net: set endianness on all backend devices
[qemu/kevin.git] / block / qcow2-cluster.c
blob3e887e9ab0805ff3713ff229b87e7446d30eb4c4
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h>
28 #include "qemu-common.h"
29 #include "block/block_int.h"
30 #include "block/qcow2.h"
31 #include "trace.h"
33 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
34 bool exact_size)
36 BDRVQcow2State *s = bs->opaque;
37 int new_l1_size2, ret, i;
38 uint64_t *new_l1_table;
39 int64_t old_l1_table_offset, old_l1_size;
40 int64_t new_l1_table_offset, new_l1_size;
41 uint8_t data[12];
43 if (min_size <= s->l1_size)
44 return 0;
46 /* Do a sanity check on min_size before trying to calculate new_l1_size
47 * (this prevents overflows during the while loop for the calculation of
48 * new_l1_size) */
49 if (min_size > INT_MAX / sizeof(uint64_t)) {
50 return -EFBIG;
53 if (exact_size) {
54 new_l1_size = min_size;
55 } else {
56 /* Bump size up to reduce the number of times we have to grow */
57 new_l1_size = s->l1_size;
58 if (new_l1_size == 0) {
59 new_l1_size = 1;
61 while (min_size > new_l1_size) {
62 new_l1_size = (new_l1_size * 3 + 1) / 2;
66 if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
67 return -EFBIG;
70 #ifdef DEBUG_ALLOC2
71 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
72 s->l1_size, new_l1_size);
73 #endif
75 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
76 new_l1_table = qemu_try_blockalign(bs->file->bs,
77 align_offset(new_l1_size2, 512));
78 if (new_l1_table == NULL) {
79 return -ENOMEM;
81 memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
83 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
85 /* write new table (align to cluster) */
86 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
87 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
88 if (new_l1_table_offset < 0) {
89 qemu_vfree(new_l1_table);
90 return new_l1_table_offset;
93 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
94 if (ret < 0) {
95 goto fail;
98 /* the L1 position has not yet been updated, so these clusters must
99 * indeed be completely free */
100 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
101 new_l1_size2);
102 if (ret < 0) {
103 goto fail;
106 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
107 for(i = 0; i < s->l1_size; i++)
108 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
109 ret = bdrv_pwrite_sync(bs->file->bs, new_l1_table_offset,
110 new_l1_table, new_l1_size2);
111 if (ret < 0)
112 goto fail;
113 for(i = 0; i < s->l1_size; i++)
114 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
116 /* set new table */
117 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
118 cpu_to_be32w((uint32_t*)data, new_l1_size);
119 stq_be_p(data + 4, new_l1_table_offset);
120 ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, l1_size),
121 data, sizeof(data));
122 if (ret < 0) {
123 goto fail;
125 qemu_vfree(s->l1_table);
126 old_l1_table_offset = s->l1_table_offset;
127 s->l1_table_offset = new_l1_table_offset;
128 s->l1_table = new_l1_table;
129 old_l1_size = s->l1_size;
130 s->l1_size = new_l1_size;
131 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
132 QCOW2_DISCARD_OTHER);
133 return 0;
134 fail:
135 qemu_vfree(new_l1_table);
136 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
137 QCOW2_DISCARD_OTHER);
138 return ret;
142 * l2_load
144 * Loads a L2 table into memory. If the table is in the cache, the cache
145 * is used; otherwise the L2 table is loaded from the image file.
147 * Returns a pointer to the L2 table on success, or NULL if the read from
148 * the image file failed.
151 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
152 uint64_t **l2_table)
154 BDRVQcow2State *s = bs->opaque;
155 int ret;
157 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
159 return ret;
163 * Writes one sector of the L1 table to the disk (can't update single entries
164 * and we really don't want bdrv_pread to perform a read-modify-write)
166 #define L1_ENTRIES_PER_SECTOR (512 / 8)
167 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
169 BDRVQcow2State *s = bs->opaque;
170 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
171 int l1_start_index;
172 int i, ret;
174 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
175 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
176 i++)
178 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
181 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
182 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
183 if (ret < 0) {
184 return ret;
187 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
188 ret = bdrv_pwrite_sync(bs->file->bs,
189 s->l1_table_offset + 8 * l1_start_index,
190 buf, sizeof(buf));
191 if (ret < 0) {
192 return ret;
195 return 0;
199 * l2_allocate
201 * Allocate a new l2 entry in the file. If l1_index points to an already
202 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
203 * table) copy the contents of the old L2 table into the newly allocated one.
204 * Otherwise the new table is initialized with zeros.
208 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
210 BDRVQcow2State *s = bs->opaque;
211 uint64_t old_l2_offset;
212 uint64_t *l2_table = NULL;
213 int64_t l2_offset;
214 int ret;
216 old_l2_offset = s->l1_table[l1_index];
218 trace_qcow2_l2_allocate(bs, l1_index);
220 /* allocate a new l2 entry */
222 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
223 if (l2_offset < 0) {
224 ret = l2_offset;
225 goto fail;
228 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
229 if (ret < 0) {
230 goto fail;
233 /* allocate a new entry in the l2 cache */
235 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
236 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
237 if (ret < 0) {
238 goto fail;
241 l2_table = *table;
243 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
244 /* if there was no old l2 table, clear the new table */
245 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
246 } else {
247 uint64_t* old_table;
249 /* if there was an old l2 table, read it from the disk */
250 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
251 ret = qcow2_cache_get(bs, s->l2_table_cache,
252 old_l2_offset & L1E_OFFSET_MASK,
253 (void**) &old_table);
254 if (ret < 0) {
255 goto fail;
258 memcpy(l2_table, old_table, s->cluster_size);
260 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
263 /* write the l2 table to the file */
264 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
266 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
267 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
268 ret = qcow2_cache_flush(bs, s->l2_table_cache);
269 if (ret < 0) {
270 goto fail;
273 /* update the L1 entry */
274 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
275 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
276 ret = qcow2_write_l1_entry(bs, l1_index);
277 if (ret < 0) {
278 goto fail;
281 *table = l2_table;
282 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
283 return 0;
285 fail:
286 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
287 if (l2_table != NULL) {
288 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
290 s->l1_table[l1_index] = old_l2_offset;
291 if (l2_offset > 0) {
292 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
293 QCOW2_DISCARD_ALWAYS);
295 return ret;
299 * Checks how many clusters in a given L2 table are contiguous in the image
300 * file. As soon as one of the flags in the bitmask stop_flags changes compared
301 * to the first cluster, the search is stopped and the cluster is not counted
302 * as contiguous. (This allows it, for example, to stop at the first compressed
303 * cluster which may require a different handling)
305 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
306 uint64_t *l2_table, uint64_t stop_flags)
308 int i;
309 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
310 uint64_t first_entry = be64_to_cpu(l2_table[0]);
311 uint64_t offset = first_entry & mask;
313 if (!offset)
314 return 0;
316 assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL);
318 for (i = 0; i < nb_clusters; i++) {
319 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
320 if (offset + (uint64_t) i * cluster_size != l2_entry) {
321 break;
325 return i;
328 static int count_contiguous_clusters_by_type(int nb_clusters,
329 uint64_t *l2_table,
330 int wanted_type)
332 int i;
334 for (i = 0; i < nb_clusters; i++) {
335 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
337 if (type != wanted_type) {
338 break;
342 return i;
345 /* The crypt function is compatible with the linux cryptoloop
346 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
347 supported */
348 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
349 uint8_t *out_buf, const uint8_t *in_buf,
350 int nb_sectors, bool enc,
351 Error **errp)
353 union {
354 uint64_t ll[2];
355 uint8_t b[16];
356 } ivec;
357 int i;
358 int ret;
360 for(i = 0; i < nb_sectors; i++) {
361 ivec.ll[0] = cpu_to_le64(sector_num);
362 ivec.ll[1] = 0;
363 if (qcrypto_cipher_setiv(s->cipher,
364 ivec.b, G_N_ELEMENTS(ivec.b),
365 errp) < 0) {
366 return -1;
368 if (enc) {
369 ret = qcrypto_cipher_encrypt(s->cipher,
370 in_buf,
371 out_buf,
372 512,
373 errp);
374 } else {
375 ret = qcrypto_cipher_decrypt(s->cipher,
376 in_buf,
377 out_buf,
378 512,
379 errp);
381 if (ret < 0) {
382 return -1;
384 sector_num++;
385 in_buf += 512;
386 out_buf += 512;
388 return 0;
391 static int coroutine_fn copy_sectors(BlockDriverState *bs,
392 uint64_t start_sect,
393 uint64_t cluster_offset,
394 int n_start, int n_end)
396 BDRVQcow2State *s = bs->opaque;
397 QEMUIOVector qiov;
398 struct iovec iov;
399 int n, ret;
401 n = n_end - n_start;
402 if (n <= 0) {
403 return 0;
406 iov.iov_len = n * BDRV_SECTOR_SIZE;
407 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
408 if (iov.iov_base == NULL) {
409 return -ENOMEM;
412 qemu_iovec_init_external(&qiov, &iov, 1);
414 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
416 if (!bs->drv) {
417 ret = -ENOMEDIUM;
418 goto out;
421 /* Call .bdrv_co_readv() directly instead of using the public block-layer
422 * interface. This avoids double I/O throttling and request tracking,
423 * which can lead to deadlock when block layer copy-on-read is enabled.
425 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
426 if (ret < 0) {
427 goto out;
430 if (bs->encrypted) {
431 Error *err = NULL;
432 assert(s->cipher);
433 if (qcow2_encrypt_sectors(s, start_sect + n_start,
434 iov.iov_base, iov.iov_base, n,
435 true, &err) < 0) {
436 ret = -EIO;
437 error_free(err);
438 goto out;
442 ret = qcow2_pre_write_overlap_check(bs, 0,
443 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
444 if (ret < 0) {
445 goto out;
448 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
449 ret = bdrv_co_writev(bs->file->bs, (cluster_offset >> 9) + n_start, n,
450 &qiov);
451 if (ret < 0) {
452 goto out;
455 ret = 0;
456 out:
457 qemu_vfree(iov.iov_base);
458 return ret;
463 * get_cluster_offset
465 * For a given offset of the disk image, find the cluster offset in
466 * qcow2 file. The offset is stored in *cluster_offset.
468 * on entry, *num is the number of contiguous sectors we'd like to
469 * access following offset.
471 * on exit, *num is the number of contiguous sectors we can read.
473 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
474 * cases.
476 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
477 int *num, uint64_t *cluster_offset)
479 BDRVQcow2State *s = bs->opaque;
480 unsigned int l2_index;
481 uint64_t l1_index, l2_offset, *l2_table;
482 int l1_bits, c;
483 unsigned int index_in_cluster, nb_clusters;
484 uint64_t nb_available, nb_needed;
485 int ret;
487 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
488 nb_needed = *num + index_in_cluster;
490 l1_bits = s->l2_bits + s->cluster_bits;
492 /* compute how many bytes there are between the offset and
493 * the end of the l1 entry
496 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
498 /* compute the number of available sectors */
500 nb_available = (nb_available >> 9) + index_in_cluster;
502 if (nb_needed > nb_available) {
503 nb_needed = nb_available;
505 assert(nb_needed <= INT_MAX);
507 *cluster_offset = 0;
509 /* seek to the l2 offset in the l1 table */
511 l1_index = offset >> l1_bits;
512 if (l1_index >= s->l1_size) {
513 ret = QCOW2_CLUSTER_UNALLOCATED;
514 goto out;
517 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
518 if (!l2_offset) {
519 ret = QCOW2_CLUSTER_UNALLOCATED;
520 goto out;
523 if (offset_into_cluster(s, l2_offset)) {
524 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
525 " unaligned (L1 index: %#" PRIx64 ")",
526 l2_offset, l1_index);
527 return -EIO;
530 /* load the l2 table in memory */
532 ret = l2_load(bs, l2_offset, &l2_table);
533 if (ret < 0) {
534 return ret;
537 /* find the cluster offset for the given disk offset */
539 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
540 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
542 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
543 nb_clusters = size_to_clusters(s, nb_needed << 9);
545 ret = qcow2_get_cluster_type(*cluster_offset);
546 switch (ret) {
547 case QCOW2_CLUSTER_COMPRESSED:
548 /* Compressed clusters can only be processed one by one */
549 c = 1;
550 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
551 break;
552 case QCOW2_CLUSTER_ZERO:
553 if (s->qcow_version < 3) {
554 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
555 " in pre-v3 image (L2 offset: %#" PRIx64
556 ", L2 index: %#x)", l2_offset, l2_index);
557 ret = -EIO;
558 goto fail;
560 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
561 QCOW2_CLUSTER_ZERO);
562 *cluster_offset = 0;
563 break;
564 case QCOW2_CLUSTER_UNALLOCATED:
565 /* how many empty clusters ? */
566 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
567 QCOW2_CLUSTER_UNALLOCATED);
568 *cluster_offset = 0;
569 break;
570 case QCOW2_CLUSTER_NORMAL:
571 /* how many allocated clusters ? */
572 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
573 &l2_table[l2_index], QCOW_OFLAG_ZERO);
574 *cluster_offset &= L2E_OFFSET_MASK;
575 if (offset_into_cluster(s, *cluster_offset)) {
576 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
577 PRIx64 " unaligned (L2 offset: %#" PRIx64
578 ", L2 index: %#x)", *cluster_offset,
579 l2_offset, l2_index);
580 ret = -EIO;
581 goto fail;
583 break;
584 default:
585 abort();
588 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
590 nb_available = (c * s->cluster_sectors);
592 out:
593 if (nb_available > nb_needed)
594 nb_available = nb_needed;
596 *num = nb_available - index_in_cluster;
598 return ret;
600 fail:
601 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
602 return ret;
606 * get_cluster_table
608 * for a given disk offset, load (and allocate if needed)
609 * the l2 table.
611 * the l2 table offset in the qcow2 file and the cluster index
612 * in the l2 table are given to the caller.
614 * Returns 0 on success, -errno in failure case
616 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
617 uint64_t **new_l2_table,
618 int *new_l2_index)
620 BDRVQcow2State *s = bs->opaque;
621 unsigned int l2_index;
622 uint64_t l1_index, l2_offset;
623 uint64_t *l2_table = NULL;
624 int ret;
626 /* seek to the l2 offset in the l1 table */
628 l1_index = offset >> (s->l2_bits + s->cluster_bits);
629 if (l1_index >= s->l1_size) {
630 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
631 if (ret < 0) {
632 return ret;
636 assert(l1_index < s->l1_size);
637 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
638 if (offset_into_cluster(s, l2_offset)) {
639 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
640 " unaligned (L1 index: %#" PRIx64 ")",
641 l2_offset, l1_index);
642 return -EIO;
645 /* seek the l2 table of the given l2 offset */
647 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
648 /* load the l2 table in memory */
649 ret = l2_load(bs, l2_offset, &l2_table);
650 if (ret < 0) {
651 return ret;
653 } else {
654 /* First allocate a new L2 table (and do COW if needed) */
655 ret = l2_allocate(bs, l1_index, &l2_table);
656 if (ret < 0) {
657 return ret;
660 /* Then decrease the refcount of the old table */
661 if (l2_offset) {
662 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
663 QCOW2_DISCARD_OTHER);
667 /* find the cluster offset for the given disk offset */
669 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
671 *new_l2_table = l2_table;
672 *new_l2_index = l2_index;
674 return 0;
678 * alloc_compressed_cluster_offset
680 * For a given offset of the disk image, return cluster offset in
681 * qcow2 file.
683 * If the offset is not found, allocate a new compressed cluster.
685 * Return the cluster offset if successful,
686 * Return 0, otherwise.
690 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
691 uint64_t offset,
692 int compressed_size)
694 BDRVQcow2State *s = bs->opaque;
695 int l2_index, ret;
696 uint64_t *l2_table;
697 int64_t cluster_offset;
698 int nb_csectors;
700 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
701 if (ret < 0) {
702 return 0;
705 /* Compression can't overwrite anything. Fail if the cluster was already
706 * allocated. */
707 cluster_offset = be64_to_cpu(l2_table[l2_index]);
708 if (cluster_offset & L2E_OFFSET_MASK) {
709 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
710 return 0;
713 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
714 if (cluster_offset < 0) {
715 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
716 return 0;
719 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
720 (cluster_offset >> 9);
722 cluster_offset |= QCOW_OFLAG_COMPRESSED |
723 ((uint64_t)nb_csectors << s->csize_shift);
725 /* update L2 table */
727 /* compressed clusters never have the copied flag */
729 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
730 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
731 l2_table[l2_index] = cpu_to_be64(cluster_offset);
732 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
734 return cluster_offset;
737 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
739 BDRVQcow2State *s = bs->opaque;
740 int ret;
742 if (r->nb_sectors == 0) {
743 return 0;
746 qemu_co_mutex_unlock(&s->lock);
747 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
748 r->offset / BDRV_SECTOR_SIZE,
749 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
750 qemu_co_mutex_lock(&s->lock);
752 if (ret < 0) {
753 return ret;
757 * Before we update the L2 table to actually point to the new cluster, we
758 * need to be sure that the refcounts have been increased and COW was
759 * handled.
761 qcow2_cache_depends_on_flush(s->l2_table_cache);
763 return 0;
766 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
768 BDRVQcow2State *s = bs->opaque;
769 int i, j = 0, l2_index, ret;
770 uint64_t *old_cluster, *l2_table;
771 uint64_t cluster_offset = m->alloc_offset;
773 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
774 assert(m->nb_clusters > 0);
776 old_cluster = g_try_new(uint64_t, m->nb_clusters);
777 if (old_cluster == NULL) {
778 ret = -ENOMEM;
779 goto err;
782 /* copy content of unmodified sectors */
783 ret = perform_cow(bs, m, &m->cow_start);
784 if (ret < 0) {
785 goto err;
788 ret = perform_cow(bs, m, &m->cow_end);
789 if (ret < 0) {
790 goto err;
793 /* Update L2 table. */
794 if (s->use_lazy_refcounts) {
795 qcow2_mark_dirty(bs);
797 if (qcow2_need_accurate_refcounts(s)) {
798 qcow2_cache_set_dependency(bs, s->l2_table_cache,
799 s->refcount_block_cache);
802 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
803 if (ret < 0) {
804 goto err;
806 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
808 assert(l2_index + m->nb_clusters <= s->l2_size);
809 for (i = 0; i < m->nb_clusters; i++) {
810 /* if two concurrent writes happen to the same unallocated cluster
811 * each write allocates separate cluster and writes data concurrently.
812 * The first one to complete updates l2 table with pointer to its
813 * cluster the second one has to do RMW (which is done above by
814 * copy_sectors()), update l2 table with its cluster pointer and free
815 * old cluster. This is what this loop does */
816 if(l2_table[l2_index + i] != 0)
817 old_cluster[j++] = l2_table[l2_index + i];
819 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
820 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
824 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
827 * If this was a COW, we need to decrease the refcount of the old cluster.
829 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
830 * clusters), the next write will reuse them anyway.
832 if (j != 0) {
833 for (i = 0; i < j; i++) {
834 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
835 QCOW2_DISCARD_NEVER);
839 ret = 0;
840 err:
841 g_free(old_cluster);
842 return ret;
846 * Returns the number of contiguous clusters that can be used for an allocating
847 * write, but require COW to be performed (this includes yet unallocated space,
848 * which must copy from the backing file)
850 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
851 uint64_t *l2_table, int l2_index)
853 int i;
855 for (i = 0; i < nb_clusters; i++) {
856 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
857 int cluster_type = qcow2_get_cluster_type(l2_entry);
859 switch(cluster_type) {
860 case QCOW2_CLUSTER_NORMAL:
861 if (l2_entry & QCOW_OFLAG_COPIED) {
862 goto out;
864 break;
865 case QCOW2_CLUSTER_UNALLOCATED:
866 case QCOW2_CLUSTER_COMPRESSED:
867 case QCOW2_CLUSTER_ZERO:
868 break;
869 default:
870 abort();
874 out:
875 assert(i <= nb_clusters);
876 return i;
880 * Check if there already is an AIO write request in flight which allocates
881 * the same cluster. In this case we need to wait until the previous
882 * request has completed and updated the L2 table accordingly.
884 * Returns:
885 * 0 if there was no dependency. *cur_bytes indicates the number of
886 * bytes from guest_offset that can be read before the next
887 * dependency must be processed (or the request is complete)
889 * -EAGAIN if we had to wait for another request, previously gathered
890 * information on cluster allocation may be invalid now. The caller
891 * must start over anyway, so consider *cur_bytes undefined.
893 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
894 uint64_t *cur_bytes, QCowL2Meta **m)
896 BDRVQcow2State *s = bs->opaque;
897 QCowL2Meta *old_alloc;
898 uint64_t bytes = *cur_bytes;
900 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
902 uint64_t start = guest_offset;
903 uint64_t end = start + bytes;
904 uint64_t old_start = l2meta_cow_start(old_alloc);
905 uint64_t old_end = l2meta_cow_end(old_alloc);
907 if (end <= old_start || start >= old_end) {
908 /* No intersection */
909 } else {
910 if (start < old_start) {
911 /* Stop at the start of a running allocation */
912 bytes = old_start - start;
913 } else {
914 bytes = 0;
917 /* Stop if already an l2meta exists. After yielding, it wouldn't
918 * be valid any more, so we'd have to clean up the old L2Metas
919 * and deal with requests depending on them before starting to
920 * gather new ones. Not worth the trouble. */
921 if (bytes == 0 && *m) {
922 *cur_bytes = 0;
923 return 0;
926 if (bytes == 0) {
927 /* Wait for the dependency to complete. We need to recheck
928 * the free/allocated clusters when we continue. */
929 qemu_co_mutex_unlock(&s->lock);
930 qemu_co_queue_wait(&old_alloc->dependent_requests);
931 qemu_co_mutex_lock(&s->lock);
932 return -EAGAIN;
937 /* Make sure that existing clusters and new allocations are only used up to
938 * the next dependency if we shortened the request above */
939 *cur_bytes = bytes;
941 return 0;
945 * Checks how many already allocated clusters that don't require a copy on
946 * write there are at the given guest_offset (up to *bytes). If
947 * *host_offset is not zero, only physically contiguous clusters beginning at
948 * this host offset are counted.
950 * Note that guest_offset may not be cluster aligned. In this case, the
951 * returned *host_offset points to exact byte referenced by guest_offset and
952 * therefore isn't cluster aligned as well.
954 * Returns:
955 * 0: if no allocated clusters are available at the given offset.
956 * *bytes is normally unchanged. It is set to 0 if the cluster
957 * is allocated and doesn't need COW, but doesn't have the right
958 * physical offset.
960 * 1: if allocated clusters that don't require a COW are available at
961 * the requested offset. *bytes may have decreased and describes
962 * the length of the area that can be written to.
964 * -errno: in error cases
966 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
967 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
969 BDRVQcow2State *s = bs->opaque;
970 int l2_index;
971 uint64_t cluster_offset;
972 uint64_t *l2_table;
973 uint64_t nb_clusters;
974 unsigned int keep_clusters;
975 int ret;
977 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
978 *bytes);
980 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
981 == offset_into_cluster(s, *host_offset));
984 * Calculate the number of clusters to look for. We stop at L2 table
985 * boundaries to keep things simple.
987 nb_clusters =
988 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
990 l2_index = offset_to_l2_index(s, guest_offset);
991 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
992 assert(nb_clusters <= INT_MAX);
994 /* Find L2 entry for the first involved cluster */
995 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
996 if (ret < 0) {
997 return ret;
1000 cluster_offset = be64_to_cpu(l2_table[l2_index]);
1002 /* Check how many clusters are already allocated and don't need COW */
1003 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1004 && (cluster_offset & QCOW_OFLAG_COPIED))
1006 /* If a specific host_offset is required, check it */
1007 bool offset_matches =
1008 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1010 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1011 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1012 "%#llx unaligned (guest offset: %#" PRIx64
1013 ")", cluster_offset & L2E_OFFSET_MASK,
1014 guest_offset);
1015 ret = -EIO;
1016 goto out;
1019 if (*host_offset != 0 && !offset_matches) {
1020 *bytes = 0;
1021 ret = 0;
1022 goto out;
1025 /* We keep all QCOW_OFLAG_COPIED clusters */
1026 keep_clusters =
1027 count_contiguous_clusters(nb_clusters, s->cluster_size,
1028 &l2_table[l2_index],
1029 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1030 assert(keep_clusters <= nb_clusters);
1032 *bytes = MIN(*bytes,
1033 keep_clusters * s->cluster_size
1034 - offset_into_cluster(s, guest_offset));
1036 ret = 1;
1037 } else {
1038 ret = 0;
1041 /* Cleanup */
1042 out:
1043 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1045 /* Only return a host offset if we actually made progress. Otherwise we
1046 * would make requirements for handle_alloc() that it can't fulfill */
1047 if (ret > 0) {
1048 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1049 + offset_into_cluster(s, guest_offset);
1052 return ret;
1056 * Allocates new clusters for the given guest_offset.
1058 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1059 * contain the number of clusters that have been allocated and are contiguous
1060 * in the image file.
1062 * If *host_offset is non-zero, it specifies the offset in the image file at
1063 * which the new clusters must start. *nb_clusters can be 0 on return in this
1064 * case if the cluster at host_offset is already in use. If *host_offset is
1065 * zero, the clusters can be allocated anywhere in the image file.
1067 * *host_offset is updated to contain the offset into the image file at which
1068 * the first allocated cluster starts.
1070 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1071 * function has been waiting for another request and the allocation must be
1072 * restarted, but the whole request should not be failed.
1074 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1075 uint64_t *host_offset, uint64_t *nb_clusters)
1077 BDRVQcow2State *s = bs->opaque;
1079 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1080 *host_offset, *nb_clusters);
1082 /* Allocate new clusters */
1083 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1084 if (*host_offset == 0) {
1085 int64_t cluster_offset =
1086 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1087 if (cluster_offset < 0) {
1088 return cluster_offset;
1090 *host_offset = cluster_offset;
1091 return 0;
1092 } else {
1093 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1094 if (ret < 0) {
1095 return ret;
1097 *nb_clusters = ret;
1098 return 0;
1103 * Allocates new clusters for an area that either is yet unallocated or needs a
1104 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1105 * the new allocation can match the specified host offset.
1107 * Note that guest_offset may not be cluster aligned. In this case, the
1108 * returned *host_offset points to exact byte referenced by guest_offset and
1109 * therefore isn't cluster aligned as well.
1111 * Returns:
1112 * 0: if no clusters could be allocated. *bytes is set to 0,
1113 * *host_offset is left unchanged.
1115 * 1: if new clusters were allocated. *bytes may be decreased if the
1116 * new allocation doesn't cover all of the requested area.
1117 * *host_offset is updated to contain the host offset of the first
1118 * newly allocated cluster.
1120 * -errno: in error cases
1122 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1123 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1125 BDRVQcow2State *s = bs->opaque;
1126 int l2_index;
1127 uint64_t *l2_table;
1128 uint64_t entry;
1129 uint64_t nb_clusters;
1130 int ret;
1132 uint64_t alloc_cluster_offset;
1134 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1135 *bytes);
1136 assert(*bytes > 0);
1139 * Calculate the number of clusters to look for. We stop at L2 table
1140 * boundaries to keep things simple.
1142 nb_clusters =
1143 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1145 l2_index = offset_to_l2_index(s, guest_offset);
1146 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1147 assert(nb_clusters <= INT_MAX);
1149 /* Find L2 entry for the first involved cluster */
1150 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1151 if (ret < 0) {
1152 return ret;
1155 entry = be64_to_cpu(l2_table[l2_index]);
1157 /* For the moment, overwrite compressed clusters one by one */
1158 if (entry & QCOW_OFLAG_COMPRESSED) {
1159 nb_clusters = 1;
1160 } else {
1161 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1164 /* This function is only called when there were no non-COW clusters, so if
1165 * we can't find any unallocated or COW clusters either, something is
1166 * wrong with our code. */
1167 assert(nb_clusters > 0);
1169 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1171 /* Allocate, if necessary at a given offset in the image file */
1172 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1173 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1174 &nb_clusters);
1175 if (ret < 0) {
1176 goto fail;
1179 /* Can't extend contiguous allocation */
1180 if (nb_clusters == 0) {
1181 *bytes = 0;
1182 return 0;
1185 /* !*host_offset would overwrite the image header and is reserved for "no
1186 * host offset preferred". If 0 was a valid host offset, it'd trigger the
1187 * following overlap check; do that now to avoid having an invalid value in
1188 * *host_offset. */
1189 if (!alloc_cluster_offset) {
1190 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1191 nb_clusters * s->cluster_size);
1192 assert(ret < 0);
1193 goto fail;
1197 * Save info needed for meta data update.
1199 * requested_sectors: Number of sectors from the start of the first
1200 * newly allocated cluster to the end of the (possibly shortened
1201 * before) write request.
1203 * avail_sectors: Number of sectors from the start of the first
1204 * newly allocated to the end of the last newly allocated cluster.
1206 * nb_sectors: The number of sectors from the start of the first
1207 * newly allocated cluster to the end of the area that the write
1208 * request actually writes to (excluding COW at the end)
1210 int requested_sectors =
1211 (*bytes + offset_into_cluster(s, guest_offset))
1212 >> BDRV_SECTOR_BITS;
1213 int avail_sectors = nb_clusters
1214 << (s->cluster_bits - BDRV_SECTOR_BITS);
1215 int alloc_n_start = offset_into_cluster(s, guest_offset)
1216 >> BDRV_SECTOR_BITS;
1217 int nb_sectors = MIN(requested_sectors, avail_sectors);
1218 QCowL2Meta *old_m = *m;
1220 *m = g_malloc0(sizeof(**m));
1222 **m = (QCowL2Meta) {
1223 .next = old_m,
1225 .alloc_offset = alloc_cluster_offset,
1226 .offset = start_of_cluster(s, guest_offset),
1227 .nb_clusters = nb_clusters,
1228 .nb_available = nb_sectors,
1230 .cow_start = {
1231 .offset = 0,
1232 .nb_sectors = alloc_n_start,
1234 .cow_end = {
1235 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1236 .nb_sectors = avail_sectors - nb_sectors,
1239 qemu_co_queue_init(&(*m)->dependent_requests);
1240 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1242 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1243 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1244 - offset_into_cluster(s, guest_offset));
1245 assert(*bytes != 0);
1247 return 1;
1249 fail:
1250 if (*m && (*m)->nb_clusters > 0) {
1251 QLIST_REMOVE(*m, next_in_flight);
1253 return ret;
1257 * alloc_cluster_offset
1259 * For a given offset on the virtual disk, find the cluster offset in qcow2
1260 * file. If the offset is not found, allocate a new cluster.
1262 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1263 * other fields in m are meaningless.
1265 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1266 * contiguous clusters that have been allocated. In this case, the other
1267 * fields of m are valid and contain information about the first allocated
1268 * cluster.
1270 * If the request conflicts with another write request in flight, the coroutine
1271 * is queued and will be reentered when the dependency has completed.
1273 * Return 0 on success and -errno in error cases
1275 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1276 int *num, uint64_t *host_offset, QCowL2Meta **m)
1278 BDRVQcow2State *s = bs->opaque;
1279 uint64_t start, remaining;
1280 uint64_t cluster_offset;
1281 uint64_t cur_bytes;
1282 int ret;
1284 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
1286 assert((offset & ~BDRV_SECTOR_MASK) == 0);
1288 again:
1289 start = offset;
1290 remaining = (uint64_t)*num << BDRV_SECTOR_BITS;
1291 cluster_offset = 0;
1292 *host_offset = 0;
1293 cur_bytes = 0;
1294 *m = NULL;
1296 while (true) {
1298 if (!*host_offset) {
1299 *host_offset = start_of_cluster(s, cluster_offset);
1302 assert(remaining >= cur_bytes);
1304 start += cur_bytes;
1305 remaining -= cur_bytes;
1306 cluster_offset += cur_bytes;
1308 if (remaining == 0) {
1309 break;
1312 cur_bytes = remaining;
1315 * Now start gathering as many contiguous clusters as possible:
1317 * 1. Check for overlaps with in-flight allocations
1319 * a) Overlap not in the first cluster -> shorten this request and
1320 * let the caller handle the rest in its next loop iteration.
1322 * b) Real overlaps of two requests. Yield and restart the search
1323 * for contiguous clusters (the situation could have changed
1324 * while we were sleeping)
1326 * c) TODO: Request starts in the same cluster as the in-flight
1327 * allocation ends. Shorten the COW of the in-fight allocation,
1328 * set cluster_offset to write to the same cluster and set up
1329 * the right synchronisation between the in-flight request and
1330 * the new one.
1332 ret = handle_dependencies(bs, start, &cur_bytes, m);
1333 if (ret == -EAGAIN) {
1334 /* Currently handle_dependencies() doesn't yield if we already had
1335 * an allocation. If it did, we would have to clean up the L2Meta
1336 * structs before starting over. */
1337 assert(*m == NULL);
1338 goto again;
1339 } else if (ret < 0) {
1340 return ret;
1341 } else if (cur_bytes == 0) {
1342 break;
1343 } else {
1344 /* handle_dependencies() may have decreased cur_bytes (shortened
1345 * the allocations below) so that the next dependency is processed
1346 * correctly during the next loop iteration. */
1350 * 2. Count contiguous COPIED clusters.
1352 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1353 if (ret < 0) {
1354 return ret;
1355 } else if (ret) {
1356 continue;
1357 } else if (cur_bytes == 0) {
1358 break;
1362 * 3. If the request still hasn't completed, allocate new clusters,
1363 * considering any cluster_offset of steps 1c or 2.
1365 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1366 if (ret < 0) {
1367 return ret;
1368 } else if (ret) {
1369 continue;
1370 } else {
1371 assert(cur_bytes == 0);
1372 break;
1376 *num -= remaining >> BDRV_SECTOR_BITS;
1377 assert(*num > 0);
1378 assert(*host_offset != 0);
1380 return 0;
1383 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1384 const uint8_t *buf, int buf_size)
1386 z_stream strm1, *strm = &strm1;
1387 int ret, out_len;
1389 memset(strm, 0, sizeof(*strm));
1391 strm->next_in = (uint8_t *)buf;
1392 strm->avail_in = buf_size;
1393 strm->next_out = out_buf;
1394 strm->avail_out = out_buf_size;
1396 ret = inflateInit2(strm, -12);
1397 if (ret != Z_OK)
1398 return -1;
1399 ret = inflate(strm, Z_FINISH);
1400 out_len = strm->next_out - out_buf;
1401 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1402 out_len != out_buf_size) {
1403 inflateEnd(strm);
1404 return -1;
1406 inflateEnd(strm);
1407 return 0;
1410 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1412 BDRVQcow2State *s = bs->opaque;
1413 int ret, csize, nb_csectors, sector_offset;
1414 uint64_t coffset;
1416 coffset = cluster_offset & s->cluster_offset_mask;
1417 if (s->cluster_cache_offset != coffset) {
1418 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1419 sector_offset = coffset & 511;
1420 csize = nb_csectors * 512 - sector_offset;
1421 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1422 ret = bdrv_read(bs->file->bs, coffset >> 9, s->cluster_data,
1423 nb_csectors);
1424 if (ret < 0) {
1425 return ret;
1427 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1428 s->cluster_data + sector_offset, csize) < 0) {
1429 return -EIO;
1431 s->cluster_cache_offset = coffset;
1433 return 0;
1437 * This discards as many clusters of nb_clusters as possible at once (i.e.
1438 * all clusters in the same L2 table) and returns the number of discarded
1439 * clusters.
1441 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1442 uint64_t nb_clusters, enum qcow2_discard_type type,
1443 bool full_discard)
1445 BDRVQcow2State *s = bs->opaque;
1446 uint64_t *l2_table;
1447 int l2_index;
1448 int ret;
1449 int i;
1451 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1452 if (ret < 0) {
1453 return ret;
1456 /* Limit nb_clusters to one L2 table */
1457 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1458 assert(nb_clusters <= INT_MAX);
1460 for (i = 0; i < nb_clusters; i++) {
1461 uint64_t old_l2_entry;
1463 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1466 * If full_discard is false, make sure that a discarded area reads back
1467 * as zeroes for v3 images (we cannot do it for v2 without actually
1468 * writing a zero-filled buffer). We can skip the operation if the
1469 * cluster is already marked as zero, or if it's unallocated and we
1470 * don't have a backing file.
1472 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1473 * holding s->lock, so that doesn't work today.
1475 * If full_discard is true, the sector should not read back as zeroes,
1476 * but rather fall through to the backing file.
1478 switch (qcow2_get_cluster_type(old_l2_entry)) {
1479 case QCOW2_CLUSTER_UNALLOCATED:
1480 if (full_discard || !bs->backing) {
1481 continue;
1483 break;
1485 case QCOW2_CLUSTER_ZERO:
1486 if (!full_discard) {
1487 continue;
1489 break;
1491 case QCOW2_CLUSTER_NORMAL:
1492 case QCOW2_CLUSTER_COMPRESSED:
1493 break;
1495 default:
1496 abort();
1499 /* First remove L2 entries */
1500 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1501 if (!full_discard && s->qcow_version >= 3) {
1502 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1503 } else {
1504 l2_table[l2_index + i] = cpu_to_be64(0);
1507 /* Then decrease the refcount */
1508 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1511 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1513 return nb_clusters;
1516 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1517 int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1519 BDRVQcow2State *s = bs->opaque;
1520 uint64_t end_offset;
1521 uint64_t nb_clusters;
1522 int ret;
1524 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1526 /* Round start up and end down */
1527 offset = align_offset(offset, s->cluster_size);
1528 end_offset = start_of_cluster(s, end_offset);
1530 if (offset > end_offset) {
1531 return 0;
1534 nb_clusters = size_to_clusters(s, end_offset - offset);
1536 s->cache_discards = true;
1538 /* Each L2 table is handled by its own loop iteration */
1539 while (nb_clusters > 0) {
1540 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1541 if (ret < 0) {
1542 goto fail;
1545 nb_clusters -= ret;
1546 offset += (ret * s->cluster_size);
1549 ret = 0;
1550 fail:
1551 s->cache_discards = false;
1552 qcow2_process_discards(bs, ret);
1554 return ret;
1558 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1559 * all clusters in the same L2 table) and returns the number of zeroed
1560 * clusters.
1562 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1563 uint64_t nb_clusters)
1565 BDRVQcow2State *s = bs->opaque;
1566 uint64_t *l2_table;
1567 int l2_index;
1568 int ret;
1569 int i;
1571 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1572 if (ret < 0) {
1573 return ret;
1576 /* Limit nb_clusters to one L2 table */
1577 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1578 assert(nb_clusters <= INT_MAX);
1580 for (i = 0; i < nb_clusters; i++) {
1581 uint64_t old_offset;
1583 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1585 /* Update L2 entries */
1586 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1587 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1588 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1589 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1590 } else {
1591 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1595 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1597 return nb_clusters;
1600 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1602 BDRVQcow2State *s = bs->opaque;
1603 uint64_t nb_clusters;
1604 int ret;
1606 /* The zero flag is only supported by version 3 and newer */
1607 if (s->qcow_version < 3) {
1608 return -ENOTSUP;
1611 /* Each L2 table is handled by its own loop iteration */
1612 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1614 s->cache_discards = true;
1616 while (nb_clusters > 0) {
1617 ret = zero_single_l2(bs, offset, nb_clusters);
1618 if (ret < 0) {
1619 goto fail;
1622 nb_clusters -= ret;
1623 offset += (ret * s->cluster_size);
1626 ret = 0;
1627 fail:
1628 s->cache_discards = false;
1629 qcow2_process_discards(bs, ret);
1631 return ret;
1635 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1636 * non-backed non-pre-allocated zero clusters).
1638 * l1_entries and *visited_l1_entries are used to keep track of progress for
1639 * status_cb(). l1_entries contains the total number of L1 entries and
1640 * *visited_l1_entries counts all visited L1 entries.
1642 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1643 int l1_size, int64_t *visited_l1_entries,
1644 int64_t l1_entries,
1645 BlockDriverAmendStatusCB *status_cb,
1646 void *cb_opaque)
1648 BDRVQcow2State *s = bs->opaque;
1649 bool is_active_l1 = (l1_table == s->l1_table);
1650 uint64_t *l2_table = NULL;
1651 int ret;
1652 int i, j;
1654 if (!is_active_l1) {
1655 /* inactive L2 tables require a buffer to be stored in when loading
1656 * them from disk */
1657 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1658 if (l2_table == NULL) {
1659 return -ENOMEM;
1663 for (i = 0; i < l1_size; i++) {
1664 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1665 bool l2_dirty = false;
1666 uint64_t l2_refcount;
1668 if (!l2_offset) {
1669 /* unallocated */
1670 (*visited_l1_entries)++;
1671 if (status_cb) {
1672 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1674 continue;
1677 if (offset_into_cluster(s, l2_offset)) {
1678 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1679 PRIx64 " unaligned (L1 index: %#x)",
1680 l2_offset, i);
1681 ret = -EIO;
1682 goto fail;
1685 if (is_active_l1) {
1686 /* get active L2 tables from cache */
1687 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1688 (void **)&l2_table);
1689 } else {
1690 /* load inactive L2 tables from disk */
1691 ret = bdrv_read(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE,
1692 (void *)l2_table, s->cluster_sectors);
1694 if (ret < 0) {
1695 goto fail;
1698 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1699 &l2_refcount);
1700 if (ret < 0) {
1701 goto fail;
1704 for (j = 0; j < s->l2_size; j++) {
1705 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1706 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1707 int cluster_type = qcow2_get_cluster_type(l2_entry);
1708 bool preallocated = offset != 0;
1710 if (cluster_type != QCOW2_CLUSTER_ZERO) {
1711 continue;
1714 if (!preallocated) {
1715 if (!bs->backing) {
1716 /* not backed; therefore we can simply deallocate the
1717 * cluster */
1718 l2_table[j] = 0;
1719 l2_dirty = true;
1720 continue;
1723 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1724 if (offset < 0) {
1725 ret = offset;
1726 goto fail;
1729 if (l2_refcount > 1) {
1730 /* For shared L2 tables, set the refcount accordingly (it is
1731 * already 1 and needs to be l2_refcount) */
1732 ret = qcow2_update_cluster_refcount(bs,
1733 offset >> s->cluster_bits,
1734 refcount_diff(1, l2_refcount), false,
1735 QCOW2_DISCARD_OTHER);
1736 if (ret < 0) {
1737 qcow2_free_clusters(bs, offset, s->cluster_size,
1738 QCOW2_DISCARD_OTHER);
1739 goto fail;
1744 if (offset_into_cluster(s, offset)) {
1745 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1746 "%#" PRIx64 " unaligned (L2 offset: %#"
1747 PRIx64 ", L2 index: %#x)", offset,
1748 l2_offset, j);
1749 if (!preallocated) {
1750 qcow2_free_clusters(bs, offset, s->cluster_size,
1751 QCOW2_DISCARD_ALWAYS);
1753 ret = -EIO;
1754 goto fail;
1757 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1758 if (ret < 0) {
1759 if (!preallocated) {
1760 qcow2_free_clusters(bs, offset, s->cluster_size,
1761 QCOW2_DISCARD_ALWAYS);
1763 goto fail;
1766 ret = bdrv_write_zeroes(bs->file->bs, offset / BDRV_SECTOR_SIZE,
1767 s->cluster_sectors, 0);
1768 if (ret < 0) {
1769 if (!preallocated) {
1770 qcow2_free_clusters(bs, offset, s->cluster_size,
1771 QCOW2_DISCARD_ALWAYS);
1773 goto fail;
1776 if (l2_refcount == 1) {
1777 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1778 } else {
1779 l2_table[j] = cpu_to_be64(offset);
1781 l2_dirty = true;
1784 if (is_active_l1) {
1785 if (l2_dirty) {
1786 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1787 qcow2_cache_depends_on_flush(s->l2_table_cache);
1789 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1790 } else {
1791 if (l2_dirty) {
1792 ret = qcow2_pre_write_overlap_check(bs,
1793 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1794 s->cluster_size);
1795 if (ret < 0) {
1796 goto fail;
1799 ret = bdrv_write(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE,
1800 (void *)l2_table, s->cluster_sectors);
1801 if (ret < 0) {
1802 goto fail;
1807 (*visited_l1_entries)++;
1808 if (status_cb) {
1809 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1813 ret = 0;
1815 fail:
1816 if (l2_table) {
1817 if (!is_active_l1) {
1818 qemu_vfree(l2_table);
1819 } else {
1820 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1823 return ret;
1827 * For backed images, expands all zero clusters on the image. For non-backed
1828 * images, deallocates all non-pre-allocated zero clusters (and claims the
1829 * allocation for pre-allocated ones). This is important for downgrading to a
1830 * qcow2 version which doesn't yet support metadata zero clusters.
1832 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1833 BlockDriverAmendStatusCB *status_cb,
1834 void *cb_opaque)
1836 BDRVQcow2State *s = bs->opaque;
1837 uint64_t *l1_table = NULL;
1838 int64_t l1_entries = 0, visited_l1_entries = 0;
1839 int ret;
1840 int i, j;
1842 if (status_cb) {
1843 l1_entries = s->l1_size;
1844 for (i = 0; i < s->nb_snapshots; i++) {
1845 l1_entries += s->snapshots[i].l1_size;
1849 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1850 &visited_l1_entries, l1_entries,
1851 status_cb, cb_opaque);
1852 if (ret < 0) {
1853 goto fail;
1856 /* Inactive L1 tables may point to active L2 tables - therefore it is
1857 * necessary to flush the L2 table cache before trying to access the L2
1858 * tables pointed to by inactive L1 entries (else we might try to expand
1859 * zero clusters that have already been expanded); furthermore, it is also
1860 * necessary to empty the L2 table cache, since it may contain tables which
1861 * are now going to be modified directly on disk, bypassing the cache.
1862 * qcow2_cache_empty() does both for us. */
1863 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1864 if (ret < 0) {
1865 goto fail;
1868 for (i = 0; i < s->nb_snapshots; i++) {
1869 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1870 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1872 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1874 ret = bdrv_read(bs->file->bs,
1875 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1876 (void *)l1_table, l1_sectors);
1877 if (ret < 0) {
1878 goto fail;
1881 for (j = 0; j < s->snapshots[i].l1_size; j++) {
1882 be64_to_cpus(&l1_table[j]);
1885 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1886 &visited_l1_entries, l1_entries,
1887 status_cb, cb_opaque);
1888 if (ret < 0) {
1889 goto fail;
1893 ret = 0;
1895 fail:
1896 g_free(l1_table);
1897 return ret;