block: Mark bdrv_snapshot_fallback() and callers GRAPH_RDLOCK
[qemu/kevin.git] / migration / ram.c
blob2f5ce4d60b3746fe3faecda3e722ad7763adcdca
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "options.h"
63 #include "sysemu/dirtylimit.h"
64 #include "sysemu/kvm.h"
66 #include "hw/boards.h" /* for machine_dump_guest_core() */
68 #if defined(__linux__)
69 #include "qemu/userfaultfd.h"
70 #endif /* defined(__linux__) */
72 /***********************************************************/
73 /* ram save/restore */
76 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
77 * worked for pages that were filled with the same char. We switched
78 * it to only search for the zero value. And to avoid confusion with
79 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
82 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84 #define RAM_SAVE_FLAG_FULL 0x01
85 #define RAM_SAVE_FLAG_ZERO 0x02
86 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
87 #define RAM_SAVE_FLAG_PAGE 0x08
88 #define RAM_SAVE_FLAG_EOS 0x10
89 #define RAM_SAVE_FLAG_CONTINUE 0x20
90 #define RAM_SAVE_FLAG_XBZRLE 0x40
91 /* 0x80 is reserved in qemu-file.h for RAM_SAVE_FLAG_HOOK */
92 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
93 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
94 /* We can't use any flag that is bigger than 0x200 */
96 XBZRLECacheStats xbzrle_counters;
98 /* used by the search for pages to send */
99 struct PageSearchStatus {
100 /* The migration channel used for a specific host page */
101 QEMUFile *pss_channel;
102 /* Last block from where we have sent data */
103 RAMBlock *last_sent_block;
104 /* Current block being searched */
105 RAMBlock *block;
106 /* Current page to search from */
107 unsigned long page;
108 /* Set once we wrap around */
109 bool complete_round;
110 /* Whether we're sending a host page */
111 bool host_page_sending;
112 /* The start/end of current host page. Invalid if host_page_sending==false */
113 unsigned long host_page_start;
114 unsigned long host_page_end;
116 typedef struct PageSearchStatus PageSearchStatus;
118 /* struct contains XBZRLE cache and a static page
119 used by the compression */
120 static struct {
121 /* buffer used for XBZRLE encoding */
122 uint8_t *encoded_buf;
123 /* buffer for storing page content */
124 uint8_t *current_buf;
125 /* Cache for XBZRLE, Protected by lock. */
126 PageCache *cache;
127 QemuMutex lock;
128 /* it will store a page full of zeros */
129 uint8_t *zero_target_page;
130 /* buffer used for XBZRLE decoding */
131 uint8_t *decoded_buf;
132 } XBZRLE;
134 static void XBZRLE_cache_lock(void)
136 if (migrate_xbzrle()) {
137 qemu_mutex_lock(&XBZRLE.lock);
141 static void XBZRLE_cache_unlock(void)
143 if (migrate_xbzrle()) {
144 qemu_mutex_unlock(&XBZRLE.lock);
149 * xbzrle_cache_resize: resize the xbzrle cache
151 * This function is called from migrate_params_apply in main
152 * thread, possibly while a migration is in progress. A running
153 * migration may be using the cache and might finish during this call,
154 * hence changes to the cache are protected by XBZRLE.lock().
156 * Returns 0 for success or -1 for error
158 * @new_size: new cache size
159 * @errp: set *errp if the check failed, with reason
161 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
163 PageCache *new_cache;
164 int64_t ret = 0;
166 /* Check for truncation */
167 if (new_size != (size_t)new_size) {
168 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
169 "exceeding address space");
170 return -1;
173 if (new_size == migrate_xbzrle_cache_size()) {
174 /* nothing to do */
175 return 0;
178 XBZRLE_cache_lock();
180 if (XBZRLE.cache != NULL) {
181 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
182 if (!new_cache) {
183 ret = -1;
184 goto out;
187 cache_fini(XBZRLE.cache);
188 XBZRLE.cache = new_cache;
190 out:
191 XBZRLE_cache_unlock();
192 return ret;
195 static bool postcopy_preempt_active(void)
197 return migrate_postcopy_preempt() && migration_in_postcopy();
200 bool migrate_ram_is_ignored(RAMBlock *block)
202 return !qemu_ram_is_migratable(block) ||
203 (migrate_ignore_shared() && qemu_ram_is_shared(block)
204 && qemu_ram_is_named_file(block));
207 #undef RAMBLOCK_FOREACH
209 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
211 RAMBlock *block;
212 int ret = 0;
214 RCU_READ_LOCK_GUARD();
216 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
217 ret = func(block, opaque);
218 if (ret) {
219 break;
222 return ret;
225 static void ramblock_recv_map_init(void)
227 RAMBlock *rb;
229 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
230 assert(!rb->receivedmap);
231 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
235 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
237 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
238 rb->receivedmap);
241 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
243 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
246 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
248 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
251 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
252 size_t nr)
254 bitmap_set_atomic(rb->receivedmap,
255 ramblock_recv_bitmap_offset(host_addr, rb),
256 nr);
259 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
262 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
264 * Returns >0 if success with sent bytes, or <0 if error.
266 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
267 const char *block_name)
269 RAMBlock *block = qemu_ram_block_by_name(block_name);
270 unsigned long *le_bitmap, nbits;
271 uint64_t size;
273 if (!block) {
274 error_report("%s: invalid block name: %s", __func__, block_name);
275 return -1;
278 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
281 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
282 * machines we may need 4 more bytes for padding (see below
283 * comment). So extend it a bit before hand.
285 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
288 * Always use little endian when sending the bitmap. This is
289 * required that when source and destination VMs are not using the
290 * same endianness. (Note: big endian won't work.)
292 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
294 /* Size of the bitmap, in bytes */
295 size = DIV_ROUND_UP(nbits, 8);
298 * size is always aligned to 8 bytes for 64bit machines, but it
299 * may not be true for 32bit machines. We need this padding to
300 * make sure the migration can survive even between 32bit and
301 * 64bit machines.
303 size = ROUND_UP(size, 8);
305 qemu_put_be64(file, size);
306 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
308 * Mark as an end, in case the middle part is screwed up due to
309 * some "mysterious" reason.
311 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
312 qemu_fflush(file);
314 g_free(le_bitmap);
316 if (qemu_file_get_error(file)) {
317 return qemu_file_get_error(file);
320 return size + sizeof(size);
324 * An outstanding page request, on the source, having been received
325 * and queued
327 struct RAMSrcPageRequest {
328 RAMBlock *rb;
329 hwaddr offset;
330 hwaddr len;
332 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
335 /* State of RAM for migration */
336 struct RAMState {
338 * PageSearchStatus structures for the channels when send pages.
339 * Protected by the bitmap_mutex.
341 PageSearchStatus pss[RAM_CHANNEL_MAX];
342 /* UFFD file descriptor, used in 'write-tracking' migration */
343 int uffdio_fd;
344 /* total ram size in bytes */
345 uint64_t ram_bytes_total;
346 /* Last block that we have visited searching for dirty pages */
347 RAMBlock *last_seen_block;
348 /* Last dirty target page we have sent */
349 ram_addr_t last_page;
350 /* last ram version we have seen */
351 uint32_t last_version;
352 /* How many times we have dirty too many pages */
353 int dirty_rate_high_cnt;
354 /* these variables are used for bitmap sync */
355 /* last time we did a full bitmap_sync */
356 int64_t time_last_bitmap_sync;
357 /* bytes transferred at start_time */
358 uint64_t bytes_xfer_prev;
359 /* number of dirty pages since start_time */
360 uint64_t num_dirty_pages_period;
361 /* xbzrle misses since the beginning of the period */
362 uint64_t xbzrle_cache_miss_prev;
363 /* Amount of xbzrle pages since the beginning of the period */
364 uint64_t xbzrle_pages_prev;
365 /* Amount of xbzrle encoded bytes since the beginning of the period */
366 uint64_t xbzrle_bytes_prev;
367 /* Are we really using XBZRLE (e.g., after the first round). */
368 bool xbzrle_started;
369 /* Are we on the last stage of migration */
370 bool last_stage;
371 /* compression statistics since the beginning of the period */
372 /* amount of count that no free thread to compress data */
373 uint64_t compress_thread_busy_prev;
374 /* amount bytes after compression */
375 uint64_t compressed_size_prev;
376 /* amount of compressed pages */
377 uint64_t compress_pages_prev;
379 /* total handled target pages at the beginning of period */
380 uint64_t target_page_count_prev;
381 /* total handled target pages since start */
382 uint64_t target_page_count;
383 /* number of dirty bits in the bitmap */
384 uint64_t migration_dirty_pages;
386 * Protects:
387 * - dirty/clear bitmap
388 * - migration_dirty_pages
389 * - pss structures
391 QemuMutex bitmap_mutex;
392 /* The RAMBlock used in the last src_page_requests */
393 RAMBlock *last_req_rb;
394 /* Queue of outstanding page requests from the destination */
395 QemuMutex src_page_req_mutex;
396 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
399 * This is only used when postcopy is in recovery phase, to communicate
400 * between the migration thread and the return path thread on dirty
401 * bitmap synchronizations. This field is unused in other stages of
402 * RAM migration.
404 unsigned int postcopy_bmap_sync_requested;
406 typedef struct RAMState RAMState;
408 static RAMState *ram_state;
410 static NotifierWithReturnList precopy_notifier_list;
412 /* Whether postcopy has queued requests? */
413 static bool postcopy_has_request(RAMState *rs)
415 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
418 void precopy_infrastructure_init(void)
420 notifier_with_return_list_init(&precopy_notifier_list);
423 void precopy_add_notifier(NotifierWithReturn *n)
425 notifier_with_return_list_add(&precopy_notifier_list, n);
428 void precopy_remove_notifier(NotifierWithReturn *n)
430 notifier_with_return_remove(n);
433 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
435 PrecopyNotifyData pnd;
436 pnd.reason = reason;
437 pnd.errp = errp;
439 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
442 uint64_t ram_bytes_remaining(void)
444 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
448 void ram_transferred_add(uint64_t bytes)
450 if (runstate_is_running()) {
451 stat64_add(&mig_stats.precopy_bytes, bytes);
452 } else if (migration_in_postcopy()) {
453 stat64_add(&mig_stats.postcopy_bytes, bytes);
454 } else {
455 stat64_add(&mig_stats.downtime_bytes, bytes);
457 stat64_add(&mig_stats.transferred, bytes);
460 struct MigrationOps {
461 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
463 typedef struct MigrationOps MigrationOps;
465 MigrationOps *migration_ops;
467 static int ram_save_host_page_urgent(PageSearchStatus *pss);
469 /* NOTE: page is the PFN not real ram_addr_t. */
470 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
472 pss->block = rb;
473 pss->page = page;
474 pss->complete_round = false;
478 * Check whether two PSSs are actively sending the same page. Return true
479 * if it is, false otherwise.
481 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
483 return pss1->host_page_sending && pss2->host_page_sending &&
484 (pss1->host_page_start == pss2->host_page_start);
488 * save_page_header: write page header to wire
490 * If this is the 1st block, it also writes the block identification
492 * Returns the number of bytes written
494 * @pss: current PSS channel status
495 * @block: block that contains the page we want to send
496 * @offset: offset inside the block for the page
497 * in the lower bits, it contains flags
499 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
500 RAMBlock *block, ram_addr_t offset)
502 size_t size, len;
503 bool same_block = (block == pss->last_sent_block);
505 if (same_block) {
506 offset |= RAM_SAVE_FLAG_CONTINUE;
508 qemu_put_be64(f, offset);
509 size = 8;
511 if (!same_block) {
512 len = strlen(block->idstr);
513 qemu_put_byte(f, len);
514 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
515 size += 1 + len;
516 pss->last_sent_block = block;
518 return size;
522 * mig_throttle_guest_down: throttle down the guest
524 * Reduce amount of guest cpu execution to hopefully slow down memory
525 * writes. If guest dirty memory rate is reduced below the rate at
526 * which we can transfer pages to the destination then we should be
527 * able to complete migration. Some workloads dirty memory way too
528 * fast and will not effectively converge, even with auto-converge.
530 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
531 uint64_t bytes_dirty_threshold)
533 uint64_t pct_initial = migrate_cpu_throttle_initial();
534 uint64_t pct_increment = migrate_cpu_throttle_increment();
535 bool pct_tailslow = migrate_cpu_throttle_tailslow();
536 int pct_max = migrate_max_cpu_throttle();
538 uint64_t throttle_now = cpu_throttle_get_percentage();
539 uint64_t cpu_now, cpu_ideal, throttle_inc;
541 /* We have not started throttling yet. Let's start it. */
542 if (!cpu_throttle_active()) {
543 cpu_throttle_set(pct_initial);
544 } else {
545 /* Throttling already on, just increase the rate */
546 if (!pct_tailslow) {
547 throttle_inc = pct_increment;
548 } else {
549 /* Compute the ideal CPU percentage used by Guest, which may
550 * make the dirty rate match the dirty rate threshold. */
551 cpu_now = 100 - throttle_now;
552 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
553 bytes_dirty_period);
554 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
556 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
560 void mig_throttle_counter_reset(void)
562 RAMState *rs = ram_state;
564 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
565 rs->num_dirty_pages_period = 0;
566 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
570 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
572 * @rs: current RAM state
573 * @current_addr: address for the zero page
575 * Update the xbzrle cache to reflect a page that's been sent as all 0.
576 * The important thing is that a stale (not-yet-0'd) page be replaced
577 * by the new data.
578 * As a bonus, if the page wasn't in the cache it gets added so that
579 * when a small write is made into the 0'd page it gets XBZRLE sent.
581 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
583 /* We don't care if this fails to allocate a new cache page
584 * as long as it updated an old one */
585 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
586 stat64_get(&mig_stats.dirty_sync_count));
589 #define ENCODING_FLAG_XBZRLE 0x1
592 * save_xbzrle_page: compress and send current page
594 * Returns: 1 means that we wrote the page
595 * 0 means that page is identical to the one already sent
596 * -1 means that xbzrle would be longer than normal
598 * @rs: current RAM state
599 * @pss: current PSS channel
600 * @current_data: pointer to the address of the page contents
601 * @current_addr: addr of the page
602 * @block: block that contains the page we want to send
603 * @offset: offset inside the block for the page
605 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
606 uint8_t **current_data, ram_addr_t current_addr,
607 RAMBlock *block, ram_addr_t offset)
609 int encoded_len = 0, bytes_xbzrle;
610 uint8_t *prev_cached_page;
611 QEMUFile *file = pss->pss_channel;
612 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
614 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
615 xbzrle_counters.cache_miss++;
616 if (!rs->last_stage) {
617 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
618 generation) == -1) {
619 return -1;
620 } else {
621 /* update *current_data when the page has been
622 inserted into cache */
623 *current_data = get_cached_data(XBZRLE.cache, current_addr);
626 return -1;
630 * Reaching here means the page has hit the xbzrle cache, no matter what
631 * encoding result it is (normal encoding, overflow or skipping the page),
632 * count the page as encoded. This is used to calculate the encoding rate.
634 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
635 * 2nd page turns out to be skipped (i.e. no new bytes written to the
636 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
637 * skipped page included. In this way, the encoding rate can tell if the
638 * guest page is good for xbzrle encoding.
640 xbzrle_counters.pages++;
641 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
643 /* save current buffer into memory */
644 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
646 /* XBZRLE encoding (if there is no overflow) */
647 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
648 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
649 TARGET_PAGE_SIZE);
652 * Update the cache contents, so that it corresponds to the data
653 * sent, in all cases except where we skip the page.
655 if (!rs->last_stage && encoded_len != 0) {
656 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
658 * In the case where we couldn't compress, ensure that the caller
659 * sends the data from the cache, since the guest might have
660 * changed the RAM since we copied it.
662 *current_data = prev_cached_page;
665 if (encoded_len == 0) {
666 trace_save_xbzrle_page_skipping();
667 return 0;
668 } else if (encoded_len == -1) {
669 trace_save_xbzrle_page_overflow();
670 xbzrle_counters.overflow++;
671 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
672 return -1;
675 /* Send XBZRLE based compressed page */
676 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
677 offset | RAM_SAVE_FLAG_XBZRLE);
678 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
679 qemu_put_be16(file, encoded_len);
680 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
681 bytes_xbzrle += encoded_len + 1 + 2;
683 * Like compressed_size (please see update_compress_thread_counts),
684 * the xbzrle encoded bytes don't count the 8 byte header with
685 * RAM_SAVE_FLAG_CONTINUE.
687 xbzrle_counters.bytes += bytes_xbzrle - 8;
688 ram_transferred_add(bytes_xbzrle);
690 return 1;
694 * pss_find_next_dirty: find the next dirty page of current ramblock
696 * This function updates pss->page to point to the next dirty page index
697 * within the ramblock to migrate, or the end of ramblock when nothing
698 * found. Note that when pss->host_page_sending==true it means we're
699 * during sending a host page, so we won't look for dirty page that is
700 * outside the host page boundary.
702 * @pss: the current page search status
704 static void pss_find_next_dirty(PageSearchStatus *pss)
706 RAMBlock *rb = pss->block;
707 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
708 unsigned long *bitmap = rb->bmap;
710 if (migrate_ram_is_ignored(rb)) {
711 /* Points directly to the end, so we know no dirty page */
712 pss->page = size;
713 return;
717 * If during sending a host page, only look for dirty pages within the
718 * current host page being send.
720 if (pss->host_page_sending) {
721 assert(pss->host_page_end);
722 size = MIN(size, pss->host_page_end);
725 pss->page = find_next_bit(bitmap, size, pss->page);
728 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
729 unsigned long page)
731 uint8_t shift;
732 hwaddr size, start;
734 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
735 return;
738 shift = rb->clear_bmap_shift;
740 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
741 * can make things easier sometimes since then start address
742 * of the small chunk will always be 64 pages aligned so the
743 * bitmap will always be aligned to unsigned long. We should
744 * even be able to remove this restriction but I'm simply
745 * keeping it.
747 assert(shift >= 6);
749 size = 1ULL << (TARGET_PAGE_BITS + shift);
750 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
751 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
752 memory_region_clear_dirty_bitmap(rb->mr, start, size);
755 static void
756 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
757 unsigned long start,
758 unsigned long npages)
760 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
761 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
762 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
765 * Clear pages from start to start + npages - 1, so the end boundary is
766 * exclusive.
768 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
769 migration_clear_memory_region_dirty_bitmap(rb, i);
774 * colo_bitmap_find_diry:find contiguous dirty pages from start
776 * Returns the page offset within memory region of the start of the contiguout
777 * dirty page
779 * @rs: current RAM state
780 * @rb: RAMBlock where to search for dirty pages
781 * @start: page where we start the search
782 * @num: the number of contiguous dirty pages
784 static inline
785 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
786 unsigned long start, unsigned long *num)
788 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
789 unsigned long *bitmap = rb->bmap;
790 unsigned long first, next;
792 *num = 0;
794 if (migrate_ram_is_ignored(rb)) {
795 return size;
798 first = find_next_bit(bitmap, size, start);
799 if (first >= size) {
800 return first;
802 next = find_next_zero_bit(bitmap, size, first + 1);
803 assert(next >= first);
804 *num = next - first;
805 return first;
808 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
809 RAMBlock *rb,
810 unsigned long page)
812 bool ret;
815 * Clear dirty bitmap if needed. This _must_ be called before we
816 * send any of the page in the chunk because we need to make sure
817 * we can capture further page content changes when we sync dirty
818 * log the next time. So as long as we are going to send any of
819 * the page in the chunk we clear the remote dirty bitmap for all.
820 * Clearing it earlier won't be a problem, but too late will.
822 migration_clear_memory_region_dirty_bitmap(rb, page);
824 ret = test_and_clear_bit(page, rb->bmap);
825 if (ret) {
826 rs->migration_dirty_pages--;
829 return ret;
832 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
833 void *opaque)
835 const hwaddr offset = section->offset_within_region;
836 const hwaddr size = int128_get64(section->size);
837 const unsigned long start = offset >> TARGET_PAGE_BITS;
838 const unsigned long npages = size >> TARGET_PAGE_BITS;
839 RAMBlock *rb = section->mr->ram_block;
840 uint64_t *cleared_bits = opaque;
843 * We don't grab ram_state->bitmap_mutex because we expect to run
844 * only when starting migration or during postcopy recovery where
845 * we don't have concurrent access.
847 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
848 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
850 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
851 bitmap_clear(rb->bmap, start, npages);
855 * Exclude all dirty pages from migration that fall into a discarded range as
856 * managed by a RamDiscardManager responsible for the mapped memory region of
857 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
859 * Discarded pages ("logically unplugged") have undefined content and must
860 * not get migrated, because even reading these pages for migration might
861 * result in undesired behavior.
863 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
865 * Note: The result is only stable while migrating (precopy/postcopy).
867 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
869 uint64_t cleared_bits = 0;
871 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
872 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
873 MemoryRegionSection section = {
874 .mr = rb->mr,
875 .offset_within_region = 0,
876 .size = int128_make64(qemu_ram_get_used_length(rb)),
879 ram_discard_manager_replay_discarded(rdm, &section,
880 dirty_bitmap_clear_section,
881 &cleared_bits);
883 return cleared_bits;
887 * Check if a host-page aligned page falls into a discarded range as managed by
888 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
890 * Note: The result is only stable while migrating (precopy/postcopy).
892 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
894 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
895 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
896 MemoryRegionSection section = {
897 .mr = rb->mr,
898 .offset_within_region = start,
899 .size = int128_make64(qemu_ram_pagesize(rb)),
902 return !ram_discard_manager_is_populated(rdm, &section);
904 return false;
907 /* Called with RCU critical section */
908 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
910 uint64_t new_dirty_pages =
911 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
913 rs->migration_dirty_pages += new_dirty_pages;
914 rs->num_dirty_pages_period += new_dirty_pages;
918 * ram_pagesize_summary: calculate all the pagesizes of a VM
920 * Returns a summary bitmap of the page sizes of all RAMBlocks
922 * For VMs with just normal pages this is equivalent to the host page
923 * size. If it's got some huge pages then it's the OR of all the
924 * different page sizes.
926 uint64_t ram_pagesize_summary(void)
928 RAMBlock *block;
929 uint64_t summary = 0;
931 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
932 summary |= block->page_size;
935 return summary;
938 uint64_t ram_get_total_transferred_pages(void)
940 return stat64_get(&mig_stats.normal_pages) +
941 stat64_get(&mig_stats.zero_pages) +
942 compression_counters.pages + xbzrle_counters.pages;
945 static void migration_update_rates(RAMState *rs, int64_t end_time)
947 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
948 double compressed_size;
950 /* calculate period counters */
951 stat64_set(&mig_stats.dirty_pages_rate,
952 rs->num_dirty_pages_period * 1000 /
953 (end_time - rs->time_last_bitmap_sync));
955 if (!page_count) {
956 return;
959 if (migrate_xbzrle()) {
960 double encoded_size, unencoded_size;
962 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
963 rs->xbzrle_cache_miss_prev) / page_count;
964 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
965 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
966 TARGET_PAGE_SIZE;
967 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
968 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
969 xbzrle_counters.encoding_rate = 0;
970 } else {
971 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
973 rs->xbzrle_pages_prev = xbzrle_counters.pages;
974 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
977 if (migrate_compress()) {
978 compression_counters.busy_rate = (double)(compression_counters.busy -
979 rs->compress_thread_busy_prev) / page_count;
980 rs->compress_thread_busy_prev = compression_counters.busy;
982 compressed_size = compression_counters.compressed_size -
983 rs->compressed_size_prev;
984 if (compressed_size) {
985 double uncompressed_size = (compression_counters.pages -
986 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
988 /* Compression-Ratio = Uncompressed-size / Compressed-size */
989 compression_counters.compression_rate =
990 uncompressed_size / compressed_size;
992 rs->compress_pages_prev = compression_counters.pages;
993 rs->compressed_size_prev = compression_counters.compressed_size;
999 * Enable dirty-limit to throttle down the guest
1001 static void migration_dirty_limit_guest(void)
1004 * dirty page rate quota for all vCPUs fetched from
1005 * migration parameter 'vcpu_dirty_limit'
1007 static int64_t quota_dirtyrate;
1008 MigrationState *s = migrate_get_current();
1011 * If dirty limit already enabled and migration parameter
1012 * vcpu-dirty-limit untouched.
1014 if (dirtylimit_in_service() &&
1015 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1016 return;
1019 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1022 * Set all vCPU a quota dirtyrate, note that the second
1023 * parameter will be ignored if setting all vCPU for the vm
1025 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1026 trace_migration_dirty_limit_guest(quota_dirtyrate);
1029 static void migration_trigger_throttle(RAMState *rs)
1031 uint64_t threshold = migrate_throttle_trigger_threshold();
1032 uint64_t bytes_xfer_period =
1033 stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev;
1034 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1035 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1037 /* During block migration the auto-converge logic incorrectly detects
1038 * that ram migration makes no progress. Avoid this by disabling the
1039 * throttling logic during the bulk phase of block migration. */
1040 if (blk_mig_bulk_active()) {
1041 return;
1045 * The following detection logic can be refined later. For now:
1046 * Check to see if the ratio between dirtied bytes and the approx.
1047 * amount of bytes that just got transferred since the last time
1048 * we were in this routine reaches the threshold. If that happens
1049 * twice, start or increase throttling.
1051 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1052 (++rs->dirty_rate_high_cnt >= 2)) {
1053 rs->dirty_rate_high_cnt = 0;
1054 if (migrate_auto_converge()) {
1055 trace_migration_throttle();
1056 mig_throttle_guest_down(bytes_dirty_period,
1057 bytes_dirty_threshold);
1058 } else if (migrate_dirty_limit()) {
1059 migration_dirty_limit_guest();
1064 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1066 RAMBlock *block;
1067 int64_t end_time;
1069 stat64_add(&mig_stats.dirty_sync_count, 1);
1071 if (!rs->time_last_bitmap_sync) {
1072 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1075 trace_migration_bitmap_sync_start();
1076 memory_global_dirty_log_sync(last_stage);
1078 qemu_mutex_lock(&rs->bitmap_mutex);
1079 WITH_RCU_READ_LOCK_GUARD() {
1080 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1081 ramblock_sync_dirty_bitmap(rs, block);
1083 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1085 qemu_mutex_unlock(&rs->bitmap_mutex);
1087 memory_global_after_dirty_log_sync();
1088 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1090 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1092 /* more than 1 second = 1000 millisecons */
1093 if (end_time > rs->time_last_bitmap_sync + 1000) {
1094 migration_trigger_throttle(rs);
1096 migration_update_rates(rs, end_time);
1098 rs->target_page_count_prev = rs->target_page_count;
1100 /* reset period counters */
1101 rs->time_last_bitmap_sync = end_time;
1102 rs->num_dirty_pages_period = 0;
1103 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
1105 if (migrate_events()) {
1106 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1107 qapi_event_send_migration_pass(generation);
1111 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1113 Error *local_err = NULL;
1116 * The current notifier usage is just an optimization to migration, so we
1117 * don't stop the normal migration process in the error case.
1119 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1120 error_report_err(local_err);
1121 local_err = NULL;
1124 migration_bitmap_sync(rs, last_stage);
1126 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1127 error_report_err(local_err);
1131 void ram_release_page(const char *rbname, uint64_t offset)
1133 if (!migrate_release_ram() || !migration_in_postcopy()) {
1134 return;
1137 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1141 * save_zero_page_to_file: send the zero page to the file
1143 * Returns the size of data written to the file, 0 means the page is not
1144 * a zero page
1146 * @pss: current PSS channel
1147 * @block: block that contains the page we want to send
1148 * @offset: offset inside the block for the page
1150 static int save_zero_page_to_file(PageSearchStatus *pss, QEMUFile *file,
1151 RAMBlock *block, ram_addr_t offset)
1153 uint8_t *p = block->host + offset;
1154 int len = 0;
1156 if (buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1157 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1158 qemu_put_byte(file, 0);
1159 len += 1;
1160 ram_release_page(block->idstr, offset);
1162 return len;
1166 * save_zero_page: send the zero page to the stream
1168 * Returns the number of pages written.
1170 * @pss: current PSS channel
1171 * @block: block that contains the page we want to send
1172 * @offset: offset inside the block for the page
1174 static int save_zero_page(PageSearchStatus *pss, QEMUFile *f, RAMBlock *block,
1175 ram_addr_t offset)
1177 int len = save_zero_page_to_file(pss, f, block, offset);
1179 if (len) {
1180 stat64_add(&mig_stats.zero_pages, 1);
1181 ram_transferred_add(len);
1182 return 1;
1184 return -1;
1188 * @pages: the number of pages written by the control path,
1189 * < 0 - error
1190 * > 0 - number of pages written
1192 * Return true if the pages has been saved, otherwise false is returned.
1194 static bool control_save_page(PageSearchStatus *pss, RAMBlock *block,
1195 ram_addr_t offset, int *pages)
1197 int ret;
1199 ret = ram_control_save_page(pss->pss_channel, block->offset, offset,
1200 TARGET_PAGE_SIZE);
1201 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1202 return false;
1205 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1206 *pages = 1;
1207 return true;
1209 *pages = ret;
1210 return true;
1214 * directly send the page to the stream
1216 * Returns the number of pages written.
1218 * @pss: current PSS channel
1219 * @block: block that contains the page we want to send
1220 * @offset: offset inside the block for the page
1221 * @buf: the page to be sent
1222 * @async: send to page asyncly
1224 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1225 ram_addr_t offset, uint8_t *buf, bool async)
1227 QEMUFile *file = pss->pss_channel;
1229 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1230 offset | RAM_SAVE_FLAG_PAGE));
1231 if (async) {
1232 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1233 migrate_release_ram() &&
1234 migration_in_postcopy());
1235 } else {
1236 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1238 ram_transferred_add(TARGET_PAGE_SIZE);
1239 stat64_add(&mig_stats.normal_pages, 1);
1240 return 1;
1244 * ram_save_page: send the given page to the stream
1246 * Returns the number of pages written.
1247 * < 0 - error
1248 * >=0 - Number of pages written - this might legally be 0
1249 * if xbzrle noticed the page was the same.
1251 * @rs: current RAM state
1252 * @block: block that contains the page we want to send
1253 * @offset: offset inside the block for the page
1255 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1257 int pages = -1;
1258 uint8_t *p;
1259 bool send_async = true;
1260 RAMBlock *block = pss->block;
1261 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1262 ram_addr_t current_addr = block->offset + offset;
1264 p = block->host + offset;
1265 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1267 XBZRLE_cache_lock();
1268 if (rs->xbzrle_started && !migration_in_postcopy()) {
1269 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1270 block, offset);
1271 if (!rs->last_stage) {
1272 /* Can't send this cached data async, since the cache page
1273 * might get updated before it gets to the wire
1275 send_async = false;
1279 /* XBZRLE overflow or normal page */
1280 if (pages == -1) {
1281 pages = save_normal_page(pss, block, offset, p, send_async);
1284 XBZRLE_cache_unlock();
1286 return pages;
1289 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block,
1290 ram_addr_t offset)
1292 if (multifd_queue_page(file, block, offset) < 0) {
1293 return -1;
1295 stat64_add(&mig_stats.normal_pages, 1);
1297 return 1;
1300 static void
1301 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1303 ram_transferred_add(bytes_xmit);
1305 if (param->result == RES_ZEROPAGE) {
1306 stat64_add(&mig_stats.zero_pages, 1);
1307 return;
1310 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1311 compression_counters.compressed_size += bytes_xmit - 8;
1312 compression_counters.pages++;
1315 static bool save_page_use_compression(RAMState *rs);
1317 static int send_queued_data(CompressParam *param)
1319 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1320 MigrationState *ms = migrate_get_current();
1321 QEMUFile *file = ms->to_dst_file;
1322 int len = 0;
1324 RAMBlock *block = param->block;
1325 ram_addr_t offset = param->offset;
1327 if (param->result == RES_NONE) {
1328 return 0;
1331 assert(block == pss->last_sent_block);
1333 if (param->result == RES_ZEROPAGE) {
1334 assert(qemu_file_buffer_empty(param->file));
1335 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1336 qemu_put_byte(file, 0);
1337 len += 1;
1338 ram_release_page(block->idstr, offset);
1339 } else if (param->result == RES_COMPRESS) {
1340 assert(!qemu_file_buffer_empty(param->file));
1341 len += save_page_header(pss, file, block,
1342 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1343 len += qemu_put_qemu_file(file, param->file);
1344 } else {
1345 abort();
1348 update_compress_thread_counts(param, len);
1350 return len;
1353 static void ram_flush_compressed_data(RAMState *rs)
1355 if (!save_page_use_compression(rs)) {
1356 return;
1359 flush_compressed_data(send_queued_data);
1362 #define PAGE_ALL_CLEAN 0
1363 #define PAGE_TRY_AGAIN 1
1364 #define PAGE_DIRTY_FOUND 2
1366 * find_dirty_block: find the next dirty page and update any state
1367 * associated with the search process.
1369 * Returns:
1370 * <0: An error happened
1371 * PAGE_ALL_CLEAN: no dirty page found, give up
1372 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1373 * PAGE_DIRTY_FOUND: dirty page found
1375 * @rs: current RAM state
1376 * @pss: data about the state of the current dirty page scan
1377 * @again: set to false if the search has scanned the whole of RAM
1379 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1381 /* Update pss->page for the next dirty bit in ramblock */
1382 pss_find_next_dirty(pss);
1384 if (pss->complete_round && pss->block == rs->last_seen_block &&
1385 pss->page >= rs->last_page) {
1387 * We've been once around the RAM and haven't found anything.
1388 * Give up.
1390 return PAGE_ALL_CLEAN;
1392 if (!offset_in_ramblock(pss->block,
1393 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1394 /* Didn't find anything in this RAM Block */
1395 pss->page = 0;
1396 pss->block = QLIST_NEXT_RCU(pss->block, next);
1397 if (!pss->block) {
1398 if (!migrate_multifd_flush_after_each_section()) {
1399 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1400 int ret = multifd_send_sync_main(f);
1401 if (ret < 0) {
1402 return ret;
1404 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1405 qemu_fflush(f);
1408 * If memory migration starts over, we will meet a dirtied page
1409 * which may still exists in compression threads's ring, so we
1410 * should flush the compressed data to make sure the new page
1411 * is not overwritten by the old one in the destination.
1413 * Also If xbzrle is on, stop using the data compression at this
1414 * point. In theory, xbzrle can do better than compression.
1416 ram_flush_compressed_data(rs);
1418 /* Hit the end of the list */
1419 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1420 /* Flag that we've looped */
1421 pss->complete_round = true;
1422 /* After the first round, enable XBZRLE. */
1423 if (migrate_xbzrle()) {
1424 rs->xbzrle_started = true;
1427 /* Didn't find anything this time, but try again on the new block */
1428 return PAGE_TRY_AGAIN;
1429 } else {
1430 /* We've found something */
1431 return PAGE_DIRTY_FOUND;
1436 * unqueue_page: gets a page of the queue
1438 * Helper for 'get_queued_page' - gets a page off the queue
1440 * Returns the block of the page (or NULL if none available)
1442 * @rs: current RAM state
1443 * @offset: used to return the offset within the RAMBlock
1445 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1447 struct RAMSrcPageRequest *entry;
1448 RAMBlock *block = NULL;
1450 if (!postcopy_has_request(rs)) {
1451 return NULL;
1454 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1457 * This should _never_ change even after we take the lock, because no one
1458 * should be taking anything off the request list other than us.
1460 assert(postcopy_has_request(rs));
1462 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1463 block = entry->rb;
1464 *offset = entry->offset;
1466 if (entry->len > TARGET_PAGE_SIZE) {
1467 entry->len -= TARGET_PAGE_SIZE;
1468 entry->offset += TARGET_PAGE_SIZE;
1469 } else {
1470 memory_region_unref(block->mr);
1471 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1472 g_free(entry);
1473 migration_consume_urgent_request();
1476 return block;
1479 #if defined(__linux__)
1481 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1482 * is found, return RAM block pointer and page offset
1484 * Returns pointer to the RAMBlock containing faulting page,
1485 * NULL if no write faults are pending
1487 * @rs: current RAM state
1488 * @offset: page offset from the beginning of the block
1490 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1492 struct uffd_msg uffd_msg;
1493 void *page_address;
1494 RAMBlock *block;
1495 int res;
1497 if (!migrate_background_snapshot()) {
1498 return NULL;
1501 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1502 if (res <= 0) {
1503 return NULL;
1506 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1507 block = qemu_ram_block_from_host(page_address, false, offset);
1508 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1509 return block;
1513 * ram_save_release_protection: release UFFD write protection after
1514 * a range of pages has been saved
1516 * @rs: current RAM state
1517 * @pss: page-search-status structure
1518 * @start_page: index of the first page in the range relative to pss->block
1520 * Returns 0 on success, negative value in case of an error
1522 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1523 unsigned long start_page)
1525 int res = 0;
1527 /* Check if page is from UFFD-managed region. */
1528 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1529 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1530 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1532 /* Flush async buffers before un-protect. */
1533 qemu_fflush(pss->pss_channel);
1534 /* Un-protect memory range. */
1535 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1536 false, false);
1539 return res;
1542 /* ram_write_tracking_available: check if kernel supports required UFFD features
1544 * Returns true if supports, false otherwise
1546 bool ram_write_tracking_available(void)
1548 uint64_t uffd_features;
1549 int res;
1551 res = uffd_query_features(&uffd_features);
1552 return (res == 0 &&
1553 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1556 /* ram_write_tracking_compatible: check if guest configuration is
1557 * compatible with 'write-tracking'
1559 * Returns true if compatible, false otherwise
1561 bool ram_write_tracking_compatible(void)
1563 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1564 int uffd_fd;
1565 RAMBlock *block;
1566 bool ret = false;
1568 /* Open UFFD file descriptor */
1569 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1570 if (uffd_fd < 0) {
1571 return false;
1574 RCU_READ_LOCK_GUARD();
1576 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1577 uint64_t uffd_ioctls;
1579 /* Nothing to do with read-only and MMIO-writable regions */
1580 if (block->mr->readonly || block->mr->rom_device) {
1581 continue;
1583 /* Try to register block memory via UFFD-IO to track writes */
1584 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1585 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1586 goto out;
1588 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1589 goto out;
1592 ret = true;
1594 out:
1595 uffd_close_fd(uffd_fd);
1596 return ret;
1599 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1600 ram_addr_t size)
1602 const ram_addr_t end = offset + size;
1605 * We read one byte of each page; this will preallocate page tables if
1606 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1607 * where no page was populated yet. This might require adaption when
1608 * supporting other mappings, like shmem.
1610 for (; offset < end; offset += block->page_size) {
1611 char tmp = *((char *)block->host + offset);
1613 /* Don't optimize the read out */
1614 asm volatile("" : "+r" (tmp));
1618 static inline int populate_read_section(MemoryRegionSection *section,
1619 void *opaque)
1621 const hwaddr size = int128_get64(section->size);
1622 hwaddr offset = section->offset_within_region;
1623 RAMBlock *block = section->mr->ram_block;
1625 populate_read_range(block, offset, size);
1626 return 0;
1630 * ram_block_populate_read: preallocate page tables and populate pages in the
1631 * RAM block by reading a byte of each page.
1633 * Since it's solely used for userfault_fd WP feature, here we just
1634 * hardcode page size to qemu_real_host_page_size.
1636 * @block: RAM block to populate
1638 static void ram_block_populate_read(RAMBlock *rb)
1641 * Skip populating all pages that fall into a discarded range as managed by
1642 * a RamDiscardManager responsible for the mapped memory region of the
1643 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1644 * must not get populated automatically. We don't have to track
1645 * modifications via userfaultfd WP reliably, because these pages will
1646 * not be part of the migration stream either way -- see
1647 * ramblock_dirty_bitmap_exclude_discarded_pages().
1649 * Note: The result is only stable while migrating (precopy/postcopy).
1651 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1652 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1653 MemoryRegionSection section = {
1654 .mr = rb->mr,
1655 .offset_within_region = 0,
1656 .size = rb->mr->size,
1659 ram_discard_manager_replay_populated(rdm, &section,
1660 populate_read_section, NULL);
1661 } else {
1662 populate_read_range(rb, 0, rb->used_length);
1667 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1669 void ram_write_tracking_prepare(void)
1671 RAMBlock *block;
1673 RCU_READ_LOCK_GUARD();
1675 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1676 /* Nothing to do with read-only and MMIO-writable regions */
1677 if (block->mr->readonly || block->mr->rom_device) {
1678 continue;
1682 * Populate pages of the RAM block before enabling userfault_fd
1683 * write protection.
1685 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1686 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1687 * pages with pte_none() entries in page table.
1689 ram_block_populate_read(block);
1693 static inline int uffd_protect_section(MemoryRegionSection *section,
1694 void *opaque)
1696 const hwaddr size = int128_get64(section->size);
1697 const hwaddr offset = section->offset_within_region;
1698 RAMBlock *rb = section->mr->ram_block;
1699 int uffd_fd = (uintptr_t)opaque;
1701 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1702 false);
1705 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1707 assert(rb->flags & RAM_UF_WRITEPROTECT);
1709 /* See ram_block_populate_read() */
1710 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1711 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1712 MemoryRegionSection section = {
1713 .mr = rb->mr,
1714 .offset_within_region = 0,
1715 .size = rb->mr->size,
1718 return ram_discard_manager_replay_populated(rdm, &section,
1719 uffd_protect_section,
1720 (void *)(uintptr_t)uffd_fd);
1722 return uffd_change_protection(uffd_fd, rb->host,
1723 rb->used_length, true, false);
1727 * ram_write_tracking_start: start UFFD-WP memory tracking
1729 * Returns 0 for success or negative value in case of error
1731 int ram_write_tracking_start(void)
1733 int uffd_fd;
1734 RAMState *rs = ram_state;
1735 RAMBlock *block;
1737 /* Open UFFD file descriptor */
1738 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1739 if (uffd_fd < 0) {
1740 return uffd_fd;
1742 rs->uffdio_fd = uffd_fd;
1744 RCU_READ_LOCK_GUARD();
1746 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1747 /* Nothing to do with read-only and MMIO-writable regions */
1748 if (block->mr->readonly || block->mr->rom_device) {
1749 continue;
1752 /* Register block memory with UFFD to track writes */
1753 if (uffd_register_memory(rs->uffdio_fd, block->host,
1754 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1755 goto fail;
1757 block->flags |= RAM_UF_WRITEPROTECT;
1758 memory_region_ref(block->mr);
1760 /* Apply UFFD write protection to the block memory range */
1761 if (ram_block_uffd_protect(block, uffd_fd)) {
1762 goto fail;
1765 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1766 block->host, block->max_length);
1769 return 0;
1771 fail:
1772 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1774 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1775 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1776 continue;
1778 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1779 /* Cleanup flags and remove reference */
1780 block->flags &= ~RAM_UF_WRITEPROTECT;
1781 memory_region_unref(block->mr);
1784 uffd_close_fd(uffd_fd);
1785 rs->uffdio_fd = -1;
1786 return -1;
1790 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1792 void ram_write_tracking_stop(void)
1794 RAMState *rs = ram_state;
1795 RAMBlock *block;
1797 RCU_READ_LOCK_GUARD();
1799 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1800 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1801 continue;
1803 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1805 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1806 block->host, block->max_length);
1808 /* Cleanup flags and remove reference */
1809 block->flags &= ~RAM_UF_WRITEPROTECT;
1810 memory_region_unref(block->mr);
1813 /* Finally close UFFD file descriptor */
1814 uffd_close_fd(rs->uffdio_fd);
1815 rs->uffdio_fd = -1;
1818 #else
1819 /* No target OS support, stubs just fail or ignore */
1821 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1823 (void) rs;
1824 (void) offset;
1826 return NULL;
1829 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1830 unsigned long start_page)
1832 (void) rs;
1833 (void) pss;
1834 (void) start_page;
1836 return 0;
1839 bool ram_write_tracking_available(void)
1841 return false;
1844 bool ram_write_tracking_compatible(void)
1846 assert(0);
1847 return false;
1850 int ram_write_tracking_start(void)
1852 assert(0);
1853 return -1;
1856 void ram_write_tracking_stop(void)
1858 assert(0);
1860 #endif /* defined(__linux__) */
1863 * get_queued_page: unqueue a page from the postcopy requests
1865 * Skips pages that are already sent (!dirty)
1867 * Returns true if a queued page is found
1869 * @rs: current RAM state
1870 * @pss: data about the state of the current dirty page scan
1872 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1874 RAMBlock *block;
1875 ram_addr_t offset;
1876 bool dirty;
1878 do {
1879 block = unqueue_page(rs, &offset);
1881 * We're sending this page, and since it's postcopy nothing else
1882 * will dirty it, and we must make sure it doesn't get sent again
1883 * even if this queue request was received after the background
1884 * search already sent it.
1886 if (block) {
1887 unsigned long page;
1889 page = offset >> TARGET_PAGE_BITS;
1890 dirty = test_bit(page, block->bmap);
1891 if (!dirty) {
1892 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1893 page);
1894 } else {
1895 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1899 } while (block && !dirty);
1901 if (!block) {
1903 * Poll write faults too if background snapshot is enabled; that's
1904 * when we have vcpus got blocked by the write protected pages.
1906 block = poll_fault_page(rs, &offset);
1909 if (block) {
1911 * We want the background search to continue from the queued page
1912 * since the guest is likely to want other pages near to the page
1913 * it just requested.
1915 pss->block = block;
1916 pss->page = offset >> TARGET_PAGE_BITS;
1919 * This unqueued page would break the "one round" check, even is
1920 * really rare.
1922 pss->complete_round = false;
1925 return !!block;
1929 * migration_page_queue_free: drop any remaining pages in the ram
1930 * request queue
1932 * It should be empty at the end anyway, but in error cases there may
1933 * be some left. in case that there is any page left, we drop it.
1936 static void migration_page_queue_free(RAMState *rs)
1938 struct RAMSrcPageRequest *mspr, *next_mspr;
1939 /* This queue generally should be empty - but in the case of a failed
1940 * migration might have some droppings in.
1942 RCU_READ_LOCK_GUARD();
1943 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1944 memory_region_unref(mspr->rb->mr);
1945 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1946 g_free(mspr);
1951 * ram_save_queue_pages: queue the page for transmission
1953 * A request from postcopy destination for example.
1955 * Returns zero on success or negative on error
1957 * @rbname: Name of the RAMBLock of the request. NULL means the
1958 * same that last one.
1959 * @start: starting address from the start of the RAMBlock
1960 * @len: length (in bytes) to send
1962 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1964 RAMBlock *ramblock;
1965 RAMState *rs = ram_state;
1967 stat64_add(&mig_stats.postcopy_requests, 1);
1968 RCU_READ_LOCK_GUARD();
1970 if (!rbname) {
1971 /* Reuse last RAMBlock */
1972 ramblock = rs->last_req_rb;
1974 if (!ramblock) {
1976 * Shouldn't happen, we can't reuse the last RAMBlock if
1977 * it's the 1st request.
1979 error_report("ram_save_queue_pages no previous block");
1980 return -1;
1982 } else {
1983 ramblock = qemu_ram_block_by_name(rbname);
1985 if (!ramblock) {
1986 /* We shouldn't be asked for a non-existent RAMBlock */
1987 error_report("ram_save_queue_pages no block '%s'", rbname);
1988 return -1;
1990 rs->last_req_rb = ramblock;
1992 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1993 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1994 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1995 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1996 __func__, start, len, ramblock->used_length);
1997 return -1;
2001 * When with postcopy preempt, we send back the page directly in the
2002 * rp-return thread.
2004 if (postcopy_preempt_active()) {
2005 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
2006 size_t page_size = qemu_ram_pagesize(ramblock);
2007 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
2008 int ret = 0;
2010 qemu_mutex_lock(&rs->bitmap_mutex);
2012 pss_init(pss, ramblock, page_start);
2014 * Always use the preempt channel, and make sure it's there. It's
2015 * safe to access without lock, because when rp-thread is running
2016 * we should be the only one who operates on the qemufile
2018 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
2019 assert(pss->pss_channel);
2022 * It must be either one or multiple of host page size. Just
2023 * assert; if something wrong we're mostly split brain anyway.
2025 assert(len % page_size == 0);
2026 while (len) {
2027 if (ram_save_host_page_urgent(pss)) {
2028 error_report("%s: ram_save_host_page_urgent() failed: "
2029 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2030 __func__, ramblock->idstr, start);
2031 ret = -1;
2032 break;
2035 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2036 * will automatically be moved and point to the next host page
2037 * we're going to send, so no need to update here.
2039 * Normally QEMU never sends >1 host page in requests, so
2040 * logically we don't even need that as the loop should only
2041 * run once, but just to be consistent.
2043 len -= page_size;
2045 qemu_mutex_unlock(&rs->bitmap_mutex);
2047 return ret;
2050 struct RAMSrcPageRequest *new_entry =
2051 g_new0(struct RAMSrcPageRequest, 1);
2052 new_entry->rb = ramblock;
2053 new_entry->offset = start;
2054 new_entry->len = len;
2056 memory_region_ref(ramblock->mr);
2057 qemu_mutex_lock(&rs->src_page_req_mutex);
2058 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2059 migration_make_urgent_request();
2060 qemu_mutex_unlock(&rs->src_page_req_mutex);
2062 return 0;
2065 static bool save_page_use_compression(RAMState *rs)
2067 if (!migrate_compress()) {
2068 return false;
2072 * If xbzrle is enabled (e.g., after first round of migration), stop
2073 * using the data compression. In theory, xbzrle can do better than
2074 * compression.
2076 if (rs->xbzrle_started) {
2077 return false;
2080 return true;
2084 * try to compress the page before posting it out, return true if the page
2085 * has been properly handled by compression, otherwise needs other
2086 * paths to handle it
2088 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2089 RAMBlock *block, ram_addr_t offset)
2091 if (!save_page_use_compression(rs)) {
2092 return false;
2096 * When starting the process of a new block, the first page of
2097 * the block should be sent out before other pages in the same
2098 * block, and all the pages in last block should have been sent
2099 * out, keeping this order is important, because the 'cont' flag
2100 * is used to avoid resending the block name.
2102 * We post the fist page as normal page as compression will take
2103 * much CPU resource.
2105 if (block != pss->last_sent_block) {
2106 ram_flush_compressed_data(rs);
2107 return false;
2110 if (compress_page_with_multi_thread(block, offset, send_queued_data) > 0) {
2111 return true;
2114 compression_counters.busy++;
2115 return false;
2119 * ram_save_target_page_legacy: save one target page
2121 * Returns the number of pages written
2123 * @rs: current RAM state
2124 * @pss: data about the page we want to send
2126 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2128 RAMBlock *block = pss->block;
2129 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2130 int res;
2132 if (control_save_page(pss, block, offset, &res)) {
2133 return res;
2136 if (save_compress_page(rs, pss, block, offset)) {
2137 return 1;
2140 res = save_zero_page(pss, pss->pss_channel, block, offset);
2141 if (res > 0) {
2142 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2143 * page would be stale
2145 if (rs->xbzrle_started) {
2146 XBZRLE_cache_lock();
2147 xbzrle_cache_zero_page(rs, block->offset + offset);
2148 XBZRLE_cache_unlock();
2150 return res;
2154 * Do not use multifd in postcopy as one whole host page should be
2155 * placed. Meanwhile postcopy requires atomic update of pages, so even
2156 * if host page size == guest page size the dest guest during run may
2157 * still see partially copied pages which is data corruption.
2159 if (migrate_multifd() && !migration_in_postcopy()) {
2160 return ram_save_multifd_page(pss->pss_channel, block, offset);
2163 return ram_save_page(rs, pss);
2166 /* Should be called before sending a host page */
2167 static void pss_host_page_prepare(PageSearchStatus *pss)
2169 /* How many guest pages are there in one host page? */
2170 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2172 pss->host_page_sending = true;
2173 if (guest_pfns <= 1) {
2175 * This covers both when guest psize == host psize, or when guest
2176 * has larger psize than the host (guest_pfns==0).
2178 * For the latter, we always send one whole guest page per
2179 * iteration of the host page (example: an Alpha VM on x86 host
2180 * will have guest psize 8K while host psize 4K).
2182 pss->host_page_start = pss->page;
2183 pss->host_page_end = pss->page + 1;
2184 } else {
2186 * The host page spans over multiple guest pages, we send them
2187 * within the same host page iteration.
2189 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2190 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2195 * Whether the page pointed by PSS is within the host page being sent.
2196 * Must be called after a previous pss_host_page_prepare().
2198 static bool pss_within_range(PageSearchStatus *pss)
2200 ram_addr_t ram_addr;
2202 assert(pss->host_page_sending);
2204 /* Over host-page boundary? */
2205 if (pss->page >= pss->host_page_end) {
2206 return false;
2209 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2211 return offset_in_ramblock(pss->block, ram_addr);
2214 static void pss_host_page_finish(PageSearchStatus *pss)
2216 pss->host_page_sending = false;
2217 /* This is not needed, but just to reset it */
2218 pss->host_page_start = pss->host_page_end = 0;
2222 * Send an urgent host page specified by `pss'. Need to be called with
2223 * bitmap_mutex held.
2225 * Returns 0 if save host page succeeded, false otherwise.
2227 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2229 bool page_dirty, sent = false;
2230 RAMState *rs = ram_state;
2231 int ret = 0;
2233 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2234 pss_host_page_prepare(pss);
2237 * If precopy is sending the same page, let it be done in precopy, or
2238 * we could send the same page in two channels and none of them will
2239 * receive the whole page.
2241 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2242 trace_postcopy_preempt_hit(pss->block->idstr,
2243 pss->page << TARGET_PAGE_BITS);
2244 return 0;
2247 do {
2248 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2250 if (page_dirty) {
2251 /* Be strict to return code; it must be 1, or what else? */
2252 if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2253 error_report_once("%s: ram_save_target_page failed", __func__);
2254 ret = -1;
2255 goto out;
2257 sent = true;
2259 pss_find_next_dirty(pss);
2260 } while (pss_within_range(pss));
2261 out:
2262 pss_host_page_finish(pss);
2263 /* For urgent requests, flush immediately if sent */
2264 if (sent) {
2265 qemu_fflush(pss->pss_channel);
2267 return ret;
2271 * ram_save_host_page: save a whole host page
2273 * Starting at *offset send pages up to the end of the current host
2274 * page. It's valid for the initial offset to point into the middle of
2275 * a host page in which case the remainder of the hostpage is sent.
2276 * Only dirty target pages are sent. Note that the host page size may
2277 * be a huge page for this block.
2279 * The saving stops at the boundary of the used_length of the block
2280 * if the RAMBlock isn't a multiple of the host page size.
2282 * The caller must be with ram_state.bitmap_mutex held to call this
2283 * function. Note that this function can temporarily release the lock, but
2284 * when the function is returned it'll make sure the lock is still held.
2286 * Returns the number of pages written or negative on error
2288 * @rs: current RAM state
2289 * @pss: data about the page we want to send
2291 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2293 bool page_dirty, preempt_active = postcopy_preempt_active();
2294 int tmppages, pages = 0;
2295 size_t pagesize_bits =
2296 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2297 unsigned long start_page = pss->page;
2298 int res;
2300 if (migrate_ram_is_ignored(pss->block)) {
2301 error_report("block %s should not be migrated !", pss->block->idstr);
2302 return 0;
2305 /* Update host page boundary information */
2306 pss_host_page_prepare(pss);
2308 do {
2309 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2311 /* Check the pages is dirty and if it is send it */
2312 if (page_dirty) {
2314 * Properly yield the lock only in postcopy preempt mode
2315 * because both migration thread and rp-return thread can
2316 * operate on the bitmaps.
2318 if (preempt_active) {
2319 qemu_mutex_unlock(&rs->bitmap_mutex);
2321 tmppages = migration_ops->ram_save_target_page(rs, pss);
2322 if (tmppages >= 0) {
2323 pages += tmppages;
2325 * Allow rate limiting to happen in the middle of huge pages if
2326 * something is sent in the current iteration.
2328 if (pagesize_bits > 1 && tmppages > 0) {
2329 migration_rate_limit();
2332 if (preempt_active) {
2333 qemu_mutex_lock(&rs->bitmap_mutex);
2335 } else {
2336 tmppages = 0;
2339 if (tmppages < 0) {
2340 pss_host_page_finish(pss);
2341 return tmppages;
2344 pss_find_next_dirty(pss);
2345 } while (pss_within_range(pss));
2347 pss_host_page_finish(pss);
2349 res = ram_save_release_protection(rs, pss, start_page);
2350 return (res < 0 ? res : pages);
2354 * ram_find_and_save_block: finds a dirty page and sends it to f
2356 * Called within an RCU critical section.
2358 * Returns the number of pages written where zero means no dirty pages,
2359 * or negative on error
2361 * @rs: current RAM state
2363 * On systems where host-page-size > target-page-size it will send all the
2364 * pages in a host page that are dirty.
2366 static int ram_find_and_save_block(RAMState *rs)
2368 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2369 int pages = 0;
2371 /* No dirty page as there is zero RAM */
2372 if (!rs->ram_bytes_total) {
2373 return pages;
2377 * Always keep last_seen_block/last_page valid during this procedure,
2378 * because find_dirty_block() relies on these values (e.g., we compare
2379 * last_seen_block with pss.block to see whether we searched all the
2380 * ramblocks) to detect the completion of migration. Having NULL value
2381 * of last_seen_block can conditionally cause below loop to run forever.
2383 if (!rs->last_seen_block) {
2384 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2385 rs->last_page = 0;
2388 pss_init(pss, rs->last_seen_block, rs->last_page);
2390 while (true){
2391 if (!get_queued_page(rs, pss)) {
2392 /* priority queue empty, so just search for something dirty */
2393 int res = find_dirty_block(rs, pss);
2394 if (res != PAGE_DIRTY_FOUND) {
2395 if (res == PAGE_ALL_CLEAN) {
2396 break;
2397 } else if (res == PAGE_TRY_AGAIN) {
2398 continue;
2399 } else if (res < 0) {
2400 pages = res;
2401 break;
2405 pages = ram_save_host_page(rs, pss);
2406 if (pages) {
2407 break;
2411 rs->last_seen_block = pss->block;
2412 rs->last_page = pss->page;
2414 return pages;
2417 static uint64_t ram_bytes_total_with_ignored(void)
2419 RAMBlock *block;
2420 uint64_t total = 0;
2422 RCU_READ_LOCK_GUARD();
2424 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2425 total += block->used_length;
2427 return total;
2430 uint64_t ram_bytes_total(void)
2432 RAMBlock *block;
2433 uint64_t total = 0;
2435 RCU_READ_LOCK_GUARD();
2437 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2438 total += block->used_length;
2440 return total;
2443 static void xbzrle_load_setup(void)
2445 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2448 static void xbzrle_load_cleanup(void)
2450 g_free(XBZRLE.decoded_buf);
2451 XBZRLE.decoded_buf = NULL;
2454 static void ram_state_cleanup(RAMState **rsp)
2456 if (*rsp) {
2457 migration_page_queue_free(*rsp);
2458 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2459 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2460 g_free(*rsp);
2461 *rsp = NULL;
2465 static void xbzrle_cleanup(void)
2467 XBZRLE_cache_lock();
2468 if (XBZRLE.cache) {
2469 cache_fini(XBZRLE.cache);
2470 g_free(XBZRLE.encoded_buf);
2471 g_free(XBZRLE.current_buf);
2472 g_free(XBZRLE.zero_target_page);
2473 XBZRLE.cache = NULL;
2474 XBZRLE.encoded_buf = NULL;
2475 XBZRLE.current_buf = NULL;
2476 XBZRLE.zero_target_page = NULL;
2478 XBZRLE_cache_unlock();
2481 static void ram_save_cleanup(void *opaque)
2483 RAMState **rsp = opaque;
2484 RAMBlock *block;
2486 /* We don't use dirty log with background snapshots */
2487 if (!migrate_background_snapshot()) {
2488 /* caller have hold iothread lock or is in a bh, so there is
2489 * no writing race against the migration bitmap
2491 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2493 * do not stop dirty log without starting it, since
2494 * memory_global_dirty_log_stop will assert that
2495 * memory_global_dirty_log_start/stop used in pairs
2497 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2501 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2502 g_free(block->clear_bmap);
2503 block->clear_bmap = NULL;
2504 g_free(block->bmap);
2505 block->bmap = NULL;
2508 xbzrle_cleanup();
2509 compress_threads_save_cleanup();
2510 ram_state_cleanup(rsp);
2511 g_free(migration_ops);
2512 migration_ops = NULL;
2515 static void ram_state_reset(RAMState *rs)
2517 int i;
2519 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2520 rs->pss[i].last_sent_block = NULL;
2523 rs->last_seen_block = NULL;
2524 rs->last_page = 0;
2525 rs->last_version = ram_list.version;
2526 rs->xbzrle_started = false;
2529 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2531 /* **** functions for postcopy ***** */
2533 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2535 struct RAMBlock *block;
2537 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2538 unsigned long *bitmap = block->bmap;
2539 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2540 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2542 while (run_start < range) {
2543 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2544 ram_discard_range(block->idstr,
2545 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2546 ((ram_addr_t)(run_end - run_start))
2547 << TARGET_PAGE_BITS);
2548 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2554 * postcopy_send_discard_bm_ram: discard a RAMBlock
2556 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2558 * @ms: current migration state
2559 * @block: RAMBlock to discard
2561 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2563 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2564 unsigned long current;
2565 unsigned long *bitmap = block->bmap;
2567 for (current = 0; current < end; ) {
2568 unsigned long one = find_next_bit(bitmap, end, current);
2569 unsigned long zero, discard_length;
2571 if (one >= end) {
2572 break;
2575 zero = find_next_zero_bit(bitmap, end, one + 1);
2577 if (zero >= end) {
2578 discard_length = end - one;
2579 } else {
2580 discard_length = zero - one;
2582 postcopy_discard_send_range(ms, one, discard_length);
2583 current = one + discard_length;
2587 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2590 * postcopy_each_ram_send_discard: discard all RAMBlocks
2592 * Utility for the outgoing postcopy code.
2593 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2594 * passing it bitmap indexes and name.
2595 * (qemu_ram_foreach_block ends up passing unscaled lengths
2596 * which would mean postcopy code would have to deal with target page)
2598 * @ms: current migration state
2600 static void postcopy_each_ram_send_discard(MigrationState *ms)
2602 struct RAMBlock *block;
2604 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2605 postcopy_discard_send_init(ms, block->idstr);
2608 * Deal with TPS != HPS and huge pages. It discard any partially sent
2609 * host-page size chunks, mark any partially dirty host-page size
2610 * chunks as all dirty. In this case the host-page is the host-page
2611 * for the particular RAMBlock, i.e. it might be a huge page.
2613 postcopy_chunk_hostpages_pass(ms, block);
2616 * Postcopy sends chunks of bitmap over the wire, but it
2617 * just needs indexes at this point, avoids it having
2618 * target page specific code.
2620 postcopy_send_discard_bm_ram(ms, block);
2621 postcopy_discard_send_finish(ms);
2626 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2628 * Helper for postcopy_chunk_hostpages; it's called twice to
2629 * canonicalize the two bitmaps, that are similar, but one is
2630 * inverted.
2632 * Postcopy requires that all target pages in a hostpage are dirty or
2633 * clean, not a mix. This function canonicalizes the bitmaps.
2635 * @ms: current migration state
2636 * @block: block that contains the page we want to canonicalize
2638 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2640 RAMState *rs = ram_state;
2641 unsigned long *bitmap = block->bmap;
2642 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2643 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2644 unsigned long run_start;
2646 if (block->page_size == TARGET_PAGE_SIZE) {
2647 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2648 return;
2651 /* Find a dirty page */
2652 run_start = find_next_bit(bitmap, pages, 0);
2654 while (run_start < pages) {
2657 * If the start of this run of pages is in the middle of a host
2658 * page, then we need to fixup this host page.
2660 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2661 /* Find the end of this run */
2662 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2664 * If the end isn't at the start of a host page, then the
2665 * run doesn't finish at the end of a host page
2666 * and we need to discard.
2670 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2671 unsigned long page;
2672 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2673 host_ratio);
2674 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2676 /* Clean up the bitmap */
2677 for (page = fixup_start_addr;
2678 page < fixup_start_addr + host_ratio; page++) {
2680 * Remark them as dirty, updating the count for any pages
2681 * that weren't previously dirty.
2683 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2687 /* Find the next dirty page for the next iteration */
2688 run_start = find_next_bit(bitmap, pages, run_start);
2693 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2695 * Transmit the set of pages to be discarded after precopy to the target
2696 * these are pages that:
2697 * a) Have been previously transmitted but are now dirty again
2698 * b) Pages that have never been transmitted, this ensures that
2699 * any pages on the destination that have been mapped by background
2700 * tasks get discarded (transparent huge pages is the specific concern)
2701 * Hopefully this is pretty sparse
2703 * @ms: current migration state
2705 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2707 RAMState *rs = ram_state;
2709 RCU_READ_LOCK_GUARD();
2711 /* This should be our last sync, the src is now paused */
2712 migration_bitmap_sync(rs, false);
2714 /* Easiest way to make sure we don't resume in the middle of a host-page */
2715 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2716 rs->last_seen_block = NULL;
2717 rs->last_page = 0;
2719 postcopy_each_ram_send_discard(ms);
2721 trace_ram_postcopy_send_discard_bitmap();
2725 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2727 * Returns zero on success
2729 * @rbname: name of the RAMBlock of the request. NULL means the
2730 * same that last one.
2731 * @start: RAMBlock starting page
2732 * @length: RAMBlock size
2734 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2736 trace_ram_discard_range(rbname, start, length);
2738 RCU_READ_LOCK_GUARD();
2739 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2741 if (!rb) {
2742 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2743 return -1;
2747 * On source VM, we don't need to update the received bitmap since
2748 * we don't even have one.
2750 if (rb->receivedmap) {
2751 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2752 length >> qemu_target_page_bits());
2755 return ram_block_discard_range(rb, start, length);
2759 * For every allocation, we will try not to crash the VM if the
2760 * allocation failed.
2762 static int xbzrle_init(void)
2764 Error *local_err = NULL;
2766 if (!migrate_xbzrle()) {
2767 return 0;
2770 XBZRLE_cache_lock();
2772 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2773 if (!XBZRLE.zero_target_page) {
2774 error_report("%s: Error allocating zero page", __func__);
2775 goto err_out;
2778 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2779 TARGET_PAGE_SIZE, &local_err);
2780 if (!XBZRLE.cache) {
2781 error_report_err(local_err);
2782 goto free_zero_page;
2785 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2786 if (!XBZRLE.encoded_buf) {
2787 error_report("%s: Error allocating encoded_buf", __func__);
2788 goto free_cache;
2791 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2792 if (!XBZRLE.current_buf) {
2793 error_report("%s: Error allocating current_buf", __func__);
2794 goto free_encoded_buf;
2797 /* We are all good */
2798 XBZRLE_cache_unlock();
2799 return 0;
2801 free_encoded_buf:
2802 g_free(XBZRLE.encoded_buf);
2803 XBZRLE.encoded_buf = NULL;
2804 free_cache:
2805 cache_fini(XBZRLE.cache);
2806 XBZRLE.cache = NULL;
2807 free_zero_page:
2808 g_free(XBZRLE.zero_target_page);
2809 XBZRLE.zero_target_page = NULL;
2810 err_out:
2811 XBZRLE_cache_unlock();
2812 return -ENOMEM;
2815 static int ram_state_init(RAMState **rsp)
2817 *rsp = g_try_new0(RAMState, 1);
2819 if (!*rsp) {
2820 error_report("%s: Init ramstate fail", __func__);
2821 return -1;
2824 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2825 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2826 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2827 (*rsp)->ram_bytes_total = ram_bytes_total();
2830 * Count the total number of pages used by ram blocks not including any
2831 * gaps due to alignment or unplugs.
2832 * This must match with the initial values of dirty bitmap.
2834 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2835 ram_state_reset(*rsp);
2837 return 0;
2840 static void ram_list_init_bitmaps(void)
2842 MigrationState *ms = migrate_get_current();
2843 RAMBlock *block;
2844 unsigned long pages;
2845 uint8_t shift;
2847 /* Skip setting bitmap if there is no RAM */
2848 if (ram_bytes_total()) {
2849 shift = ms->clear_bitmap_shift;
2850 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2851 error_report("clear_bitmap_shift (%u) too big, using "
2852 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2853 shift = CLEAR_BITMAP_SHIFT_MAX;
2854 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2855 error_report("clear_bitmap_shift (%u) too small, using "
2856 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2857 shift = CLEAR_BITMAP_SHIFT_MIN;
2860 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2861 pages = block->max_length >> TARGET_PAGE_BITS;
2863 * The initial dirty bitmap for migration must be set with all
2864 * ones to make sure we'll migrate every guest RAM page to
2865 * destination.
2866 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2867 * new migration after a failed migration, ram_list.
2868 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2869 * guest memory.
2871 block->bmap = bitmap_new(pages);
2872 bitmap_set(block->bmap, 0, pages);
2873 block->clear_bmap_shift = shift;
2874 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2879 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2881 unsigned long pages;
2882 RAMBlock *rb;
2884 RCU_READ_LOCK_GUARD();
2886 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2887 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2888 rs->migration_dirty_pages -= pages;
2892 static void ram_init_bitmaps(RAMState *rs)
2894 /* For memory_global_dirty_log_start below. */
2895 qemu_mutex_lock_iothread();
2896 qemu_mutex_lock_ramlist();
2898 WITH_RCU_READ_LOCK_GUARD() {
2899 ram_list_init_bitmaps();
2900 /* We don't use dirty log with background snapshots */
2901 if (!migrate_background_snapshot()) {
2902 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2903 migration_bitmap_sync_precopy(rs, false);
2906 qemu_mutex_unlock_ramlist();
2907 qemu_mutex_unlock_iothread();
2910 * After an eventual first bitmap sync, fixup the initial bitmap
2911 * containing all 1s to exclude any discarded pages from migration.
2913 migration_bitmap_clear_discarded_pages(rs);
2916 static int ram_init_all(RAMState **rsp)
2918 if (ram_state_init(rsp)) {
2919 return -1;
2922 if (xbzrle_init()) {
2923 ram_state_cleanup(rsp);
2924 return -1;
2927 ram_init_bitmaps(*rsp);
2929 return 0;
2932 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2934 RAMBlock *block;
2935 uint64_t pages = 0;
2938 * Postcopy is not using xbzrle/compression, so no need for that.
2939 * Also, since source are already halted, we don't need to care
2940 * about dirty page logging as well.
2943 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2944 pages += bitmap_count_one(block->bmap,
2945 block->used_length >> TARGET_PAGE_BITS);
2948 /* This may not be aligned with current bitmaps. Recalculate. */
2949 rs->migration_dirty_pages = pages;
2951 ram_state_reset(rs);
2953 /* Update RAMState cache of output QEMUFile */
2954 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2956 trace_ram_state_resume_prepare(pages);
2960 * This function clears bits of the free pages reported by the caller from the
2961 * migration dirty bitmap. @addr is the host address corresponding to the
2962 * start of the continuous guest free pages, and @len is the total bytes of
2963 * those pages.
2965 void qemu_guest_free_page_hint(void *addr, size_t len)
2967 RAMBlock *block;
2968 ram_addr_t offset;
2969 size_t used_len, start, npages;
2970 MigrationState *s = migrate_get_current();
2972 /* This function is currently expected to be used during live migration */
2973 if (!migration_is_setup_or_active(s->state)) {
2974 return;
2977 for (; len > 0; len -= used_len, addr += used_len) {
2978 block = qemu_ram_block_from_host(addr, false, &offset);
2979 if (unlikely(!block || offset >= block->used_length)) {
2981 * The implementation might not support RAMBlock resize during
2982 * live migration, but it could happen in theory with future
2983 * updates. So we add a check here to capture that case.
2985 error_report_once("%s unexpected error", __func__);
2986 return;
2989 if (len <= block->used_length - offset) {
2990 used_len = len;
2991 } else {
2992 used_len = block->used_length - offset;
2995 start = offset >> TARGET_PAGE_BITS;
2996 npages = used_len >> TARGET_PAGE_BITS;
2998 qemu_mutex_lock(&ram_state->bitmap_mutex);
3000 * The skipped free pages are equavalent to be sent from clear_bmap's
3001 * perspective, so clear the bits from the memory region bitmap which
3002 * are initially set. Otherwise those skipped pages will be sent in
3003 * the next round after syncing from the memory region bitmap.
3005 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
3006 ram_state->migration_dirty_pages -=
3007 bitmap_count_one_with_offset(block->bmap, start, npages);
3008 bitmap_clear(block->bmap, start, npages);
3009 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3014 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3015 * long-running RCU critical section. When rcu-reclaims in the code
3016 * start to become numerous it will be necessary to reduce the
3017 * granularity of these critical sections.
3021 * ram_save_setup: Setup RAM for migration
3023 * Returns zero to indicate success and negative for error
3025 * @f: QEMUFile where to send the data
3026 * @opaque: RAMState pointer
3028 static int ram_save_setup(QEMUFile *f, void *opaque)
3030 RAMState **rsp = opaque;
3031 RAMBlock *block;
3032 int ret;
3034 if (compress_threads_save_setup()) {
3035 return -1;
3038 /* migration has already setup the bitmap, reuse it. */
3039 if (!migration_in_colo_state()) {
3040 if (ram_init_all(rsp) != 0) {
3041 compress_threads_save_cleanup();
3042 return -1;
3045 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3047 WITH_RCU_READ_LOCK_GUARD() {
3048 qemu_put_be64(f, ram_bytes_total_with_ignored()
3049 | RAM_SAVE_FLAG_MEM_SIZE);
3051 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3052 qemu_put_byte(f, strlen(block->idstr));
3053 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3054 qemu_put_be64(f, block->used_length);
3055 if (migrate_postcopy_ram() && block->page_size !=
3056 qemu_host_page_size) {
3057 qemu_put_be64(f, block->page_size);
3059 if (migrate_ignore_shared()) {
3060 qemu_put_be64(f, block->mr->addr);
3065 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3066 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3068 migration_ops = g_malloc0(sizeof(MigrationOps));
3069 migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3070 ret = multifd_send_sync_main(f);
3071 if (ret < 0) {
3072 return ret;
3075 if (!migrate_multifd_flush_after_each_section()) {
3076 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3079 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3080 qemu_fflush(f);
3082 return 0;
3086 * ram_save_iterate: iterative stage for migration
3088 * Returns zero to indicate success and negative for error
3090 * @f: QEMUFile where to send the data
3091 * @opaque: RAMState pointer
3093 static int ram_save_iterate(QEMUFile *f, void *opaque)
3095 RAMState **temp = opaque;
3096 RAMState *rs = *temp;
3097 int ret = 0;
3098 int i;
3099 int64_t t0;
3100 int done = 0;
3102 if (blk_mig_bulk_active()) {
3103 /* Avoid transferring ram during bulk phase of block migration as
3104 * the bulk phase will usually take a long time and transferring
3105 * ram updates during that time is pointless. */
3106 goto out;
3110 * We'll take this lock a little bit long, but it's okay for two reasons.
3111 * Firstly, the only possible other thread to take it is who calls
3112 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3113 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3114 * guarantees that we'll at least released it in a regular basis.
3116 qemu_mutex_lock(&rs->bitmap_mutex);
3117 WITH_RCU_READ_LOCK_GUARD() {
3118 if (ram_list.version != rs->last_version) {
3119 ram_state_reset(rs);
3122 /* Read version before ram_list.blocks */
3123 smp_rmb();
3125 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3127 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3128 i = 0;
3129 while ((ret = migration_rate_exceeded(f)) == 0 ||
3130 postcopy_has_request(rs)) {
3131 int pages;
3133 if (qemu_file_get_error(f)) {
3134 break;
3137 pages = ram_find_and_save_block(rs);
3138 /* no more pages to sent */
3139 if (pages == 0) {
3140 done = 1;
3141 break;
3144 if (pages < 0) {
3145 qemu_file_set_error(f, pages);
3146 break;
3149 rs->target_page_count += pages;
3152 * During postcopy, it is necessary to make sure one whole host
3153 * page is sent in one chunk.
3155 if (migrate_postcopy_ram()) {
3156 ram_flush_compressed_data(rs);
3160 * we want to check in the 1st loop, just in case it was the 1st
3161 * time and we had to sync the dirty bitmap.
3162 * qemu_clock_get_ns() is a bit expensive, so we only check each
3163 * some iterations
3165 if ((i & 63) == 0) {
3166 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3167 1000000;
3168 if (t1 > MAX_WAIT) {
3169 trace_ram_save_iterate_big_wait(t1, i);
3170 break;
3173 i++;
3176 qemu_mutex_unlock(&rs->bitmap_mutex);
3179 * Must occur before EOS (or any QEMUFile operation)
3180 * because of RDMA protocol.
3182 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3184 out:
3185 if (ret >= 0
3186 && migration_is_setup_or_active(migrate_get_current()->state)) {
3187 if (migrate_multifd_flush_after_each_section()) {
3188 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3189 if (ret < 0) {
3190 return ret;
3194 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3195 qemu_fflush(f);
3196 ram_transferred_add(8);
3198 ret = qemu_file_get_error(f);
3200 if (ret < 0) {
3201 return ret;
3204 return done;
3208 * ram_save_complete: function called to send the remaining amount of ram
3210 * Returns zero to indicate success or negative on error
3212 * Called with iothread lock
3214 * @f: QEMUFile where to send the data
3215 * @opaque: RAMState pointer
3217 static int ram_save_complete(QEMUFile *f, void *opaque)
3219 RAMState **temp = opaque;
3220 RAMState *rs = *temp;
3221 int ret = 0;
3223 rs->last_stage = !migration_in_colo_state();
3225 WITH_RCU_READ_LOCK_GUARD() {
3226 if (!migration_in_postcopy()) {
3227 migration_bitmap_sync_precopy(rs, true);
3230 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3232 /* try transferring iterative blocks of memory */
3234 /* flush all remaining blocks regardless of rate limiting */
3235 qemu_mutex_lock(&rs->bitmap_mutex);
3236 while (true) {
3237 int pages;
3239 pages = ram_find_and_save_block(rs);
3240 /* no more blocks to sent */
3241 if (pages == 0) {
3242 break;
3244 if (pages < 0) {
3245 ret = pages;
3246 break;
3249 qemu_mutex_unlock(&rs->bitmap_mutex);
3251 ram_flush_compressed_data(rs);
3252 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3255 if (ret < 0) {
3256 return ret;
3259 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3260 if (ret < 0) {
3261 return ret;
3264 if (!migrate_multifd_flush_after_each_section()) {
3265 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3267 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3268 qemu_fflush(f);
3270 return 0;
3273 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3274 uint64_t *can_postcopy)
3276 RAMState **temp = opaque;
3277 RAMState *rs = *temp;
3279 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3281 if (migrate_postcopy_ram()) {
3282 /* We can do postcopy, and all the data is postcopiable */
3283 *can_postcopy += remaining_size;
3284 } else {
3285 *must_precopy += remaining_size;
3289 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3290 uint64_t *can_postcopy)
3292 MigrationState *s = migrate_get_current();
3293 RAMState **temp = opaque;
3294 RAMState *rs = *temp;
3296 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3298 if (!migration_in_postcopy() && remaining_size < s->threshold_size) {
3299 qemu_mutex_lock_iothread();
3300 WITH_RCU_READ_LOCK_GUARD() {
3301 migration_bitmap_sync_precopy(rs, false);
3303 qemu_mutex_unlock_iothread();
3304 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3307 if (migrate_postcopy_ram()) {
3308 /* We can do postcopy, and all the data is postcopiable */
3309 *can_postcopy += remaining_size;
3310 } else {
3311 *must_precopy += remaining_size;
3315 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3317 unsigned int xh_len;
3318 int xh_flags;
3319 uint8_t *loaded_data;
3321 /* extract RLE header */
3322 xh_flags = qemu_get_byte(f);
3323 xh_len = qemu_get_be16(f);
3325 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3326 error_report("Failed to load XBZRLE page - wrong compression!");
3327 return -1;
3330 if (xh_len > TARGET_PAGE_SIZE) {
3331 error_report("Failed to load XBZRLE page - len overflow!");
3332 return -1;
3334 loaded_data = XBZRLE.decoded_buf;
3335 /* load data and decode */
3336 /* it can change loaded_data to point to an internal buffer */
3337 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3339 /* decode RLE */
3340 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3341 TARGET_PAGE_SIZE) == -1) {
3342 error_report("Failed to load XBZRLE page - decode error!");
3343 return -1;
3346 return 0;
3350 * ram_block_from_stream: read a RAMBlock id from the migration stream
3352 * Must be called from within a rcu critical section.
3354 * Returns a pointer from within the RCU-protected ram_list.
3356 * @mis: the migration incoming state pointer
3357 * @f: QEMUFile where to read the data from
3358 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3359 * @channel: the channel we're using
3361 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3362 QEMUFile *f, int flags,
3363 int channel)
3365 RAMBlock *block = mis->last_recv_block[channel];
3366 char id[256];
3367 uint8_t len;
3369 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3370 if (!block) {
3371 error_report("Ack, bad migration stream!");
3372 return NULL;
3374 return block;
3377 len = qemu_get_byte(f);
3378 qemu_get_buffer(f, (uint8_t *)id, len);
3379 id[len] = 0;
3381 block = qemu_ram_block_by_name(id);
3382 if (!block) {
3383 error_report("Can't find block %s", id);
3384 return NULL;
3387 if (migrate_ram_is_ignored(block)) {
3388 error_report("block %s should not be migrated !", id);
3389 return NULL;
3392 mis->last_recv_block[channel] = block;
3394 return block;
3397 static inline void *host_from_ram_block_offset(RAMBlock *block,
3398 ram_addr_t offset)
3400 if (!offset_in_ramblock(block, offset)) {
3401 return NULL;
3404 return block->host + offset;
3407 static void *host_page_from_ram_block_offset(RAMBlock *block,
3408 ram_addr_t offset)
3410 /* Note: Explicitly no check against offset_in_ramblock(). */
3411 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3412 block->page_size);
3415 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3416 ram_addr_t offset)
3418 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3421 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3423 qemu_mutex_lock(&ram_state->bitmap_mutex);
3424 for (int i = 0; i < pages; i++) {
3425 ram_addr_t offset = normal[i];
3426 ram_state->migration_dirty_pages += !test_and_set_bit(
3427 offset >> TARGET_PAGE_BITS,
3428 block->bmap);
3430 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3433 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3434 ram_addr_t offset, bool record_bitmap)
3436 if (!offset_in_ramblock(block, offset)) {
3437 return NULL;
3439 if (!block->colo_cache) {
3440 error_report("%s: colo_cache is NULL in block :%s",
3441 __func__, block->idstr);
3442 return NULL;
3446 * During colo checkpoint, we need bitmap of these migrated pages.
3447 * It help us to decide which pages in ram cache should be flushed
3448 * into VM's RAM later.
3450 if (record_bitmap) {
3451 colo_record_bitmap(block, &offset, 1);
3453 return block->colo_cache + offset;
3457 * ram_handle_compressed: handle the zero page case
3459 * If a page (or a whole RDMA chunk) has been
3460 * determined to be zero, then zap it.
3462 * @host: host address for the zero page
3463 * @ch: what the page is filled from. We only support zero
3464 * @size: size of the zero page
3466 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3468 if (ch != 0 || !buffer_is_zero(host, size)) {
3469 memset(host, ch, size);
3473 static void colo_init_ram_state(void)
3475 ram_state_init(&ram_state);
3479 * colo cache: this is for secondary VM, we cache the whole
3480 * memory of the secondary VM, it is need to hold the global lock
3481 * to call this helper.
3483 int colo_init_ram_cache(void)
3485 RAMBlock *block;
3487 WITH_RCU_READ_LOCK_GUARD() {
3488 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3489 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3490 NULL, false, false);
3491 if (!block->colo_cache) {
3492 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3493 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3494 block->used_length);
3495 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3496 if (block->colo_cache) {
3497 qemu_anon_ram_free(block->colo_cache, block->used_length);
3498 block->colo_cache = NULL;
3501 return -errno;
3503 if (!machine_dump_guest_core(current_machine)) {
3504 qemu_madvise(block->colo_cache, block->used_length,
3505 QEMU_MADV_DONTDUMP);
3511 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3512 * with to decide which page in cache should be flushed into SVM's RAM. Here
3513 * we use the same name 'ram_bitmap' as for migration.
3515 if (ram_bytes_total()) {
3516 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3517 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3518 block->bmap = bitmap_new(pages);
3522 colo_init_ram_state();
3523 return 0;
3526 /* TODO: duplicated with ram_init_bitmaps */
3527 void colo_incoming_start_dirty_log(void)
3529 RAMBlock *block = NULL;
3530 /* For memory_global_dirty_log_start below. */
3531 qemu_mutex_lock_iothread();
3532 qemu_mutex_lock_ramlist();
3534 memory_global_dirty_log_sync(false);
3535 WITH_RCU_READ_LOCK_GUARD() {
3536 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3537 ramblock_sync_dirty_bitmap(ram_state, block);
3538 /* Discard this dirty bitmap record */
3539 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3541 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3543 ram_state->migration_dirty_pages = 0;
3544 qemu_mutex_unlock_ramlist();
3545 qemu_mutex_unlock_iothread();
3548 /* It is need to hold the global lock to call this helper */
3549 void colo_release_ram_cache(void)
3551 RAMBlock *block;
3553 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3554 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3555 g_free(block->bmap);
3556 block->bmap = NULL;
3559 WITH_RCU_READ_LOCK_GUARD() {
3560 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3561 if (block->colo_cache) {
3562 qemu_anon_ram_free(block->colo_cache, block->used_length);
3563 block->colo_cache = NULL;
3567 ram_state_cleanup(&ram_state);
3571 * ram_load_setup: Setup RAM for migration incoming side
3573 * Returns zero to indicate success and negative for error
3575 * @f: QEMUFile where to receive the data
3576 * @opaque: RAMState pointer
3578 static int ram_load_setup(QEMUFile *f, void *opaque)
3580 xbzrle_load_setup();
3581 ramblock_recv_map_init();
3583 return 0;
3586 static int ram_load_cleanup(void *opaque)
3588 RAMBlock *rb;
3590 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3591 qemu_ram_block_writeback(rb);
3594 xbzrle_load_cleanup();
3596 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3597 g_free(rb->receivedmap);
3598 rb->receivedmap = NULL;
3601 return 0;
3605 * ram_postcopy_incoming_init: allocate postcopy data structures
3607 * Returns 0 for success and negative if there was one error
3609 * @mis: current migration incoming state
3611 * Allocate data structures etc needed by incoming migration with
3612 * postcopy-ram. postcopy-ram's similarly names
3613 * postcopy_ram_incoming_init does the work.
3615 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3617 return postcopy_ram_incoming_init(mis);
3621 * ram_load_postcopy: load a page in postcopy case
3623 * Returns 0 for success or -errno in case of error
3625 * Called in postcopy mode by ram_load().
3626 * rcu_read_lock is taken prior to this being called.
3628 * @f: QEMUFile where to send the data
3629 * @channel: the channel to use for loading
3631 int ram_load_postcopy(QEMUFile *f, int channel)
3633 int flags = 0, ret = 0;
3634 bool place_needed = false;
3635 bool matches_target_page_size = false;
3636 MigrationIncomingState *mis = migration_incoming_get_current();
3637 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3639 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3640 ram_addr_t addr;
3641 void *page_buffer = NULL;
3642 void *place_source = NULL;
3643 RAMBlock *block = NULL;
3644 uint8_t ch;
3645 int len;
3647 addr = qemu_get_be64(f);
3650 * If qemu file error, we should stop here, and then "addr"
3651 * may be invalid
3653 ret = qemu_file_get_error(f);
3654 if (ret) {
3655 break;
3658 flags = addr & ~TARGET_PAGE_MASK;
3659 addr &= TARGET_PAGE_MASK;
3661 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3662 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3663 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3664 block = ram_block_from_stream(mis, f, flags, channel);
3665 if (!block) {
3666 ret = -EINVAL;
3667 break;
3671 * Relying on used_length is racy and can result in false positives.
3672 * We might place pages beyond used_length in case RAM was shrunk
3673 * while in postcopy, which is fine - trying to place via
3674 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3676 if (!block->host || addr >= block->postcopy_length) {
3677 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3678 ret = -EINVAL;
3679 break;
3681 tmp_page->target_pages++;
3682 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3684 * Postcopy requires that we place whole host pages atomically;
3685 * these may be huge pages for RAMBlocks that are backed by
3686 * hugetlbfs.
3687 * To make it atomic, the data is read into a temporary page
3688 * that's moved into place later.
3689 * The migration protocol uses, possibly smaller, target-pages
3690 * however the source ensures it always sends all the components
3691 * of a host page in one chunk.
3693 page_buffer = tmp_page->tmp_huge_page +
3694 host_page_offset_from_ram_block_offset(block, addr);
3695 /* If all TP are zero then we can optimise the place */
3696 if (tmp_page->target_pages == 1) {
3697 tmp_page->host_addr =
3698 host_page_from_ram_block_offset(block, addr);
3699 } else if (tmp_page->host_addr !=
3700 host_page_from_ram_block_offset(block, addr)) {
3701 /* not the 1st TP within the HP */
3702 error_report("Non-same host page detected on channel %d: "
3703 "Target host page %p, received host page %p "
3704 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3705 channel, tmp_page->host_addr,
3706 host_page_from_ram_block_offset(block, addr),
3707 block->idstr, addr, tmp_page->target_pages);
3708 ret = -EINVAL;
3709 break;
3713 * If it's the last part of a host page then we place the host
3714 * page
3716 if (tmp_page->target_pages ==
3717 (block->page_size / TARGET_PAGE_SIZE)) {
3718 place_needed = true;
3720 place_source = tmp_page->tmp_huge_page;
3723 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3724 case RAM_SAVE_FLAG_ZERO:
3725 ch = qemu_get_byte(f);
3727 * Can skip to set page_buffer when
3728 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3730 if (ch || !matches_target_page_size) {
3731 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3733 if (ch) {
3734 tmp_page->all_zero = false;
3736 break;
3738 case RAM_SAVE_FLAG_PAGE:
3739 tmp_page->all_zero = false;
3740 if (!matches_target_page_size) {
3741 /* For huge pages, we always use temporary buffer */
3742 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3743 } else {
3745 * For small pages that matches target page size, we
3746 * avoid the qemu_file copy. Instead we directly use
3747 * the buffer of QEMUFile to place the page. Note: we
3748 * cannot do any QEMUFile operation before using that
3749 * buffer to make sure the buffer is valid when
3750 * placing the page.
3752 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3753 TARGET_PAGE_SIZE);
3755 break;
3756 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3757 tmp_page->all_zero = false;
3758 len = qemu_get_be32(f);
3759 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3760 error_report("Invalid compressed data length: %d", len);
3761 ret = -EINVAL;
3762 break;
3764 decompress_data_with_multi_threads(f, page_buffer, len);
3765 break;
3766 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3767 multifd_recv_sync_main();
3768 break;
3769 case RAM_SAVE_FLAG_EOS:
3770 /* normal exit */
3771 if (migrate_multifd_flush_after_each_section()) {
3772 multifd_recv_sync_main();
3774 break;
3775 default:
3776 error_report("Unknown combination of migration flags: 0x%x"
3777 " (postcopy mode)", flags);
3778 ret = -EINVAL;
3779 break;
3782 /* Got the whole host page, wait for decompress before placing. */
3783 if (place_needed) {
3784 ret |= wait_for_decompress_done();
3787 /* Detect for any possible file errors */
3788 if (!ret && qemu_file_get_error(f)) {
3789 ret = qemu_file_get_error(f);
3792 if (!ret && place_needed) {
3793 if (tmp_page->all_zero) {
3794 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3795 } else {
3796 ret = postcopy_place_page(mis, tmp_page->host_addr,
3797 place_source, block);
3799 place_needed = false;
3800 postcopy_temp_page_reset(tmp_page);
3804 return ret;
3807 static bool postcopy_is_running(void)
3809 PostcopyState ps = postcopy_state_get();
3810 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3814 * Flush content of RAM cache into SVM's memory.
3815 * Only flush the pages that be dirtied by PVM or SVM or both.
3817 void colo_flush_ram_cache(void)
3819 RAMBlock *block = NULL;
3820 void *dst_host;
3821 void *src_host;
3822 unsigned long offset = 0;
3824 memory_global_dirty_log_sync(false);
3825 qemu_mutex_lock(&ram_state->bitmap_mutex);
3826 WITH_RCU_READ_LOCK_GUARD() {
3827 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3828 ramblock_sync_dirty_bitmap(ram_state, block);
3832 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3833 WITH_RCU_READ_LOCK_GUARD() {
3834 block = QLIST_FIRST_RCU(&ram_list.blocks);
3836 while (block) {
3837 unsigned long num = 0;
3839 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3840 if (!offset_in_ramblock(block,
3841 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3842 offset = 0;
3843 num = 0;
3844 block = QLIST_NEXT_RCU(block, next);
3845 } else {
3846 unsigned long i = 0;
3848 for (i = 0; i < num; i++) {
3849 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3851 dst_host = block->host
3852 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3853 src_host = block->colo_cache
3854 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3855 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3856 offset += num;
3860 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3861 trace_colo_flush_ram_cache_end();
3865 * ram_load_precopy: load pages in precopy case
3867 * Returns 0 for success or -errno in case of error
3869 * Called in precopy mode by ram_load().
3870 * rcu_read_lock is taken prior to this being called.
3872 * @f: QEMUFile where to send the data
3874 static int ram_load_precopy(QEMUFile *f)
3876 MigrationIncomingState *mis = migration_incoming_get_current();
3877 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3878 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3879 bool postcopy_advised = migration_incoming_postcopy_advised();
3880 if (!migrate_compress()) {
3881 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3884 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3885 ram_addr_t addr, total_ram_bytes;
3886 void *host = NULL, *host_bak = NULL;
3887 uint8_t ch;
3890 * Yield periodically to let main loop run, but an iteration of
3891 * the main loop is expensive, so do it each some iterations
3893 if ((i & 32767) == 0 && qemu_in_coroutine()) {
3894 aio_co_schedule(qemu_get_current_aio_context(),
3895 qemu_coroutine_self());
3896 qemu_coroutine_yield();
3898 i++;
3900 addr = qemu_get_be64(f);
3901 flags = addr & ~TARGET_PAGE_MASK;
3902 addr &= TARGET_PAGE_MASK;
3904 if (flags & invalid_flags) {
3905 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3906 error_report("Received an unexpected compressed page");
3909 ret = -EINVAL;
3910 break;
3913 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3914 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3915 RAMBlock *block = ram_block_from_stream(mis, f, flags,
3916 RAM_CHANNEL_PRECOPY);
3918 host = host_from_ram_block_offset(block, addr);
3920 * After going into COLO stage, we should not load the page
3921 * into SVM's memory directly, we put them into colo_cache firstly.
3922 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3923 * Previously, we copied all these memory in preparing stage of COLO
3924 * while we need to stop VM, which is a time-consuming process.
3925 * Here we optimize it by a trick, back-up every page while in
3926 * migration process while COLO is enabled, though it affects the
3927 * speed of the migration, but it obviously reduce the downtime of
3928 * back-up all SVM'S memory in COLO preparing stage.
3930 if (migration_incoming_colo_enabled()) {
3931 if (migration_incoming_in_colo_state()) {
3932 /* In COLO stage, put all pages into cache temporarily */
3933 host = colo_cache_from_block_offset(block, addr, true);
3934 } else {
3936 * In migration stage but before COLO stage,
3937 * Put all pages into both cache and SVM's memory.
3939 host_bak = colo_cache_from_block_offset(block, addr, false);
3942 if (!host) {
3943 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3944 ret = -EINVAL;
3945 break;
3947 if (!migration_incoming_in_colo_state()) {
3948 ramblock_recv_bitmap_set(block, host);
3951 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3954 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3955 case RAM_SAVE_FLAG_MEM_SIZE:
3956 /* Synchronize RAM block list */
3957 total_ram_bytes = addr;
3958 while (!ret && total_ram_bytes) {
3959 RAMBlock *block;
3960 char id[256];
3961 ram_addr_t length;
3963 len = qemu_get_byte(f);
3964 qemu_get_buffer(f, (uint8_t *)id, len);
3965 id[len] = 0;
3966 length = qemu_get_be64(f);
3968 block = qemu_ram_block_by_name(id);
3969 if (block && !qemu_ram_is_migratable(block)) {
3970 error_report("block %s should not be migrated !", id);
3971 ret = -EINVAL;
3972 } else if (block) {
3973 if (length != block->used_length) {
3974 Error *local_err = NULL;
3976 ret = qemu_ram_resize(block, length,
3977 &local_err);
3978 if (local_err) {
3979 error_report_err(local_err);
3982 /* For postcopy we need to check hugepage sizes match */
3983 if (postcopy_advised && migrate_postcopy_ram() &&
3984 block->page_size != qemu_host_page_size) {
3985 uint64_t remote_page_size = qemu_get_be64(f);
3986 if (remote_page_size != block->page_size) {
3987 error_report("Mismatched RAM page size %s "
3988 "(local) %zd != %" PRId64,
3989 id, block->page_size,
3990 remote_page_size);
3991 ret = -EINVAL;
3994 if (migrate_ignore_shared()) {
3995 hwaddr addr2 = qemu_get_be64(f);
3996 if (migrate_ram_is_ignored(block) &&
3997 block->mr->addr != addr2) {
3998 error_report("Mismatched GPAs for block %s "
3999 "%" PRId64 "!= %" PRId64,
4000 id, (uint64_t)addr2,
4001 (uint64_t)block->mr->addr);
4002 ret = -EINVAL;
4005 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4006 block->idstr);
4007 } else {
4008 error_report("Unknown ramblock \"%s\", cannot "
4009 "accept migration", id);
4010 ret = -EINVAL;
4013 total_ram_bytes -= length;
4015 break;
4017 case RAM_SAVE_FLAG_ZERO:
4018 ch = qemu_get_byte(f);
4019 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4020 break;
4022 case RAM_SAVE_FLAG_PAGE:
4023 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4024 break;
4026 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4027 len = qemu_get_be32(f);
4028 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4029 error_report("Invalid compressed data length: %d", len);
4030 ret = -EINVAL;
4031 break;
4033 decompress_data_with_multi_threads(f, host, len);
4034 break;
4036 case RAM_SAVE_FLAG_XBZRLE:
4037 if (load_xbzrle(f, addr, host) < 0) {
4038 error_report("Failed to decompress XBZRLE page at "
4039 RAM_ADDR_FMT, addr);
4040 ret = -EINVAL;
4041 break;
4043 break;
4044 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4045 multifd_recv_sync_main();
4046 break;
4047 case RAM_SAVE_FLAG_EOS:
4048 /* normal exit */
4049 if (migrate_multifd_flush_after_each_section()) {
4050 multifd_recv_sync_main();
4052 break;
4053 case RAM_SAVE_FLAG_HOOK:
4054 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4055 break;
4056 default:
4057 error_report("Unknown combination of migration flags: 0x%x", flags);
4058 ret = -EINVAL;
4060 if (!ret) {
4061 ret = qemu_file_get_error(f);
4063 if (!ret && host_bak) {
4064 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4068 ret |= wait_for_decompress_done();
4069 return ret;
4072 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4074 int ret = 0;
4075 static uint64_t seq_iter;
4077 * If system is running in postcopy mode, page inserts to host memory must
4078 * be atomic
4080 bool postcopy_running = postcopy_is_running();
4082 seq_iter++;
4084 if (version_id != 4) {
4085 return -EINVAL;
4089 * This RCU critical section can be very long running.
4090 * When RCU reclaims in the code start to become numerous,
4091 * it will be necessary to reduce the granularity of this
4092 * critical section.
4094 WITH_RCU_READ_LOCK_GUARD() {
4095 if (postcopy_running) {
4097 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4098 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4099 * service fast page faults.
4101 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4102 } else {
4103 ret = ram_load_precopy(f);
4106 trace_ram_load_complete(ret, seq_iter);
4108 return ret;
4111 static bool ram_has_postcopy(void *opaque)
4113 RAMBlock *rb;
4114 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4115 if (ramblock_is_pmem(rb)) {
4116 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4117 "is not supported now!", rb->idstr, rb->host);
4118 return false;
4122 return migrate_postcopy_ram();
4125 /* Sync all the dirty bitmap with destination VM. */
4126 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4128 RAMBlock *block;
4129 QEMUFile *file = s->to_dst_file;
4131 trace_ram_dirty_bitmap_sync_start();
4133 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4134 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4135 qemu_savevm_send_recv_bitmap(file, block->idstr);
4136 trace_ram_dirty_bitmap_request(block->idstr);
4137 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4140 trace_ram_dirty_bitmap_sync_wait();
4142 /* Wait until all the ramblocks' dirty bitmap synced */
4143 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4144 migration_rp_wait(s);
4147 trace_ram_dirty_bitmap_sync_complete();
4149 return 0;
4153 * Read the received bitmap, revert it as the initial dirty bitmap.
4154 * This is only used when the postcopy migration is paused but wants
4155 * to resume from a middle point.
4157 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4159 int ret = -EINVAL;
4160 /* from_dst_file is always valid because we're within rp_thread */
4161 QEMUFile *file = s->rp_state.from_dst_file;
4162 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4163 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4164 uint64_t size, end_mark;
4165 RAMState *rs = ram_state;
4167 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4169 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4170 error_report("%s: incorrect state %s", __func__,
4171 MigrationStatus_str(s->state));
4172 return -EINVAL;
4176 * Note: see comments in ramblock_recv_bitmap_send() on why we
4177 * need the endianness conversion, and the paddings.
4179 local_size = ROUND_UP(local_size, 8);
4181 /* Add paddings */
4182 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4184 size = qemu_get_be64(file);
4186 /* The size of the bitmap should match with our ramblock */
4187 if (size != local_size) {
4188 error_report("%s: ramblock '%s' bitmap size mismatch "
4189 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4190 block->idstr, size, local_size);
4191 ret = -EINVAL;
4192 goto out;
4195 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4196 end_mark = qemu_get_be64(file);
4198 ret = qemu_file_get_error(file);
4199 if (ret || size != local_size) {
4200 error_report("%s: read bitmap failed for ramblock '%s': %d"
4201 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4202 __func__, block->idstr, ret, local_size, size);
4203 ret = -EIO;
4204 goto out;
4207 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4208 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4209 __func__, block->idstr, end_mark);
4210 ret = -EINVAL;
4211 goto out;
4215 * Endianness conversion. We are during postcopy (though paused).
4216 * The dirty bitmap won't change. We can directly modify it.
4218 bitmap_from_le(block->bmap, le_bitmap, nbits);
4221 * What we received is "received bitmap". Revert it as the initial
4222 * dirty bitmap for this ramblock.
4224 bitmap_complement(block->bmap, block->bmap, nbits);
4226 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4227 ramblock_dirty_bitmap_clear_discarded_pages(block);
4229 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4230 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4232 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4235 * We succeeded to sync bitmap for current ramblock. Always kick the
4236 * migration thread to check whether all requested bitmaps are
4237 * reloaded. NOTE: it's racy to only kick when requested==0, because
4238 * we don't know whether the migration thread may still be increasing
4239 * it.
4241 migration_rp_kick(s);
4243 ret = 0;
4244 out:
4245 g_free(le_bitmap);
4246 return ret;
4249 static int ram_resume_prepare(MigrationState *s, void *opaque)
4251 RAMState *rs = *(RAMState **)opaque;
4252 int ret;
4254 ret = ram_dirty_bitmap_sync_all(s, rs);
4255 if (ret) {
4256 return ret;
4259 ram_state_resume_prepare(rs, s->to_dst_file);
4261 return 0;
4264 void postcopy_preempt_shutdown_file(MigrationState *s)
4266 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4267 qemu_fflush(s->postcopy_qemufile_src);
4270 static SaveVMHandlers savevm_ram_handlers = {
4271 .save_setup = ram_save_setup,
4272 .save_live_iterate = ram_save_iterate,
4273 .save_live_complete_postcopy = ram_save_complete,
4274 .save_live_complete_precopy = ram_save_complete,
4275 .has_postcopy = ram_has_postcopy,
4276 .state_pending_exact = ram_state_pending_exact,
4277 .state_pending_estimate = ram_state_pending_estimate,
4278 .load_state = ram_load,
4279 .save_cleanup = ram_save_cleanup,
4280 .load_setup = ram_load_setup,
4281 .load_cleanup = ram_load_cleanup,
4282 .resume_prepare = ram_resume_prepare,
4285 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4286 size_t old_size, size_t new_size)
4288 PostcopyState ps = postcopy_state_get();
4289 ram_addr_t offset;
4290 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4291 Error *err = NULL;
4293 if (migrate_ram_is_ignored(rb)) {
4294 return;
4297 if (!migration_is_idle()) {
4299 * Precopy code on the source cannot deal with the size of RAM blocks
4300 * changing at random points in time - especially after sending the
4301 * RAM block sizes in the migration stream, they must no longer change.
4302 * Abort and indicate a proper reason.
4304 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4305 migration_cancel(err);
4306 error_free(err);
4309 switch (ps) {
4310 case POSTCOPY_INCOMING_ADVISE:
4312 * Update what ram_postcopy_incoming_init()->init_range() does at the
4313 * time postcopy was advised. Syncing RAM blocks with the source will
4314 * result in RAM resizes.
4316 if (old_size < new_size) {
4317 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4318 error_report("RAM block '%s' discard of resized RAM failed",
4319 rb->idstr);
4322 rb->postcopy_length = new_size;
4323 break;
4324 case POSTCOPY_INCOMING_NONE:
4325 case POSTCOPY_INCOMING_RUNNING:
4326 case POSTCOPY_INCOMING_END:
4328 * Once our guest is running, postcopy does no longer care about
4329 * resizes. When growing, the new memory was not available on the
4330 * source, no handler needed.
4332 break;
4333 default:
4334 error_report("RAM block '%s' resized during postcopy state: %d",
4335 rb->idstr, ps);
4336 exit(-1);
4340 static RAMBlockNotifier ram_mig_ram_notifier = {
4341 .ram_block_resized = ram_mig_ram_block_resized,
4344 void ram_mig_init(void)
4346 qemu_mutex_init(&XBZRLE.lock);
4347 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4348 ram_block_notifier_add(&ram_mig_ram_notifier);