2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "block/block_int.h"
30 #include "block/qcow2.h"
33 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
36 BDRVQcow2State
*s
= bs
->opaque
;
37 int new_l1_size2
, ret
, i
;
38 uint64_t *new_l1_table
;
39 int64_t old_l1_table_offset
, old_l1_size
;
40 int64_t new_l1_table_offset
, new_l1_size
;
43 if (min_size
<= s
->l1_size
)
46 /* Do a sanity check on min_size before trying to calculate new_l1_size
47 * (this prevents overflows during the while loop for the calculation of
49 if (min_size
> INT_MAX
/ sizeof(uint64_t)) {
54 new_l1_size
= min_size
;
56 /* Bump size up to reduce the number of times we have to grow */
57 new_l1_size
= s
->l1_size
;
58 if (new_l1_size
== 0) {
61 while (min_size
> new_l1_size
) {
62 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
66 if (new_l1_size
> INT_MAX
/ sizeof(uint64_t)) {
71 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
72 s
->l1_size
, new_l1_size
);
75 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
76 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
,
77 align_offset(new_l1_size2
, 512));
78 if (new_l1_table
== NULL
) {
81 memset(new_l1_table
, 0, align_offset(new_l1_size2
, 512));
83 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
85 /* write new table (align to cluster) */
86 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
87 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
88 if (new_l1_table_offset
< 0) {
89 qemu_vfree(new_l1_table
);
90 return new_l1_table_offset
;
93 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
98 /* the L1 position has not yet been updated, so these clusters must
99 * indeed be completely free */
100 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
106 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
107 for(i
= 0; i
< s
->l1_size
; i
++)
108 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
109 ret
= bdrv_pwrite_sync(bs
->file
->bs
, new_l1_table_offset
,
110 new_l1_table
, new_l1_size2
);
113 for(i
= 0; i
< s
->l1_size
; i
++)
114 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
117 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
118 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
119 stq_be_p(data
+ 4, new_l1_table_offset
);
120 ret
= bdrv_pwrite_sync(bs
->file
->bs
, offsetof(QCowHeader
, l1_size
),
125 qemu_vfree(s
->l1_table
);
126 old_l1_table_offset
= s
->l1_table_offset
;
127 s
->l1_table_offset
= new_l1_table_offset
;
128 s
->l1_table
= new_l1_table
;
129 old_l1_size
= s
->l1_size
;
130 s
->l1_size
= new_l1_size
;
131 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* sizeof(uint64_t),
132 QCOW2_DISCARD_OTHER
);
135 qemu_vfree(new_l1_table
);
136 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
137 QCOW2_DISCARD_OTHER
);
144 * Loads a L2 table into memory. If the table is in the cache, the cache
145 * is used; otherwise the L2 table is loaded from the image file.
147 * Returns a pointer to the L2 table on success, or NULL if the read from
148 * the image file failed.
151 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
154 BDRVQcow2State
*s
= bs
->opaque
;
157 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
, (void**) l2_table
);
163 * Writes one sector of the L1 table to the disk (can't update single entries
164 * and we really don't want bdrv_pread to perform a read-modify-write)
166 #define L1_ENTRIES_PER_SECTOR (512 / 8)
167 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
169 BDRVQcow2State
*s
= bs
->opaque
;
170 uint64_t buf
[L1_ENTRIES_PER_SECTOR
] = { 0 };
174 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
175 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
&& l1_start_index
+ i
< s
->l1_size
;
178 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
181 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
182 s
->l1_table_offset
+ 8 * l1_start_index
, sizeof(buf
));
187 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
188 ret
= bdrv_pwrite_sync(bs
->file
->bs
,
189 s
->l1_table_offset
+ 8 * l1_start_index
,
201 * Allocate a new l2 entry in the file. If l1_index points to an already
202 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
203 * table) copy the contents of the old L2 table into the newly allocated one.
204 * Otherwise the new table is initialized with zeros.
208 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
210 BDRVQcow2State
*s
= bs
->opaque
;
211 uint64_t old_l2_offset
;
212 uint64_t *l2_table
= NULL
;
216 old_l2_offset
= s
->l1_table
[l1_index
];
218 trace_qcow2_l2_allocate(bs
, l1_index
);
220 /* allocate a new l2 entry */
222 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
228 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
233 /* allocate a new entry in the l2 cache */
235 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
236 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
243 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
244 /* if there was no old l2 table, clear the new table */
245 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
249 /* if there was an old l2 table, read it from the disk */
250 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
251 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
,
252 old_l2_offset
& L1E_OFFSET_MASK
,
253 (void**) &old_table
);
258 memcpy(l2_table
, old_table
, s
->cluster_size
);
260 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &old_table
);
263 /* write the l2 table to the file */
264 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
266 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
267 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
268 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
273 /* update the L1 entry */
274 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
275 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
276 ret
= qcow2_write_l1_entry(bs
, l1_index
);
282 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
286 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
287 if (l2_table
!= NULL
) {
288 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
290 s
->l1_table
[l1_index
] = old_l2_offset
;
292 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
293 QCOW2_DISCARD_ALWAYS
);
299 * Checks how many clusters in a given L2 table are contiguous in the image
300 * file. As soon as one of the flags in the bitmask stop_flags changes compared
301 * to the first cluster, the search is stopped and the cluster is not counted
302 * as contiguous. (This allows it, for example, to stop at the first compressed
303 * cluster which may require a different handling)
305 static int count_contiguous_clusters(int nb_clusters
, int cluster_size
,
306 uint64_t *l2_table
, uint64_t stop_flags
)
309 uint64_t mask
= stop_flags
| L2E_OFFSET_MASK
| QCOW_OFLAG_COMPRESSED
;
310 uint64_t first_entry
= be64_to_cpu(l2_table
[0]);
311 uint64_t offset
= first_entry
& mask
;
316 assert(qcow2_get_cluster_type(first_entry
) == QCOW2_CLUSTER_NORMAL
);
318 for (i
= 0; i
< nb_clusters
; i
++) {
319 uint64_t l2_entry
= be64_to_cpu(l2_table
[i
]) & mask
;
320 if (offset
+ (uint64_t) i
* cluster_size
!= l2_entry
) {
328 static int count_contiguous_clusters_by_type(int nb_clusters
,
334 for (i
= 0; i
< nb_clusters
; i
++) {
335 int type
= qcow2_get_cluster_type(be64_to_cpu(l2_table
[i
]));
337 if (type
!= wanted_type
) {
345 /* The crypt function is compatible with the linux cryptoloop
346 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
348 int qcow2_encrypt_sectors(BDRVQcow2State
*s
, int64_t sector_num
,
349 uint8_t *out_buf
, const uint8_t *in_buf
,
350 int nb_sectors
, bool enc
,
360 for(i
= 0; i
< nb_sectors
; i
++) {
361 ivec
.ll
[0] = cpu_to_le64(sector_num
);
363 if (qcrypto_cipher_setiv(s
->cipher
,
364 ivec
.b
, G_N_ELEMENTS(ivec
.b
),
369 ret
= qcrypto_cipher_encrypt(s
->cipher
,
375 ret
= qcrypto_cipher_decrypt(s
->cipher
,
391 static int coroutine_fn
copy_sectors(BlockDriverState
*bs
,
393 uint64_t cluster_offset
,
394 int n_start
, int n_end
)
396 BDRVQcow2State
*s
= bs
->opaque
;
406 iov
.iov_len
= n
* BDRV_SECTOR_SIZE
;
407 iov
.iov_base
= qemu_try_blockalign(bs
, iov
.iov_len
);
408 if (iov
.iov_base
== NULL
) {
412 qemu_iovec_init_external(&qiov
, &iov
, 1);
414 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
421 /* Call .bdrv_co_readv() directly instead of using the public block-layer
422 * interface. This avoids double I/O throttling and request tracking,
423 * which can lead to deadlock when block layer copy-on-read is enabled.
425 ret
= bs
->drv
->bdrv_co_readv(bs
, start_sect
+ n_start
, n
, &qiov
);
433 if (qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
434 iov
.iov_base
, iov
.iov_base
, n
,
442 ret
= qcow2_pre_write_overlap_check(bs
, 0,
443 cluster_offset
+ n_start
* BDRV_SECTOR_SIZE
, n
* BDRV_SECTOR_SIZE
);
448 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
449 ret
= bdrv_co_writev(bs
->file
->bs
, (cluster_offset
>> 9) + n_start
, n
,
457 qemu_vfree(iov
.iov_base
);
465 * For a given offset of the disk image, find the cluster offset in
466 * qcow2 file. The offset is stored in *cluster_offset.
468 * on entry, *num is the number of contiguous sectors we'd like to
469 * access following offset.
471 * on exit, *num is the number of contiguous sectors we can read.
473 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
476 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
477 int *num
, uint64_t *cluster_offset
)
479 BDRVQcow2State
*s
= bs
->opaque
;
480 unsigned int l2_index
;
481 uint64_t l1_index
, l2_offset
, *l2_table
;
483 unsigned int index_in_cluster
, nb_clusters
;
484 uint64_t nb_available
, nb_needed
;
487 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
488 nb_needed
= *num
+ index_in_cluster
;
490 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
492 /* compute how many bytes there are between the offset and
493 * the end of the l1 entry
496 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
498 /* compute the number of available sectors */
500 nb_available
= (nb_available
>> 9) + index_in_cluster
;
502 if (nb_needed
> nb_available
) {
503 nb_needed
= nb_available
;
505 assert(nb_needed
<= INT_MAX
);
509 /* seek to the l2 offset in the l1 table */
511 l1_index
= offset
>> l1_bits
;
512 if (l1_index
>= s
->l1_size
) {
513 ret
= QCOW2_CLUSTER_UNALLOCATED
;
517 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
519 ret
= QCOW2_CLUSTER_UNALLOCATED
;
523 if (offset_into_cluster(s
, l2_offset
)) {
524 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
525 " unaligned (L1 index: %#" PRIx64
")",
526 l2_offset
, l1_index
);
530 /* load the l2 table in memory */
532 ret
= l2_load(bs
, l2_offset
, &l2_table
);
537 /* find the cluster offset for the given disk offset */
539 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
540 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
542 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
543 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
545 ret
= qcow2_get_cluster_type(*cluster_offset
);
547 case QCOW2_CLUSTER_COMPRESSED
:
548 /* Compressed clusters can only be processed one by one */
550 *cluster_offset
&= L2E_COMPRESSED_OFFSET_SIZE_MASK
;
552 case QCOW2_CLUSTER_ZERO
:
553 if (s
->qcow_version
< 3) {
554 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
555 " in pre-v3 image (L2 offset: %#" PRIx64
556 ", L2 index: %#x)", l2_offset
, l2_index
);
560 c
= count_contiguous_clusters_by_type(nb_clusters
, &l2_table
[l2_index
],
564 case QCOW2_CLUSTER_UNALLOCATED
:
565 /* how many empty clusters ? */
566 c
= count_contiguous_clusters_by_type(nb_clusters
, &l2_table
[l2_index
],
567 QCOW2_CLUSTER_UNALLOCATED
);
570 case QCOW2_CLUSTER_NORMAL
:
571 /* how many allocated clusters ? */
572 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
573 &l2_table
[l2_index
], QCOW_OFLAG_ZERO
);
574 *cluster_offset
&= L2E_OFFSET_MASK
;
575 if (offset_into_cluster(s
, *cluster_offset
)) {
576 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset %#"
577 PRIx64
" unaligned (L2 offset: %#" PRIx64
578 ", L2 index: %#x)", *cluster_offset
,
579 l2_offset
, l2_index
);
588 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
590 nb_available
= (c
* s
->cluster_sectors
);
593 if (nb_available
> nb_needed
)
594 nb_available
= nb_needed
;
596 *num
= nb_available
- index_in_cluster
;
601 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
608 * for a given disk offset, load (and allocate if needed)
611 * the l2 table offset in the qcow2 file and the cluster index
612 * in the l2 table are given to the caller.
614 * Returns 0 on success, -errno in failure case
616 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
617 uint64_t **new_l2_table
,
620 BDRVQcow2State
*s
= bs
->opaque
;
621 unsigned int l2_index
;
622 uint64_t l1_index
, l2_offset
;
623 uint64_t *l2_table
= NULL
;
626 /* seek to the l2 offset in the l1 table */
628 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
629 if (l1_index
>= s
->l1_size
) {
630 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
636 assert(l1_index
< s
->l1_size
);
637 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
638 if (offset_into_cluster(s
, l2_offset
)) {
639 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
640 " unaligned (L1 index: %#" PRIx64
")",
641 l2_offset
, l1_index
);
645 /* seek the l2 table of the given l2 offset */
647 if (s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
) {
648 /* load the l2 table in memory */
649 ret
= l2_load(bs
, l2_offset
, &l2_table
);
654 /* First allocate a new L2 table (and do COW if needed) */
655 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
660 /* Then decrease the refcount of the old table */
662 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
663 QCOW2_DISCARD_OTHER
);
667 /* find the cluster offset for the given disk offset */
669 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
671 *new_l2_table
= l2_table
;
672 *new_l2_index
= l2_index
;
678 * alloc_compressed_cluster_offset
680 * For a given offset of the disk image, return cluster offset in
683 * If the offset is not found, allocate a new compressed cluster.
685 * Return the cluster offset if successful,
686 * Return 0, otherwise.
690 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
694 BDRVQcow2State
*s
= bs
->opaque
;
697 int64_t cluster_offset
;
700 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
705 /* Compression can't overwrite anything. Fail if the cluster was already
707 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
708 if (cluster_offset
& L2E_OFFSET_MASK
) {
709 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
713 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
714 if (cluster_offset
< 0) {
715 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
719 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
720 (cluster_offset
>> 9);
722 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
723 ((uint64_t)nb_csectors
<< s
->csize_shift
);
725 /* update L2 table */
727 /* compressed clusters never have the copied flag */
729 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
730 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
731 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
732 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
734 return cluster_offset
;
737 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
, Qcow2COWRegion
*r
)
739 BDRVQcow2State
*s
= bs
->opaque
;
742 if (r
->nb_sectors
== 0) {
746 qemu_co_mutex_unlock(&s
->lock
);
747 ret
= copy_sectors(bs
, m
->offset
/ BDRV_SECTOR_SIZE
, m
->alloc_offset
,
748 r
->offset
/ BDRV_SECTOR_SIZE
,
749 r
->offset
/ BDRV_SECTOR_SIZE
+ r
->nb_sectors
);
750 qemu_co_mutex_lock(&s
->lock
);
757 * Before we update the L2 table to actually point to the new cluster, we
758 * need to be sure that the refcounts have been increased and COW was
761 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
766 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
768 BDRVQcow2State
*s
= bs
->opaque
;
769 int i
, j
= 0, l2_index
, ret
;
770 uint64_t *old_cluster
, *l2_table
;
771 uint64_t cluster_offset
= m
->alloc_offset
;
773 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
774 assert(m
->nb_clusters
> 0);
776 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
777 if (old_cluster
== NULL
) {
782 /* copy content of unmodified sectors */
783 ret
= perform_cow(bs
, m
, &m
->cow_start
);
788 ret
= perform_cow(bs
, m
, &m
->cow_end
);
793 /* Update L2 table. */
794 if (s
->use_lazy_refcounts
) {
795 qcow2_mark_dirty(bs
);
797 if (qcow2_need_accurate_refcounts(s
)) {
798 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
799 s
->refcount_block_cache
);
802 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_index
);
806 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
808 assert(l2_index
+ m
->nb_clusters
<= s
->l2_size
);
809 for (i
= 0; i
< m
->nb_clusters
; i
++) {
810 /* if two concurrent writes happen to the same unallocated cluster
811 * each write allocates separate cluster and writes data concurrently.
812 * The first one to complete updates l2 table with pointer to its
813 * cluster the second one has to do RMW (which is done above by
814 * copy_sectors()), update l2 table with its cluster pointer and free
815 * old cluster. This is what this loop does */
816 if(l2_table
[l2_index
+ i
] != 0)
817 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
819 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
820 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
824 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
827 * If this was a COW, we need to decrease the refcount of the old cluster.
829 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
830 * clusters), the next write will reuse them anyway.
833 for (i
= 0; i
< j
; i
++) {
834 qcow2_free_any_clusters(bs
, be64_to_cpu(old_cluster
[i
]), 1,
835 QCOW2_DISCARD_NEVER
);
846 * Returns the number of contiguous clusters that can be used for an allocating
847 * write, but require COW to be performed (this includes yet unallocated space,
848 * which must copy from the backing file)
850 static int count_cow_clusters(BDRVQcow2State
*s
, int nb_clusters
,
851 uint64_t *l2_table
, int l2_index
)
855 for (i
= 0; i
< nb_clusters
; i
++) {
856 uint64_t l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
857 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
859 switch(cluster_type
) {
860 case QCOW2_CLUSTER_NORMAL
:
861 if (l2_entry
& QCOW_OFLAG_COPIED
) {
865 case QCOW2_CLUSTER_UNALLOCATED
:
866 case QCOW2_CLUSTER_COMPRESSED
:
867 case QCOW2_CLUSTER_ZERO
:
875 assert(i
<= nb_clusters
);
880 * Check if there already is an AIO write request in flight which allocates
881 * the same cluster. In this case we need to wait until the previous
882 * request has completed and updated the L2 table accordingly.
885 * 0 if there was no dependency. *cur_bytes indicates the number of
886 * bytes from guest_offset that can be read before the next
887 * dependency must be processed (or the request is complete)
889 * -EAGAIN if we had to wait for another request, previously gathered
890 * information on cluster allocation may be invalid now. The caller
891 * must start over anyway, so consider *cur_bytes undefined.
893 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
894 uint64_t *cur_bytes
, QCowL2Meta
**m
)
896 BDRVQcow2State
*s
= bs
->opaque
;
897 QCowL2Meta
*old_alloc
;
898 uint64_t bytes
= *cur_bytes
;
900 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
902 uint64_t start
= guest_offset
;
903 uint64_t end
= start
+ bytes
;
904 uint64_t old_start
= l2meta_cow_start(old_alloc
);
905 uint64_t old_end
= l2meta_cow_end(old_alloc
);
907 if (end
<= old_start
|| start
>= old_end
) {
908 /* No intersection */
910 if (start
< old_start
) {
911 /* Stop at the start of a running allocation */
912 bytes
= old_start
- start
;
917 /* Stop if already an l2meta exists. After yielding, it wouldn't
918 * be valid any more, so we'd have to clean up the old L2Metas
919 * and deal with requests depending on them before starting to
920 * gather new ones. Not worth the trouble. */
921 if (bytes
== 0 && *m
) {
927 /* Wait for the dependency to complete. We need to recheck
928 * the free/allocated clusters when we continue. */
929 qemu_co_mutex_unlock(&s
->lock
);
930 qemu_co_queue_wait(&old_alloc
->dependent_requests
);
931 qemu_co_mutex_lock(&s
->lock
);
937 /* Make sure that existing clusters and new allocations are only used up to
938 * the next dependency if we shortened the request above */
945 * Checks how many already allocated clusters that don't require a copy on
946 * write there are at the given guest_offset (up to *bytes). If
947 * *host_offset is not zero, only physically contiguous clusters beginning at
948 * this host offset are counted.
950 * Note that guest_offset may not be cluster aligned. In this case, the
951 * returned *host_offset points to exact byte referenced by guest_offset and
952 * therefore isn't cluster aligned as well.
955 * 0: if no allocated clusters are available at the given offset.
956 * *bytes is normally unchanged. It is set to 0 if the cluster
957 * is allocated and doesn't need COW, but doesn't have the right
960 * 1: if allocated clusters that don't require a COW are available at
961 * the requested offset. *bytes may have decreased and describes
962 * the length of the area that can be written to.
964 * -errno: in error cases
966 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
967 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
969 BDRVQcow2State
*s
= bs
->opaque
;
971 uint64_t cluster_offset
;
973 uint64_t nb_clusters
;
974 unsigned int keep_clusters
;
977 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
980 assert(*host_offset
== 0 || offset_into_cluster(s
, guest_offset
)
981 == offset_into_cluster(s
, *host_offset
));
984 * Calculate the number of clusters to look for. We stop at L2 table
985 * boundaries to keep things simple.
988 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
990 l2_index
= offset_to_l2_index(s
, guest_offset
);
991 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
992 assert(nb_clusters
<= INT_MAX
);
994 /* Find L2 entry for the first involved cluster */
995 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1000 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
1002 /* Check how many clusters are already allocated and don't need COW */
1003 if (qcow2_get_cluster_type(cluster_offset
) == QCOW2_CLUSTER_NORMAL
1004 && (cluster_offset
& QCOW_OFLAG_COPIED
))
1006 /* If a specific host_offset is required, check it */
1007 bool offset_matches
=
1008 (cluster_offset
& L2E_OFFSET_MASK
) == *host_offset
;
1010 if (offset_into_cluster(s
, cluster_offset
& L2E_OFFSET_MASK
)) {
1011 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset "
1012 "%#llx unaligned (guest offset: %#" PRIx64
1013 ")", cluster_offset
& L2E_OFFSET_MASK
,
1019 if (*host_offset
!= 0 && !offset_matches
) {
1025 /* We keep all QCOW_OFLAG_COPIED clusters */
1027 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
1028 &l2_table
[l2_index
],
1029 QCOW_OFLAG_COPIED
| QCOW_OFLAG_ZERO
);
1030 assert(keep_clusters
<= nb_clusters
);
1032 *bytes
= MIN(*bytes
,
1033 keep_clusters
* s
->cluster_size
1034 - offset_into_cluster(s
, guest_offset
));
1043 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1045 /* Only return a host offset if we actually made progress. Otherwise we
1046 * would make requirements for handle_alloc() that it can't fulfill */
1048 *host_offset
= (cluster_offset
& L2E_OFFSET_MASK
)
1049 + offset_into_cluster(s
, guest_offset
);
1056 * Allocates new clusters for the given guest_offset.
1058 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1059 * contain the number of clusters that have been allocated and are contiguous
1060 * in the image file.
1062 * If *host_offset is non-zero, it specifies the offset in the image file at
1063 * which the new clusters must start. *nb_clusters can be 0 on return in this
1064 * case if the cluster at host_offset is already in use. If *host_offset is
1065 * zero, the clusters can be allocated anywhere in the image file.
1067 * *host_offset is updated to contain the offset into the image file at which
1068 * the first allocated cluster starts.
1070 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1071 * function has been waiting for another request and the allocation must be
1072 * restarted, but the whole request should not be failed.
1074 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1075 uint64_t *host_offset
, uint64_t *nb_clusters
)
1077 BDRVQcow2State
*s
= bs
->opaque
;
1079 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1080 *host_offset
, *nb_clusters
);
1082 /* Allocate new clusters */
1083 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1084 if (*host_offset
== 0) {
1085 int64_t cluster_offset
=
1086 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1087 if (cluster_offset
< 0) {
1088 return cluster_offset
;
1090 *host_offset
= cluster_offset
;
1093 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1103 * Allocates new clusters for an area that either is yet unallocated or needs a
1104 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1105 * the new allocation can match the specified host offset.
1107 * Note that guest_offset may not be cluster aligned. In this case, the
1108 * returned *host_offset points to exact byte referenced by guest_offset and
1109 * therefore isn't cluster aligned as well.
1112 * 0: if no clusters could be allocated. *bytes is set to 0,
1113 * *host_offset is left unchanged.
1115 * 1: if new clusters were allocated. *bytes may be decreased if the
1116 * new allocation doesn't cover all of the requested area.
1117 * *host_offset is updated to contain the host offset of the first
1118 * newly allocated cluster.
1120 * -errno: in error cases
1122 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1123 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1125 BDRVQcow2State
*s
= bs
->opaque
;
1129 uint64_t nb_clusters
;
1132 uint64_t alloc_cluster_offset
;
1134 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1139 * Calculate the number of clusters to look for. We stop at L2 table
1140 * boundaries to keep things simple.
1143 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1145 l2_index
= offset_to_l2_index(s
, guest_offset
);
1146 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1147 assert(nb_clusters
<= INT_MAX
);
1149 /* Find L2 entry for the first involved cluster */
1150 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1155 entry
= be64_to_cpu(l2_table
[l2_index
]);
1157 /* For the moment, overwrite compressed clusters one by one */
1158 if (entry
& QCOW_OFLAG_COMPRESSED
) {
1161 nb_clusters
= count_cow_clusters(s
, nb_clusters
, l2_table
, l2_index
);
1164 /* This function is only called when there were no non-COW clusters, so if
1165 * we can't find any unallocated or COW clusters either, something is
1166 * wrong with our code. */
1167 assert(nb_clusters
> 0);
1169 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1171 /* Allocate, if necessary at a given offset in the image file */
1172 alloc_cluster_offset
= start_of_cluster(s
, *host_offset
);
1173 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1179 /* Can't extend contiguous allocation */
1180 if (nb_clusters
== 0) {
1185 /* !*host_offset would overwrite the image header and is reserved for "no
1186 * host offset preferred". If 0 was a valid host offset, it'd trigger the
1187 * following overlap check; do that now to avoid having an invalid value in
1189 if (!alloc_cluster_offset
) {
1190 ret
= qcow2_pre_write_overlap_check(bs
, 0, alloc_cluster_offset
,
1191 nb_clusters
* s
->cluster_size
);
1197 * Save info needed for meta data update.
1199 * requested_sectors: Number of sectors from the start of the first
1200 * newly allocated cluster to the end of the (possibly shortened
1201 * before) write request.
1203 * avail_sectors: Number of sectors from the start of the first
1204 * newly allocated to the end of the last newly allocated cluster.
1206 * nb_sectors: The number of sectors from the start of the first
1207 * newly allocated cluster to the end of the area that the write
1208 * request actually writes to (excluding COW at the end)
1210 int requested_sectors
=
1211 (*bytes
+ offset_into_cluster(s
, guest_offset
))
1212 >> BDRV_SECTOR_BITS
;
1213 int avail_sectors
= nb_clusters
1214 << (s
->cluster_bits
- BDRV_SECTOR_BITS
);
1215 int alloc_n_start
= offset_into_cluster(s
, guest_offset
)
1216 >> BDRV_SECTOR_BITS
;
1217 int nb_sectors
= MIN(requested_sectors
, avail_sectors
);
1218 QCowL2Meta
*old_m
= *m
;
1220 *m
= g_malloc0(sizeof(**m
));
1222 **m
= (QCowL2Meta
) {
1225 .alloc_offset
= alloc_cluster_offset
,
1226 .offset
= start_of_cluster(s
, guest_offset
),
1227 .nb_clusters
= nb_clusters
,
1228 .nb_available
= nb_sectors
,
1232 .nb_sectors
= alloc_n_start
,
1235 .offset
= nb_sectors
* BDRV_SECTOR_SIZE
,
1236 .nb_sectors
= avail_sectors
- nb_sectors
,
1239 qemu_co_queue_init(&(*m
)->dependent_requests
);
1240 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1242 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1243 *bytes
= MIN(*bytes
, (nb_sectors
* BDRV_SECTOR_SIZE
)
1244 - offset_into_cluster(s
, guest_offset
));
1245 assert(*bytes
!= 0);
1250 if (*m
&& (*m
)->nb_clusters
> 0) {
1251 QLIST_REMOVE(*m
, next_in_flight
);
1257 * alloc_cluster_offset
1259 * For a given offset on the virtual disk, find the cluster offset in qcow2
1260 * file. If the offset is not found, allocate a new cluster.
1262 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1263 * other fields in m are meaningless.
1265 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1266 * contiguous clusters that have been allocated. In this case, the other
1267 * fields of m are valid and contain information about the first allocated
1270 * If the request conflicts with another write request in flight, the coroutine
1271 * is queued and will be reentered when the dependency has completed.
1273 * Return 0 on success and -errno in error cases
1275 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
1276 int *num
, uint64_t *host_offset
, QCowL2Meta
**m
)
1278 BDRVQcow2State
*s
= bs
->opaque
;
1279 uint64_t start
, remaining
;
1280 uint64_t cluster_offset
;
1284 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *num
);
1286 assert((offset
& ~BDRV_SECTOR_MASK
) == 0);
1290 remaining
= (uint64_t)*num
<< BDRV_SECTOR_BITS
;
1298 if (!*host_offset
) {
1299 *host_offset
= start_of_cluster(s
, cluster_offset
);
1302 assert(remaining
>= cur_bytes
);
1305 remaining
-= cur_bytes
;
1306 cluster_offset
+= cur_bytes
;
1308 if (remaining
== 0) {
1312 cur_bytes
= remaining
;
1315 * Now start gathering as many contiguous clusters as possible:
1317 * 1. Check for overlaps with in-flight allocations
1319 * a) Overlap not in the first cluster -> shorten this request and
1320 * let the caller handle the rest in its next loop iteration.
1322 * b) Real overlaps of two requests. Yield and restart the search
1323 * for contiguous clusters (the situation could have changed
1324 * while we were sleeping)
1326 * c) TODO: Request starts in the same cluster as the in-flight
1327 * allocation ends. Shorten the COW of the in-fight allocation,
1328 * set cluster_offset to write to the same cluster and set up
1329 * the right synchronisation between the in-flight request and
1332 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1333 if (ret
== -EAGAIN
) {
1334 /* Currently handle_dependencies() doesn't yield if we already had
1335 * an allocation. If it did, we would have to clean up the L2Meta
1336 * structs before starting over. */
1339 } else if (ret
< 0) {
1341 } else if (cur_bytes
== 0) {
1344 /* handle_dependencies() may have decreased cur_bytes (shortened
1345 * the allocations below) so that the next dependency is processed
1346 * correctly during the next loop iteration. */
1350 * 2. Count contiguous COPIED clusters.
1352 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1357 } else if (cur_bytes
== 0) {
1362 * 3. If the request still hasn't completed, allocate new clusters,
1363 * considering any cluster_offset of steps 1c or 2.
1365 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1371 assert(cur_bytes
== 0);
1376 *num
-= remaining
>> BDRV_SECTOR_BITS
;
1378 assert(*host_offset
!= 0);
1383 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
1384 const uint8_t *buf
, int buf_size
)
1386 z_stream strm1
, *strm
= &strm1
;
1389 memset(strm
, 0, sizeof(*strm
));
1391 strm
->next_in
= (uint8_t *)buf
;
1392 strm
->avail_in
= buf_size
;
1393 strm
->next_out
= out_buf
;
1394 strm
->avail_out
= out_buf_size
;
1396 ret
= inflateInit2(strm
, -12);
1399 ret
= inflate(strm
, Z_FINISH
);
1400 out_len
= strm
->next_out
- out_buf
;
1401 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
1402 out_len
!= out_buf_size
) {
1410 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
1412 BDRVQcow2State
*s
= bs
->opaque
;
1413 int ret
, csize
, nb_csectors
, sector_offset
;
1416 coffset
= cluster_offset
& s
->cluster_offset_mask
;
1417 if (s
->cluster_cache_offset
!= coffset
) {
1418 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
1419 sector_offset
= coffset
& 511;
1420 csize
= nb_csectors
* 512 - sector_offset
;
1421 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
1422 ret
= bdrv_read(bs
->file
->bs
, coffset
>> 9, s
->cluster_data
,
1427 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
1428 s
->cluster_data
+ sector_offset
, csize
) < 0) {
1431 s
->cluster_cache_offset
= coffset
;
1437 * This discards as many clusters of nb_clusters as possible at once (i.e.
1438 * all clusters in the same L2 table) and returns the number of discarded
1441 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1442 uint64_t nb_clusters
, enum qcow2_discard_type type
,
1445 BDRVQcow2State
*s
= bs
->opaque
;
1451 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1456 /* Limit nb_clusters to one L2 table */
1457 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1458 assert(nb_clusters
<= INT_MAX
);
1460 for (i
= 0; i
< nb_clusters
; i
++) {
1461 uint64_t old_l2_entry
;
1463 old_l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1466 * If full_discard is false, make sure that a discarded area reads back
1467 * as zeroes for v3 images (we cannot do it for v2 without actually
1468 * writing a zero-filled buffer). We can skip the operation if the
1469 * cluster is already marked as zero, or if it's unallocated and we
1470 * don't have a backing file.
1472 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1473 * holding s->lock, so that doesn't work today.
1475 * If full_discard is true, the sector should not read back as zeroes,
1476 * but rather fall through to the backing file.
1478 switch (qcow2_get_cluster_type(old_l2_entry
)) {
1479 case QCOW2_CLUSTER_UNALLOCATED
:
1480 if (full_discard
|| !bs
->backing
) {
1485 case QCOW2_CLUSTER_ZERO
:
1486 if (!full_discard
) {
1491 case QCOW2_CLUSTER_NORMAL
:
1492 case QCOW2_CLUSTER_COMPRESSED
:
1499 /* First remove L2 entries */
1500 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1501 if (!full_discard
&& s
->qcow_version
>= 3) {
1502 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1504 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
1507 /* Then decrease the refcount */
1508 qcow2_free_any_clusters(bs
, old_l2_entry
, 1, type
);
1511 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1516 int qcow2_discard_clusters(BlockDriverState
*bs
, uint64_t offset
,
1517 int nb_sectors
, enum qcow2_discard_type type
, bool full_discard
)
1519 BDRVQcow2State
*s
= bs
->opaque
;
1520 uint64_t end_offset
;
1521 uint64_t nb_clusters
;
1524 end_offset
= offset
+ (nb_sectors
<< BDRV_SECTOR_BITS
);
1526 /* Round start up and end down */
1527 offset
= align_offset(offset
, s
->cluster_size
);
1528 end_offset
= start_of_cluster(s
, end_offset
);
1530 if (offset
> end_offset
) {
1534 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
1536 s
->cache_discards
= true;
1538 /* Each L2 table is handled by its own loop iteration */
1539 while (nb_clusters
> 0) {
1540 ret
= discard_single_l2(bs
, offset
, nb_clusters
, type
, full_discard
);
1546 offset
+= (ret
* s
->cluster_size
);
1551 s
->cache_discards
= false;
1552 qcow2_process_discards(bs
, ret
);
1558 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1559 * all clusters in the same L2 table) and returns the number of zeroed
1562 static int zero_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1563 uint64_t nb_clusters
)
1565 BDRVQcow2State
*s
= bs
->opaque
;
1571 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1576 /* Limit nb_clusters to one L2 table */
1577 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1578 assert(nb_clusters
<= INT_MAX
);
1580 for (i
= 0; i
< nb_clusters
; i
++) {
1581 uint64_t old_offset
;
1583 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1585 /* Update L2 entries */
1586 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1587 if (old_offset
& QCOW_OFLAG_COMPRESSED
) {
1588 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1589 qcow2_free_any_clusters(bs
, old_offset
, 1, QCOW2_DISCARD_REQUEST
);
1591 l2_table
[l2_index
+ i
] |= cpu_to_be64(QCOW_OFLAG_ZERO
);
1595 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1600 int qcow2_zero_clusters(BlockDriverState
*bs
, uint64_t offset
, int nb_sectors
)
1602 BDRVQcow2State
*s
= bs
->opaque
;
1603 uint64_t nb_clusters
;
1606 /* The zero flag is only supported by version 3 and newer */
1607 if (s
->qcow_version
< 3) {
1611 /* Each L2 table is handled by its own loop iteration */
1612 nb_clusters
= size_to_clusters(s
, nb_sectors
<< BDRV_SECTOR_BITS
);
1614 s
->cache_discards
= true;
1616 while (nb_clusters
> 0) {
1617 ret
= zero_single_l2(bs
, offset
, nb_clusters
);
1623 offset
+= (ret
* s
->cluster_size
);
1628 s
->cache_discards
= false;
1629 qcow2_process_discards(bs
, ret
);
1635 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1636 * non-backed non-pre-allocated zero clusters).
1638 * l1_entries and *visited_l1_entries are used to keep track of progress for
1639 * status_cb(). l1_entries contains the total number of L1 entries and
1640 * *visited_l1_entries counts all visited L1 entries.
1642 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
1643 int l1_size
, int64_t *visited_l1_entries
,
1645 BlockDriverAmendStatusCB
*status_cb
,
1648 BDRVQcow2State
*s
= bs
->opaque
;
1649 bool is_active_l1
= (l1_table
== s
->l1_table
);
1650 uint64_t *l2_table
= NULL
;
1654 if (!is_active_l1
) {
1655 /* inactive L2 tables require a buffer to be stored in when loading
1657 l2_table
= qemu_try_blockalign(bs
->file
->bs
, s
->cluster_size
);
1658 if (l2_table
== NULL
) {
1663 for (i
= 0; i
< l1_size
; i
++) {
1664 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
1665 bool l2_dirty
= false;
1666 uint64_t l2_refcount
;
1670 (*visited_l1_entries
)++;
1672 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
1677 if (offset_into_cluster(s
, l2_offset
)) {
1678 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
1679 PRIx64
" unaligned (L1 index: %#x)",
1686 /* get active L2 tables from cache */
1687 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1688 (void **)&l2_table
);
1690 /* load inactive L2 tables from disk */
1691 ret
= bdrv_read(bs
->file
->bs
, l2_offset
/ BDRV_SECTOR_SIZE
,
1692 (void *)l2_table
, s
->cluster_sectors
);
1698 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1704 for (j
= 0; j
< s
->l2_size
; j
++) {
1705 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1706 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
1707 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
1708 bool preallocated
= offset
!= 0;
1710 if (cluster_type
!= QCOW2_CLUSTER_ZERO
) {
1714 if (!preallocated
) {
1716 /* not backed; therefore we can simply deallocate the
1723 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
1729 if (l2_refcount
> 1) {
1730 /* For shared L2 tables, set the refcount accordingly (it is
1731 * already 1 and needs to be l2_refcount) */
1732 ret
= qcow2_update_cluster_refcount(bs
,
1733 offset
>> s
->cluster_bits
,
1734 refcount_diff(1, l2_refcount
), false,
1735 QCOW2_DISCARD_OTHER
);
1737 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1738 QCOW2_DISCARD_OTHER
);
1744 if (offset_into_cluster(s
, offset
)) {
1745 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset "
1746 "%#" PRIx64
" unaligned (L2 offset: %#"
1747 PRIx64
", L2 index: %#x)", offset
,
1749 if (!preallocated
) {
1750 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1751 QCOW2_DISCARD_ALWAYS
);
1757 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
, s
->cluster_size
);
1759 if (!preallocated
) {
1760 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1761 QCOW2_DISCARD_ALWAYS
);
1766 ret
= bdrv_write_zeroes(bs
->file
->bs
, offset
/ BDRV_SECTOR_SIZE
,
1767 s
->cluster_sectors
, 0);
1769 if (!preallocated
) {
1770 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1771 QCOW2_DISCARD_ALWAYS
);
1776 if (l2_refcount
== 1) {
1777 l2_table
[j
] = cpu_to_be64(offset
| QCOW_OFLAG_COPIED
);
1779 l2_table
[j
] = cpu_to_be64(offset
);
1786 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
, l2_table
);
1787 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1789 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1792 ret
= qcow2_pre_write_overlap_check(bs
,
1793 QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
, l2_offset
,
1799 ret
= bdrv_write(bs
->file
->bs
, l2_offset
/ BDRV_SECTOR_SIZE
,
1800 (void *)l2_table
, s
->cluster_sectors
);
1807 (*visited_l1_entries
)++;
1809 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
1817 if (!is_active_l1
) {
1818 qemu_vfree(l2_table
);
1820 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1827 * For backed images, expands all zero clusters on the image. For non-backed
1828 * images, deallocates all non-pre-allocated zero clusters (and claims the
1829 * allocation for pre-allocated ones). This is important for downgrading to a
1830 * qcow2 version which doesn't yet support metadata zero clusters.
1832 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
1833 BlockDriverAmendStatusCB
*status_cb
,
1836 BDRVQcow2State
*s
= bs
->opaque
;
1837 uint64_t *l1_table
= NULL
;
1838 int64_t l1_entries
= 0, visited_l1_entries
= 0;
1843 l1_entries
= s
->l1_size
;
1844 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1845 l1_entries
+= s
->snapshots
[i
].l1_size
;
1849 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
1850 &visited_l1_entries
, l1_entries
,
1851 status_cb
, cb_opaque
);
1856 /* Inactive L1 tables may point to active L2 tables - therefore it is
1857 * necessary to flush the L2 table cache before trying to access the L2
1858 * tables pointed to by inactive L1 entries (else we might try to expand
1859 * zero clusters that have already been expanded); furthermore, it is also
1860 * necessary to empty the L2 table cache, since it may contain tables which
1861 * are now going to be modified directly on disk, bypassing the cache.
1862 * qcow2_cache_empty() does both for us. */
1863 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
1868 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1869 int l1_sectors
= (s
->snapshots
[i
].l1_size
* sizeof(uint64_t) +
1870 BDRV_SECTOR_SIZE
- 1) / BDRV_SECTOR_SIZE
;
1872 l1_table
= g_realloc(l1_table
, l1_sectors
* BDRV_SECTOR_SIZE
);
1874 ret
= bdrv_read(bs
->file
->bs
,
1875 s
->snapshots
[i
].l1_table_offset
/ BDRV_SECTOR_SIZE
,
1876 (void *)l1_table
, l1_sectors
);
1881 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
1882 be64_to_cpus(&l1_table
[j
]);
1885 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
1886 &visited_l1_entries
, l1_entries
,
1887 status_cb
, cb_opaque
);