86ms
->boot_cpus
);
272 fw_cfg_modify_i16(x86ms
->fw_cfg
, FW_CFG_NB_CPUS
, x86ms
->boot_cpus
);
274 error_propagate(errp
, local_err
);
277 void x86_cpu_pre_plug(HotplugHandler
*hotplug_dev
,
278 DeviceState
*dev
, Error
**errp
)
283 X86CPUTopoIDs topo_ids
;
284 X86CPU
*cpu
= X86_CPU(dev
);
285 CPUX86State
*env
= &cpu
->env
;
286 MachineState
*ms
= MACHINE(hotplug_dev
);
287 X86MachineState
*x86ms
= X86_MACHINE(hotplug_dev
);
288 unsigned int smp_cores
= ms
->smp
.cores
;
289 unsigned int smp_threads
= ms
->smp
.threads
;
290 X86CPUTopoInfo topo_info
;
292 if (!object_dynamic_cast(OBJECT(cpu
), ms
->cpu_type
)) {
293 error_setg(errp
, "Invalid CPU type, expected cpu type: '%s'",
298 if (x86ms
->acpi_dev
) {
299 Error
*local_err
= NULL
;
301 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms
->acpi_dev
), dev
,
304 error_propagate(errp
, local_err
);
309 init_topo_info(&topo_info
, x86ms
);
311 env
->nr_dies
= ms
->smp
.dies
;
314 * If APIC ID is not set,
315 * set it based on socket/die/core/thread properties.
317 if (cpu
->apic_id
== UNASSIGNED_APIC_ID
) {
318 int max_socket
= (ms
->smp
.max_cpus
- 1) /
319 smp_threads
/ smp_cores
/ ms
->smp
.dies
;
322 * die-id was optional in QEMU 4.0 and older, so keep it optional
323 * if there's only one die per socket.
325 if (cpu
->die_id
< 0 && ms
->smp
.dies
== 1) {
329 if (cpu
->socket_id
< 0) {
330 error_setg(errp
, "CPU socket-id is not set");
332 } else if (cpu
->socket_id
> max_socket
) {
333 error_setg(errp
, "Invalid CPU socket-id: %u must be in range 0:%u",
334 cpu
->socket_id
, max_socket
);
337 if (cpu
->die_id
< 0) {
338 error_setg(errp
, "CPU die-id is not set");
340 } else if (cpu
->die_id
> ms
->smp
.dies
- 1) {
341 error_setg(errp
, "Invalid CPU die-id: %u must be in range 0:%u",
342 cpu
->die_id
, ms
->smp
.dies
- 1);
345 if (cpu
->core_id
< 0) {
346 error_setg(errp
, "CPU core-id is not set");
348 } else if (cpu
->core_id
> (smp_cores
- 1)) {
349 error_setg(errp
, "Invalid CPU core-id: %u must be in range 0:%u",
350 cpu
->core_id
, smp_cores
- 1);
353 if (cpu
->thread_id
< 0) {
354 error_setg(errp
, "CPU thread-id is not set");
356 } else if (cpu
->thread_id
> (smp_threads
- 1)) {
357 error_setg(errp
, "Invalid CPU thread-id: %u must be in range 0:%u",
358 cpu
->thread_id
, smp_threads
- 1);
362 topo_ids
.pkg_id
= cpu
->socket_id
;
363 topo_ids
.die_id
= cpu
->die_id
;
364 topo_ids
.core_id
= cpu
->core_id
;
365 topo_ids
.smt_id
= cpu
->thread_id
;
366 cpu
->apic_id
= x86_apicid_from_topo_ids(&topo_info
, &topo_ids
);
369 cpu_slot
= x86_find_cpu_slot(MACHINE(x86ms
), cpu
->apic_id
, &idx
);
371 MachineState
*ms
= MACHINE(x86ms
);
373 x86_topo_ids_from_apicid(cpu
->apic_id
, &topo_info
, &topo_ids
);
375 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
376 " APIC ID %" PRIu32
", valid index range 0:%d",
377 topo_ids
.pkg_id
, topo_ids
.die_id
, topo_ids
.core_id
, topo_ids
.smt_id
,
378 cpu
->apic_id
, ms
->possible_cpus
->len
- 1);
383 error_setg(errp
, "CPU[%d] with APIC ID %" PRIu32
" exists",
388 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
389 * so that machine_query_hotpluggable_cpus would show correct values
391 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
392 * once -smp refactoring is complete and there will be CPU private
393 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
394 x86_topo_ids_from_apicid(cpu
->apic_id
, &topo_info
, &topo_ids
);
395 if (cpu
->socket_id
!= -1 && cpu
->socket_id
!= topo_ids
.pkg_id
) {
396 error_setg(errp
, "property socket-id: %u doesn't match set apic-id:"
397 " 0x%x (socket-id: %u)", cpu
->socket_id
, cpu
->apic_id
,
401 cpu
->socket_id
= topo_ids
.pkg_id
;
403 if (cpu
->die_id
!= -1 && cpu
->die_id
!= topo_ids
.die_id
) {
404 error_setg(errp
, "property die-id: %u doesn't match set apic-id:"
405 " 0x%x (die-id: %u)", cpu
->die_id
, cpu
->apic_id
, topo_ids
.die_id
);
408 cpu
->die_id
= topo_ids
.die_id
;
410 if (cpu
->core_id
!= -1 && cpu
->core_id
!= topo_ids
.core_id
) {
411 error_setg(errp
, "property core-id: %u doesn't match set apic-id:"
412 " 0x%x (core-id: %u)", cpu
->core_id
, cpu
->apic_id
,
416 cpu
->core_id
= topo_ids
.core_id
;
418 if (cpu
->thread_id
!= -1 && cpu
->thread_id
!= topo_ids
.smt_id
) {
419 error_setg(errp
, "property thread-id: %u doesn't match set apic-id:"
420 " 0x%x (thread-id: %u)", cpu
->thread_id
, cpu
->apic_id
,
424 cpu
->thread_id
= topo_ids
.smt_id
;
426 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_VPINDEX
) &&
427 !kvm_hv_vpindex_settable()) {
428 error_setg(errp
, "kernel doesn't allow setting HyperV VP_INDEX");
435 numa_cpu_pre_plug(cpu_slot
, dev
, errp
);
438 CpuInstanceProperties
439 x86_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
441 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
442 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
444 assert(cpu_index
< possible_cpus
->len
);
445 return possible_cpus
->cpus
[cpu_index
].props
;
448 int64_t x86_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
450 X86CPUTopoIDs topo_ids
;
451 X86MachineState
*x86ms
= X86_MACHINE(ms
);
452 X86CPUTopoInfo topo_info
;
454 init_topo_info(&topo_info
, x86ms
);
456 assert(idx
< ms
->possible_cpus
->len
);
457 x86_topo_ids_from_apicid(ms
->possible_cpus
->cpus
[idx
].arch_id
,
458 &topo_info
, &topo_ids
);
459 return topo_ids
.pkg_id
% ms
->numa_state
->num_nodes
;
462 const CPUArchIdList
*x86_possible_cpu_arch_ids(MachineState
*ms
)
464 X86MachineState
*x86ms
= X86_MACHINE(ms
);
465 unsigned int max_cpus
= ms
->smp
.max_cpus
;
466 X86CPUTopoInfo topo_info
;
469 if (ms
->possible_cpus
) {
471 * make sure that max_cpus hasn't changed since the first use, i.e.
472 * -smp hasn't been parsed after it
474 assert(ms
->possible_cpus
->len
== max_cpus
);
475 return ms
->possible_cpus
;
478 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
479 sizeof(CPUArchId
) * max_cpus
);
480 ms
->possible_cpus
->len
= max_cpus
;
482 init_topo_info(&topo_info
, x86ms
);
484 for (i
= 0; i
< ms
->possible_cpus
->len
; i
++) {
485 X86CPUTopoIDs topo_ids
;
487 ms
->possible_cpus
->cpus
[i
].type
= ms
->cpu_type
;
488 ms
->possible_cpus
->cpus
[i
].vcpus_count
= 1;
489 ms
->possible_cpus
->cpus
[i
].arch_id
=
490 x86_cpu_apic_id_from_index(x86ms
, i
);
491 x86_topo_ids_from_apicid(ms
->possible_cpus
->cpus
[i
].arch_id
,
492 &topo_info
, &topo_ids
);
493 ms
->possible_cpus
->cpus
[i
].props
.has_socket_id
= true;
494 ms
->possible_cpus
->cpus
[i
].props
.socket_id
= topo_ids
.pkg_id
;
495 if (ms
->smp
.dies
> 1) {
496 ms
->possible_cpus
->cpus
[i
].props
.has_die_id
= true;
497 ms
->possible_cpus
->cpus
[i
].props
.die_id
= topo_ids
.die_id
;
499 ms
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
500 ms
->possible_cpus
->cpus
[i
].props
.core_id
= topo_ids
.core_id
;
501 ms
->possible_cpus
->cpus
[i
].props
.has_thread_id
= true;
502 ms
->possible_cpus
->cpus
[i
].props
.thread_id
= topo_ids
.smt_id
;
504 return ms
->possible_cpus
;
507 static void x86_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
509 /* cpu index isn't used */
513 X86CPU
*cpu
= X86_CPU(cs
);
515 if (!cpu
->apic_state
) {
516 cpu_interrupt(cs
, CPU_INTERRUPT_NMI
);
518 apic_deliver_nmi(cpu
->apic_state
);
523 static long get_file_size(FILE *f
)
527 /* XXX: on Unix systems, using fstat() probably makes more sense */
530 fseek(f
, 0, SEEK_END
);
532 fseek(f
, where
, SEEK_SET
);
538 uint64_t cpu_get_tsc(CPUX86State
*env
)
540 return cpus_get_elapsed_ticks();
544 static void pic_irq_request(void *opaque
, int irq
, int level
)
546 CPUState
*cs
= first_cpu
;
547 X86CPU
*cpu
= X86_CPU(cs
);
549 trace_x86_pic_interrupt(irq
, level
);
550 if (cpu
->apic_state
&& !kvm_irqchip_in_kernel() &&
551 !whpx_apic_in_platform()) {
554 if (apic_accept_pic_intr(cpu
->apic_state
)) {
555 apic_deliver_pic_intr(cpu
->apic_state
, level
);
560 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
562 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
567 qemu_irq
x86_allocate_cpu_irq(void)
569 return qemu_allocate_irq(pic_irq_request
, NULL
, 0);
572 int cpu_get_pic_interrupt(CPUX86State
*env
)
574 X86CPU
*cpu
= env_archcpu(env
);
577 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
578 intno
= apic_get_interrupt(cpu
->apic_state
);
582 /* read the irq from the PIC */
583 if (!apic_accept_pic_intr(cpu
->apic_state
)) {
588 intno
= pic_read_irq(isa_pic
);
592 DeviceState
*cpu_get_current_apic(void)
595 X86CPU
*cpu
= X86_CPU(current_cpu
);
596 return cpu
->apic_state
;
602 void gsi_handler(void *opaque
, int n
, int level
)
604 GSIState
*s
= opaque
;
606 trace_x86_gsi_interrupt(n
, level
);
608 case 0 ... ISA_NUM_IRQS
- 1:
609 if (s
->i8259_irq
[n
]) {
610 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
611 qemu_set_irq(s
->i8259_irq
[n
], level
);
614 case ISA_NUM_IRQS
... IOAPIC_NUM_PINS
- 1:
615 #ifdef CONFIG_XEN_EMU
617 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC
618 * routing actually works properly under Xen). And then to
619 * *either* the PIRQ handling or the I/OAPIC depending on
620 * whether the former wants it.
622 if (xen_mode
== XEN_EMULATE
&& xen_evtchn_set_gsi(n
, level
)) {
626 qemu_set_irq(s
->ioapic_irq
[n
], level
);
628 case IO_APIC_SECONDARY_IRQBASE
629 ... IO_APIC_SECONDARY_IRQBASE
+ IOAPIC_NUM_PINS
- 1:
630 qemu_set_irq(s
->ioapic2_irq
[n
- IO_APIC_SECONDARY_IRQBASE
], level
);
635 void ioapic_init_gsi(GSIState
*gsi_state
, const char *parent_name
)
642 if (kvm_ioapic_in_kernel()) {
643 dev
= qdev_new(TYPE_KVM_IOAPIC
);
645 dev
= qdev_new(TYPE_IOAPIC
);
647 object_property_add_child(object_resolve_path(parent_name
, NULL
),
648 "ioapic", OBJECT(dev
));
649 d
= SYS_BUS_DEVICE(dev
);
650 sysbus_realize_and_unref(d
, &error_fatal
);
651 sysbus_mmio_map(d
, 0, IO_APIC_DEFAULT_ADDRESS
);
653 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
654 gsi_state
->ioapic_irq
[i
] = qdev_get_gpio_in(dev
, i
);
658 DeviceState
*ioapic_init_secondary(GSIState
*gsi_state
)
664 dev
= qdev_new(TYPE_IOAPIC
);
665 d
= SYS_BUS_DEVICE(dev
);
666 sysbus_realize_and_unref(d
, &error_fatal
);
667 sysbus_mmio_map(d
, 0, IO_APIC_SECONDARY_ADDRESS
);
669 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
670 gsi_state
->ioapic2_irq
[i
] = qdev_get_gpio_in(dev
, i
);
680 } __attribute__((packed
));
684 * The entry point into the kernel for PVH boot is different from
685 * the native entry point. The PVH entry is defined by the x86/HVM
686 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
688 * This function is passed to load_elf() when it is called from
689 * load_elfboot() which then additionally checks for an ELF Note of
690 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
691 * parse the PVH entry address from the ELF Note.
693 * Due to trickery in elf_opts.h, load_elf() is actually available as
694 * load_elf32() or load_elf64() and this routine needs to be able
695 * to deal with being called as 32 or 64 bit.
697 * The address of the PVH entry point is saved to the 'pvh_start_addr'
698 * global variable. (although the entry point is 32-bit, the kernel
699 * binary can be either 32-bit or 64-bit).
701 static uint64_t read_pvh_start_addr(void *arg1
, void *arg2
, bool is64
)
703 size_t *elf_note_data_addr
;
705 /* Check if ELF Note header passed in is valid */
711 struct elf64_note
*nhdr64
= (struct elf64_note
*)arg1
;
712 uint64_t nhdr_size64
= sizeof(struct elf64_note
);
713 uint64_t phdr_align
= *(uint64_t *)arg2
;
714 uint64_t nhdr_namesz
= nhdr64
->n_namesz
;
717 ((void *)nhdr64
) + nhdr_size64
+
718 QEMU_ALIGN_UP(nhdr_namesz
, phdr_align
);
720 pvh_start_addr
= *elf_note_data_addr
;
722 struct elf32_note
*nhdr32
= (struct elf32_note
*)arg1
;
723 uint32_t nhdr_size32
= sizeof(struct elf32_note
);
724 uint32_t phdr_align
= *(uint32_t *)arg2
;
725 uint32_t nhdr_namesz
= nhdr32
->n_namesz
;
728 ((void *)nhdr32
) + nhdr_size32
+
729 QEMU_ALIGN_UP(nhdr_namesz
, phdr_align
);
731 pvh_start_addr
= *(uint32_t *)elf_note_data_addr
;
734 return pvh_start_addr
;
737 static bool load_elfboot(const char *kernel_filename
,
738 int kernel_file_size
,
740 size_t pvh_xen_start_addr
,
744 uint32_t mh_load_addr
= 0;
745 uint32_t elf_kernel_size
= 0;
747 uint64_t elf_low
, elf_high
;
750 if (ldl_p(header
) != 0x464c457f) {
751 return false; /* no elfboot */
754 bool elf_is64
= header
[EI_CLASS
] == ELFCLASS64
;
756 ((Elf64_Ehdr
*)header
)->e_flags
: ((Elf32_Ehdr
*)header
)->e_flags
;
758 if (flags
& 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
759 error_report("elfboot unsupported flags = %x", flags
);
763 uint64_t elf_note_type
= XEN_ELFNOTE_PHYS32_ENTRY
;
764 kernel_size
= load_elf(kernel_filename
, read_pvh_start_addr
,
765 NULL
, &elf_note_type
, &elf_entry
,
766 &elf_low
, &elf_high
, NULL
, 0, I386_ELF_MACHINE
,
769 if (kernel_size
< 0) {
770 error_report("Error while loading elf kernel");
773 mh_load_addr
= elf_low
;
774 elf_kernel_size
= elf_high
- elf_low
;
776 if (pvh_start_addr
== 0) {
777 error_report("Error loading uncompressed kernel without PVH ELF Note");
780 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_ENTRY
, pvh_start_addr
);
781 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_ADDR
, mh_load_addr
);
782 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_SIZE
, elf_kernel_size
);
787 void x86_load_linux(X86MachineState
*x86ms
,
792 bool linuxboot_dma_enabled
= X86_MACHINE_GET_CLASS(x86ms
)->fwcfg_dma_enabled
;
794 int setup_size
, kernel_size
, cmdline_size
;
795 int dtb_size
, setup_data_offset
;
797 uint8_t header
[8192], *setup
, *kernel
;
798 hwaddr real_addr
, prot_addr
, cmdline_addr
, initrd_addr
= 0;
801 MachineState
*machine
= MACHINE(x86ms
);
802 struct setup_data
*setup_data
;
803 const char *kernel_filename
= machine
->kernel_filename
;
804 const char *initrd_filename
= machine
->initrd_filename
;
805 const char *dtb_filename
= machine
->dtb
;
806 const char *kernel_cmdline
= machine
->kernel_cmdline
;
807 SevKernelLoaderContext sev_load_ctx
= {};
809 /* Align to 16 bytes as a paranoia measure */
810 cmdline_size
= (strlen(kernel_cmdline
) + 16) & ~15;
812 /* load the kernel header */
813 f
= fopen(kernel_filename
, "rb");
815 fprintf(stderr
, "qemu: could not open kernel file '%s': %s\n",
816 kernel_filename
, strerror(errno
));
820 kernel_size
= get_file_size(f
);
822 fread(header
, 1, MIN(ARRAY_SIZE(header
), kernel_size
), f
) !=
823 MIN(ARRAY_SIZE(header
), kernel_size
)) {
824 fprintf(stderr
, "qemu: could not load kernel '%s': %s\n",
825 kernel_filename
, strerror(errno
));
829 /* kernel protocol version */
830 if (ldl_p(header
+ 0x202) == 0x53726448) {
831 protocol
= lduw_p(header
+ 0x206);
834 * This could be a multiboot kernel. If it is, let's stop treating it
835 * like a Linux kernel.
836 * Note: some multiboot images could be in the ELF format (the same of
837 * PVH), so we try multiboot first since we check the multiboot magic
838 * header before to load it.
840 if (load_multiboot(x86ms
, fw_cfg
, f
, kernel_filename
, initrd_filename
,
841 kernel_cmdline
, kernel_size
, header
)) {
845 * Check if the file is an uncompressed kernel file (ELF) and load it,
846 * saving the PVH entry point used by the x86/HVM direct boot ABI.
847 * If load_elfboot() is successful, populate the fw_cfg info.
850 load_elfboot(kernel_filename
, kernel_size
,
851 header
, pvh_start_addr
, fw_cfg
)) {
854 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
855 strlen(kernel_cmdline
) + 1);
856 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
, kernel_cmdline
);
858 fw_cfg_add_i32(fw_cfg
, FW_CFG_SETUP_SIZE
, sizeof(header
));
859 fw_cfg_add_bytes(fw_cfg
, FW_CFG_SETUP_DATA
,
860 header
, sizeof(header
));
863 if (initrd_filename
) {
864 GMappedFile
*mapped_file
;
869 mapped_file
= g_mapped_file_new(initrd_filename
, false, &gerr
);
871 fprintf(stderr
, "qemu: error reading initrd %s: %s\n",
872 initrd_filename
, gerr
->message
);
875 x86ms
->initrd_mapped_file
= mapped_file
;
877 initrd_data
= g_mapped_file_get_contents(mapped_file
);
878 initrd_size
= g_mapped_file_get_length(mapped_file
);
879 initrd_max
= x86ms
->below_4g_mem_size
- acpi_data_size
- 1;
880 if (initrd_size
>= initrd_max
) {
881 fprintf(stderr
, "qemu: initrd is too large, cannot support."
882 "(max: %"PRIu32
", need %"PRId64
")\n",
883 initrd_max
, (uint64_t)initrd_size
);
887 initrd_addr
= (initrd_max
- initrd_size
) & ~4095;
889 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_ADDR
, initrd_addr
);
890 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_SIZE
, initrd_size
);
891 fw_cfg_add_bytes(fw_cfg
, FW_CFG_INITRD_DATA
, initrd_data
,
895 option_rom
[nb_option_roms
].bootindex
= 0;
896 option_rom
[nb_option_roms
].name
= "pvh.bin";
904 if (protocol
< 0x200 || !(header
[0x211] & 0x01)) {
907 cmdline_addr
= 0x9a000 - cmdline_size
;
909 } else if (protocol
< 0x202) {
910 /* High but ancient kernel */
912 cmdline_addr
= 0x9a000 - cmdline_size
;
913 prot_addr
= 0x100000;
915 /* High and recent kernel */
917 cmdline_addr
= 0x20000;
918 prot_addr
= 0x100000;
921 /* highest address for loading the initrd */
922 if (protocol
>= 0x20c &&
923 lduw_p(header
+ 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G
) {
925 * Linux has supported initrd up to 4 GB for a very long time (2007,
926 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
927 * though it only sets initrd_max to 2 GB to "work around bootloader
928 * bugs". Luckily, QEMU firmware(which does something like bootloader)
929 * has supported this.
931 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
932 * be loaded into any address.
934 * In addition, initrd_max is uint32_t simply because QEMU doesn't
935 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
938 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
940 initrd_max
= UINT32_MAX
;
941 } else if (protocol
>= 0x203) {
942 initrd_max
= ldl_p(header
+ 0x22c);
944 initrd_max
= 0x37ffffff;
947 if (initrd_max
>= x86ms
->below_4g_mem_size
- acpi_data_size
) {
948 initrd_max
= x86ms
->below_4g_mem_size
- acpi_data_size
- 1;
951 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_ADDR
, cmdline_addr
);
952 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
, strlen(kernel_cmdline
) + 1);
953 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
, kernel_cmdline
);
954 sev_load_ctx
.cmdline_data
= (char *)kernel_cmdline
;
955 sev_load_ctx
.cmdline_size
= strlen(kernel_cmdline
) + 1;
957 if (protocol
>= 0x202) {
958 stl_p(header
+ 0x228, cmdline_addr
);
960 stw_p(header
+ 0x20, 0xA33F);
961 stw_p(header
+ 0x22, cmdline_addr
- real_addr
);
964 /* handle vga= parameter */
965 vmode
= strstr(kernel_cmdline
, "vga=");
967 unsigned int video_mode
;
972 if (!strncmp(vmode
, "normal", 6)) {
974 } else if (!strncmp(vmode
, "ext", 3)) {
976 } else if (!strncmp(vmode
, "ask", 3)) {
979 ret
= qemu_strtoui(vmode
, &end
, 0, &video_mode
);
980 if (ret
!= 0 || (*end
&& *end
!= ' ')) {
981 fprintf(stderr
, "qemu: invalid 'vga=' kernel parameter.\n");
985 stw_p(header
+ 0x1fa, video_mode
);
990 * High nybble = B reserved for QEMU; low nybble is revision number.
991 * If this code is substantially changed, you may want to consider
992 * incrementing the revision.
994 if (protocol
>= 0x200) {
995 header
[0x210] = 0xB0;
998 if (protocol
>= 0x201) {
999 header
[0x211] |= 0x80; /* CAN_USE_HEAP */
1000 stw_p(header
+ 0x224, cmdline_addr
- real_addr
- 0x200);
1004 if (initrd_filename
) {
1005 GMappedFile
*mapped_file
;
1008 GError
*gerr
= NULL
;
1010 if (protocol
< 0x200) {
1011 fprintf(stderr
, "qemu: linux kernel too old to load a ram disk\n");
1015 mapped_file
= g_mapped_file_new(initrd_filename
, false, &gerr
);
1017 fprintf(stderr
, "qemu: error reading initrd %s: %s\n",
1018 initrd_filename
, gerr
->message
);
1021 x86ms
->initrd_mapped_file
= mapped_file
;
1023 initrd_data
= g_mapped_file_get_contents(mapped_file
);
1024 initrd_size
= g_mapped_file_get_length(mapped_file
);
1025 if (initrd_size
>= initrd_max
) {
1026 fprintf(stderr
, "qemu: initrd is too large, cannot support."
1027 "(max: %"PRIu32
", need %"PRId64
")\n",
1028 initrd_max
, (uint64_t)initrd_size
);
1032 initrd_addr
= (initrd_max
- initrd_size
) & ~4095;
1034 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_ADDR
, initrd_addr
);
1035 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_SIZE
, initrd_size
);
1036 fw_cfg_add_bytes(fw_cfg
, FW_CFG_INITRD_DATA
, initrd_data
, initrd_size
);
1037 sev_load_ctx
.initrd_data
= initrd_data
;
1038 sev_load_ctx
.initrd_size
= initrd_size
;
1040 stl_p(header
+ 0x218, initrd_addr
);
1041 stl_p(header
+ 0x21c, initrd_size
);
1044 /* load kernel and setup */
1045 setup_size
= header
[0x1f1];
1046 if (setup_size
== 0) {
1049 setup_size
= (setup_size
+ 1) * 512;
1050 if (setup_size
> kernel_size
) {
1051 fprintf(stderr
, "qemu: invalid kernel header\n");
1054 kernel_size
-= setup_size
;
1056 setup
= g_malloc(setup_size
);
1057 kernel
= g_malloc(kernel_size
);
1058 fseek(f
, 0, SEEK_SET
);
1059 if (fread(setup
, 1, setup_size
, f
) != setup_size
) {
1060 fprintf(stderr
, "fread() failed\n");
1063 if (fread(kernel
, 1, kernel_size
, f
) != kernel_size
) {
1064 fprintf(stderr
, "fread() failed\n");
1069 /* append dtb to kernel */
1071 if (protocol
< 0x209) {
1072 fprintf(stderr
, "qemu: Linux kernel too old to load a dtb\n");
1076 dtb_size
= get_image_size(dtb_filename
);
1077 if (dtb_size
<= 0) {
1078 fprintf(stderr
, "qemu: error reading dtb %s: %s\n",
1079 dtb_filename
, strerror(errno
));
1083 setup_data_offset
= QEMU_ALIGN_UP(kernel_size
, 16);
1084 kernel_size
= setup_data_offset
+ sizeof(struct setup_data
) + dtb_size
;
1085 kernel
= g_realloc(kernel
, kernel_size
);
1087 stq_p(header
+ 0x250, prot_addr
+ setup_data_offset
);
1089 setup_data
= (struct setup_data
*)(kernel
+ setup_data_offset
);
1090 setup_data
->next
= 0;
1091 setup_data
->type
= cpu_to_le32(SETUP_DTB
);
1092 setup_data
->len
= cpu_to_le32(dtb_size
);
1094 load_image_size(dtb_filename
, setup_data
->data
, dtb_size
);
1098 * If we're starting an encrypted VM, it will be OVMF based, which uses the
1099 * efi stub for booting and doesn't require any values to be placed in the
1100 * kernel header. We therefore don't update the header so the hash of the
1101 * kernel on the other side of the fw_cfg interface matches the hash of the
1102 * file the user passed in.
1104 if (!sev_enabled()) {
1105 memcpy(setup
, header
, MIN(sizeof(header
), setup_size
));
1108 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_ADDR
, prot_addr
);
1109 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_SIZE
, kernel_size
);
1110 fw_cfg_add_bytes(fw_cfg
, FW_CFG_KERNEL_DATA
, kernel
, kernel_size
);
1111 sev_load_ctx
.kernel_data
= (char *)kernel
;
1112 sev_load_ctx
.kernel_size
= kernel_size
;
1114 fw_cfg_add_i32(fw_cfg
, FW_CFG_SETUP_ADDR
, real_addr
);
1115 fw_cfg_add_i32(fw_cfg
, FW_CFG_SETUP_SIZE
, setup_size
);
1116 fw_cfg_add_bytes(fw_cfg
, FW_CFG_SETUP_DATA
, setup
, setup_size
);
1117 sev_load_ctx
.setup_data
= (char *)setup
;
1118 sev_load_ctx
.setup_size
= setup_size
;
1120 if (sev_enabled()) {
1121 sev_add_kernel_loader_hashes(&sev_load_ctx
, &error_fatal
);
1124 option_rom
[nb_option_roms
].bootindex
= 0;
1125 option_rom
[nb_option_roms
].name
= "linuxboot.bin";
1126 if (linuxboot_dma_enabled
&& fw_cfg_dma_enabled(fw_cfg
)) {
1127 option_rom
[nb_option_roms
].name
= "linuxboot_dma.bin";
1132 void x86_bios_rom_init(MachineState
*ms
, const char *default_firmware
,
1133 MemoryRegion
*rom_memory
, bool isapc_ram_fw
)
1135 const char *bios_name
;
1137 MemoryRegion
*bios
, *isa_bios
;
1138 int bios_size
, isa_bios_size
;
1142 bios_name
= ms
->firmware
?: default_firmware
;
1143 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1145 bios_size
= get_image_size(filename
);
1149 if (bios_size
<= 0 ||
1150 (bios_size
% 65536) != 0) {
1153 bios
= g_malloc(sizeof(*bios
));
1154 memory_region_init_ram(bios
, NULL
, "pc.bios", bios_size
, &error_fatal
);
1155 if (sev_enabled()) {
1157 * The concept of a "reset" simply doesn't exist for
1158 * confidential computing guests, we have to destroy and
1159 * re-launch them instead. So there is no need to register
1160 * the firmware as rom to properly re-initialize on reset.
1161 * Just go for a straight file load instead.
1163 void *ptr
= memory_region_get_ram_ptr(bios
);
1164 load_image_size(filename
, ptr
, bios_size
);
1165 x86_firmware_configure(ptr
, bios_size
);
1167 if (!isapc_ram_fw
) {
1168 memory_region_set_readonly(bios
, true);
1170 ret
= rom_add_file_fixed(bios_name
, (uint32_t)(-bios_size
), -1);
1177 /* map the last 128KB of the BIOS in ISA space */
1178 isa_bios_size
= MIN(bios_size
, 128 * KiB
);
1179 isa_bios
= g_malloc(sizeof(*isa_bios
));
1180 memory_region_init_alias(isa_bios
, NULL
, "isa-bios", bios
,
1181 bios_size
- isa_bios_size
, isa_bios_size
);
1182 memory_region_add_subregion_overlap(rom_memory
,
1183 0x100000 - isa_bios_size
,
1186 if (!isapc_ram_fw
) {
1187 memory_region_set_readonly(isa_bios
, true);
1190 /* map all the bios at the top of memory */
1191 memory_region_add_subregion(rom_memory
,
1192 (uint32_t)(-bios_size
),
1197 fprintf(stderr
, "qemu: could not load PC BIOS '%s'\n", bios_name
);
1201 bool x86_machine_is_smm_enabled(const X86MachineState
*x86ms
)
1203 bool smm_available
= false;
1205 if (x86ms
->smm
== ON_OFF_AUTO_OFF
) {
1209 if (tcg_enabled() || qtest_enabled()) {
1210 smm_available
= true;
1211 } else if (kvm_enabled()) {
1212 smm_available
= kvm_has_smm();
1215 if (smm_available
) {
1219 if (x86ms
->smm
== ON_OFF_AUTO_ON
) {
1220 error_report("System Management Mode not supported by this hypervisor.");
1226 static void x86_machine_get_smm(Object
*obj
, Visitor
*v
, const char *name
,
1227 void *opaque
, Error
**errp
)
1229 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1230 OnOffAuto smm
= x86ms
->smm
;
1232 visit_type_OnOffAuto(v
, name
, &smm
, errp
);
1235 static void x86_machine_set_smm(Object
*obj
, Visitor
*v
, const char *name
,
1236 void *opaque
, Error
**errp
)
1238 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1240 visit_type_OnOffAuto(v
, name
, &x86ms
->smm
, errp
);
1243 bool x86_machine_is_acpi_enabled(const X86MachineState
*x86ms
)
1245 if (x86ms
->acpi
== ON_OFF_AUTO_OFF
) {
1251 static void x86_machine_get_acpi(Object
*obj
, Visitor
*v
, const char *name
,
1252 void *opaque
, Error
**errp
)
1254 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1255 OnOffAuto acpi
= x86ms
->acpi
;
1257 visit_type_OnOffAuto(v
, name
, &acpi
, errp
);
1260 static void x86_machine_set_acpi(Object
*obj
, Visitor
*v
, const char *name
,
1261 void *opaque
, Error
**errp
)
1263 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1265 visit_type_OnOffAuto(v
, name
, &x86ms
->acpi
, errp
);
1268 static void x86_machine_get_pit(Object
*obj
, Visitor
*v
, const char *name
,
1269 void *opaque
, Error
**errp
)
1271 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1272 OnOffAuto pit
= x86ms
->pit
;
1274 visit_type_OnOffAuto(v
, name
, &pit
, errp
);
1277 static void x86_machine_set_pit(Object
*obj
, Visitor
*v
, const char *name
,
1278 void *opaque
, Error
**errp
)
1280 X86MachineState
*x86ms
= X86_MACHINE(obj
);;
1282 visit_type_OnOffAuto(v
, name
, &x86ms
->pit
, errp
);
1285 static void x86_machine_get_pic(Object
*obj
, Visitor
*v
, const char *name
,
1286 void *opaque
, Error
**errp
)
1288 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1289 OnOffAuto pic
= x86ms
->pic
;
1291 visit_type_OnOffAuto(v
, name
, &pic
, errp
);
1294 static void x86_machine_set_pic(Object
*obj
, Visitor
*v
, const char *name
,
1295 void *opaque
, Error
**errp
)
1297 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1299 visit_type_OnOffAuto(v
, name
, &x86ms
->pic
, errp
);
1302 static char *x86_machine_get_oem_id(Object
*obj
, Error
**errp
)
1304 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1306 return g_strdup(x86ms
->oem_id
);
1309 static void x86_machine_set_oem_id(Object
*obj
, const char *value
, Error
**errp
)
1311 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1312 size_t len
= strlen(value
);
1316 "User specified "X86_MACHINE_OEM_ID
" value is bigger than "
1321 strncpy(x86ms
->oem_id
, value
, 6);
1324 static char *x86_machine_get_oem_table_id(Object
*obj
, Error
**errp
)
1326 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1328 return g_strdup(x86ms
->oem_table_id
);
1331 static void x86_machine_set_oem_table_id(Object
*obj
, const char *value
,
1334 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1335 size_t len
= strlen(value
);
1339 "User specified "X86_MACHINE_OEM_TABLE_ID
1340 " value is bigger than "
1344 strncpy(x86ms
->oem_table_id
, value
, 8);
1347 static void x86_machine_get_bus_lock_ratelimit(Object
*obj
, Visitor
*v
,
1348 const char *name
, void *opaque
, Error
**errp
)
1350 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1351 uint64_t bus_lock_ratelimit
= x86ms
->bus_lock_ratelimit
;
1353 visit_type_uint64(v
, name
, &bus_lock_ratelimit
, errp
);
1356 static void x86_machine_set_bus_lock_ratelimit(Object
*obj
, Visitor
*v
,
1357 const char *name
, void *opaque
, Error
**errp
)
1359 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1361 visit_type_uint64(v
, name
, &x86ms
->bus_lock_ratelimit
, errp
);
1364 static void machine_get_sgx_epc(Object
*obj
, Visitor
*v
, const char *name
,
1365 void *opaque
, Error
**errp
)
1367 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1368 SgxEPCList
*list
= x86ms
->sgx_epc_list
;
1370 visit_type_SgxEPCList(v
, name
, &list
, errp
);
1373 static void machine_set_sgx_epc(Object
*obj
, Visitor
*v
, const char *name
,
1374 void *opaque
, Error
**errp
)
1376 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1379 list
= x86ms
->sgx_epc_list
;
1380 visit_type_SgxEPCList(v
, name
, &x86ms
->sgx_epc_list
, errp
);
1382 qapi_free_SgxEPCList(list
);
1385 static void x86_machine_initfn(Object
*obj
)
1387 X86MachineState
*x86ms
= X86_MACHINE(obj
);
1389 x86ms
->smm
= ON_OFF_AUTO_AUTO
;
1390 x86ms
->acpi
= ON_OFF_AUTO_AUTO
;
1391 x86ms
->pit
= ON_OFF_AUTO_AUTO
;
1392 x86ms
->pic
= ON_OFF_AUTO_AUTO
;
1393 x86ms
->pci_irq_mask
= ACPI_BUILD_PCI_IRQS
;
1394 x86ms
->oem_id
= g_strndup(ACPI_BUILD_APPNAME6
, 6);
1395 x86ms
->oem_table_id
= g_strndup(ACPI_BUILD_APPNAME8
, 8);
1396 x86ms
->bus_lock_ratelimit
= 0;
1397 x86ms
->above_4g_mem_start
= 4 * GiB
;
1400 static void x86_machine_class_init(ObjectClass
*oc
, void *data
)
1402 MachineClass
*mc
= MACHINE_CLASS(oc
);
1403 X86MachineClass
*x86mc
= X86_MACHINE_CLASS(oc
);
1404 NMIClass
*nc
= NMI_CLASS(oc
);
1406 mc
->cpu_index_to_instance_props
= x86_cpu_index_to_props
;
1407 mc
->get_default_cpu_node_id
= x86_get_default_cpu_node_id
;
1408 mc
->possible_cpu_arch_ids
= x86_possible_cpu_arch_ids
;
1409 x86mc
->save_tsc_khz
= true;
1410 x86mc
->fwcfg_dma_enabled
= true;
1411 nc
->nmi_monitor_handler
= x86_nmi
;
1413 object_class_property_add(oc
, X86_MACHINE_SMM
, "OnOffAuto",
1414 x86_machine_get_smm
, x86_machine_set_smm
,
1416 object_class_property_set_description(oc
, X86_MACHINE_SMM
,
1419 object_class_property_add(oc
, X86_MACHINE_ACPI
, "OnOffAuto",
1420 x86_machine_get_acpi
, x86_machine_set_acpi
,
1422 object_class_property_set_description(oc
, X86_MACHINE_ACPI
,
1425 object_class_property_add(oc
, X86_MACHINE_PIT
, "OnOffAuto",
1426 x86_machine_get_pit
,
1427 x86_machine_set_pit
,
1429 object_class_property_set_description(oc
, X86_MACHINE_PIT
,
1430 "Enable i8254 PIT");
1432 object_class_property_add(oc
, X86_MACHINE_PIC
, "OnOffAuto",
1433 x86_machine_get_pic
,
1434 x86_machine_set_pic
,
1436 object_class_property_set_description(oc
, X86_MACHINE_PIC
,
1437 "Enable i8259 PIC");
1439 object_class_property_add_str(oc
, X86_MACHINE_OEM_ID
,
1440 x86_machine_get_oem_id
,
1441 x86_machine_set_oem_id
);
1442 object_class_property_set_description(oc
, X86_MACHINE_OEM_ID
,
1443 "Override the default value of field OEMID "
1444 "in ACPI table header."
1445 "The string may be up to 6 bytes in size");
1448 object_class_property_add_str(oc
, X86_MACHINE_OEM_TABLE_ID
,
1449 x86_machine_get_oem_table_id
,
1450 x86_machine_set_oem_table_id
);
1451 object_class_property_set_description(oc
, X86_MACHINE_OEM_TABLE_ID
,
1452 "Override the default value of field OEM Table ID "
1453 "in ACPI table header."
1454 "The string may be up to 8 bytes in size");
1456 object_class_property_add(oc
, X86_MACHINE_BUS_LOCK_RATELIMIT
, "uint64_t",
1457 x86_machine_get_bus_lock_ratelimit
,
1458 x86_machine_set_bus_lock_ratelimit
, NULL
, NULL
);
1459 object_class_property_set_description(oc
, X86_MACHINE_BUS_LOCK_RATELIMIT
,
1460 "Set the ratelimit for the bus locks acquired in VMs");
1462 object_class_property_add(oc
, "sgx-epc", "SgxEPC",
1463 machine_get_sgx_epc
, machine_set_sgx_epc
,
1465 object_class_property_set_description(oc
, "sgx-epc",
1469 static const TypeInfo x86_machine_info
= {
1470 .name
= TYPE_X86_MACHINE
,
1471 .parent
= TYPE_MACHINE
,
1473 .instance_size
= sizeof(X86MachineState
),
1474 .instance_init
= x86_machine_initfn
,
1475 .class_size
= sizeof(X86MachineClass
),
1476 .class_init
= x86_machine_class_init
,
1477 .interfaces
= (InterfaceInfo
[]) {
1483 static void x86_machine_register_types(void)
1485 type_register_static(&x86_machine_info
);
1488 type_init(x86_machine_register_types
)