aspeed/smc: Only wire flash devices at reset
[qemu/kevin.git] / system / physmem.c
bloba4fe3d2bf8949c295ca76d5a6b498ee61df548c3
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "sysemu/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
68 #include "qemu/pmem.h"
70 #include "migration/vmstate.h"
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
77 #include "monitor/monitor.h"
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
83 //#define DEBUG_SUBPAGE
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
96 static MemoryRegion io_mem_unassigned;
98 typedef struct PhysPageEntry PhysPageEntry;
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
117 typedef PhysPageEntry Node[P_L2_SIZE];
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
135 PhysPageEntry phys_map;
136 PhysPageMap map;
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
147 #define PHYS_SECTION_UNASSIGNED 0
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
201 return ret;
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
226 ++lp;
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
272 assert(valid_ptr < P_L2_SIZE);
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
352 return section;
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
371 mr = section->mr;
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
388 return section;
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
458 return *section;
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
465 * flatview_do_translate - translate an address in FlatView
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
482 * This function is called from RCU critical section
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
498 if (!plen_out) {
499 plen_out = &plen;
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
518 return *section;
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
577 return mr;
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
592 if (!notifier->active) {
593 return;
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
647 if (!notifier->active) {
648 notifier->active = true;
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
663 g_array_free(cpu->iommu_notifiers, true);
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 hwaddr addr = orig_addr;
683 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
685 for (;;) {
686 section = address_space_translate_internal(d, addr, &addr, plen, false);
688 iommu_mr = memory_region_get_iommu(section->mr);
689 if (!iommu_mr) {
690 break;
693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698 * doesn't short-cut its translation table walk.
700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702 | (addr & iotlb.addr_mask));
703 /* Update the caller's prot bits to remove permissions the IOMMU
704 * is giving us a failure response for. If we get down to no
705 * permissions left at all we can give up now.
707 if (!(iotlb.perm & IOMMU_RO)) {
708 *prot &= ~(PAGE_READ | PAGE_EXEC);
710 if (!(iotlb.perm & IOMMU_WO)) {
711 *prot &= ~PAGE_WRITE;
714 if (!*prot) {
715 goto translate_fail;
718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721 assert(!memory_region_is_iommu(section->mr));
722 *xlat = addr;
723 return section;
725 translate_fail:
727 * We should be given a page-aligned address -- certainly
728 * tlb_set_page_with_attrs() does so. The page offset of xlat
729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
730 * The page portion of xlat will be logged by memory_region_access_valid()
731 * when this memory access is rejected, so use the original untranslated
732 * physical address.
734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
735 *xlat = orig_addr;
736 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
739 void cpu_address_space_init(CPUState *cpu, int asidx,
740 const char *prefix, MemoryRegion *mr)
742 CPUAddressSpace *newas;
743 AddressSpace *as = g_new0(AddressSpace, 1);
744 char *as_name;
746 assert(mr);
747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
748 address_space_init(as, mr, as_name);
749 g_free(as_name);
751 /* Target code should have set num_ases before calling us */
752 assert(asidx < cpu->num_ases);
754 if (asidx == 0) {
755 /* address space 0 gets the convenience alias */
756 cpu->as = as;
759 /* KVM cannot currently support multiple address spaces. */
760 assert(asidx == 0 || !kvm_enabled());
762 if (!cpu->cpu_ases) {
763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
766 newas = &cpu->cpu_ases[asidx];
767 newas->cpu = cpu;
768 newas->as = as;
769 if (tcg_enabled()) {
770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
771 newas->tcg_as_listener.commit = tcg_commit;
772 newas->tcg_as_listener.name = "tcg";
773 memory_listener_register(&newas->tcg_as_listener, as);
777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
779 /* Return the AddressSpace corresponding to the specified index */
780 return cpu->cpu_ases[asidx].as;
783 /* Called from RCU critical section */
784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
786 RAMBlock *block;
788 block = qatomic_rcu_read(&ram_list.mru_block);
789 if (block && addr - block->offset < block->max_length) {
790 return block;
792 RAMBLOCK_FOREACH(block) {
793 if (addr - block->offset < block->max_length) {
794 goto found;
798 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
799 abort();
801 found:
802 /* It is safe to write mru_block outside the BQL. This
803 * is what happens:
805 * mru_block = xxx
806 * rcu_read_unlock()
807 * xxx removed from list
808 * rcu_read_lock()
809 * read mru_block
810 * mru_block = NULL;
811 * call_rcu(reclaim_ramblock, xxx);
812 * rcu_read_unlock()
814 * qatomic_rcu_set is not needed here. The block was already published
815 * when it was placed into the list. Here we're just making an extra
816 * copy of the pointer.
818 ram_list.mru_block = block;
819 return block;
822 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
824 CPUState *cpu;
825 ram_addr_t start1;
826 RAMBlock *block;
827 ram_addr_t end;
829 assert(tcg_enabled());
830 end = TARGET_PAGE_ALIGN(start + length);
831 start &= TARGET_PAGE_MASK;
833 RCU_READ_LOCK_GUARD();
834 block = qemu_get_ram_block(start);
835 assert(block == qemu_get_ram_block(end - 1));
836 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
837 CPU_FOREACH(cpu) {
838 tlb_reset_dirty(cpu, start1, length);
842 /* Note: start and end must be within the same ram block. */
843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
844 ram_addr_t length,
845 unsigned client)
847 DirtyMemoryBlocks *blocks;
848 unsigned long end, page, start_page;
849 bool dirty = false;
850 RAMBlock *ramblock;
851 uint64_t mr_offset, mr_size;
853 if (length == 0) {
854 return false;
857 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
858 start_page = start >> TARGET_PAGE_BITS;
859 page = start_page;
861 WITH_RCU_READ_LOCK_GUARD() {
862 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
863 ramblock = qemu_get_ram_block(start);
864 /* Range sanity check on the ramblock */
865 assert(start >= ramblock->offset &&
866 start + length <= ramblock->offset + ramblock->used_length);
868 while (page < end) {
869 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
870 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
871 unsigned long num = MIN(end - page,
872 DIRTY_MEMORY_BLOCK_SIZE - offset);
874 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
875 offset, num);
876 page += num;
879 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
880 mr_size = (end - start_page) << TARGET_PAGE_BITS;
881 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
884 if (dirty) {
885 cpu_physical_memory_dirty_bits_cleared(start, length);
888 return dirty;
891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
892 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
894 DirtyMemoryBlocks *blocks;
895 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
896 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
897 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
898 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
899 DirtyBitmapSnapshot *snap;
900 unsigned long page, end, dest;
902 snap = g_malloc0(sizeof(*snap) +
903 ((last - first) >> (TARGET_PAGE_BITS + 3)));
904 snap->start = first;
905 snap->end = last;
907 page = first >> TARGET_PAGE_BITS;
908 end = last >> TARGET_PAGE_BITS;
909 dest = 0;
911 WITH_RCU_READ_LOCK_GUARD() {
912 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
914 while (page < end) {
915 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
916 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
917 unsigned long num = MIN(end - page,
918 DIRTY_MEMORY_BLOCK_SIZE - ofs);
920 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
921 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
922 ofs >>= BITS_PER_LEVEL;
924 bitmap_copy_and_clear_atomic(snap->dirty + dest,
925 blocks->blocks[idx] + ofs,
926 num);
927 page += num;
928 dest += num >> BITS_PER_LEVEL;
932 cpu_physical_memory_dirty_bits_cleared(start, length);
934 memory_region_clear_dirty_bitmap(mr, offset, length);
936 return snap;
939 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
940 ram_addr_t start,
941 ram_addr_t length)
943 unsigned long page, end;
945 assert(start >= snap->start);
946 assert(start + length <= snap->end);
948 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
949 page = (start - snap->start) >> TARGET_PAGE_BITS;
951 while (page < end) {
952 if (test_bit(page, snap->dirty)) {
953 return true;
955 page++;
957 return false;
960 /* Called from RCU critical section */
961 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
962 MemoryRegionSection *section)
964 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
965 return section - d->map.sections;
968 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
969 uint16_t section);
970 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
972 static uint16_t phys_section_add(PhysPageMap *map,
973 MemoryRegionSection *section)
975 /* The physical section number is ORed with a page-aligned
976 * pointer to produce the iotlb entries. Thus it should
977 * never overflow into the page-aligned value.
979 assert(map->sections_nb < TARGET_PAGE_SIZE);
981 if (map->sections_nb == map->sections_nb_alloc) {
982 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
983 map->sections = g_renew(MemoryRegionSection, map->sections,
984 map->sections_nb_alloc);
986 map->sections[map->sections_nb] = *section;
987 memory_region_ref(section->mr);
988 return map->sections_nb++;
991 static void phys_section_destroy(MemoryRegion *mr)
993 bool have_sub_page = mr->subpage;
995 memory_region_unref(mr);
997 if (have_sub_page) {
998 subpage_t *subpage = container_of(mr, subpage_t, iomem);
999 object_unref(OBJECT(&subpage->iomem));
1000 g_free(subpage);
1004 static void phys_sections_free(PhysPageMap *map)
1006 while (map->sections_nb > 0) {
1007 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1008 phys_section_destroy(section->mr);
1010 g_free(map->sections);
1011 g_free(map->nodes);
1014 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1016 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1017 subpage_t *subpage;
1018 hwaddr base = section->offset_within_address_space
1019 & TARGET_PAGE_MASK;
1020 MemoryRegionSection *existing = phys_page_find(d, base);
1021 MemoryRegionSection subsection = {
1022 .offset_within_address_space = base,
1023 .size = int128_make64(TARGET_PAGE_SIZE),
1025 hwaddr start, end;
1027 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1029 if (!(existing->mr->subpage)) {
1030 subpage = subpage_init(fv, base);
1031 subsection.fv = fv;
1032 subsection.mr = &subpage->iomem;
1033 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1034 phys_section_add(&d->map, &subsection));
1035 } else {
1036 subpage = container_of(existing->mr, subpage_t, iomem);
1038 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1039 end = start + int128_get64(section->size) - 1;
1040 subpage_register(subpage, start, end,
1041 phys_section_add(&d->map, section));
1045 static void register_multipage(FlatView *fv,
1046 MemoryRegionSection *section)
1048 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1049 hwaddr start_addr = section->offset_within_address_space;
1050 uint16_t section_index = phys_section_add(&d->map, section);
1051 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1052 TARGET_PAGE_BITS));
1054 assert(num_pages);
1055 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1059 * The range in *section* may look like this:
1061 * |s|PPPPPPP|s|
1063 * where s stands for subpage and P for page.
1065 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1067 MemoryRegionSection remain = *section;
1068 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1070 /* register first subpage */
1071 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1072 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1073 - remain.offset_within_address_space;
1075 MemoryRegionSection now = remain;
1076 now.size = int128_min(int128_make64(left), now.size);
1077 register_subpage(fv, &now);
1078 if (int128_eq(remain.size, now.size)) {
1079 return;
1081 remain.size = int128_sub(remain.size, now.size);
1082 remain.offset_within_address_space += int128_get64(now.size);
1083 remain.offset_within_region += int128_get64(now.size);
1086 /* register whole pages */
1087 if (int128_ge(remain.size, page_size)) {
1088 MemoryRegionSection now = remain;
1089 now.size = int128_and(now.size, int128_neg(page_size));
1090 register_multipage(fv, &now);
1091 if (int128_eq(remain.size, now.size)) {
1092 return;
1094 remain.size = int128_sub(remain.size, now.size);
1095 remain.offset_within_address_space += int128_get64(now.size);
1096 remain.offset_within_region += int128_get64(now.size);
1099 /* register last subpage */
1100 register_subpage(fv, &remain);
1103 void qemu_flush_coalesced_mmio_buffer(void)
1105 if (kvm_enabled())
1106 kvm_flush_coalesced_mmio_buffer();
1109 void qemu_mutex_lock_ramlist(void)
1111 qemu_mutex_lock(&ram_list.mutex);
1114 void qemu_mutex_unlock_ramlist(void)
1116 qemu_mutex_unlock(&ram_list.mutex);
1119 GString *ram_block_format(void)
1121 RAMBlock *block;
1122 char *psize;
1123 GString *buf = g_string_new("");
1125 RCU_READ_LOCK_GUARD();
1126 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1127 "Block Name", "PSize", "Offset", "Used", "Total",
1128 "HVA", "RO");
1130 RAMBLOCK_FOREACH(block) {
1131 psize = size_to_str(block->page_size);
1132 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1133 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1134 block->idstr, psize,
1135 (uint64_t)block->offset,
1136 (uint64_t)block->used_length,
1137 (uint64_t)block->max_length,
1138 (uint64_t)(uintptr_t)block->host,
1139 block->mr->readonly ? "ro" : "rw");
1141 g_free(psize);
1144 return buf;
1147 static int find_min_backend_pagesize(Object *obj, void *opaque)
1149 long *hpsize_min = opaque;
1151 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1152 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1153 long hpsize = host_memory_backend_pagesize(backend);
1155 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1156 *hpsize_min = hpsize;
1160 return 0;
1163 static int find_max_backend_pagesize(Object *obj, void *opaque)
1165 long *hpsize_max = opaque;
1167 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1168 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1169 long hpsize = host_memory_backend_pagesize(backend);
1171 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1172 *hpsize_max = hpsize;
1176 return 0;
1180 * TODO: We assume right now that all mapped host memory backends are
1181 * used as RAM, however some might be used for different purposes.
1183 long qemu_minrampagesize(void)
1185 long hpsize = LONG_MAX;
1186 Object *memdev_root = object_resolve_path("/objects", NULL);
1188 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1189 return hpsize;
1192 long qemu_maxrampagesize(void)
1194 long pagesize = 0;
1195 Object *memdev_root = object_resolve_path("/objects", NULL);
1197 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1198 return pagesize;
1201 #ifdef CONFIG_POSIX
1202 static int64_t get_file_size(int fd)
1204 int64_t size;
1205 #if defined(__linux__)
1206 struct stat st;
1208 if (fstat(fd, &st) < 0) {
1209 return -errno;
1212 /* Special handling for devdax character devices */
1213 if (S_ISCHR(st.st_mode)) {
1214 g_autofree char *subsystem_path = NULL;
1215 g_autofree char *subsystem = NULL;
1217 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1218 major(st.st_rdev), minor(st.st_rdev));
1219 subsystem = g_file_read_link(subsystem_path, NULL);
1221 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1222 g_autofree char *size_path = NULL;
1223 g_autofree char *size_str = NULL;
1225 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1226 major(st.st_rdev), minor(st.st_rdev));
1228 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1229 return g_ascii_strtoll(size_str, NULL, 0);
1233 #endif /* defined(__linux__) */
1235 /* st.st_size may be zero for special files yet lseek(2) works */
1236 size = lseek(fd, 0, SEEK_END);
1237 if (size < 0) {
1238 return -errno;
1240 return size;
1243 static int64_t get_file_align(int fd)
1245 int64_t align = -1;
1246 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1247 struct stat st;
1249 if (fstat(fd, &st) < 0) {
1250 return -errno;
1253 /* Special handling for devdax character devices */
1254 if (S_ISCHR(st.st_mode)) {
1255 g_autofree char *path = NULL;
1256 g_autofree char *rpath = NULL;
1257 struct daxctl_ctx *ctx;
1258 struct daxctl_region *region;
1259 int rc = 0;
1261 path = g_strdup_printf("/sys/dev/char/%d:%d",
1262 major(st.st_rdev), minor(st.st_rdev));
1263 rpath = realpath(path, NULL);
1264 if (!rpath) {
1265 return -errno;
1268 rc = daxctl_new(&ctx);
1269 if (rc) {
1270 return -1;
1273 daxctl_region_foreach(ctx, region) {
1274 if (strstr(rpath, daxctl_region_get_path(region))) {
1275 align = daxctl_region_get_align(region);
1276 break;
1279 daxctl_unref(ctx);
1281 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1283 return align;
1286 static int file_ram_open(const char *path,
1287 const char *region_name,
1288 bool readonly,
1289 bool *created)
1291 char *filename;
1292 char *sanitized_name;
1293 char *c;
1294 int fd = -1;
1296 *created = false;
1297 for (;;) {
1298 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1299 if (fd >= 0) {
1301 * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1302 * opened a directory and fail similarly to how we fail ENOENT
1303 * in readonly mode. Note that mkstemp() would imply O_RDWR.
1305 if (readonly) {
1306 struct stat file_stat;
1308 if (fstat(fd, &file_stat)) {
1309 close(fd);
1310 if (errno == EINTR) {
1311 continue;
1313 return -errno;
1314 } else if (S_ISDIR(file_stat.st_mode)) {
1315 close(fd);
1316 return -EISDIR;
1319 /* @path names an existing file, use it */
1320 break;
1322 if (errno == ENOENT) {
1323 if (readonly) {
1324 /* Refuse to create new, readonly files. */
1325 return -ENOENT;
1327 /* @path names a file that doesn't exist, create it */
1328 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1329 if (fd >= 0) {
1330 *created = true;
1331 break;
1333 } else if (errno == EISDIR) {
1334 /* @path names a directory, create a file there */
1335 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1336 sanitized_name = g_strdup(region_name);
1337 for (c = sanitized_name; *c != '\0'; c++) {
1338 if (*c == '/') {
1339 *c = '_';
1343 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1344 sanitized_name);
1345 g_free(sanitized_name);
1347 fd = mkstemp(filename);
1348 if (fd >= 0) {
1349 unlink(filename);
1350 g_free(filename);
1351 break;
1353 g_free(filename);
1355 if (errno != EEXIST && errno != EINTR) {
1356 return -errno;
1359 * Try again on EINTR and EEXIST. The latter happens when
1360 * something else creates the file between our two open().
1364 return fd;
1367 static void *file_ram_alloc(RAMBlock *block,
1368 ram_addr_t memory,
1369 int fd,
1370 bool truncate,
1371 off_t offset,
1372 Error **errp)
1374 uint32_t qemu_map_flags;
1375 void *area;
1377 block->page_size = qemu_fd_getpagesize(fd);
1378 if (block->mr->align % block->page_size) {
1379 error_setg(errp, "alignment 0x%" PRIx64
1380 " must be multiples of page size 0x%zx",
1381 block->mr->align, block->page_size);
1382 return NULL;
1383 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1384 error_setg(errp, "alignment 0x%" PRIx64
1385 " must be a power of two", block->mr->align);
1386 return NULL;
1387 } else if (offset % block->page_size) {
1388 error_setg(errp, "offset 0x%" PRIx64
1389 " must be multiples of page size 0x%zx",
1390 offset, block->page_size);
1391 return NULL;
1393 block->mr->align = MAX(block->page_size, block->mr->align);
1394 #if defined(__s390x__)
1395 if (kvm_enabled()) {
1396 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1398 #endif
1400 if (memory < block->page_size) {
1401 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1402 "or larger than page size 0x%zx",
1403 memory, block->page_size);
1404 return NULL;
1407 memory = ROUND_UP(memory, block->page_size);
1410 * ftruncate is not supported by hugetlbfs in older
1411 * hosts, so don't bother bailing out on errors.
1412 * If anything goes wrong with it under other filesystems,
1413 * mmap will fail.
1415 * Do not truncate the non-empty backend file to avoid corrupting
1416 * the existing data in the file. Disabling shrinking is not
1417 * enough. For example, the current vNVDIMM implementation stores
1418 * the guest NVDIMM labels at the end of the backend file. If the
1419 * backend file is later extended, QEMU will not be able to find
1420 * those labels. Therefore, extending the non-empty backend file
1421 * is disabled as well.
1423 if (truncate && ftruncate(fd, offset + memory)) {
1424 perror("ftruncate");
1427 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1428 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1429 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1430 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1431 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1432 if (area == MAP_FAILED) {
1433 error_setg_errno(errp, errno,
1434 "unable to map backing store for guest RAM");
1435 return NULL;
1438 block->fd = fd;
1439 block->fd_offset = offset;
1440 return area;
1442 #endif
1444 /* Allocate space within the ram_addr_t space that governs the
1445 * dirty bitmaps.
1446 * Called with the ramlist lock held.
1448 static ram_addr_t find_ram_offset(ram_addr_t size)
1450 RAMBlock *block, *next_block;
1451 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1453 assert(size != 0); /* it would hand out same offset multiple times */
1455 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1456 return 0;
1459 RAMBLOCK_FOREACH(block) {
1460 ram_addr_t candidate, next = RAM_ADDR_MAX;
1462 /* Align blocks to start on a 'long' in the bitmap
1463 * which makes the bitmap sync'ing take the fast path.
1465 candidate = block->offset + block->max_length;
1466 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1468 /* Search for the closest following block
1469 * and find the gap.
1471 RAMBLOCK_FOREACH(next_block) {
1472 if (next_block->offset >= candidate) {
1473 next = MIN(next, next_block->offset);
1477 /* If it fits remember our place and remember the size
1478 * of gap, but keep going so that we might find a smaller
1479 * gap to fill so avoiding fragmentation.
1481 if (next - candidate >= size && next - candidate < mingap) {
1482 offset = candidate;
1483 mingap = next - candidate;
1486 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1489 if (offset == RAM_ADDR_MAX) {
1490 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1491 (uint64_t)size);
1492 abort();
1495 trace_find_ram_offset(size, offset);
1497 return offset;
1500 static unsigned long last_ram_page(void)
1502 RAMBlock *block;
1503 ram_addr_t last = 0;
1505 RCU_READ_LOCK_GUARD();
1506 RAMBLOCK_FOREACH(block) {
1507 last = MAX(last, block->offset + block->max_length);
1509 return last >> TARGET_PAGE_BITS;
1512 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1514 int ret;
1516 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1517 if (!machine_dump_guest_core(current_machine)) {
1518 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1519 if (ret) {
1520 perror("qemu_madvise");
1521 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1522 "but dump_guest_core=off specified\n");
1527 const char *qemu_ram_get_idstr(RAMBlock *rb)
1529 return rb->idstr;
1532 void *qemu_ram_get_host_addr(RAMBlock *rb)
1534 return rb->host;
1537 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1539 return rb->offset;
1542 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1544 return rb->used_length;
1547 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1549 return rb->max_length;
1552 bool qemu_ram_is_shared(RAMBlock *rb)
1554 return rb->flags & RAM_SHARED;
1557 bool qemu_ram_is_noreserve(RAMBlock *rb)
1559 return rb->flags & RAM_NORESERVE;
1562 /* Note: Only set at the start of postcopy */
1563 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1565 return rb->flags & RAM_UF_ZEROPAGE;
1568 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1570 rb->flags |= RAM_UF_ZEROPAGE;
1573 bool qemu_ram_is_migratable(RAMBlock *rb)
1575 return rb->flags & RAM_MIGRATABLE;
1578 void qemu_ram_set_migratable(RAMBlock *rb)
1580 rb->flags |= RAM_MIGRATABLE;
1583 void qemu_ram_unset_migratable(RAMBlock *rb)
1585 rb->flags &= ~RAM_MIGRATABLE;
1588 bool qemu_ram_is_named_file(RAMBlock *rb)
1590 return rb->flags & RAM_NAMED_FILE;
1593 int qemu_ram_get_fd(RAMBlock *rb)
1595 return rb->fd;
1598 /* Called with the BQL held. */
1599 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1601 RAMBlock *block;
1603 assert(new_block);
1604 assert(!new_block->idstr[0]);
1606 if (dev) {
1607 char *id = qdev_get_dev_path(dev);
1608 if (id) {
1609 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1610 g_free(id);
1613 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1615 RCU_READ_LOCK_GUARD();
1616 RAMBLOCK_FOREACH(block) {
1617 if (block != new_block &&
1618 !strcmp(block->idstr, new_block->idstr)) {
1619 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1620 new_block->idstr);
1621 abort();
1626 /* Called with the BQL held. */
1627 void qemu_ram_unset_idstr(RAMBlock *block)
1629 /* FIXME: arch_init.c assumes that this is not called throughout
1630 * migration. Ignore the problem since hot-unplug during migration
1631 * does not work anyway.
1633 if (block) {
1634 memset(block->idstr, 0, sizeof(block->idstr));
1638 size_t qemu_ram_pagesize(RAMBlock *rb)
1640 return rb->page_size;
1643 /* Returns the largest size of page in use */
1644 size_t qemu_ram_pagesize_largest(void)
1646 RAMBlock *block;
1647 size_t largest = 0;
1649 RAMBLOCK_FOREACH(block) {
1650 largest = MAX(largest, qemu_ram_pagesize(block));
1653 return largest;
1656 static int memory_try_enable_merging(void *addr, size_t len)
1658 if (!machine_mem_merge(current_machine)) {
1659 /* disabled by the user */
1660 return 0;
1663 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1667 * Resizing RAM while migrating can result in the migration being canceled.
1668 * Care has to be taken if the guest might have already detected the memory.
1670 * As memory core doesn't know how is memory accessed, it is up to
1671 * resize callback to update device state and/or add assertions to detect
1672 * misuse, if necessary.
1674 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1676 const ram_addr_t oldsize = block->used_length;
1677 const ram_addr_t unaligned_size = newsize;
1679 assert(block);
1681 newsize = TARGET_PAGE_ALIGN(newsize);
1682 newsize = REAL_HOST_PAGE_ALIGN(newsize);
1684 if (block->used_length == newsize) {
1686 * We don't have to resize the ram block (which only knows aligned
1687 * sizes), however, we have to notify if the unaligned size changed.
1689 if (unaligned_size != memory_region_size(block->mr)) {
1690 memory_region_set_size(block->mr, unaligned_size);
1691 if (block->resized) {
1692 block->resized(block->idstr, unaligned_size, block->host);
1695 return 0;
1698 if (!(block->flags & RAM_RESIZEABLE)) {
1699 error_setg_errno(errp, EINVAL,
1700 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1701 " != 0x" RAM_ADDR_FMT, block->idstr,
1702 newsize, block->used_length);
1703 return -EINVAL;
1706 if (block->max_length < newsize) {
1707 error_setg_errno(errp, EINVAL,
1708 "Size too large: %s: 0x" RAM_ADDR_FMT
1709 " > 0x" RAM_ADDR_FMT, block->idstr,
1710 newsize, block->max_length);
1711 return -EINVAL;
1714 /* Notify before modifying the ram block and touching the bitmaps. */
1715 if (block->host) {
1716 ram_block_notify_resize(block->host, oldsize, newsize);
1719 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1720 block->used_length = newsize;
1721 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1722 DIRTY_CLIENTS_ALL);
1723 memory_region_set_size(block->mr, unaligned_size);
1724 if (block->resized) {
1725 block->resized(block->idstr, unaligned_size, block->host);
1727 return 0;
1731 * Trigger sync on the given ram block for range [start, start + length]
1732 * with the backing store if one is available.
1733 * Otherwise no-op.
1734 * @Note: this is supposed to be a synchronous op.
1736 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1738 /* The requested range should fit in within the block range */
1739 g_assert((start + length) <= block->used_length);
1741 #ifdef CONFIG_LIBPMEM
1742 /* The lack of support for pmem should not block the sync */
1743 if (ramblock_is_pmem(block)) {
1744 void *addr = ramblock_ptr(block, start);
1745 pmem_persist(addr, length);
1746 return;
1748 #endif
1749 if (block->fd >= 0) {
1751 * Case there is no support for PMEM or the memory has not been
1752 * specified as persistent (or is not one) - use the msync.
1753 * Less optimal but still achieves the same goal
1755 void *addr = ramblock_ptr(block, start);
1756 if (qemu_msync(addr, length, block->fd)) {
1757 warn_report("%s: failed to sync memory range: start: "
1758 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1759 __func__, start, length);
1764 /* Called with ram_list.mutex held */
1765 static void dirty_memory_extend(ram_addr_t old_ram_size,
1766 ram_addr_t new_ram_size)
1768 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1769 DIRTY_MEMORY_BLOCK_SIZE);
1770 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1771 DIRTY_MEMORY_BLOCK_SIZE);
1772 int i;
1774 /* Only need to extend if block count increased */
1775 if (new_num_blocks <= old_num_blocks) {
1776 return;
1779 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1780 DirtyMemoryBlocks *old_blocks;
1781 DirtyMemoryBlocks *new_blocks;
1782 int j;
1784 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1785 new_blocks = g_malloc(sizeof(*new_blocks) +
1786 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1788 if (old_num_blocks) {
1789 memcpy(new_blocks->blocks, old_blocks->blocks,
1790 old_num_blocks * sizeof(old_blocks->blocks[0]));
1793 for (j = old_num_blocks; j < new_num_blocks; j++) {
1794 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1797 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1799 if (old_blocks) {
1800 g_free_rcu(old_blocks, rcu);
1805 static void ram_block_add(RAMBlock *new_block, Error **errp)
1807 const bool noreserve = qemu_ram_is_noreserve(new_block);
1808 const bool shared = qemu_ram_is_shared(new_block);
1809 RAMBlock *block;
1810 RAMBlock *last_block = NULL;
1811 ram_addr_t old_ram_size, new_ram_size;
1812 Error *err = NULL;
1814 old_ram_size = last_ram_page();
1816 qemu_mutex_lock_ramlist();
1817 new_block->offset = find_ram_offset(new_block->max_length);
1819 if (!new_block->host) {
1820 if (xen_enabled()) {
1821 xen_ram_alloc(new_block->offset, new_block->max_length,
1822 new_block->mr, &err);
1823 if (err) {
1824 error_propagate(errp, err);
1825 qemu_mutex_unlock_ramlist();
1826 return;
1828 } else {
1829 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1830 &new_block->mr->align,
1831 shared, noreserve);
1832 if (!new_block->host) {
1833 error_setg_errno(errp, errno,
1834 "cannot set up guest memory '%s'",
1835 memory_region_name(new_block->mr));
1836 qemu_mutex_unlock_ramlist();
1837 return;
1839 memory_try_enable_merging(new_block->host, new_block->max_length);
1843 new_ram_size = MAX(old_ram_size,
1844 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1845 if (new_ram_size > old_ram_size) {
1846 dirty_memory_extend(old_ram_size, new_ram_size);
1848 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1849 * QLIST (which has an RCU-friendly variant) does not have insertion at
1850 * tail, so save the last element in last_block.
1852 RAMBLOCK_FOREACH(block) {
1853 last_block = block;
1854 if (block->max_length < new_block->max_length) {
1855 break;
1858 if (block) {
1859 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1860 } else if (last_block) {
1861 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1862 } else { /* list is empty */
1863 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1865 ram_list.mru_block = NULL;
1867 /* Write list before version */
1868 smp_wmb();
1869 ram_list.version++;
1870 qemu_mutex_unlock_ramlist();
1872 cpu_physical_memory_set_dirty_range(new_block->offset,
1873 new_block->used_length,
1874 DIRTY_CLIENTS_ALL);
1876 if (new_block->host) {
1877 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1878 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1880 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1881 * Configure it unless the machine is a qtest server, in which case
1882 * KVM is not used and it may be forked (eg for fuzzing purposes).
1884 if (!qtest_enabled()) {
1885 qemu_madvise(new_block->host, new_block->max_length,
1886 QEMU_MADV_DONTFORK);
1888 ram_block_notify_add(new_block->host, new_block->used_length,
1889 new_block->max_length);
1893 #ifdef CONFIG_POSIX
1894 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1895 uint32_t ram_flags, int fd, off_t offset,
1896 Error **errp)
1898 RAMBlock *new_block;
1899 Error *local_err = NULL;
1900 int64_t file_size, file_align;
1902 /* Just support these ram flags by now. */
1903 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1904 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1905 RAM_READONLY_FD)) == 0);
1907 if (xen_enabled()) {
1908 error_setg(errp, "-mem-path not supported with Xen");
1909 return NULL;
1912 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1913 error_setg(errp,
1914 "host lacks kvm mmu notifiers, -mem-path unsupported");
1915 return NULL;
1918 size = TARGET_PAGE_ALIGN(size);
1919 size = REAL_HOST_PAGE_ALIGN(size);
1921 file_size = get_file_size(fd);
1922 if (file_size > offset && file_size < (offset + size)) {
1923 error_setg(errp, "backing store size 0x%" PRIx64
1924 " does not match 'size' option 0x" RAM_ADDR_FMT,
1925 file_size, size);
1926 return NULL;
1929 file_align = get_file_align(fd);
1930 if (file_align > 0 && file_align > mr->align) {
1931 error_setg(errp, "backing store align 0x%" PRIx64
1932 " is larger than 'align' option 0x%" PRIx64,
1933 file_align, mr->align);
1934 return NULL;
1937 new_block = g_malloc0(sizeof(*new_block));
1938 new_block->mr = mr;
1939 new_block->used_length = size;
1940 new_block->max_length = size;
1941 new_block->flags = ram_flags;
1942 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1943 errp);
1944 if (!new_block->host) {
1945 g_free(new_block);
1946 return NULL;
1949 ram_block_add(new_block, &local_err);
1950 if (local_err) {
1951 g_free(new_block);
1952 error_propagate(errp, local_err);
1953 return NULL;
1955 return new_block;
1960 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1961 uint32_t ram_flags, const char *mem_path,
1962 off_t offset, Error **errp)
1964 int fd;
1965 bool created;
1966 RAMBlock *block;
1968 fd = file_ram_open(mem_path, memory_region_name(mr),
1969 !!(ram_flags & RAM_READONLY_FD), &created);
1970 if (fd < 0) {
1971 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
1972 mem_path);
1973 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
1974 fd == -EACCES) {
1976 * If we can open the file R/O (note: will never create a new file)
1977 * and we are dealing with a private mapping, there are still ways
1978 * to consume such files and get RAM instead of ROM.
1980 fd = file_ram_open(mem_path, memory_region_name(mr), true,
1981 &created);
1982 if (fd < 0) {
1983 return NULL;
1985 assert(!created);
1986 close(fd);
1987 error_append_hint(errp, "Consider opening the backing store"
1988 " read-only but still creating writable RAM using"
1989 " '-object memory-backend-file,readonly=on,rom=off...'"
1990 " (see \"VM templating\" documentation)\n");
1992 return NULL;
1995 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
1996 if (!block) {
1997 if (created) {
1998 unlink(mem_path);
2000 close(fd);
2001 return NULL;
2004 return block;
2006 #endif
2008 static
2009 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2010 void (*resized)(const char*,
2011 uint64_t length,
2012 void *host),
2013 void *host, uint32_t ram_flags,
2014 MemoryRegion *mr, Error **errp)
2016 RAMBlock *new_block;
2017 Error *local_err = NULL;
2018 int align;
2020 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2021 RAM_NORESERVE)) == 0);
2022 assert(!host ^ (ram_flags & RAM_PREALLOC));
2024 align = qemu_real_host_page_size();
2025 align = MAX(align, TARGET_PAGE_SIZE);
2026 size = ROUND_UP(size, align);
2027 max_size = ROUND_UP(max_size, align);
2029 new_block = g_malloc0(sizeof(*new_block));
2030 new_block->mr = mr;
2031 new_block->resized = resized;
2032 new_block->used_length = size;
2033 new_block->max_length = max_size;
2034 assert(max_size >= size);
2035 new_block->fd = -1;
2036 new_block->page_size = qemu_real_host_page_size();
2037 new_block->host = host;
2038 new_block->flags = ram_flags;
2039 ram_block_add(new_block, &local_err);
2040 if (local_err) {
2041 g_free(new_block);
2042 error_propagate(errp, local_err);
2043 return NULL;
2045 return new_block;
2048 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2049 MemoryRegion *mr, Error **errp)
2051 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2052 errp);
2055 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2056 MemoryRegion *mr, Error **errp)
2058 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2059 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2062 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2063 void (*resized)(const char*,
2064 uint64_t length,
2065 void *host),
2066 MemoryRegion *mr, Error **errp)
2068 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2069 RAM_RESIZEABLE, mr, errp);
2072 static void reclaim_ramblock(RAMBlock *block)
2074 if (block->flags & RAM_PREALLOC) {
2076 } else if (xen_enabled()) {
2077 xen_invalidate_map_cache_entry(block->host);
2078 #ifndef _WIN32
2079 } else if (block->fd >= 0) {
2080 qemu_ram_munmap(block->fd, block->host, block->max_length);
2081 close(block->fd);
2082 #endif
2083 } else {
2084 qemu_anon_ram_free(block->host, block->max_length);
2086 g_free(block);
2089 void qemu_ram_free(RAMBlock *block)
2091 if (!block) {
2092 return;
2095 if (block->host) {
2096 ram_block_notify_remove(block->host, block->used_length,
2097 block->max_length);
2100 qemu_mutex_lock_ramlist();
2101 QLIST_REMOVE_RCU(block, next);
2102 ram_list.mru_block = NULL;
2103 /* Write list before version */
2104 smp_wmb();
2105 ram_list.version++;
2106 call_rcu(block, reclaim_ramblock, rcu);
2107 qemu_mutex_unlock_ramlist();
2110 #ifndef _WIN32
2111 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2113 RAMBlock *block;
2114 ram_addr_t offset;
2115 int flags;
2116 void *area, *vaddr;
2117 int prot;
2119 RAMBLOCK_FOREACH(block) {
2120 offset = addr - block->offset;
2121 if (offset < block->max_length) {
2122 vaddr = ramblock_ptr(block, offset);
2123 if (block->flags & RAM_PREALLOC) {
2125 } else if (xen_enabled()) {
2126 abort();
2127 } else {
2128 flags = MAP_FIXED;
2129 flags |= block->flags & RAM_SHARED ?
2130 MAP_SHARED : MAP_PRIVATE;
2131 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2132 prot = PROT_READ;
2133 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2134 if (block->fd >= 0) {
2135 area = mmap(vaddr, length, prot, flags, block->fd,
2136 offset + block->fd_offset);
2137 } else {
2138 flags |= MAP_ANONYMOUS;
2139 area = mmap(vaddr, length, prot, flags, -1, 0);
2141 if (area != vaddr) {
2142 error_report("Could not remap addr: "
2143 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2144 length, addr);
2145 exit(1);
2147 memory_try_enable_merging(vaddr, length);
2148 qemu_ram_setup_dump(vaddr, length);
2153 #endif /* !_WIN32 */
2155 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2156 * This should not be used for general purpose DMA. Use address_space_map
2157 * or address_space_rw instead. For local memory (e.g. video ram) that the
2158 * device owns, use memory_region_get_ram_ptr.
2160 * Called within RCU critical section.
2162 void *qemu_map_ram_ptr(RAMBlock *block, ram_addr_t addr)
2164 if (block == NULL) {
2165 block = qemu_get_ram_block(addr);
2166 addr -= block->offset;
2169 if (xen_enabled() && block->host == NULL) {
2170 /* We need to check if the requested address is in the RAM
2171 * because we don't want to map the entire memory in QEMU.
2172 * In that case just map until the end of the page.
2174 if (block->offset == 0) {
2175 return xen_map_cache(addr, 0, 0, false);
2178 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2180 return ramblock_ptr(block, addr);
2183 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2184 * but takes a size argument.
2186 * Called within RCU critical section.
2188 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2189 hwaddr *size, bool lock)
2191 if (*size == 0) {
2192 return NULL;
2195 if (block == NULL) {
2196 block = qemu_get_ram_block(addr);
2197 addr -= block->offset;
2199 *size = MIN(*size, block->max_length - addr);
2201 if (xen_enabled() && block->host == NULL) {
2202 /* We need to check if the requested address is in the RAM
2203 * because we don't want to map the entire memory in QEMU.
2204 * In that case just map the requested area.
2206 if (block->offset == 0) {
2207 return xen_map_cache(addr, *size, lock, lock);
2210 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2213 return ramblock_ptr(block, addr);
2216 /* Return the offset of a hostpointer within a ramblock */
2217 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2219 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2220 assert((uintptr_t)host >= (uintptr_t)rb->host);
2221 assert(res < rb->max_length);
2223 return res;
2226 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2227 ram_addr_t *offset)
2229 RAMBlock *block;
2230 uint8_t *host = ptr;
2232 if (xen_enabled()) {
2233 ram_addr_t ram_addr;
2234 RCU_READ_LOCK_GUARD();
2235 ram_addr = xen_ram_addr_from_mapcache(ptr);
2236 block = qemu_get_ram_block(ram_addr);
2237 if (block) {
2238 *offset = ram_addr - block->offset;
2240 return block;
2243 RCU_READ_LOCK_GUARD();
2244 block = qatomic_rcu_read(&ram_list.mru_block);
2245 if (block && block->host && host - block->host < block->max_length) {
2246 goto found;
2249 RAMBLOCK_FOREACH(block) {
2250 /* This case append when the block is not mapped. */
2251 if (block->host == NULL) {
2252 continue;
2254 if (host - block->host < block->max_length) {
2255 goto found;
2259 return NULL;
2261 found:
2262 *offset = (host - block->host);
2263 if (round_offset) {
2264 *offset &= TARGET_PAGE_MASK;
2266 return block;
2270 * Finds the named RAMBlock
2272 * name: The name of RAMBlock to find
2274 * Returns: RAMBlock (or NULL if not found)
2276 RAMBlock *qemu_ram_block_by_name(const char *name)
2278 RAMBlock *block;
2280 RAMBLOCK_FOREACH(block) {
2281 if (!strcmp(name, block->idstr)) {
2282 return block;
2286 return NULL;
2290 * Some of the system routines need to translate from a host pointer
2291 * (typically a TLB entry) back to a ram offset.
2293 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2295 RAMBlock *block;
2296 ram_addr_t offset;
2298 block = qemu_ram_block_from_host(ptr, false, &offset);
2299 if (!block) {
2300 return RAM_ADDR_INVALID;
2303 return block->offset + offset;
2306 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2308 ram_addr_t ram_addr;
2310 ram_addr = qemu_ram_addr_from_host(ptr);
2311 if (ram_addr == RAM_ADDR_INVALID) {
2312 error_report("Bad ram pointer %p", ptr);
2313 abort();
2315 return ram_addr;
2318 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2319 MemTxAttrs attrs, void *buf, hwaddr len);
2320 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2321 const void *buf, hwaddr len);
2322 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2323 bool is_write, MemTxAttrs attrs);
2325 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2326 unsigned len, MemTxAttrs attrs)
2328 subpage_t *subpage = opaque;
2329 uint8_t buf[8];
2330 MemTxResult res;
2332 #if defined(DEBUG_SUBPAGE)
2333 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2334 subpage, len, addr);
2335 #endif
2336 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2337 if (res) {
2338 return res;
2340 *data = ldn_p(buf, len);
2341 return MEMTX_OK;
2344 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2345 uint64_t value, unsigned len, MemTxAttrs attrs)
2347 subpage_t *subpage = opaque;
2348 uint8_t buf[8];
2350 #if defined(DEBUG_SUBPAGE)
2351 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2352 " value %"PRIx64"\n",
2353 __func__, subpage, len, addr, value);
2354 #endif
2355 stn_p(buf, len, value);
2356 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2359 static bool subpage_accepts(void *opaque, hwaddr addr,
2360 unsigned len, bool is_write,
2361 MemTxAttrs attrs)
2363 subpage_t *subpage = opaque;
2364 #if defined(DEBUG_SUBPAGE)
2365 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2366 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2367 #endif
2369 return flatview_access_valid(subpage->fv, addr + subpage->base,
2370 len, is_write, attrs);
2373 static const MemoryRegionOps subpage_ops = {
2374 .read_with_attrs = subpage_read,
2375 .write_with_attrs = subpage_write,
2376 .impl.min_access_size = 1,
2377 .impl.max_access_size = 8,
2378 .valid.min_access_size = 1,
2379 .valid.max_access_size = 8,
2380 .valid.accepts = subpage_accepts,
2381 .endianness = DEVICE_NATIVE_ENDIAN,
2384 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2385 uint16_t section)
2387 int idx, eidx;
2389 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2390 return -1;
2391 idx = SUBPAGE_IDX(start);
2392 eidx = SUBPAGE_IDX(end);
2393 #if defined(DEBUG_SUBPAGE)
2394 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2395 __func__, mmio, start, end, idx, eidx, section);
2396 #endif
2397 for (; idx <= eidx; idx++) {
2398 mmio->sub_section[idx] = section;
2401 return 0;
2404 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2406 subpage_t *mmio;
2408 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2409 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2410 mmio->fv = fv;
2411 mmio->base = base;
2412 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2413 NULL, TARGET_PAGE_SIZE);
2414 mmio->iomem.subpage = true;
2415 #if defined(DEBUG_SUBPAGE)
2416 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2417 mmio, base, TARGET_PAGE_SIZE);
2418 #endif
2420 return mmio;
2423 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2425 assert(fv);
2426 MemoryRegionSection section = {
2427 .fv = fv,
2428 .mr = mr,
2429 .offset_within_address_space = 0,
2430 .offset_within_region = 0,
2431 .size = int128_2_64(),
2434 return phys_section_add(map, &section);
2437 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2438 hwaddr index, MemTxAttrs attrs)
2440 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2441 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2442 AddressSpaceDispatch *d = cpuas->memory_dispatch;
2443 int section_index = index & ~TARGET_PAGE_MASK;
2444 MemoryRegionSection *ret;
2446 assert(section_index < d->map.sections_nb);
2447 ret = d->map.sections + section_index;
2448 assert(ret->mr);
2449 assert(ret->mr->ops);
2451 return ret;
2454 static void io_mem_init(void)
2456 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2457 NULL, UINT64_MAX);
2460 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2462 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2463 uint16_t n;
2465 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2466 assert(n == PHYS_SECTION_UNASSIGNED);
2468 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2470 return d;
2473 void address_space_dispatch_free(AddressSpaceDispatch *d)
2475 phys_sections_free(&d->map);
2476 g_free(d);
2479 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2483 static void tcg_log_global_after_sync(MemoryListener *listener)
2485 CPUAddressSpace *cpuas;
2487 /* Wait for the CPU to end the current TB. This avoids the following
2488 * incorrect race:
2490 * vCPU migration
2491 * ---------------------- -------------------------
2492 * TLB check -> slow path
2493 * notdirty_mem_write
2494 * write to RAM
2495 * mark dirty
2496 * clear dirty flag
2497 * TLB check -> fast path
2498 * read memory
2499 * write to RAM
2501 * by pushing the migration thread's memory read after the vCPU thread has
2502 * written the memory.
2504 if (replay_mode == REPLAY_MODE_NONE) {
2506 * VGA can make calls to this function while updating the screen.
2507 * In record/replay mode this causes a deadlock, because
2508 * run_on_cpu waits for rr mutex. Therefore no races are possible
2509 * in this case and no need for making run_on_cpu when
2510 * record/replay is enabled.
2512 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2513 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2517 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2519 CPUAddressSpace *cpuas = data.host_ptr;
2521 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2522 tlb_flush(cpu);
2525 static void tcg_commit(MemoryListener *listener)
2527 CPUAddressSpace *cpuas;
2528 CPUState *cpu;
2530 assert(tcg_enabled());
2531 /* since each CPU stores ram addresses in its TLB cache, we must
2532 reset the modified entries */
2533 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2534 cpu = cpuas->cpu;
2537 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2538 * Otherwise we race between (1) other cpu threads and (2) ongoing
2539 * i/o for the current cpu thread, with data cached by mmu_lookup().
2541 * In addition, queueing the work function will kick the cpu back to
2542 * the main loop, which will end the RCU critical section and reclaim
2543 * the memory data structures.
2545 * That said, the listener is also called during realize, before
2546 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2548 if (cpu->halt_cond) {
2549 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2550 } else {
2551 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2555 static void memory_map_init(void)
2557 system_memory = g_malloc(sizeof(*system_memory));
2559 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2560 address_space_init(&address_space_memory, system_memory, "memory");
2562 system_io = g_malloc(sizeof(*system_io));
2563 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2564 65536);
2565 address_space_init(&address_space_io, system_io, "I/O");
2568 MemoryRegion *get_system_memory(void)
2570 return system_memory;
2573 MemoryRegion *get_system_io(void)
2575 return system_io;
2578 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2579 hwaddr length)
2581 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2582 addr += memory_region_get_ram_addr(mr);
2584 /* No early return if dirty_log_mask is or becomes 0, because
2585 * cpu_physical_memory_set_dirty_range will still call
2586 * xen_modified_memory.
2588 if (dirty_log_mask) {
2589 dirty_log_mask =
2590 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2592 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2593 assert(tcg_enabled());
2594 tb_invalidate_phys_range(addr, addr + length - 1);
2595 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2597 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2600 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2603 * In principle this function would work on other memory region types too,
2604 * but the ROM device use case is the only one where this operation is
2605 * necessary. Other memory regions should use the
2606 * address_space_read/write() APIs.
2608 assert(memory_region_is_romd(mr));
2610 invalidate_and_set_dirty(mr, addr, size);
2613 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2615 unsigned access_size_max = mr->ops->valid.max_access_size;
2617 /* Regions are assumed to support 1-4 byte accesses unless
2618 otherwise specified. */
2619 if (access_size_max == 0) {
2620 access_size_max = 4;
2623 /* Bound the maximum access by the alignment of the address. */
2624 if (!mr->ops->impl.unaligned) {
2625 unsigned align_size_max = addr & -addr;
2626 if (align_size_max != 0 && align_size_max < access_size_max) {
2627 access_size_max = align_size_max;
2631 /* Don't attempt accesses larger than the maximum. */
2632 if (l > access_size_max) {
2633 l = access_size_max;
2635 l = pow2floor(l);
2637 return l;
2640 bool prepare_mmio_access(MemoryRegion *mr)
2642 bool release_lock = false;
2644 if (!bql_locked()) {
2645 bql_lock();
2646 release_lock = true;
2648 if (mr->flush_coalesced_mmio) {
2649 qemu_flush_coalesced_mmio_buffer();
2652 return release_lock;
2656 * flatview_access_allowed
2657 * @mr: #MemoryRegion to be accessed
2658 * @attrs: memory transaction attributes
2659 * @addr: address within that memory region
2660 * @len: the number of bytes to access
2662 * Check if a memory transaction is allowed.
2664 * Returns: true if transaction is allowed, false if denied.
2666 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2667 hwaddr addr, hwaddr len)
2669 if (likely(!attrs.memory)) {
2670 return true;
2672 if (memory_region_is_ram(mr)) {
2673 return true;
2675 qemu_log_mask(LOG_GUEST_ERROR,
2676 "Invalid access to non-RAM device at "
2677 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2678 "region '%s'\n", addr, len, memory_region_name(mr));
2679 return false;
2682 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2683 const uint8_t *buf,
2684 hwaddr len, hwaddr mr_addr,
2685 hwaddr *l, MemoryRegion *mr)
2687 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2688 return MEMTX_ACCESS_ERROR;
2691 if (!memory_access_is_direct(mr, true)) {
2692 uint64_t val;
2693 MemTxResult result;
2694 bool release_lock = prepare_mmio_access(mr);
2696 *l = memory_access_size(mr, *l, mr_addr);
2698 * XXX: could force current_cpu to NULL to avoid
2699 * potential bugs
2703 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2704 * the buffer by following ldn_he_p().
2706 #ifdef QEMU_STATIC_ANALYSIS
2707 assert((*l == 1 && len >= 1) ||
2708 (*l == 2 && len >= 2) ||
2709 (*l == 4 && len >= 4) ||
2710 (*l == 8 && len >= 8));
2711 #endif
2712 val = ldn_he_p(buf, *l);
2713 result = memory_region_dispatch_write(mr, mr_addr, val,
2714 size_memop(*l), attrs);
2715 if (release_lock) {
2716 bql_unlock();
2719 return result;
2720 } else {
2721 /* RAM case */
2722 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2723 false);
2725 memmove(ram_ptr, buf, *l);
2726 invalidate_and_set_dirty(mr, mr_addr, *l);
2728 return MEMTX_OK;
2732 /* Called within RCU critical section. */
2733 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2734 MemTxAttrs attrs,
2735 const void *ptr,
2736 hwaddr len, hwaddr mr_addr,
2737 hwaddr l, MemoryRegion *mr)
2739 MemTxResult result = MEMTX_OK;
2740 const uint8_t *buf = ptr;
2742 for (;;) {
2743 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2744 mr);
2746 len -= l;
2747 buf += l;
2748 addr += l;
2750 if (!len) {
2751 break;
2754 l = len;
2755 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2758 return result;
2761 /* Called from RCU critical section. */
2762 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2763 const void *buf, hwaddr len)
2765 hwaddr l;
2766 hwaddr mr_addr;
2767 MemoryRegion *mr;
2769 l = len;
2770 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2771 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2772 return MEMTX_ACCESS_ERROR;
2774 return flatview_write_continue(fv, addr, attrs, buf, len,
2775 mr_addr, l, mr);
2778 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
2779 hwaddr len, hwaddr mr_addr,
2780 hwaddr *l,
2781 MemoryRegion *mr)
2783 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2784 return MEMTX_ACCESS_ERROR;
2787 if (!memory_access_is_direct(mr, false)) {
2788 /* I/O case */
2789 uint64_t val;
2790 MemTxResult result;
2791 bool release_lock = prepare_mmio_access(mr);
2793 *l = memory_access_size(mr, *l, mr_addr);
2794 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
2795 attrs);
2798 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2799 * the buffer by following stn_he_p().
2801 #ifdef QEMU_STATIC_ANALYSIS
2802 assert((*l == 1 && len >= 1) ||
2803 (*l == 2 && len >= 2) ||
2804 (*l == 4 && len >= 4) ||
2805 (*l == 8 && len >= 8));
2806 #endif
2807 stn_he_p(buf, *l, val);
2809 if (release_lock) {
2810 bql_unlock();
2812 return result;
2813 } else {
2814 /* RAM case */
2815 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2816 false);
2818 memcpy(buf, ram_ptr, *l);
2820 return MEMTX_OK;
2824 /* Called within RCU critical section. */
2825 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2826 MemTxAttrs attrs, void *ptr,
2827 hwaddr len, hwaddr mr_addr, hwaddr l,
2828 MemoryRegion *mr)
2830 MemTxResult result = MEMTX_OK;
2831 uint8_t *buf = ptr;
2833 fuzz_dma_read_cb(addr, len, mr);
2834 for (;;) {
2835 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
2837 len -= l;
2838 buf += l;
2839 addr += l;
2841 if (!len) {
2842 break;
2845 l = len;
2846 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2849 return result;
2852 /* Called from RCU critical section. */
2853 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2854 MemTxAttrs attrs, void *buf, hwaddr len)
2856 hwaddr l;
2857 hwaddr mr_addr;
2858 MemoryRegion *mr;
2860 l = len;
2861 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
2862 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2863 return MEMTX_ACCESS_ERROR;
2865 return flatview_read_continue(fv, addr, attrs, buf, len,
2866 mr_addr, l, mr);
2869 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2870 MemTxAttrs attrs, void *buf, hwaddr len)
2872 MemTxResult result = MEMTX_OK;
2873 FlatView *fv;
2875 if (len > 0) {
2876 RCU_READ_LOCK_GUARD();
2877 fv = address_space_to_flatview(as);
2878 result = flatview_read(fv, addr, attrs, buf, len);
2881 return result;
2884 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2885 MemTxAttrs attrs,
2886 const void *buf, hwaddr len)
2888 MemTxResult result = MEMTX_OK;
2889 FlatView *fv;
2891 if (len > 0) {
2892 RCU_READ_LOCK_GUARD();
2893 fv = address_space_to_flatview(as);
2894 result = flatview_write(fv, addr, attrs, buf, len);
2897 return result;
2900 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2901 void *buf, hwaddr len, bool is_write)
2903 if (is_write) {
2904 return address_space_write(as, addr, attrs, buf, len);
2905 } else {
2906 return address_space_read_full(as, addr, attrs, buf, len);
2910 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2911 uint8_t c, hwaddr len, MemTxAttrs attrs)
2913 #define FILLBUF_SIZE 512
2914 uint8_t fillbuf[FILLBUF_SIZE];
2915 int l;
2916 MemTxResult error = MEMTX_OK;
2918 memset(fillbuf, c, FILLBUF_SIZE);
2919 while (len > 0) {
2920 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2921 error |= address_space_write(as, addr, attrs, fillbuf, l);
2922 len -= l;
2923 addr += l;
2926 return error;
2929 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2930 hwaddr len, bool is_write)
2932 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2933 buf, len, is_write);
2936 enum write_rom_type {
2937 WRITE_DATA,
2938 FLUSH_CACHE,
2941 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2942 hwaddr addr,
2943 MemTxAttrs attrs,
2944 const void *ptr,
2945 hwaddr len,
2946 enum write_rom_type type)
2948 hwaddr l;
2949 uint8_t *ram_ptr;
2950 hwaddr addr1;
2951 MemoryRegion *mr;
2952 const uint8_t *buf = ptr;
2954 RCU_READ_LOCK_GUARD();
2955 while (len > 0) {
2956 l = len;
2957 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2959 if (!(memory_region_is_ram(mr) ||
2960 memory_region_is_romd(mr))) {
2961 l = memory_access_size(mr, l, addr1);
2962 } else {
2963 /* ROM/RAM case */
2964 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2965 switch (type) {
2966 case WRITE_DATA:
2967 memcpy(ram_ptr, buf, l);
2968 invalidate_and_set_dirty(mr, addr1, l);
2969 break;
2970 case FLUSH_CACHE:
2971 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2972 break;
2975 len -= l;
2976 buf += l;
2977 addr += l;
2979 return MEMTX_OK;
2982 /* used for ROM loading : can write in RAM and ROM */
2983 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2984 MemTxAttrs attrs,
2985 const void *buf, hwaddr len)
2987 return address_space_write_rom_internal(as, addr, attrs,
2988 buf, len, WRITE_DATA);
2991 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2994 * This function should do the same thing as an icache flush that was
2995 * triggered from within the guest. For TCG we are always cache coherent,
2996 * so there is no need to flush anything. For KVM / Xen we need to flush
2997 * the host's instruction cache at least.
2999 if (tcg_enabled()) {
3000 return;
3003 address_space_write_rom_internal(&address_space_memory,
3004 start, MEMTXATTRS_UNSPECIFIED,
3005 NULL, len, FLUSH_CACHE);
3008 typedef struct {
3009 MemoryRegion *mr;
3010 void *buffer;
3011 hwaddr addr;
3012 hwaddr len;
3013 bool in_use;
3014 } BounceBuffer;
3016 static BounceBuffer bounce;
3018 typedef struct MapClient {
3019 QEMUBH *bh;
3020 QLIST_ENTRY(MapClient) link;
3021 } MapClient;
3023 QemuMutex map_client_list_lock;
3024 static QLIST_HEAD(, MapClient) map_client_list
3025 = QLIST_HEAD_INITIALIZER(map_client_list);
3027 static void cpu_unregister_map_client_do(MapClient *client)
3029 QLIST_REMOVE(client, link);
3030 g_free(client);
3033 static void cpu_notify_map_clients_locked(void)
3035 MapClient *client;
3037 while (!QLIST_EMPTY(&map_client_list)) {
3038 client = QLIST_FIRST(&map_client_list);
3039 qemu_bh_schedule(client->bh);
3040 cpu_unregister_map_client_do(client);
3044 void cpu_register_map_client(QEMUBH *bh)
3046 MapClient *client = g_malloc(sizeof(*client));
3048 qemu_mutex_lock(&map_client_list_lock);
3049 client->bh = bh;
3050 QLIST_INSERT_HEAD(&map_client_list, client, link);
3051 /* Write map_client_list before reading in_use. */
3052 smp_mb();
3053 if (!qatomic_read(&bounce.in_use)) {
3054 cpu_notify_map_clients_locked();
3056 qemu_mutex_unlock(&map_client_list_lock);
3059 void cpu_exec_init_all(void)
3061 qemu_mutex_init(&ram_list.mutex);
3062 /* The data structures we set up here depend on knowing the page size,
3063 * so no more changes can be made after this point.
3064 * In an ideal world, nothing we did before we had finished the
3065 * machine setup would care about the target page size, and we could
3066 * do this much later, rather than requiring board models to state
3067 * up front what their requirements are.
3069 finalize_target_page_bits();
3070 io_mem_init();
3071 memory_map_init();
3072 qemu_mutex_init(&map_client_list_lock);
3075 void cpu_unregister_map_client(QEMUBH *bh)
3077 MapClient *client;
3079 qemu_mutex_lock(&map_client_list_lock);
3080 QLIST_FOREACH(client, &map_client_list, link) {
3081 if (client->bh == bh) {
3082 cpu_unregister_map_client_do(client);
3083 break;
3086 qemu_mutex_unlock(&map_client_list_lock);
3089 static void cpu_notify_map_clients(void)
3091 qemu_mutex_lock(&map_client_list_lock);
3092 cpu_notify_map_clients_locked();
3093 qemu_mutex_unlock(&map_client_list_lock);
3096 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3097 bool is_write, MemTxAttrs attrs)
3099 MemoryRegion *mr;
3100 hwaddr l, xlat;
3102 while (len > 0) {
3103 l = len;
3104 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3105 if (!memory_access_is_direct(mr, is_write)) {
3106 l = memory_access_size(mr, l, addr);
3107 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3108 return false;
3112 len -= l;
3113 addr += l;
3115 return true;
3118 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3119 hwaddr len, bool is_write,
3120 MemTxAttrs attrs)
3122 FlatView *fv;
3124 RCU_READ_LOCK_GUARD();
3125 fv = address_space_to_flatview(as);
3126 return flatview_access_valid(fv, addr, len, is_write, attrs);
3129 static hwaddr
3130 flatview_extend_translation(FlatView *fv, hwaddr addr,
3131 hwaddr target_len,
3132 MemoryRegion *mr, hwaddr base, hwaddr len,
3133 bool is_write, MemTxAttrs attrs)
3135 hwaddr done = 0;
3136 hwaddr xlat;
3137 MemoryRegion *this_mr;
3139 for (;;) {
3140 target_len -= len;
3141 addr += len;
3142 done += len;
3143 if (target_len == 0) {
3144 return done;
3147 len = target_len;
3148 this_mr = flatview_translate(fv, addr, &xlat,
3149 &len, is_write, attrs);
3150 if (this_mr != mr || xlat != base + done) {
3151 return done;
3156 /* Map a physical memory region into a host virtual address.
3157 * May map a subset of the requested range, given by and returned in *plen.
3158 * May return NULL if resources needed to perform the mapping are exhausted.
3159 * Use only for reads OR writes - not for read-modify-write operations.
3160 * Use cpu_register_map_client() to know when retrying the map operation is
3161 * likely to succeed.
3163 void *address_space_map(AddressSpace *as,
3164 hwaddr addr,
3165 hwaddr *plen,
3166 bool is_write,
3167 MemTxAttrs attrs)
3169 hwaddr len = *plen;
3170 hwaddr l, xlat;
3171 MemoryRegion *mr;
3172 FlatView *fv;
3174 if (len == 0) {
3175 return NULL;
3178 l = len;
3179 RCU_READ_LOCK_GUARD();
3180 fv = address_space_to_flatview(as);
3181 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3183 if (!memory_access_is_direct(mr, is_write)) {
3184 if (qatomic_xchg(&bounce.in_use, true)) {
3185 *plen = 0;
3186 return NULL;
3188 /* Avoid unbounded allocations */
3189 l = MIN(l, TARGET_PAGE_SIZE);
3190 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3191 bounce.addr = addr;
3192 bounce.len = l;
3194 memory_region_ref(mr);
3195 bounce.mr = mr;
3196 if (!is_write) {
3197 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3198 bounce.buffer, l);
3201 *plen = l;
3202 return bounce.buffer;
3206 memory_region_ref(mr);
3207 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3208 l, is_write, attrs);
3209 fuzz_dma_read_cb(addr, *plen, mr);
3210 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3213 /* Unmaps a memory region previously mapped by address_space_map().
3214 * Will also mark the memory as dirty if is_write is true. access_len gives
3215 * the amount of memory that was actually read or written by the caller.
3217 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3218 bool is_write, hwaddr access_len)
3220 if (buffer != bounce.buffer) {
3221 MemoryRegion *mr;
3222 ram_addr_t addr1;
3224 mr = memory_region_from_host(buffer, &addr1);
3225 assert(mr != NULL);
3226 if (is_write) {
3227 invalidate_and_set_dirty(mr, addr1, access_len);
3229 if (xen_enabled()) {
3230 xen_invalidate_map_cache_entry(buffer);
3232 memory_region_unref(mr);
3233 return;
3235 if (is_write) {
3236 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3237 bounce.buffer, access_len);
3239 qemu_vfree(bounce.buffer);
3240 bounce.buffer = NULL;
3241 memory_region_unref(bounce.mr);
3242 /* Clear in_use before reading map_client_list. */
3243 qatomic_set_mb(&bounce.in_use, false);
3244 cpu_notify_map_clients();
3247 void *cpu_physical_memory_map(hwaddr addr,
3248 hwaddr *plen,
3249 bool is_write)
3251 return address_space_map(&address_space_memory, addr, plen, is_write,
3252 MEMTXATTRS_UNSPECIFIED);
3255 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3256 bool is_write, hwaddr access_len)
3258 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3261 #define ARG1_DECL AddressSpace *as
3262 #define ARG1 as
3263 #define SUFFIX
3264 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3265 #define RCU_READ_LOCK(...) rcu_read_lock()
3266 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3267 #include "memory_ldst.c.inc"
3269 int64_t address_space_cache_init(MemoryRegionCache *cache,
3270 AddressSpace *as,
3271 hwaddr addr,
3272 hwaddr len,
3273 bool is_write)
3275 AddressSpaceDispatch *d;
3276 hwaddr l;
3277 MemoryRegion *mr;
3278 Int128 diff;
3280 assert(len > 0);
3282 l = len;
3283 cache->fv = address_space_get_flatview(as);
3284 d = flatview_to_dispatch(cache->fv);
3285 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3288 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3289 * Take that into account to compute how many bytes are there between
3290 * cache->xlat and the end of the section.
3292 diff = int128_sub(cache->mrs.size,
3293 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3294 l = int128_get64(int128_min(diff, int128_make64(l)));
3296 mr = cache->mrs.mr;
3297 memory_region_ref(mr);
3298 if (memory_access_is_direct(mr, is_write)) {
3299 /* We don't care about the memory attributes here as we're only
3300 * doing this if we found actual RAM, which behaves the same
3301 * regardless of attributes; so UNSPECIFIED is fine.
3303 l = flatview_extend_translation(cache->fv, addr, len, mr,
3304 cache->xlat, l, is_write,
3305 MEMTXATTRS_UNSPECIFIED);
3306 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3307 } else {
3308 cache->ptr = NULL;
3311 cache->len = l;
3312 cache->is_write = is_write;
3313 return l;
3316 void address_space_cache_invalidate(MemoryRegionCache *cache,
3317 hwaddr addr,
3318 hwaddr access_len)
3320 assert(cache->is_write);
3321 if (likely(cache->ptr)) {
3322 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3326 void address_space_cache_destroy(MemoryRegionCache *cache)
3328 if (!cache->mrs.mr) {
3329 return;
3332 if (xen_enabled()) {
3333 xen_invalidate_map_cache_entry(cache->ptr);
3335 memory_region_unref(cache->mrs.mr);
3336 flatview_unref(cache->fv);
3337 cache->mrs.mr = NULL;
3338 cache->fv = NULL;
3341 /* Called from RCU critical section. This function has the same
3342 * semantics as address_space_translate, but it only works on a
3343 * predefined range of a MemoryRegion that was mapped with
3344 * address_space_cache_init.
3346 static inline MemoryRegion *address_space_translate_cached(
3347 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3348 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3350 MemoryRegionSection section;
3351 MemoryRegion *mr;
3352 IOMMUMemoryRegion *iommu_mr;
3353 AddressSpace *target_as;
3355 assert(!cache->ptr);
3356 *xlat = addr + cache->xlat;
3358 mr = cache->mrs.mr;
3359 iommu_mr = memory_region_get_iommu(mr);
3360 if (!iommu_mr) {
3361 /* MMIO region. */
3362 return mr;
3365 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3366 NULL, is_write, true,
3367 &target_as, attrs);
3368 return section.mr;
3371 /* Called within RCU critical section. */
3372 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3373 const void *ptr,
3374 hwaddr len,
3375 hwaddr mr_addr,
3376 hwaddr l,
3377 MemoryRegion *mr)
3379 MemTxResult result = MEMTX_OK;
3380 const uint8_t *buf = ptr;
3382 for (;;) {
3383 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3384 mr);
3386 len -= l;
3387 buf += l;
3388 mr_addr += l;
3390 if (!len) {
3391 break;
3394 l = len;
3397 return result;
3400 /* Called within RCU critical section. */
3401 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3402 void *ptr, hwaddr len,
3403 hwaddr mr_addr, hwaddr l,
3404 MemoryRegion *mr)
3406 MemTxResult result = MEMTX_OK;
3407 uint8_t *buf = ptr;
3409 for (;;) {
3410 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3411 len -= l;
3412 buf += l;
3413 mr_addr += l;
3415 if (!len) {
3416 break;
3418 l = len;
3421 return result;
3424 /* Called from RCU critical section. address_space_read_cached uses this
3425 * out of line function when the target is an MMIO or IOMMU region.
3427 MemTxResult
3428 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3429 void *buf, hwaddr len)
3431 hwaddr mr_addr, l;
3432 MemoryRegion *mr;
3434 l = len;
3435 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3436 MEMTXATTRS_UNSPECIFIED);
3437 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3438 buf, len, mr_addr, l, mr);
3441 /* Called from RCU critical section. address_space_write_cached uses this
3442 * out of line function when the target is an MMIO or IOMMU region.
3444 MemTxResult
3445 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3446 const void *buf, hwaddr len)
3448 hwaddr mr_addr, l;
3449 MemoryRegion *mr;
3451 l = len;
3452 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3453 MEMTXATTRS_UNSPECIFIED);
3454 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3455 buf, len, mr_addr, l, mr);
3458 #define ARG1_DECL MemoryRegionCache *cache
3459 #define ARG1 cache
3460 #define SUFFIX _cached_slow
3461 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3462 #define RCU_READ_LOCK() ((void)0)
3463 #define RCU_READ_UNLOCK() ((void)0)
3464 #include "memory_ldst.c.inc"
3466 /* virtual memory access for debug (includes writing to ROM) */
3467 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3468 void *ptr, size_t len, bool is_write)
3470 hwaddr phys_addr;
3471 vaddr l, page;
3472 uint8_t *buf = ptr;
3474 cpu_synchronize_state(cpu);
3475 while (len > 0) {
3476 int asidx;
3477 MemTxAttrs attrs;
3478 MemTxResult res;
3480 page = addr & TARGET_PAGE_MASK;
3481 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3482 asidx = cpu_asidx_from_attrs(cpu, attrs);
3483 /* if no physical page mapped, return an error */
3484 if (phys_addr == -1)
3485 return -1;
3486 l = (page + TARGET_PAGE_SIZE) - addr;
3487 if (l > len)
3488 l = len;
3489 phys_addr += (addr & ~TARGET_PAGE_MASK);
3490 if (is_write) {
3491 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3492 attrs, buf, l);
3493 } else {
3494 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3495 attrs, buf, l);
3497 if (res != MEMTX_OK) {
3498 return -1;
3500 len -= l;
3501 buf += l;
3502 addr += l;
3504 return 0;
3508 * Allows code that needs to deal with migration bitmaps etc to still be built
3509 * target independent.
3511 size_t qemu_target_page_size(void)
3513 return TARGET_PAGE_SIZE;
3516 int qemu_target_page_bits(void)
3518 return TARGET_PAGE_BITS;
3521 int qemu_target_page_bits_min(void)
3523 return TARGET_PAGE_BITS_MIN;
3526 /* Convert target pages to MiB (2**20). */
3527 size_t qemu_target_pages_to_MiB(size_t pages)
3529 int page_bits = TARGET_PAGE_BITS;
3531 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3532 g_assert(page_bits < 20);
3534 return pages >> (20 - page_bits);
3537 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3539 MemoryRegion*mr;
3540 hwaddr l = 1;
3542 RCU_READ_LOCK_GUARD();
3543 mr = address_space_translate(&address_space_memory,
3544 phys_addr, &phys_addr, &l, false,
3545 MEMTXATTRS_UNSPECIFIED);
3547 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3550 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3552 RAMBlock *block;
3553 int ret = 0;
3555 RCU_READ_LOCK_GUARD();
3556 RAMBLOCK_FOREACH(block) {
3557 ret = func(block, opaque);
3558 if (ret) {
3559 break;
3562 return ret;
3566 * Unmap pages of memory from start to start+length such that
3567 * they a) read as 0, b) Trigger whatever fault mechanism
3568 * the OS provides for postcopy.
3569 * The pages must be unmapped by the end of the function.
3570 * Returns: 0 on success, none-0 on failure
3573 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3575 int ret = -1;
3577 uint8_t *host_startaddr = rb->host + start;
3579 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3580 error_report("%s: Unaligned start address: %p",
3581 __func__, host_startaddr);
3582 goto err;
3585 if ((start + length) <= rb->max_length) {
3586 bool need_madvise, need_fallocate;
3587 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3588 error_report("%s: Unaligned length: %zx", __func__, length);
3589 goto err;
3592 errno = ENOTSUP; /* If we are missing MADVISE etc */
3594 /* The logic here is messy;
3595 * madvise DONTNEED fails for hugepages
3596 * fallocate works on hugepages and shmem
3597 * shared anonymous memory requires madvise REMOVE
3599 need_madvise = (rb->page_size == qemu_real_host_page_size());
3600 need_fallocate = rb->fd != -1;
3601 if (need_fallocate) {
3602 /* For a file, this causes the area of the file to be zero'd
3603 * if read, and for hugetlbfs also causes it to be unmapped
3604 * so a userfault will trigger.
3606 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3608 * fallocate() will fail with readonly files. Let's print a
3609 * proper error message.
3611 if (rb->flags & RAM_READONLY_FD) {
3612 error_report("%s: Discarding RAM with readonly files is not"
3613 " supported", __func__);
3614 goto err;
3618 * We'll discard data from the actual file, even though we only
3619 * have a MAP_PRIVATE mapping, possibly messing with other
3620 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3621 * change that behavior whithout violating the promised
3622 * semantics of ram_block_discard_range().
3624 * Only warn, because it works as long as nobody else uses that
3625 * file.
3627 if (!qemu_ram_is_shared(rb)) {
3628 warn_report_once("%s: Discarding RAM"
3629 " in private file mappings is possibly"
3630 " dangerous, because it will modify the"
3631 " underlying file and will affect other"
3632 " users of the file", __func__);
3635 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3636 start, length);
3637 if (ret) {
3638 ret = -errno;
3639 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3640 __func__, rb->idstr, start, length, ret);
3641 goto err;
3643 #else
3644 ret = -ENOSYS;
3645 error_report("%s: fallocate not available/file"
3646 "%s:%" PRIx64 " +%zx (%d)",
3647 __func__, rb->idstr, start, length, ret);
3648 goto err;
3649 #endif
3651 if (need_madvise) {
3652 /* For normal RAM this causes it to be unmapped,
3653 * for shared memory it causes the local mapping to disappear
3654 * and to fall back on the file contents (which we just
3655 * fallocate'd away).
3657 #if defined(CONFIG_MADVISE)
3658 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3659 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3660 } else {
3661 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3663 if (ret) {
3664 ret = -errno;
3665 error_report("%s: Failed to discard range "
3666 "%s:%" PRIx64 " +%zx (%d)",
3667 __func__, rb->idstr, start, length, ret);
3668 goto err;
3670 #else
3671 ret = -ENOSYS;
3672 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3673 __func__, rb->idstr, start, length, ret);
3674 goto err;
3675 #endif
3677 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3678 need_madvise, need_fallocate, ret);
3679 } else {
3680 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3681 __func__, rb->idstr, start, length, rb->max_length);
3684 err:
3685 return ret;
3688 bool ramblock_is_pmem(RAMBlock *rb)
3690 return rb->flags & RAM_PMEM;
3693 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3695 if (start == end - 1) {
3696 qemu_printf("\t%3d ", start);
3697 } else {
3698 qemu_printf("\t%3d..%-3d ", start, end - 1);
3700 qemu_printf(" skip=%d ", skip);
3701 if (ptr == PHYS_MAP_NODE_NIL) {
3702 qemu_printf(" ptr=NIL");
3703 } else if (!skip) {
3704 qemu_printf(" ptr=#%d", ptr);
3705 } else {
3706 qemu_printf(" ptr=[%d]", ptr);
3708 qemu_printf("\n");
3711 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3712 int128_sub((size), int128_one())) : 0)
3714 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3716 int i;
3718 qemu_printf(" Dispatch\n");
3719 qemu_printf(" Physical sections\n");
3721 for (i = 0; i < d->map.sections_nb; ++i) {
3722 MemoryRegionSection *s = d->map.sections + i;
3723 const char *names[] = { " [unassigned]", " [not dirty]",
3724 " [ROM]", " [watch]" };
3726 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3727 " %s%s%s%s%s",
3729 s->offset_within_address_space,
3730 s->offset_within_address_space + MR_SIZE(s->size),
3731 s->mr->name ? s->mr->name : "(noname)",
3732 i < ARRAY_SIZE(names) ? names[i] : "",
3733 s->mr == root ? " [ROOT]" : "",
3734 s == d->mru_section ? " [MRU]" : "",
3735 s->mr->is_iommu ? " [iommu]" : "");
3737 if (s->mr->alias) {
3738 qemu_printf(" alias=%s", s->mr->alias->name ?
3739 s->mr->alias->name : "noname");
3741 qemu_printf("\n");
3744 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3745 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3746 for (i = 0; i < d->map.nodes_nb; ++i) {
3747 int j, jprev;
3748 PhysPageEntry prev;
3749 Node *n = d->map.nodes + i;
3751 qemu_printf(" [%d]\n", i);
3753 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3754 PhysPageEntry *pe = *n + j;
3756 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3757 continue;
3760 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3762 jprev = j;
3763 prev = *pe;
3766 if (jprev != ARRAY_SIZE(*n)) {
3767 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3772 /* Require any discards to work. */
3773 static unsigned int ram_block_discard_required_cnt;
3774 /* Require only coordinated discards to work. */
3775 static unsigned int ram_block_coordinated_discard_required_cnt;
3776 /* Disable any discards. */
3777 static unsigned int ram_block_discard_disabled_cnt;
3778 /* Disable only uncoordinated discards. */
3779 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3780 static QemuMutex ram_block_discard_disable_mutex;
3782 static void ram_block_discard_disable_mutex_lock(void)
3784 static gsize initialized;
3786 if (g_once_init_enter(&initialized)) {
3787 qemu_mutex_init(&ram_block_discard_disable_mutex);
3788 g_once_init_leave(&initialized, 1);
3790 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3793 static void ram_block_discard_disable_mutex_unlock(void)
3795 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3798 int ram_block_discard_disable(bool state)
3800 int ret = 0;
3802 ram_block_discard_disable_mutex_lock();
3803 if (!state) {
3804 ram_block_discard_disabled_cnt--;
3805 } else if (ram_block_discard_required_cnt ||
3806 ram_block_coordinated_discard_required_cnt) {
3807 ret = -EBUSY;
3808 } else {
3809 ram_block_discard_disabled_cnt++;
3811 ram_block_discard_disable_mutex_unlock();
3812 return ret;
3815 int ram_block_uncoordinated_discard_disable(bool state)
3817 int ret = 0;
3819 ram_block_discard_disable_mutex_lock();
3820 if (!state) {
3821 ram_block_uncoordinated_discard_disabled_cnt--;
3822 } else if (ram_block_discard_required_cnt) {
3823 ret = -EBUSY;
3824 } else {
3825 ram_block_uncoordinated_discard_disabled_cnt++;
3827 ram_block_discard_disable_mutex_unlock();
3828 return ret;
3831 int ram_block_discard_require(bool state)
3833 int ret = 0;
3835 ram_block_discard_disable_mutex_lock();
3836 if (!state) {
3837 ram_block_discard_required_cnt--;
3838 } else if (ram_block_discard_disabled_cnt ||
3839 ram_block_uncoordinated_discard_disabled_cnt) {
3840 ret = -EBUSY;
3841 } else {
3842 ram_block_discard_required_cnt++;
3844 ram_block_discard_disable_mutex_unlock();
3845 return ret;
3848 int ram_block_coordinated_discard_require(bool state)
3850 int ret = 0;
3852 ram_block_discard_disable_mutex_lock();
3853 if (!state) {
3854 ram_block_coordinated_discard_required_cnt--;
3855 } else if (ram_block_discard_disabled_cnt) {
3856 ret = -EBUSY;
3857 } else {
3858 ram_block_coordinated_discard_required_cnt++;
3860 ram_block_discard_disable_mutex_unlock();
3861 return ret;
3864 bool ram_block_discard_is_disabled(void)
3866 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3867 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3870 bool ram_block_discard_is_required(void)
3872 return qatomic_read(&ram_block_discard_required_cnt) ||
3873 qatomic_read(&ram_block_coordinated_discard_required_cnt);