target/ppc: Move slbieg to decodetree
[qemu/kevin.git] / target / i386 / kvm / kvm.c
blobf148a6d52fa46a3fb6716b124f40fd18c1fea429
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
20 #include <sys/syscall.h>
22 #include <linux/kvm.h>
23 #include "standard-headers/asm-x86/kvm_para.h"
25 #include "cpu.h"
26 #include "host-cpu.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/hw_accel.h"
29 #include "sysemu/kvm_int.h"
30 #include "sysemu/runstate.h"
31 #include "kvm_i386.h"
32 #include "sev.h"
33 #include "hyperv.h"
34 #include "hyperv-proto.h"
36 #include "exec/gdbstub.h"
37 #include "qemu/host-utils.h"
38 #include "qemu/main-loop.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/memalign.h"
42 #include "hw/i386/x86.h"
43 #include "hw/i386/apic.h"
44 #include "hw/i386/apic_internal.h"
45 #include "hw/i386/apic-msidef.h"
46 #include "hw/i386/intel_iommu.h"
47 #include "hw/i386/x86-iommu.h"
48 #include "hw/i386/e820_memory_layout.h"
50 #include "hw/pci/pci.h"
51 #include "hw/pci/msi.h"
52 #include "hw/pci/msix.h"
53 #include "migration/blocker.h"
54 #include "exec/memattrs.h"
55 #include "trace.h"
57 #include CONFIG_DEVICES
59 //#define DEBUG_KVM
61 #ifdef DEBUG_KVM
62 #define DPRINTF(fmt, ...) \
63 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
64 #else
65 #define DPRINTF(fmt, ...) \
66 do { } while (0)
67 #endif
69 /* From arch/x86/kvm/lapic.h */
70 #define KVM_APIC_BUS_CYCLE_NS 1
71 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
73 #define MSR_KVM_WALL_CLOCK 0x11
74 #define MSR_KVM_SYSTEM_TIME 0x12
76 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
77 * 255 kvm_msr_entry structs */
78 #define MSR_BUF_SIZE 4096
80 static void kvm_init_msrs(X86CPU *cpu);
82 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
83 KVM_CAP_INFO(SET_TSS_ADDR),
84 KVM_CAP_INFO(EXT_CPUID),
85 KVM_CAP_INFO(MP_STATE),
86 KVM_CAP_LAST_INFO
89 static bool has_msr_star;
90 static bool has_msr_hsave_pa;
91 static bool has_msr_tsc_aux;
92 static bool has_msr_tsc_adjust;
93 static bool has_msr_tsc_deadline;
94 static bool has_msr_feature_control;
95 static bool has_msr_misc_enable;
96 static bool has_msr_smbase;
97 static bool has_msr_bndcfgs;
98 static int lm_capable_kernel;
99 static bool has_msr_hv_hypercall;
100 static bool has_msr_hv_crash;
101 static bool has_msr_hv_reset;
102 static bool has_msr_hv_vpindex;
103 static bool hv_vpindex_settable;
104 static bool has_msr_hv_runtime;
105 static bool has_msr_hv_synic;
106 static bool has_msr_hv_stimer;
107 static bool has_msr_hv_frequencies;
108 static bool has_msr_hv_reenlightenment;
109 static bool has_msr_hv_syndbg_options;
110 static bool has_msr_xss;
111 static bool has_msr_umwait;
112 static bool has_msr_spec_ctrl;
113 static bool has_tsc_scale_msr;
114 static bool has_msr_tsx_ctrl;
115 static bool has_msr_virt_ssbd;
116 static bool has_msr_smi_count;
117 static bool has_msr_arch_capabs;
118 static bool has_msr_core_capabs;
119 static bool has_msr_vmx_vmfunc;
120 static bool has_msr_ucode_rev;
121 static bool has_msr_vmx_procbased_ctls2;
122 static bool has_msr_perf_capabs;
123 static bool has_msr_pkrs;
125 static uint32_t has_architectural_pmu_version;
126 static uint32_t num_architectural_pmu_gp_counters;
127 static uint32_t num_architectural_pmu_fixed_counters;
129 static int has_xsave;
130 static int has_xsave2;
131 static int has_xcrs;
132 static int has_pit_state2;
133 static int has_sregs2;
134 static int has_exception_payload;
136 static bool has_msr_mcg_ext_ctl;
138 static struct kvm_cpuid2 *cpuid_cache;
139 static struct kvm_cpuid2 *hv_cpuid_cache;
140 static struct kvm_msr_list *kvm_feature_msrs;
142 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
143 static RateLimit bus_lock_ratelimit_ctrl;
144 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
146 int kvm_has_pit_state2(void)
148 return has_pit_state2;
151 bool kvm_has_smm(void)
153 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
156 bool kvm_has_adjust_clock_stable(void)
158 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
160 return (ret == KVM_CLOCK_TSC_STABLE);
163 bool kvm_has_adjust_clock(void)
165 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
168 bool kvm_has_exception_payload(void)
170 return has_exception_payload;
173 static bool kvm_x2apic_api_set_flags(uint64_t flags)
175 KVMState *s = KVM_STATE(current_accel());
177 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
180 #define MEMORIZE(fn, _result) \
181 ({ \
182 static bool _memorized; \
184 if (_memorized) { \
185 return _result; \
187 _memorized = true; \
188 _result = fn; \
191 static bool has_x2apic_api;
193 bool kvm_has_x2apic_api(void)
195 return has_x2apic_api;
198 bool kvm_enable_x2apic(void)
200 return MEMORIZE(
201 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
202 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
203 has_x2apic_api);
206 bool kvm_hv_vpindex_settable(void)
208 return hv_vpindex_settable;
211 static int kvm_get_tsc(CPUState *cs)
213 X86CPU *cpu = X86_CPU(cs);
214 CPUX86State *env = &cpu->env;
215 uint64_t value;
216 int ret;
218 if (env->tsc_valid) {
219 return 0;
222 env->tsc_valid = !runstate_is_running();
224 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
225 if (ret < 0) {
226 return ret;
229 env->tsc = value;
230 return 0;
233 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
235 kvm_get_tsc(cpu);
238 void kvm_synchronize_all_tsc(void)
240 CPUState *cpu;
242 if (kvm_enabled()) {
243 CPU_FOREACH(cpu) {
244 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
249 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
251 struct kvm_cpuid2 *cpuid;
252 int r, size;
254 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
255 cpuid = g_malloc0(size);
256 cpuid->nent = max;
257 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
258 if (r == 0 && cpuid->nent >= max) {
259 r = -E2BIG;
261 if (r < 0) {
262 if (r == -E2BIG) {
263 g_free(cpuid);
264 return NULL;
265 } else {
266 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
267 strerror(-r));
268 exit(1);
271 return cpuid;
274 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
275 * for all entries.
277 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
279 struct kvm_cpuid2 *cpuid;
280 int max = 1;
282 if (cpuid_cache != NULL) {
283 return cpuid_cache;
285 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
286 max *= 2;
288 cpuid_cache = cpuid;
289 return cpuid;
292 static bool host_tsx_broken(void)
294 int family, model, stepping;\
295 char vendor[CPUID_VENDOR_SZ + 1];
297 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
299 /* Check if we are running on a Haswell host known to have broken TSX */
300 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
301 (family == 6) &&
302 ((model == 63 && stepping < 4) ||
303 model == 60 || model == 69 || model == 70);
306 /* Returns the value for a specific register on the cpuid entry
308 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
310 uint32_t ret = 0;
311 switch (reg) {
312 case R_EAX:
313 ret = entry->eax;
314 break;
315 case R_EBX:
316 ret = entry->ebx;
317 break;
318 case R_ECX:
319 ret = entry->ecx;
320 break;
321 case R_EDX:
322 ret = entry->edx;
323 break;
325 return ret;
328 /* Find matching entry for function/index on kvm_cpuid2 struct
330 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
331 uint32_t function,
332 uint32_t index)
334 int i;
335 for (i = 0; i < cpuid->nent; ++i) {
336 if (cpuid->entries[i].function == function &&
337 cpuid->entries[i].index == index) {
338 return &cpuid->entries[i];
341 /* not found: */
342 return NULL;
345 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
346 uint32_t index, int reg)
348 struct kvm_cpuid2 *cpuid;
349 uint32_t ret = 0;
350 uint32_t cpuid_1_edx;
351 uint64_t bitmask;
353 cpuid = get_supported_cpuid(s);
355 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
356 if (entry) {
357 ret = cpuid_entry_get_reg(entry, reg);
360 /* Fixups for the data returned by KVM, below */
362 if (function == 1 && reg == R_EDX) {
363 /* KVM before 2.6.30 misreports the following features */
364 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
365 } else if (function == 1 && reg == R_ECX) {
366 /* We can set the hypervisor flag, even if KVM does not return it on
367 * GET_SUPPORTED_CPUID
369 ret |= CPUID_EXT_HYPERVISOR;
370 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
371 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
372 * and the irqchip is in the kernel.
374 if (kvm_irqchip_in_kernel() &&
375 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
376 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
379 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
380 * without the in-kernel irqchip
382 if (!kvm_irqchip_in_kernel()) {
383 ret &= ~CPUID_EXT_X2APIC;
386 if (enable_cpu_pm) {
387 int disable_exits = kvm_check_extension(s,
388 KVM_CAP_X86_DISABLE_EXITS);
390 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
391 ret |= CPUID_EXT_MONITOR;
394 } else if (function == 6 && reg == R_EAX) {
395 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
396 } else if (function == 7 && index == 0 && reg == R_EBX) {
397 if (host_tsx_broken()) {
398 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
400 } else if (function == 7 && index == 0 && reg == R_EDX) {
402 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
403 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
404 * returned by KVM_GET_MSR_INDEX_LIST.
406 if (!has_msr_arch_capabs) {
407 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
409 } else if (function == 0xd && index == 0 &&
410 (reg == R_EAX || reg == R_EDX)) {
412 * The value returned by KVM_GET_SUPPORTED_CPUID does not include
413 * features that still have to be enabled with the arch_prctl
414 * system call. QEMU needs the full value, which is retrieved
415 * with KVM_GET_DEVICE_ATTR.
417 struct kvm_device_attr attr = {
418 .group = 0,
419 .attr = KVM_X86_XCOMP_GUEST_SUPP,
420 .addr = (unsigned long) &bitmask
423 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
424 if (!sys_attr) {
425 return ret;
428 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
429 if (rc < 0) {
430 if (rc != -ENXIO) {
431 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
432 "error: %d", rc);
434 return ret;
436 ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
437 } else if (function == 0x80000001 && reg == R_ECX) {
439 * It's safe to enable TOPOEXT even if it's not returned by
440 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
441 * us to keep CPU models including TOPOEXT runnable on older kernels.
443 ret |= CPUID_EXT3_TOPOEXT;
444 } else if (function == 0x80000001 && reg == R_EDX) {
445 /* On Intel, kvm returns cpuid according to the Intel spec,
446 * so add missing bits according to the AMD spec:
448 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
449 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
450 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
451 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
452 * be enabled without the in-kernel irqchip
454 if (!kvm_irqchip_in_kernel()) {
455 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
457 if (kvm_irqchip_is_split()) {
458 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
460 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
461 ret |= 1U << KVM_HINTS_REALTIME;
464 return ret;
467 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
469 struct {
470 struct kvm_msrs info;
471 struct kvm_msr_entry entries[1];
472 } msr_data = {};
473 uint64_t value;
474 uint32_t ret, can_be_one, must_be_one;
476 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
477 return 0;
480 /* Check if requested MSR is supported feature MSR */
481 int i;
482 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
483 if (kvm_feature_msrs->indices[i] == index) {
484 break;
486 if (i == kvm_feature_msrs->nmsrs) {
487 return 0; /* if the feature MSR is not supported, simply return 0 */
490 msr_data.info.nmsrs = 1;
491 msr_data.entries[0].index = index;
493 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
494 if (ret != 1) {
495 error_report("KVM get MSR (index=0x%x) feature failed, %s",
496 index, strerror(-ret));
497 exit(1);
500 value = msr_data.entries[0].data;
501 switch (index) {
502 case MSR_IA32_VMX_PROCBASED_CTLS2:
503 if (!has_msr_vmx_procbased_ctls2) {
504 /* KVM forgot to add these bits for some time, do this ourselves. */
505 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
506 CPUID_XSAVE_XSAVES) {
507 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
509 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
510 CPUID_EXT_RDRAND) {
511 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
513 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
514 CPUID_7_0_EBX_INVPCID) {
515 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
517 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
518 CPUID_7_0_EBX_RDSEED) {
519 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
521 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
522 CPUID_EXT2_RDTSCP) {
523 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
526 /* fall through */
527 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
528 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
529 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
530 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
532 * Return true for bits that can be one, but do not have to be one.
533 * The SDM tells us which bits could have a "must be one" setting,
534 * so we can do the opposite transformation in make_vmx_msr_value.
536 must_be_one = (uint32_t)value;
537 can_be_one = (uint32_t)(value >> 32);
538 return can_be_one & ~must_be_one;
540 default:
541 return value;
545 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
546 int *max_banks)
548 int r;
550 r = kvm_check_extension(s, KVM_CAP_MCE);
551 if (r > 0) {
552 *max_banks = r;
553 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
555 return -ENOSYS;
558 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
560 CPUState *cs = CPU(cpu);
561 CPUX86State *env = &cpu->env;
562 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
563 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
564 uint64_t mcg_status = MCG_STATUS_MCIP;
565 int flags = 0;
567 if (code == BUS_MCEERR_AR) {
568 status |= MCI_STATUS_AR | 0x134;
569 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
570 } else {
571 status |= 0xc0;
572 mcg_status |= MCG_STATUS_RIPV;
575 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
576 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
577 * guest kernel back into env->mcg_ext_ctl.
579 cpu_synchronize_state(cs);
580 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
581 mcg_status |= MCG_STATUS_LMCE;
582 flags = 0;
585 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
586 (MCM_ADDR_PHYS << 6) | 0xc, flags);
589 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
591 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
593 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
594 &mff);
597 static void hardware_memory_error(void *host_addr)
599 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
600 error_report("QEMU got Hardware memory error at addr %p", host_addr);
601 exit(1);
604 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
606 X86CPU *cpu = X86_CPU(c);
607 CPUX86State *env = &cpu->env;
608 ram_addr_t ram_addr;
609 hwaddr paddr;
611 /* If we get an action required MCE, it has been injected by KVM
612 * while the VM was running. An action optional MCE instead should
613 * be coming from the main thread, which qemu_init_sigbus identifies
614 * as the "early kill" thread.
616 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
618 if ((env->mcg_cap & MCG_SER_P) && addr) {
619 ram_addr = qemu_ram_addr_from_host(addr);
620 if (ram_addr != RAM_ADDR_INVALID &&
621 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
622 kvm_hwpoison_page_add(ram_addr);
623 kvm_mce_inject(cpu, paddr, code);
626 * Use different logging severity based on error type.
627 * If there is additional MCE reporting on the hypervisor, QEMU VA
628 * could be another source to identify the PA and MCE details.
630 if (code == BUS_MCEERR_AR) {
631 error_report("Guest MCE Memory Error at QEMU addr %p and "
632 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
633 addr, paddr, "BUS_MCEERR_AR");
634 } else {
635 warn_report("Guest MCE Memory Error at QEMU addr %p and "
636 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
637 addr, paddr, "BUS_MCEERR_AO");
640 return;
643 if (code == BUS_MCEERR_AO) {
644 warn_report("Hardware memory error at addr %p of type %s "
645 "for memory used by QEMU itself instead of guest system!",
646 addr, "BUS_MCEERR_AO");
650 if (code == BUS_MCEERR_AR) {
651 hardware_memory_error(addr);
654 /* Hope we are lucky for AO MCE, just notify a event */
655 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
658 static void kvm_reset_exception(CPUX86State *env)
660 env->exception_nr = -1;
661 env->exception_pending = 0;
662 env->exception_injected = 0;
663 env->exception_has_payload = false;
664 env->exception_payload = 0;
667 static void kvm_queue_exception(CPUX86State *env,
668 int32_t exception_nr,
669 uint8_t exception_has_payload,
670 uint64_t exception_payload)
672 assert(env->exception_nr == -1);
673 assert(!env->exception_pending);
674 assert(!env->exception_injected);
675 assert(!env->exception_has_payload);
677 env->exception_nr = exception_nr;
679 if (has_exception_payload) {
680 env->exception_pending = 1;
682 env->exception_has_payload = exception_has_payload;
683 env->exception_payload = exception_payload;
684 } else {
685 env->exception_injected = 1;
687 if (exception_nr == EXCP01_DB) {
688 assert(exception_has_payload);
689 env->dr[6] = exception_payload;
690 } else if (exception_nr == EXCP0E_PAGE) {
691 assert(exception_has_payload);
692 env->cr[2] = exception_payload;
693 } else {
694 assert(!exception_has_payload);
699 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
701 CPUX86State *env = &cpu->env;
703 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
704 unsigned int bank, bank_num = env->mcg_cap & 0xff;
705 struct kvm_x86_mce mce;
707 kvm_reset_exception(env);
710 * There must be at least one bank in use if an MCE is pending.
711 * Find it and use its values for the event injection.
713 for (bank = 0; bank < bank_num; bank++) {
714 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
715 break;
718 assert(bank < bank_num);
720 mce.bank = bank;
721 mce.status = env->mce_banks[bank * 4 + 1];
722 mce.mcg_status = env->mcg_status;
723 mce.addr = env->mce_banks[bank * 4 + 2];
724 mce.misc = env->mce_banks[bank * 4 + 3];
726 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
728 return 0;
731 static void cpu_update_state(void *opaque, bool running, RunState state)
733 CPUX86State *env = opaque;
735 if (running) {
736 env->tsc_valid = false;
740 unsigned long kvm_arch_vcpu_id(CPUState *cs)
742 X86CPU *cpu = X86_CPU(cs);
743 return cpu->apic_id;
746 #ifndef KVM_CPUID_SIGNATURE_NEXT
747 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
748 #endif
750 static bool hyperv_enabled(X86CPU *cpu)
752 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
753 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
754 cpu->hyperv_features || cpu->hyperv_passthrough);
758 * Check whether target_freq is within conservative
759 * ntp correctable bounds (250ppm) of freq
761 static inline bool freq_within_bounds(int freq, int target_freq)
763 int max_freq = freq + (freq * 250 / 1000000);
764 int min_freq = freq - (freq * 250 / 1000000);
766 if (target_freq >= min_freq && target_freq <= max_freq) {
767 return true;
770 return false;
773 static int kvm_arch_set_tsc_khz(CPUState *cs)
775 X86CPU *cpu = X86_CPU(cs);
776 CPUX86State *env = &cpu->env;
777 int r, cur_freq;
778 bool set_ioctl = false;
780 if (!env->tsc_khz) {
781 return 0;
784 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
785 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
788 * If TSC scaling is supported, attempt to set TSC frequency.
790 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
791 set_ioctl = true;
795 * If desired TSC frequency is within bounds of NTP correction,
796 * attempt to set TSC frequency.
798 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
799 set_ioctl = true;
802 r = set_ioctl ?
803 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
804 -ENOTSUP;
806 if (r < 0) {
807 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
808 * TSC frequency doesn't match the one we want.
810 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
811 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
812 -ENOTSUP;
813 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
814 warn_report("TSC frequency mismatch between "
815 "VM (%" PRId64 " kHz) and host (%d kHz), "
816 "and TSC scaling unavailable",
817 env->tsc_khz, cur_freq);
818 return r;
822 return 0;
825 static bool tsc_is_stable_and_known(CPUX86State *env)
827 if (!env->tsc_khz) {
828 return false;
830 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
831 || env->user_tsc_khz;
834 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
836 static struct {
837 const char *desc;
838 struct {
839 uint32_t func;
840 int reg;
841 uint32_t bits;
842 } flags[2];
843 uint64_t dependencies;
844 } kvm_hyperv_properties[] = {
845 [HYPERV_FEAT_RELAXED] = {
846 .desc = "relaxed timing (hv-relaxed)",
847 .flags = {
848 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
849 .bits = HV_RELAXED_TIMING_RECOMMENDED}
852 [HYPERV_FEAT_VAPIC] = {
853 .desc = "virtual APIC (hv-vapic)",
854 .flags = {
855 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
856 .bits = HV_APIC_ACCESS_AVAILABLE}
859 [HYPERV_FEAT_TIME] = {
860 .desc = "clocksources (hv-time)",
861 .flags = {
862 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
863 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
866 [HYPERV_FEAT_CRASH] = {
867 .desc = "crash MSRs (hv-crash)",
868 .flags = {
869 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
870 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
873 [HYPERV_FEAT_RESET] = {
874 .desc = "reset MSR (hv-reset)",
875 .flags = {
876 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
877 .bits = HV_RESET_AVAILABLE}
880 [HYPERV_FEAT_VPINDEX] = {
881 .desc = "VP_INDEX MSR (hv-vpindex)",
882 .flags = {
883 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
884 .bits = HV_VP_INDEX_AVAILABLE}
887 [HYPERV_FEAT_RUNTIME] = {
888 .desc = "VP_RUNTIME MSR (hv-runtime)",
889 .flags = {
890 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
891 .bits = HV_VP_RUNTIME_AVAILABLE}
894 [HYPERV_FEAT_SYNIC] = {
895 .desc = "synthetic interrupt controller (hv-synic)",
896 .flags = {
897 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
898 .bits = HV_SYNIC_AVAILABLE}
901 [HYPERV_FEAT_STIMER] = {
902 .desc = "synthetic timers (hv-stimer)",
903 .flags = {
904 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
905 .bits = HV_SYNTIMERS_AVAILABLE}
907 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
909 [HYPERV_FEAT_FREQUENCIES] = {
910 .desc = "frequency MSRs (hv-frequencies)",
911 .flags = {
912 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
913 .bits = HV_ACCESS_FREQUENCY_MSRS},
914 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
915 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
918 [HYPERV_FEAT_REENLIGHTENMENT] = {
919 .desc = "reenlightenment MSRs (hv-reenlightenment)",
920 .flags = {
921 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
922 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
925 [HYPERV_FEAT_TLBFLUSH] = {
926 .desc = "paravirtualized TLB flush (hv-tlbflush)",
927 .flags = {
928 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
929 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
930 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
932 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
934 [HYPERV_FEAT_EVMCS] = {
935 .desc = "enlightened VMCS (hv-evmcs)",
936 .flags = {
937 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
938 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
940 .dependencies = BIT(HYPERV_FEAT_VAPIC)
942 [HYPERV_FEAT_IPI] = {
943 .desc = "paravirtualized IPI (hv-ipi)",
944 .flags = {
945 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
946 .bits = HV_CLUSTER_IPI_RECOMMENDED |
947 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
949 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
951 [HYPERV_FEAT_STIMER_DIRECT] = {
952 .desc = "direct mode synthetic timers (hv-stimer-direct)",
953 .flags = {
954 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
955 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
957 .dependencies = BIT(HYPERV_FEAT_STIMER)
959 [HYPERV_FEAT_AVIC] = {
960 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
961 .flags = {
962 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
963 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
966 #ifdef CONFIG_SYNDBG
967 [HYPERV_FEAT_SYNDBG] = {
968 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
969 .flags = {
970 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
971 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
973 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
975 #endif
976 [HYPERV_FEAT_MSR_BITMAP] = {
977 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
978 .flags = {
979 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
980 .bits = HV_NESTED_MSR_BITMAP}
983 [HYPERV_FEAT_XMM_INPUT] = {
984 .desc = "XMM fast hypercall input (hv-xmm-input)",
985 .flags = {
986 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
987 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
990 [HYPERV_FEAT_TLBFLUSH_EXT] = {
991 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
992 .flags = {
993 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
994 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
996 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
998 [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
999 .desc = "direct TLB flush (hv-tlbflush-direct)",
1000 .flags = {
1001 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1002 .bits = HV_NESTED_DIRECT_FLUSH}
1004 .dependencies = BIT(HYPERV_FEAT_VAPIC)
1008 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1009 bool do_sys_ioctl)
1011 struct kvm_cpuid2 *cpuid;
1012 int r, size;
1014 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1015 cpuid = g_malloc0(size);
1016 cpuid->nent = max;
1018 if (do_sys_ioctl) {
1019 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1020 } else {
1021 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1023 if (r == 0 && cpuid->nent >= max) {
1024 r = -E2BIG;
1026 if (r < 0) {
1027 if (r == -E2BIG) {
1028 g_free(cpuid);
1029 return NULL;
1030 } else {
1031 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1032 strerror(-r));
1033 exit(1);
1036 return cpuid;
1040 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1041 * for all entries.
1043 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1045 struct kvm_cpuid2 *cpuid;
1046 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1047 int max = 11;
1048 int i;
1049 bool do_sys_ioctl;
1051 do_sys_ioctl =
1052 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1055 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1056 * unsupported, kvm_hyperv_expand_features() checks for that.
1058 assert(do_sys_ioctl || cs->kvm_state);
1061 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1062 * -E2BIG, however, it doesn't report back the right size. Keep increasing
1063 * it and re-trying until we succeed.
1065 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1066 max++;
1070 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1071 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1072 * information early, just check for the capability and set the bit
1073 * manually.
1075 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1076 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1077 for (i = 0; i < cpuid->nent; i++) {
1078 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1079 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1084 return cpuid;
1088 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1089 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1091 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1093 X86CPU *cpu = X86_CPU(cs);
1094 struct kvm_cpuid2 *cpuid;
1095 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1097 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1098 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1099 cpuid->nent = 2;
1101 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1102 entry_feat = &cpuid->entries[0];
1103 entry_feat->function = HV_CPUID_FEATURES;
1105 entry_recomm = &cpuid->entries[1];
1106 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1107 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1109 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1110 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1111 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1112 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1113 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1114 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1117 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1118 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1119 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1122 if (has_msr_hv_frequencies) {
1123 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1124 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1127 if (has_msr_hv_crash) {
1128 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1131 if (has_msr_hv_reenlightenment) {
1132 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1135 if (has_msr_hv_reset) {
1136 entry_feat->eax |= HV_RESET_AVAILABLE;
1139 if (has_msr_hv_vpindex) {
1140 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1143 if (has_msr_hv_runtime) {
1144 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1147 if (has_msr_hv_synic) {
1148 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1149 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1151 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1152 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1156 if (has_msr_hv_stimer) {
1157 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1160 if (has_msr_hv_syndbg_options) {
1161 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1162 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1163 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1166 if (kvm_check_extension(cs->kvm_state,
1167 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1168 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1169 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1172 if (kvm_check_extension(cs->kvm_state,
1173 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1174 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1177 if (kvm_check_extension(cs->kvm_state,
1178 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1179 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1180 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1183 return cpuid;
1186 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1188 struct kvm_cpuid_entry2 *entry;
1189 struct kvm_cpuid2 *cpuid;
1191 if (hv_cpuid_cache) {
1192 cpuid = hv_cpuid_cache;
1193 } else {
1194 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1195 cpuid = get_supported_hv_cpuid(cs);
1196 } else {
1198 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1199 * before KVM context is created but this is only done when
1200 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1201 * KVM_CAP_HYPERV_CPUID.
1203 assert(cs->kvm_state);
1205 cpuid = get_supported_hv_cpuid_legacy(cs);
1207 hv_cpuid_cache = cpuid;
1210 if (!cpuid) {
1211 return 0;
1214 entry = cpuid_find_entry(cpuid, func, 0);
1215 if (!entry) {
1216 return 0;
1219 return cpuid_entry_get_reg(entry, reg);
1222 static bool hyperv_feature_supported(CPUState *cs, int feature)
1224 uint32_t func, bits;
1225 int i, reg;
1227 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1229 func = kvm_hyperv_properties[feature].flags[i].func;
1230 reg = kvm_hyperv_properties[feature].flags[i].reg;
1231 bits = kvm_hyperv_properties[feature].flags[i].bits;
1233 if (!func) {
1234 continue;
1237 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1238 return false;
1242 return true;
1245 /* Checks that all feature dependencies are enabled */
1246 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1248 uint64_t deps;
1249 int dep_feat;
1251 deps = kvm_hyperv_properties[feature].dependencies;
1252 while (deps) {
1253 dep_feat = ctz64(deps);
1254 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1255 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1256 kvm_hyperv_properties[feature].desc,
1257 kvm_hyperv_properties[dep_feat].desc);
1258 return false;
1260 deps &= ~(1ull << dep_feat);
1263 return true;
1266 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1268 X86CPU *cpu = X86_CPU(cs);
1269 uint32_t r = 0;
1270 int i, j;
1272 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1273 if (!hyperv_feat_enabled(cpu, i)) {
1274 continue;
1277 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1278 if (kvm_hyperv_properties[i].flags[j].func != func) {
1279 continue;
1281 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1282 continue;
1285 r |= kvm_hyperv_properties[i].flags[j].bits;
1289 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1290 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1291 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1292 r |= DEFAULT_EVMCS_VERSION;
1296 return r;
1300 * Expand Hyper-V CPU features. In partucular, check that all the requested
1301 * features are supported by the host and the sanity of the configuration
1302 * (that all the required dependencies are included). Also, this takes care
1303 * of 'hv_passthrough' mode and fills the environment with all supported
1304 * Hyper-V features.
1306 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1308 CPUState *cs = CPU(cpu);
1309 Error *local_err = NULL;
1310 int feat;
1312 if (!hyperv_enabled(cpu))
1313 return true;
1316 * When kvm_hyperv_expand_features is called at CPU feature expansion
1317 * time per-CPU kvm_state is not available yet so we can only proceed
1318 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1320 if (!cs->kvm_state &&
1321 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1322 return true;
1324 if (cpu->hyperv_passthrough) {
1325 cpu->hyperv_vendor_id[0] =
1326 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1327 cpu->hyperv_vendor_id[1] =
1328 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1329 cpu->hyperv_vendor_id[2] =
1330 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1331 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1332 sizeof(cpu->hyperv_vendor_id) + 1);
1333 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1334 sizeof(cpu->hyperv_vendor_id));
1335 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1337 cpu->hyperv_interface_id[0] =
1338 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1339 cpu->hyperv_interface_id[1] =
1340 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1341 cpu->hyperv_interface_id[2] =
1342 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1343 cpu->hyperv_interface_id[3] =
1344 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1346 cpu->hyperv_ver_id_build =
1347 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1348 cpu->hyperv_ver_id_major =
1349 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1350 cpu->hyperv_ver_id_minor =
1351 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1352 cpu->hyperv_ver_id_sp =
1353 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1354 cpu->hyperv_ver_id_sb =
1355 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1356 cpu->hyperv_ver_id_sn =
1357 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1359 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1360 R_EAX);
1361 cpu->hyperv_limits[0] =
1362 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1363 cpu->hyperv_limits[1] =
1364 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1365 cpu->hyperv_limits[2] =
1366 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1368 cpu->hyperv_spinlock_attempts =
1369 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1372 * Mark feature as enabled in 'cpu->hyperv_features' as
1373 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1375 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1376 if (hyperv_feature_supported(cs, feat)) {
1377 cpu->hyperv_features |= BIT(feat);
1380 } else {
1381 /* Check features availability and dependencies */
1382 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1383 /* If the feature was not requested skip it. */
1384 if (!hyperv_feat_enabled(cpu, feat)) {
1385 continue;
1388 /* Check if the feature is supported by KVM */
1389 if (!hyperv_feature_supported(cs, feat)) {
1390 error_setg(errp, "Hyper-V %s is not supported by kernel",
1391 kvm_hyperv_properties[feat].desc);
1392 return false;
1395 /* Check dependencies */
1396 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1397 error_propagate(errp, local_err);
1398 return false;
1403 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1404 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1405 !cpu->hyperv_synic_kvm_only &&
1406 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1407 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1408 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1409 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1410 return false;
1413 return true;
1417 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1419 static int hyperv_fill_cpuids(CPUState *cs,
1420 struct kvm_cpuid_entry2 *cpuid_ent)
1422 X86CPU *cpu = X86_CPU(cs);
1423 struct kvm_cpuid_entry2 *c;
1424 uint32_t signature[3];
1425 uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1426 uint32_t nested_eax =
1427 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1429 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1430 HV_CPUID_IMPLEMENT_LIMITS;
1432 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1433 max_cpuid_leaf =
1434 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1437 c = &cpuid_ent[cpuid_i++];
1438 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1439 c->eax = max_cpuid_leaf;
1440 c->ebx = cpu->hyperv_vendor_id[0];
1441 c->ecx = cpu->hyperv_vendor_id[1];
1442 c->edx = cpu->hyperv_vendor_id[2];
1444 c = &cpuid_ent[cpuid_i++];
1445 c->function = HV_CPUID_INTERFACE;
1446 c->eax = cpu->hyperv_interface_id[0];
1447 c->ebx = cpu->hyperv_interface_id[1];
1448 c->ecx = cpu->hyperv_interface_id[2];
1449 c->edx = cpu->hyperv_interface_id[3];
1451 c = &cpuid_ent[cpuid_i++];
1452 c->function = HV_CPUID_VERSION;
1453 c->eax = cpu->hyperv_ver_id_build;
1454 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1455 cpu->hyperv_ver_id_minor;
1456 c->ecx = cpu->hyperv_ver_id_sp;
1457 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1458 (cpu->hyperv_ver_id_sn & 0xffffff);
1460 c = &cpuid_ent[cpuid_i++];
1461 c->function = HV_CPUID_FEATURES;
1462 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1463 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1464 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1466 /* Unconditionally required with any Hyper-V enlightenment */
1467 c->eax |= HV_HYPERCALL_AVAILABLE;
1469 /* SynIC and Vmbus devices require messages/signals hypercalls */
1470 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1471 !cpu->hyperv_synic_kvm_only) {
1472 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1476 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1477 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1479 c = &cpuid_ent[cpuid_i++];
1480 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1481 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1482 c->ebx = cpu->hyperv_spinlock_attempts;
1484 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1485 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1486 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1489 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1490 c->eax |= HV_NO_NONARCH_CORESHARING;
1491 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1492 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1493 HV_NO_NONARCH_CORESHARING;
1496 c = &cpuid_ent[cpuid_i++];
1497 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1498 c->eax = cpu->hv_max_vps;
1499 c->ebx = cpu->hyperv_limits[0];
1500 c->ecx = cpu->hyperv_limits[1];
1501 c->edx = cpu->hyperv_limits[2];
1503 if (nested_eax) {
1504 uint32_t function;
1506 /* Create zeroed 0x40000006..0x40000009 leaves */
1507 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1508 function < HV_CPUID_NESTED_FEATURES; function++) {
1509 c = &cpuid_ent[cpuid_i++];
1510 c->function = function;
1513 c = &cpuid_ent[cpuid_i++];
1514 c->function = HV_CPUID_NESTED_FEATURES;
1515 c->eax = nested_eax;
1518 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1519 c = &cpuid_ent[cpuid_i++];
1520 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1521 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1522 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1523 memcpy(signature, "Microsoft VS", 12);
1524 c->eax = 0;
1525 c->ebx = signature[0];
1526 c->ecx = signature[1];
1527 c->edx = signature[2];
1529 c = &cpuid_ent[cpuid_i++];
1530 c->function = HV_CPUID_SYNDBG_INTERFACE;
1531 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1532 c->eax = signature[0];
1533 c->ebx = 0;
1534 c->ecx = 0;
1535 c->edx = 0;
1537 c = &cpuid_ent[cpuid_i++];
1538 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1539 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1540 c->ebx = 0;
1541 c->ecx = 0;
1542 c->edx = 0;
1545 return cpuid_i;
1548 static Error *hv_passthrough_mig_blocker;
1549 static Error *hv_no_nonarch_cs_mig_blocker;
1551 /* Checks that the exposed eVMCS version range is supported by KVM */
1552 static bool evmcs_version_supported(uint16_t evmcs_version,
1553 uint16_t supported_evmcs_version)
1555 uint8_t min_version = evmcs_version & 0xff;
1556 uint8_t max_version = evmcs_version >> 8;
1557 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1558 uint8_t max_supported_version = supported_evmcs_version >> 8;
1560 return (min_version >= min_supported_version) &&
1561 (max_version <= max_supported_version);
1564 static int hyperv_init_vcpu(X86CPU *cpu)
1566 CPUState *cs = CPU(cpu);
1567 Error *local_err = NULL;
1568 int ret;
1570 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1571 error_setg(&hv_passthrough_mig_blocker,
1572 "'hv-passthrough' CPU flag prevents migration, use explicit"
1573 " set of hv-* flags instead");
1574 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1575 if (ret < 0) {
1576 error_report_err(local_err);
1577 return ret;
1581 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1582 hv_no_nonarch_cs_mig_blocker == NULL) {
1583 error_setg(&hv_no_nonarch_cs_mig_blocker,
1584 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1585 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1586 " make sure SMT is disabled and/or that vCPUs are properly"
1587 " pinned)");
1588 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1589 if (ret < 0) {
1590 error_report_err(local_err);
1591 return ret;
1595 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1597 * the kernel doesn't support setting vp_index; assert that its value
1598 * is in sync
1600 uint64_t value;
1602 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1603 if (ret < 0) {
1604 return ret;
1607 if (value != hyperv_vp_index(CPU(cpu))) {
1608 error_report("kernel's vp_index != QEMU's vp_index");
1609 return -ENXIO;
1613 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1614 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1615 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1616 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1617 if (ret < 0) {
1618 error_report("failed to turn on HyperV SynIC in KVM: %s",
1619 strerror(-ret));
1620 return ret;
1623 if (!cpu->hyperv_synic_kvm_only) {
1624 ret = hyperv_x86_synic_add(cpu);
1625 if (ret < 0) {
1626 error_report("failed to create HyperV SynIC: %s",
1627 strerror(-ret));
1628 return ret;
1633 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1634 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1635 uint16_t supported_evmcs_version;
1637 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1638 (uintptr_t)&supported_evmcs_version);
1641 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1642 * option sets. Note: we hardcode the maximum supported eVMCS version
1643 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1644 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1645 * to be added.
1647 if (ret < 0) {
1648 error_report("Hyper-V %s is not supported by kernel",
1649 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1650 return ret;
1653 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1654 error_report("eVMCS version range [%d..%d] is not supported by "
1655 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1656 evmcs_version >> 8, supported_evmcs_version & 0xff,
1657 supported_evmcs_version >> 8);
1658 return -ENOTSUP;
1662 if (cpu->hyperv_enforce_cpuid) {
1663 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1664 if (ret < 0) {
1665 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1666 strerror(-ret));
1667 return ret;
1671 return 0;
1674 static Error *invtsc_mig_blocker;
1676 #define KVM_MAX_CPUID_ENTRIES 100
1678 static void kvm_init_xsave(CPUX86State *env)
1680 if (has_xsave2) {
1681 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1682 } else if (has_xsave) {
1683 env->xsave_buf_len = sizeof(struct kvm_xsave);
1684 } else {
1685 return;
1688 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1689 memset(env->xsave_buf, 0, env->xsave_buf_len);
1691 * The allocated storage must be large enough for all of the
1692 * possible XSAVE state components.
1694 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1695 env->xsave_buf_len);
1698 int kvm_arch_init_vcpu(CPUState *cs)
1700 struct {
1701 struct kvm_cpuid2 cpuid;
1702 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1703 } cpuid_data;
1705 * The kernel defines these structs with padding fields so there
1706 * should be no extra padding in our cpuid_data struct.
1708 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1709 sizeof(struct kvm_cpuid2) +
1710 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1712 X86CPU *cpu = X86_CPU(cs);
1713 CPUX86State *env = &cpu->env;
1714 uint32_t limit, i, j, cpuid_i;
1715 uint32_t unused;
1716 struct kvm_cpuid_entry2 *c;
1717 uint32_t signature[3];
1718 int kvm_base = KVM_CPUID_SIGNATURE;
1719 int max_nested_state_len;
1720 int r;
1721 Error *local_err = NULL;
1723 memset(&cpuid_data, 0, sizeof(cpuid_data));
1725 cpuid_i = 0;
1727 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1729 r = kvm_arch_set_tsc_khz(cs);
1730 if (r < 0) {
1731 return r;
1734 /* vcpu's TSC frequency is either specified by user, or following
1735 * the value used by KVM if the former is not present. In the
1736 * latter case, we query it from KVM and record in env->tsc_khz,
1737 * so that vcpu's TSC frequency can be migrated later via this field.
1739 if (!env->tsc_khz) {
1740 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1741 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1742 -ENOTSUP;
1743 if (r > 0) {
1744 env->tsc_khz = r;
1748 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1751 * kvm_hyperv_expand_features() is called here for the second time in case
1752 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1753 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1754 * check which Hyper-V enlightenments are supported and which are not, we
1755 * can still proceed and check/expand Hyper-V enlightenments here so legacy
1756 * behavior is preserved.
1758 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1759 error_report_err(local_err);
1760 return -ENOSYS;
1763 if (hyperv_enabled(cpu)) {
1764 r = hyperv_init_vcpu(cpu);
1765 if (r) {
1766 return r;
1769 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1770 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1771 has_msr_hv_hypercall = true;
1774 if (cpu->expose_kvm) {
1775 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1776 c = &cpuid_data.entries[cpuid_i++];
1777 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1778 c->eax = KVM_CPUID_FEATURES | kvm_base;
1779 c->ebx = signature[0];
1780 c->ecx = signature[1];
1781 c->edx = signature[2];
1783 c = &cpuid_data.entries[cpuid_i++];
1784 c->function = KVM_CPUID_FEATURES | kvm_base;
1785 c->eax = env->features[FEAT_KVM];
1786 c->edx = env->features[FEAT_KVM_HINTS];
1789 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1791 if (cpu->kvm_pv_enforce_cpuid) {
1792 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1793 if (r < 0) {
1794 fprintf(stderr,
1795 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1796 strerror(-r));
1797 abort();
1801 for (i = 0; i <= limit; i++) {
1802 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1803 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1804 abort();
1806 c = &cpuid_data.entries[cpuid_i++];
1808 switch (i) {
1809 case 2: {
1810 /* Keep reading function 2 till all the input is received */
1811 int times;
1813 c->function = i;
1814 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1815 KVM_CPUID_FLAG_STATE_READ_NEXT;
1816 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1817 times = c->eax & 0xff;
1819 for (j = 1; j < times; ++j) {
1820 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1821 fprintf(stderr, "cpuid_data is full, no space for "
1822 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1823 abort();
1825 c = &cpuid_data.entries[cpuid_i++];
1826 c->function = i;
1827 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1828 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1830 break;
1832 case 0x1f:
1833 if (env->nr_dies < 2) {
1834 break;
1836 /* fallthrough */
1837 case 4:
1838 case 0xb:
1839 case 0xd:
1840 for (j = 0; ; j++) {
1841 if (i == 0xd && j == 64) {
1842 break;
1845 if (i == 0x1f && j == 64) {
1846 break;
1849 c->function = i;
1850 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1851 c->index = j;
1852 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1854 if (i == 4 && c->eax == 0) {
1855 break;
1857 if (i == 0xb && !(c->ecx & 0xff00)) {
1858 break;
1860 if (i == 0x1f && !(c->ecx & 0xff00)) {
1861 break;
1863 if (i == 0xd && c->eax == 0) {
1864 continue;
1866 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1867 fprintf(stderr, "cpuid_data is full, no space for "
1868 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1869 abort();
1871 c = &cpuid_data.entries[cpuid_i++];
1873 break;
1874 case 0x7:
1875 case 0x12:
1876 for (j = 0; ; j++) {
1877 c->function = i;
1878 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1879 c->index = j;
1880 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1882 if (j > 1 && (c->eax & 0xf) != 1) {
1883 break;
1886 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1887 fprintf(stderr, "cpuid_data is full, no space for "
1888 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1889 abort();
1891 c = &cpuid_data.entries[cpuid_i++];
1893 break;
1894 case 0x14:
1895 case 0x1d:
1896 case 0x1e: {
1897 uint32_t times;
1899 c->function = i;
1900 c->index = 0;
1901 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1902 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1903 times = c->eax;
1905 for (j = 1; j <= times; ++j) {
1906 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1907 fprintf(stderr, "cpuid_data is full, no space for "
1908 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1909 abort();
1911 c = &cpuid_data.entries[cpuid_i++];
1912 c->function = i;
1913 c->index = j;
1914 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1915 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1917 break;
1919 default:
1920 c->function = i;
1921 c->flags = 0;
1922 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1923 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1925 * KVM already returns all zeroes if a CPUID entry is missing,
1926 * so we can omit it and avoid hitting KVM's 80-entry limit.
1928 cpuid_i--;
1930 break;
1934 if (limit >= 0x0a) {
1935 uint32_t eax, edx;
1937 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1939 has_architectural_pmu_version = eax & 0xff;
1940 if (has_architectural_pmu_version > 0) {
1941 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1943 /* Shouldn't be more than 32, since that's the number of bits
1944 * available in EBX to tell us _which_ counters are available.
1945 * Play it safe.
1947 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1948 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1951 if (has_architectural_pmu_version > 1) {
1952 num_architectural_pmu_fixed_counters = edx & 0x1f;
1954 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1955 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1961 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1963 for (i = 0x80000000; i <= limit; i++) {
1964 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1965 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1966 abort();
1968 c = &cpuid_data.entries[cpuid_i++];
1970 switch (i) {
1971 case 0x8000001d:
1972 /* Query for all AMD cache information leaves */
1973 for (j = 0; ; j++) {
1974 c->function = i;
1975 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1976 c->index = j;
1977 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1979 if (c->eax == 0) {
1980 break;
1982 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1983 fprintf(stderr, "cpuid_data is full, no space for "
1984 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1985 abort();
1987 c = &cpuid_data.entries[cpuid_i++];
1989 break;
1990 default:
1991 c->function = i;
1992 c->flags = 0;
1993 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1994 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1996 * KVM already returns all zeroes if a CPUID entry is missing,
1997 * so we can omit it and avoid hitting KVM's 80-entry limit.
1999 cpuid_i--;
2001 break;
2005 /* Call Centaur's CPUID instructions they are supported. */
2006 if (env->cpuid_xlevel2 > 0) {
2007 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2009 for (i = 0xC0000000; i <= limit; i++) {
2010 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2011 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2012 abort();
2014 c = &cpuid_data.entries[cpuid_i++];
2016 c->function = i;
2017 c->flags = 0;
2018 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2022 cpuid_data.cpuid.nent = cpuid_i;
2024 if (((env->cpuid_version >> 8)&0xF) >= 6
2025 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2026 (CPUID_MCE | CPUID_MCA)
2027 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
2028 uint64_t mcg_cap, unsupported_caps;
2029 int banks;
2030 int ret;
2032 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2033 if (ret < 0) {
2034 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2035 return ret;
2038 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2039 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2040 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2041 return -ENOTSUP;
2044 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2045 if (unsupported_caps) {
2046 if (unsupported_caps & MCG_LMCE_P) {
2047 error_report("kvm: LMCE not supported");
2048 return -ENOTSUP;
2050 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2051 unsupported_caps);
2054 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2055 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2056 if (ret < 0) {
2057 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2058 return ret;
2062 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2064 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2065 if (c) {
2066 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2067 !!(c->ecx & CPUID_EXT_SMX);
2070 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2071 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2072 has_msr_feature_control = true;
2075 if (env->mcg_cap & MCG_LMCE_P) {
2076 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2079 if (!env->user_tsc_khz) {
2080 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2081 invtsc_mig_blocker == NULL) {
2082 error_setg(&invtsc_mig_blocker,
2083 "State blocked by non-migratable CPU device"
2084 " (invtsc flag)");
2085 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2086 if (r < 0) {
2087 error_report_err(local_err);
2088 return r;
2093 if (cpu->vmware_cpuid_freq
2094 /* Guests depend on 0x40000000 to detect this feature, so only expose
2095 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2096 && cpu->expose_kvm
2097 && kvm_base == KVM_CPUID_SIGNATURE
2098 /* TSC clock must be stable and known for this feature. */
2099 && tsc_is_stable_and_known(env)) {
2101 c = &cpuid_data.entries[cpuid_i++];
2102 c->function = KVM_CPUID_SIGNATURE | 0x10;
2103 c->eax = env->tsc_khz;
2104 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2105 c->ecx = c->edx = 0;
2107 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2108 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2111 cpuid_data.cpuid.nent = cpuid_i;
2113 cpuid_data.cpuid.padding = 0;
2114 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2115 if (r) {
2116 goto fail;
2118 kvm_init_xsave(env);
2120 max_nested_state_len = kvm_max_nested_state_length();
2121 if (max_nested_state_len > 0) {
2122 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2124 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2125 struct kvm_vmx_nested_state_hdr *vmx_hdr;
2127 env->nested_state = g_malloc0(max_nested_state_len);
2128 env->nested_state->size = max_nested_state_len;
2130 if (cpu_has_vmx(env)) {
2131 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
2132 vmx_hdr = &env->nested_state->hdr.vmx;
2133 vmx_hdr->vmxon_pa = -1ull;
2134 vmx_hdr->vmcs12_pa = -1ull;
2135 } else {
2136 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
2141 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2143 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2144 has_msr_tsc_aux = false;
2147 kvm_init_msrs(cpu);
2149 return 0;
2151 fail:
2152 migrate_del_blocker(invtsc_mig_blocker);
2154 return r;
2157 int kvm_arch_destroy_vcpu(CPUState *cs)
2159 X86CPU *cpu = X86_CPU(cs);
2160 CPUX86State *env = &cpu->env;
2162 g_free(env->xsave_buf);
2164 if (cpu->kvm_msr_buf) {
2165 g_free(cpu->kvm_msr_buf);
2166 cpu->kvm_msr_buf = NULL;
2169 if (env->nested_state) {
2170 g_free(env->nested_state);
2171 env->nested_state = NULL;
2174 qemu_del_vm_change_state_handler(cpu->vmsentry);
2176 return 0;
2179 void kvm_arch_reset_vcpu(X86CPU *cpu)
2181 CPUX86State *env = &cpu->env;
2183 env->xcr0 = 1;
2184 if (kvm_irqchip_in_kernel()) {
2185 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2186 KVM_MP_STATE_UNINITIALIZED;
2187 } else {
2188 env->mp_state = KVM_MP_STATE_RUNNABLE;
2191 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2192 int i;
2193 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2194 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2197 hyperv_x86_synic_reset(cpu);
2199 /* enabled by default */
2200 env->poll_control_msr = 1;
2202 sev_es_set_reset_vector(CPU(cpu));
2205 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2207 CPUX86State *env = &cpu->env;
2209 /* APs get directly into wait-for-SIPI state. */
2210 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2211 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2215 static int kvm_get_supported_feature_msrs(KVMState *s)
2217 int ret = 0;
2219 if (kvm_feature_msrs != NULL) {
2220 return 0;
2223 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2224 return 0;
2227 struct kvm_msr_list msr_list;
2229 msr_list.nmsrs = 0;
2230 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2231 if (ret < 0 && ret != -E2BIG) {
2232 error_report("Fetch KVM feature MSR list failed: %s",
2233 strerror(-ret));
2234 return ret;
2237 assert(msr_list.nmsrs > 0);
2238 kvm_feature_msrs = (struct kvm_msr_list *) \
2239 g_malloc0(sizeof(msr_list) +
2240 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2242 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2243 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2245 if (ret < 0) {
2246 error_report("Fetch KVM feature MSR list failed: %s",
2247 strerror(-ret));
2248 g_free(kvm_feature_msrs);
2249 kvm_feature_msrs = NULL;
2250 return ret;
2253 return 0;
2256 static int kvm_get_supported_msrs(KVMState *s)
2258 int ret = 0;
2259 struct kvm_msr_list msr_list, *kvm_msr_list;
2262 * Obtain MSR list from KVM. These are the MSRs that we must
2263 * save/restore.
2265 msr_list.nmsrs = 0;
2266 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2267 if (ret < 0 && ret != -E2BIG) {
2268 return ret;
2271 * Old kernel modules had a bug and could write beyond the provided
2272 * memory. Allocate at least a safe amount of 1K.
2274 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2275 msr_list.nmsrs *
2276 sizeof(msr_list.indices[0])));
2278 kvm_msr_list->nmsrs = msr_list.nmsrs;
2279 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2280 if (ret >= 0) {
2281 int i;
2283 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2284 switch (kvm_msr_list->indices[i]) {
2285 case MSR_STAR:
2286 has_msr_star = true;
2287 break;
2288 case MSR_VM_HSAVE_PA:
2289 has_msr_hsave_pa = true;
2290 break;
2291 case MSR_TSC_AUX:
2292 has_msr_tsc_aux = true;
2293 break;
2294 case MSR_TSC_ADJUST:
2295 has_msr_tsc_adjust = true;
2296 break;
2297 case MSR_IA32_TSCDEADLINE:
2298 has_msr_tsc_deadline = true;
2299 break;
2300 case MSR_IA32_SMBASE:
2301 has_msr_smbase = true;
2302 break;
2303 case MSR_SMI_COUNT:
2304 has_msr_smi_count = true;
2305 break;
2306 case MSR_IA32_MISC_ENABLE:
2307 has_msr_misc_enable = true;
2308 break;
2309 case MSR_IA32_BNDCFGS:
2310 has_msr_bndcfgs = true;
2311 break;
2312 case MSR_IA32_XSS:
2313 has_msr_xss = true;
2314 break;
2315 case MSR_IA32_UMWAIT_CONTROL:
2316 has_msr_umwait = true;
2317 break;
2318 case HV_X64_MSR_CRASH_CTL:
2319 has_msr_hv_crash = true;
2320 break;
2321 case HV_X64_MSR_RESET:
2322 has_msr_hv_reset = true;
2323 break;
2324 case HV_X64_MSR_VP_INDEX:
2325 has_msr_hv_vpindex = true;
2326 break;
2327 case HV_X64_MSR_VP_RUNTIME:
2328 has_msr_hv_runtime = true;
2329 break;
2330 case HV_X64_MSR_SCONTROL:
2331 has_msr_hv_synic = true;
2332 break;
2333 case HV_X64_MSR_STIMER0_CONFIG:
2334 has_msr_hv_stimer = true;
2335 break;
2336 case HV_X64_MSR_TSC_FREQUENCY:
2337 has_msr_hv_frequencies = true;
2338 break;
2339 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2340 has_msr_hv_reenlightenment = true;
2341 break;
2342 case HV_X64_MSR_SYNDBG_OPTIONS:
2343 has_msr_hv_syndbg_options = true;
2344 break;
2345 case MSR_IA32_SPEC_CTRL:
2346 has_msr_spec_ctrl = true;
2347 break;
2348 case MSR_AMD64_TSC_RATIO:
2349 has_tsc_scale_msr = true;
2350 break;
2351 case MSR_IA32_TSX_CTRL:
2352 has_msr_tsx_ctrl = true;
2353 break;
2354 case MSR_VIRT_SSBD:
2355 has_msr_virt_ssbd = true;
2356 break;
2357 case MSR_IA32_ARCH_CAPABILITIES:
2358 has_msr_arch_capabs = true;
2359 break;
2360 case MSR_IA32_CORE_CAPABILITY:
2361 has_msr_core_capabs = true;
2362 break;
2363 case MSR_IA32_PERF_CAPABILITIES:
2364 has_msr_perf_capabs = true;
2365 break;
2366 case MSR_IA32_VMX_VMFUNC:
2367 has_msr_vmx_vmfunc = true;
2368 break;
2369 case MSR_IA32_UCODE_REV:
2370 has_msr_ucode_rev = true;
2371 break;
2372 case MSR_IA32_VMX_PROCBASED_CTLS2:
2373 has_msr_vmx_procbased_ctls2 = true;
2374 break;
2375 case MSR_IA32_PKRS:
2376 has_msr_pkrs = true;
2377 break;
2382 g_free(kvm_msr_list);
2384 return ret;
2387 static Notifier smram_machine_done;
2388 static KVMMemoryListener smram_listener;
2389 static AddressSpace smram_address_space;
2390 static MemoryRegion smram_as_root;
2391 static MemoryRegion smram_as_mem;
2393 static void register_smram_listener(Notifier *n, void *unused)
2395 MemoryRegion *smram =
2396 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2398 /* Outer container... */
2399 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2400 memory_region_set_enabled(&smram_as_root, true);
2402 /* ... with two regions inside: normal system memory with low
2403 * priority, and...
2405 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2406 get_system_memory(), 0, ~0ull);
2407 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2408 memory_region_set_enabled(&smram_as_mem, true);
2410 if (smram) {
2411 /* ... SMRAM with higher priority */
2412 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2413 memory_region_set_enabled(smram, true);
2416 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2417 kvm_memory_listener_register(kvm_state, &smram_listener,
2418 &smram_address_space, 1, "kvm-smram");
2421 int kvm_arch_init(MachineState *ms, KVMState *s)
2423 uint64_t identity_base = 0xfffbc000;
2424 uint64_t shadow_mem;
2425 int ret;
2426 struct utsname utsname;
2427 Error *local_err = NULL;
2430 * Initialize SEV context, if required
2432 * If no memory encryption is requested (ms->cgs == NULL) this is
2433 * a no-op.
2435 * It's also a no-op if a non-SEV confidential guest support
2436 * mechanism is selected. SEV is the only mechanism available to
2437 * select on x86 at present, so this doesn't arise, but if new
2438 * mechanisms are supported in future (e.g. TDX), they'll need
2439 * their own initialization either here or elsewhere.
2441 ret = sev_kvm_init(ms->cgs, &local_err);
2442 if (ret < 0) {
2443 error_report_err(local_err);
2444 return ret;
2447 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2448 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2449 return -ENOTSUP;
2452 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2453 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2454 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2455 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2457 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2459 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2460 if (has_exception_payload) {
2461 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2462 if (ret < 0) {
2463 error_report("kvm: Failed to enable exception payload cap: %s",
2464 strerror(-ret));
2465 return ret;
2469 ret = kvm_get_supported_msrs(s);
2470 if (ret < 0) {
2471 return ret;
2474 kvm_get_supported_feature_msrs(s);
2476 uname(&utsname);
2477 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2480 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2481 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2482 * Since these must be part of guest physical memory, we need to allocate
2483 * them, both by setting their start addresses in the kernel and by
2484 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2486 * Older KVM versions may not support setting the identity map base. In
2487 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2488 * size.
2490 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2491 /* Allows up to 16M BIOSes. */
2492 identity_base = 0xfeffc000;
2494 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2495 if (ret < 0) {
2496 return ret;
2500 /* Set TSS base one page after EPT identity map. */
2501 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2502 if (ret < 0) {
2503 return ret;
2506 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2507 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2508 if (ret < 0) {
2509 fprintf(stderr, "e820_add_entry() table is full\n");
2510 return ret;
2513 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2514 if (shadow_mem != -1) {
2515 shadow_mem /= 4096;
2516 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2517 if (ret < 0) {
2518 return ret;
2522 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2523 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2524 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2525 smram_machine_done.notify = register_smram_listener;
2526 qemu_add_machine_init_done_notifier(&smram_machine_done);
2529 if (enable_cpu_pm) {
2530 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2531 int ret;
2533 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2534 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2535 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2536 #endif
2537 if (disable_exits) {
2538 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2539 KVM_X86_DISABLE_EXITS_HLT |
2540 KVM_X86_DISABLE_EXITS_PAUSE |
2541 KVM_X86_DISABLE_EXITS_CSTATE);
2544 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2545 disable_exits);
2546 if (ret < 0) {
2547 error_report("kvm: guest stopping CPU not supported: %s",
2548 strerror(-ret));
2552 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2553 X86MachineState *x86ms = X86_MACHINE(ms);
2555 if (x86ms->bus_lock_ratelimit > 0) {
2556 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2557 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2558 error_report("kvm: bus lock detection unsupported");
2559 return -ENOTSUP;
2561 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2562 KVM_BUS_LOCK_DETECTION_EXIT);
2563 if (ret < 0) {
2564 error_report("kvm: Failed to enable bus lock detection cap: %s",
2565 strerror(-ret));
2566 return ret;
2568 ratelimit_init(&bus_lock_ratelimit_ctrl);
2569 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2570 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2574 return 0;
2577 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2579 lhs->selector = rhs->selector;
2580 lhs->base = rhs->base;
2581 lhs->limit = rhs->limit;
2582 lhs->type = 3;
2583 lhs->present = 1;
2584 lhs->dpl = 3;
2585 lhs->db = 0;
2586 lhs->s = 1;
2587 lhs->l = 0;
2588 lhs->g = 0;
2589 lhs->avl = 0;
2590 lhs->unusable = 0;
2593 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2595 unsigned flags = rhs->flags;
2596 lhs->selector = rhs->selector;
2597 lhs->base = rhs->base;
2598 lhs->limit = rhs->limit;
2599 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2600 lhs->present = (flags & DESC_P_MASK) != 0;
2601 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2602 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2603 lhs->s = (flags & DESC_S_MASK) != 0;
2604 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2605 lhs->g = (flags & DESC_G_MASK) != 0;
2606 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2607 lhs->unusable = !lhs->present;
2608 lhs->padding = 0;
2611 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2613 lhs->selector = rhs->selector;
2614 lhs->base = rhs->base;
2615 lhs->limit = rhs->limit;
2616 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2617 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2618 (rhs->dpl << DESC_DPL_SHIFT) |
2619 (rhs->db << DESC_B_SHIFT) |
2620 (rhs->s * DESC_S_MASK) |
2621 (rhs->l << DESC_L_SHIFT) |
2622 (rhs->g * DESC_G_MASK) |
2623 (rhs->avl * DESC_AVL_MASK);
2626 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2628 if (set) {
2629 *kvm_reg = *qemu_reg;
2630 } else {
2631 *qemu_reg = *kvm_reg;
2635 static int kvm_getput_regs(X86CPU *cpu, int set)
2637 CPUX86State *env = &cpu->env;
2638 struct kvm_regs regs;
2639 int ret = 0;
2641 if (!set) {
2642 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2643 if (ret < 0) {
2644 return ret;
2648 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2649 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2650 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2651 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2652 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2653 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2654 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2655 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2656 #ifdef TARGET_X86_64
2657 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2658 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2659 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2660 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2661 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2662 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2663 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2664 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2665 #endif
2667 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2668 kvm_getput_reg(&regs.rip, &env->eip, set);
2670 if (set) {
2671 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2674 return ret;
2677 static int kvm_put_fpu(X86CPU *cpu)
2679 CPUX86State *env = &cpu->env;
2680 struct kvm_fpu fpu;
2681 int i;
2683 memset(&fpu, 0, sizeof fpu);
2684 fpu.fsw = env->fpus & ~(7 << 11);
2685 fpu.fsw |= (env->fpstt & 7) << 11;
2686 fpu.fcw = env->fpuc;
2687 fpu.last_opcode = env->fpop;
2688 fpu.last_ip = env->fpip;
2689 fpu.last_dp = env->fpdp;
2690 for (i = 0; i < 8; ++i) {
2691 fpu.ftwx |= (!env->fptags[i]) << i;
2693 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2694 for (i = 0; i < CPU_NB_REGS; i++) {
2695 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2696 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2698 fpu.mxcsr = env->mxcsr;
2700 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2703 static int kvm_put_xsave(X86CPU *cpu)
2705 CPUX86State *env = &cpu->env;
2706 void *xsave = env->xsave_buf;
2708 if (!has_xsave) {
2709 return kvm_put_fpu(cpu);
2711 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2713 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2716 static int kvm_put_xcrs(X86CPU *cpu)
2718 CPUX86State *env = &cpu->env;
2719 struct kvm_xcrs xcrs = {};
2721 if (!has_xcrs) {
2722 return 0;
2725 xcrs.nr_xcrs = 1;
2726 xcrs.flags = 0;
2727 xcrs.xcrs[0].xcr = 0;
2728 xcrs.xcrs[0].value = env->xcr0;
2729 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2732 static int kvm_put_sregs(X86CPU *cpu)
2734 CPUX86State *env = &cpu->env;
2735 struct kvm_sregs sregs;
2738 * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2739 * always followed by KVM_SET_VCPU_EVENTS.
2741 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2743 if ((env->eflags & VM_MASK)) {
2744 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2745 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2746 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2747 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2748 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2749 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2750 } else {
2751 set_seg(&sregs.cs, &env->segs[R_CS]);
2752 set_seg(&sregs.ds, &env->segs[R_DS]);
2753 set_seg(&sregs.es, &env->segs[R_ES]);
2754 set_seg(&sregs.fs, &env->segs[R_FS]);
2755 set_seg(&sregs.gs, &env->segs[R_GS]);
2756 set_seg(&sregs.ss, &env->segs[R_SS]);
2759 set_seg(&sregs.tr, &env->tr);
2760 set_seg(&sregs.ldt, &env->ldt);
2762 sregs.idt.limit = env->idt.limit;
2763 sregs.idt.base = env->idt.base;
2764 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2765 sregs.gdt.limit = env->gdt.limit;
2766 sregs.gdt.base = env->gdt.base;
2767 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2769 sregs.cr0 = env->cr[0];
2770 sregs.cr2 = env->cr[2];
2771 sregs.cr3 = env->cr[3];
2772 sregs.cr4 = env->cr[4];
2774 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2775 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2777 sregs.efer = env->efer;
2779 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2782 static int kvm_put_sregs2(X86CPU *cpu)
2784 CPUX86State *env = &cpu->env;
2785 struct kvm_sregs2 sregs;
2786 int i;
2788 sregs.flags = 0;
2790 if ((env->eflags & VM_MASK)) {
2791 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2792 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2793 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2794 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2795 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2796 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2797 } else {
2798 set_seg(&sregs.cs, &env->segs[R_CS]);
2799 set_seg(&sregs.ds, &env->segs[R_DS]);
2800 set_seg(&sregs.es, &env->segs[R_ES]);
2801 set_seg(&sregs.fs, &env->segs[R_FS]);
2802 set_seg(&sregs.gs, &env->segs[R_GS]);
2803 set_seg(&sregs.ss, &env->segs[R_SS]);
2806 set_seg(&sregs.tr, &env->tr);
2807 set_seg(&sregs.ldt, &env->ldt);
2809 sregs.idt.limit = env->idt.limit;
2810 sregs.idt.base = env->idt.base;
2811 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2812 sregs.gdt.limit = env->gdt.limit;
2813 sregs.gdt.base = env->gdt.base;
2814 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2816 sregs.cr0 = env->cr[0];
2817 sregs.cr2 = env->cr[2];
2818 sregs.cr3 = env->cr[3];
2819 sregs.cr4 = env->cr[4];
2821 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2822 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2824 sregs.efer = env->efer;
2826 if (env->pdptrs_valid) {
2827 for (i = 0; i < 4; i++) {
2828 sregs.pdptrs[i] = env->pdptrs[i];
2830 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2833 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2837 static void kvm_msr_buf_reset(X86CPU *cpu)
2839 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2842 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2844 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2845 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2846 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2848 assert((void *)(entry + 1) <= limit);
2850 entry->index = index;
2851 entry->reserved = 0;
2852 entry->data = value;
2853 msrs->nmsrs++;
2856 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2858 kvm_msr_buf_reset(cpu);
2859 kvm_msr_entry_add(cpu, index, value);
2861 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2864 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
2866 int ret;
2867 struct {
2868 struct kvm_msrs info;
2869 struct kvm_msr_entry entries[1];
2870 } msr_data = {
2871 .info.nmsrs = 1,
2872 .entries[0].index = index,
2875 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
2876 if (ret < 0) {
2877 return ret;
2879 assert(ret == 1);
2880 *value = msr_data.entries[0].data;
2881 return ret;
2883 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2885 int ret;
2887 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2888 assert(ret == 1);
2891 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2893 CPUX86State *env = &cpu->env;
2894 int ret;
2896 if (!has_msr_tsc_deadline) {
2897 return 0;
2900 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2901 if (ret < 0) {
2902 return ret;
2905 assert(ret == 1);
2906 return 0;
2910 * Provide a separate write service for the feature control MSR in order to
2911 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2912 * before writing any other state because forcibly leaving nested mode
2913 * invalidates the VCPU state.
2915 static int kvm_put_msr_feature_control(X86CPU *cpu)
2917 int ret;
2919 if (!has_msr_feature_control) {
2920 return 0;
2923 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2924 cpu->env.msr_ia32_feature_control);
2925 if (ret < 0) {
2926 return ret;
2929 assert(ret == 1);
2930 return 0;
2933 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2935 uint32_t default1, can_be_one, can_be_zero;
2936 uint32_t must_be_one;
2938 switch (index) {
2939 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2940 default1 = 0x00000016;
2941 break;
2942 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2943 default1 = 0x0401e172;
2944 break;
2945 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2946 default1 = 0x000011ff;
2947 break;
2948 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2949 default1 = 0x00036dff;
2950 break;
2951 case MSR_IA32_VMX_PROCBASED_CTLS2:
2952 default1 = 0;
2953 break;
2954 default:
2955 abort();
2958 /* If a feature bit is set, the control can be either set or clear.
2959 * Otherwise the value is limited to either 0 or 1 by default1.
2961 can_be_one = features | default1;
2962 can_be_zero = features | ~default1;
2963 must_be_one = ~can_be_zero;
2966 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2967 * Bit 32:63 -> 1 if the control bit can be one.
2969 return must_be_one | (((uint64_t)can_be_one) << 32);
2972 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2974 uint64_t kvm_vmx_basic =
2975 kvm_arch_get_supported_msr_feature(kvm_state,
2976 MSR_IA32_VMX_BASIC);
2978 if (!kvm_vmx_basic) {
2979 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2980 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2982 return;
2985 uint64_t kvm_vmx_misc =
2986 kvm_arch_get_supported_msr_feature(kvm_state,
2987 MSR_IA32_VMX_MISC);
2988 uint64_t kvm_vmx_ept_vpid =
2989 kvm_arch_get_supported_msr_feature(kvm_state,
2990 MSR_IA32_VMX_EPT_VPID_CAP);
2993 * If the guest is 64-bit, a value of 1 is allowed for the host address
2994 * space size vmexit control.
2996 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2997 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3000 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
3001 * not change them for backwards compatibility.
3003 uint64_t fixed_vmx_basic = kvm_vmx_basic &
3004 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3005 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3006 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3009 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
3010 * change in the future but are always zero for now, clear them to be
3011 * future proof. Bits 32-63 in theory could change, though KVM does
3012 * not support dual-monitor treatment and probably never will; mask
3013 * them out as well.
3015 uint64_t fixed_vmx_misc = kvm_vmx_misc &
3016 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3017 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3020 * EPT memory types should not change either, so we do not bother
3021 * adding features for them.
3023 uint64_t fixed_vmx_ept_mask =
3024 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3025 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3026 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3028 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3029 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3030 f[FEAT_VMX_PROCBASED_CTLS]));
3031 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3032 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3033 f[FEAT_VMX_PINBASED_CTLS]));
3034 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3035 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3036 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3037 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3038 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3039 f[FEAT_VMX_ENTRY_CTLS]));
3040 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3041 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3042 f[FEAT_VMX_SECONDARY_CTLS]));
3043 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3044 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3045 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3046 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3047 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3048 f[FEAT_VMX_MISC] | fixed_vmx_misc);
3049 if (has_msr_vmx_vmfunc) {
3050 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3054 * Just to be safe, write these with constant values. The CRn_FIXED1
3055 * MSRs are generated by KVM based on the vCPU's CPUID.
3057 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3058 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3059 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3060 CR4_VMXE_MASK);
3062 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3063 /* TSC multiplier (0x2032). */
3064 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3065 } else {
3066 /* Preemption timer (0x482E). */
3067 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3071 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3073 uint64_t kvm_perf_cap =
3074 kvm_arch_get_supported_msr_feature(kvm_state,
3075 MSR_IA32_PERF_CAPABILITIES);
3077 if (kvm_perf_cap) {
3078 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3079 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3083 static int kvm_buf_set_msrs(X86CPU *cpu)
3085 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3086 if (ret < 0) {
3087 return ret;
3090 if (ret < cpu->kvm_msr_buf->nmsrs) {
3091 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3092 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3093 (uint32_t)e->index, (uint64_t)e->data);
3096 assert(ret == cpu->kvm_msr_buf->nmsrs);
3097 return 0;
3100 static void kvm_init_msrs(X86CPU *cpu)
3102 CPUX86State *env = &cpu->env;
3104 kvm_msr_buf_reset(cpu);
3105 if (has_msr_arch_capabs) {
3106 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3107 env->features[FEAT_ARCH_CAPABILITIES]);
3110 if (has_msr_core_capabs) {
3111 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3112 env->features[FEAT_CORE_CAPABILITY]);
3115 if (has_msr_perf_capabs && cpu->enable_pmu) {
3116 kvm_msr_entry_add_perf(cpu, env->features);
3119 if (has_msr_ucode_rev) {
3120 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3124 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3125 * all kernels with MSR features should have them.
3127 if (kvm_feature_msrs && cpu_has_vmx(env)) {
3128 kvm_msr_entry_add_vmx(cpu, env->features);
3131 assert(kvm_buf_set_msrs(cpu) == 0);
3134 static int kvm_put_msrs(X86CPU *cpu, int level)
3136 CPUX86State *env = &cpu->env;
3137 int i;
3139 kvm_msr_buf_reset(cpu);
3141 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3142 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3143 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3144 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3145 if (has_msr_star) {
3146 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3148 if (has_msr_hsave_pa) {
3149 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3151 if (has_msr_tsc_aux) {
3152 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3154 if (has_msr_tsc_adjust) {
3155 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3157 if (has_msr_misc_enable) {
3158 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3159 env->msr_ia32_misc_enable);
3161 if (has_msr_smbase) {
3162 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3164 if (has_msr_smi_count) {
3165 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3167 if (has_msr_pkrs) {
3168 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3170 if (has_msr_bndcfgs) {
3171 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3173 if (has_msr_xss) {
3174 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3176 if (has_msr_umwait) {
3177 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3179 if (has_msr_spec_ctrl) {
3180 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3182 if (has_tsc_scale_msr) {
3183 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3186 if (has_msr_tsx_ctrl) {
3187 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3189 if (has_msr_virt_ssbd) {
3190 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3193 #ifdef TARGET_X86_64
3194 if (lm_capable_kernel) {
3195 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3196 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3197 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3198 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3200 #endif
3203 * The following MSRs have side effects on the guest or are too heavy
3204 * for normal writeback. Limit them to reset or full state updates.
3206 if (level >= KVM_PUT_RESET_STATE) {
3207 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3208 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3209 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3210 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3211 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3213 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3214 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3216 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3217 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3219 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3220 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3223 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3224 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3227 if (has_architectural_pmu_version > 0) {
3228 if (has_architectural_pmu_version > 1) {
3229 /* Stop the counter. */
3230 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3231 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3234 /* Set the counter values. */
3235 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3236 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3237 env->msr_fixed_counters[i]);
3239 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3240 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3241 env->msr_gp_counters[i]);
3242 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3243 env->msr_gp_evtsel[i]);
3245 if (has_architectural_pmu_version > 1) {
3246 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3247 env->msr_global_status);
3248 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3249 env->msr_global_ovf_ctrl);
3251 /* Now start the PMU. */
3252 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3253 env->msr_fixed_ctr_ctrl);
3254 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3255 env->msr_global_ctrl);
3259 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3260 * only sync them to KVM on the first cpu
3262 if (current_cpu == first_cpu) {
3263 if (has_msr_hv_hypercall) {
3264 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3265 env->msr_hv_guest_os_id);
3266 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3267 env->msr_hv_hypercall);
3269 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3270 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3271 env->msr_hv_tsc);
3273 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3274 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3275 env->msr_hv_reenlightenment_control);
3276 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3277 env->msr_hv_tsc_emulation_control);
3278 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3279 env->msr_hv_tsc_emulation_status);
3281 #ifdef CONFIG_SYNDBG
3282 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3283 has_msr_hv_syndbg_options) {
3284 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3285 hyperv_syndbg_query_options());
3287 #endif
3289 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3290 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3291 env->msr_hv_vapic);
3293 if (has_msr_hv_crash) {
3294 int j;
3296 for (j = 0; j < HV_CRASH_PARAMS; j++)
3297 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3298 env->msr_hv_crash_params[j]);
3300 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3302 if (has_msr_hv_runtime) {
3303 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3305 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3306 && hv_vpindex_settable) {
3307 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3308 hyperv_vp_index(CPU(cpu)));
3310 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3311 int j;
3313 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3315 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3316 env->msr_hv_synic_control);
3317 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3318 env->msr_hv_synic_evt_page);
3319 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3320 env->msr_hv_synic_msg_page);
3322 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3323 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3324 env->msr_hv_synic_sint[j]);
3327 if (has_msr_hv_stimer) {
3328 int j;
3330 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3331 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3332 env->msr_hv_stimer_config[j]);
3335 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3336 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3337 env->msr_hv_stimer_count[j]);
3340 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3341 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3343 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3344 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3345 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3346 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3347 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3348 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3349 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3350 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3351 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3352 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3353 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3354 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3355 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3356 /* The CPU GPs if we write to a bit above the physical limit of
3357 * the host CPU (and KVM emulates that)
3359 uint64_t mask = env->mtrr_var[i].mask;
3360 mask &= phys_mask;
3362 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3363 env->mtrr_var[i].base);
3364 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3367 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3368 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3369 0x14, 1, R_EAX) & 0x7;
3371 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3372 env->msr_rtit_ctrl);
3373 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3374 env->msr_rtit_status);
3375 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3376 env->msr_rtit_output_base);
3377 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3378 env->msr_rtit_output_mask);
3379 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3380 env->msr_rtit_cr3_match);
3381 for (i = 0; i < addr_num; i++) {
3382 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3383 env->msr_rtit_addrs[i]);
3387 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3388 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3389 env->msr_ia32_sgxlepubkeyhash[0]);
3390 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3391 env->msr_ia32_sgxlepubkeyhash[1]);
3392 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3393 env->msr_ia32_sgxlepubkeyhash[2]);
3394 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3395 env->msr_ia32_sgxlepubkeyhash[3]);
3398 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3399 kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3400 env->msr_xfd);
3401 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3402 env->msr_xfd_err);
3405 if (kvm_enabled() && cpu->enable_pmu &&
3406 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3407 uint64_t depth;
3408 int i, ret;
3411 * Only migrate Arch LBR states when the host Arch LBR depth
3412 * equals that of source guest's, this is to avoid mismatch
3413 * of guest/host config for the msr hence avoid unexpected
3414 * misbehavior.
3416 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3418 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3419 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3420 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3422 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3423 if (!env->lbr_records[i].from) {
3424 continue;
3426 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3427 env->lbr_records[i].from);
3428 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3429 env->lbr_records[i].to);
3430 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3431 env->lbr_records[i].info);
3436 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3437 * kvm_put_msr_feature_control. */
3440 if (env->mcg_cap) {
3441 int i;
3443 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3444 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3445 if (has_msr_mcg_ext_ctl) {
3446 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3448 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3449 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3453 return kvm_buf_set_msrs(cpu);
3457 static int kvm_get_fpu(X86CPU *cpu)
3459 CPUX86State *env = &cpu->env;
3460 struct kvm_fpu fpu;
3461 int i, ret;
3463 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3464 if (ret < 0) {
3465 return ret;
3468 env->fpstt = (fpu.fsw >> 11) & 7;
3469 env->fpus = fpu.fsw;
3470 env->fpuc = fpu.fcw;
3471 env->fpop = fpu.last_opcode;
3472 env->fpip = fpu.last_ip;
3473 env->fpdp = fpu.last_dp;
3474 for (i = 0; i < 8; ++i) {
3475 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3477 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3478 for (i = 0; i < CPU_NB_REGS; i++) {
3479 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3480 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3482 env->mxcsr = fpu.mxcsr;
3484 return 0;
3487 static int kvm_get_xsave(X86CPU *cpu)
3489 CPUX86State *env = &cpu->env;
3490 void *xsave = env->xsave_buf;
3491 int type, ret;
3493 if (!has_xsave) {
3494 return kvm_get_fpu(cpu);
3497 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3498 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3499 if (ret < 0) {
3500 return ret;
3502 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3504 return 0;
3507 static int kvm_get_xcrs(X86CPU *cpu)
3509 CPUX86State *env = &cpu->env;
3510 int i, ret;
3511 struct kvm_xcrs xcrs;
3513 if (!has_xcrs) {
3514 return 0;
3517 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3518 if (ret < 0) {
3519 return ret;
3522 for (i = 0; i < xcrs.nr_xcrs; i++) {
3523 /* Only support xcr0 now */
3524 if (xcrs.xcrs[i].xcr == 0) {
3525 env->xcr0 = xcrs.xcrs[i].value;
3526 break;
3529 return 0;
3532 static int kvm_get_sregs(X86CPU *cpu)
3534 CPUX86State *env = &cpu->env;
3535 struct kvm_sregs sregs;
3536 int ret;
3538 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3539 if (ret < 0) {
3540 return ret;
3544 * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3545 * always preceded by KVM_GET_VCPU_EVENTS.
3548 get_seg(&env->segs[R_CS], &sregs.cs);
3549 get_seg(&env->segs[R_DS], &sregs.ds);
3550 get_seg(&env->segs[R_ES], &sregs.es);
3551 get_seg(&env->segs[R_FS], &sregs.fs);
3552 get_seg(&env->segs[R_GS], &sregs.gs);
3553 get_seg(&env->segs[R_SS], &sregs.ss);
3555 get_seg(&env->tr, &sregs.tr);
3556 get_seg(&env->ldt, &sregs.ldt);
3558 env->idt.limit = sregs.idt.limit;
3559 env->idt.base = sregs.idt.base;
3560 env->gdt.limit = sregs.gdt.limit;
3561 env->gdt.base = sregs.gdt.base;
3563 env->cr[0] = sregs.cr0;
3564 env->cr[2] = sregs.cr2;
3565 env->cr[3] = sregs.cr3;
3566 env->cr[4] = sregs.cr4;
3568 env->efer = sregs.efer;
3570 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3571 x86_update_hflags(env);
3573 return 0;
3576 static int kvm_get_sregs2(X86CPU *cpu)
3578 CPUX86State *env = &cpu->env;
3579 struct kvm_sregs2 sregs;
3580 int i, ret;
3582 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3583 if (ret < 0) {
3584 return ret;
3587 get_seg(&env->segs[R_CS], &sregs.cs);
3588 get_seg(&env->segs[R_DS], &sregs.ds);
3589 get_seg(&env->segs[R_ES], &sregs.es);
3590 get_seg(&env->segs[R_FS], &sregs.fs);
3591 get_seg(&env->segs[R_GS], &sregs.gs);
3592 get_seg(&env->segs[R_SS], &sregs.ss);
3594 get_seg(&env->tr, &sregs.tr);
3595 get_seg(&env->ldt, &sregs.ldt);
3597 env->idt.limit = sregs.idt.limit;
3598 env->idt.base = sregs.idt.base;
3599 env->gdt.limit = sregs.gdt.limit;
3600 env->gdt.base = sregs.gdt.base;
3602 env->cr[0] = sregs.cr0;
3603 env->cr[2] = sregs.cr2;
3604 env->cr[3] = sregs.cr3;
3605 env->cr[4] = sregs.cr4;
3607 env->efer = sregs.efer;
3609 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3611 if (env->pdptrs_valid) {
3612 for (i = 0; i < 4; i++) {
3613 env->pdptrs[i] = sregs.pdptrs[i];
3617 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3618 x86_update_hflags(env);
3620 return 0;
3623 static int kvm_get_msrs(X86CPU *cpu)
3625 CPUX86State *env = &cpu->env;
3626 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3627 int ret, i;
3628 uint64_t mtrr_top_bits;
3630 kvm_msr_buf_reset(cpu);
3632 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3633 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3634 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3635 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3636 if (has_msr_star) {
3637 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3639 if (has_msr_hsave_pa) {
3640 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3642 if (has_msr_tsc_aux) {
3643 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3645 if (has_msr_tsc_adjust) {
3646 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3648 if (has_msr_tsc_deadline) {
3649 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3651 if (has_msr_misc_enable) {
3652 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3654 if (has_msr_smbase) {
3655 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3657 if (has_msr_smi_count) {
3658 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3660 if (has_msr_feature_control) {
3661 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3663 if (has_msr_pkrs) {
3664 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3666 if (has_msr_bndcfgs) {
3667 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3669 if (has_msr_xss) {
3670 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3672 if (has_msr_umwait) {
3673 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3675 if (has_msr_spec_ctrl) {
3676 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3678 if (has_tsc_scale_msr) {
3679 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3682 if (has_msr_tsx_ctrl) {
3683 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3685 if (has_msr_virt_ssbd) {
3686 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3688 if (!env->tsc_valid) {
3689 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3690 env->tsc_valid = !runstate_is_running();
3693 #ifdef TARGET_X86_64
3694 if (lm_capable_kernel) {
3695 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3696 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3697 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3698 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3700 #endif
3701 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3702 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3703 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3704 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3706 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3707 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3709 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3710 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3712 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3713 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3715 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3716 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3718 if (has_architectural_pmu_version > 0) {
3719 if (has_architectural_pmu_version > 1) {
3720 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3721 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3722 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3723 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3725 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3726 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3728 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3729 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3730 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3734 if (env->mcg_cap) {
3735 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3736 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3737 if (has_msr_mcg_ext_ctl) {
3738 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3740 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3741 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3745 if (has_msr_hv_hypercall) {
3746 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3747 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3749 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3750 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3752 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3753 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3755 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3756 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3757 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3758 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3760 if (has_msr_hv_syndbg_options) {
3761 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3763 if (has_msr_hv_crash) {
3764 int j;
3766 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3767 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3770 if (has_msr_hv_runtime) {
3771 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3773 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3774 uint32_t msr;
3776 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3777 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3778 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3779 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3780 kvm_msr_entry_add(cpu, msr, 0);
3783 if (has_msr_hv_stimer) {
3784 uint32_t msr;
3786 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3787 msr++) {
3788 kvm_msr_entry_add(cpu, msr, 0);
3791 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3792 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3793 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3794 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3795 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3796 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3797 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3798 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3799 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3800 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3801 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3802 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3803 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3804 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3805 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3806 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3810 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3811 int addr_num =
3812 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3814 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3815 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3816 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3817 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3818 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3819 for (i = 0; i < addr_num; i++) {
3820 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3824 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3825 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3826 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3827 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3828 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3831 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3832 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3833 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3836 if (kvm_enabled() && cpu->enable_pmu &&
3837 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3838 uint64_t depth;
3839 int i, ret;
3841 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3842 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
3843 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
3844 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
3846 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3847 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
3848 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
3849 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
3854 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3855 if (ret < 0) {
3856 return ret;
3859 if (ret < cpu->kvm_msr_buf->nmsrs) {
3860 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3861 error_report("error: failed to get MSR 0x%" PRIx32,
3862 (uint32_t)e->index);
3865 assert(ret == cpu->kvm_msr_buf->nmsrs);
3867 * MTRR masks: Each mask consists of 5 parts
3868 * a 10..0: must be zero
3869 * b 11 : valid bit
3870 * c n-1.12: actual mask bits
3871 * d 51..n: reserved must be zero
3872 * e 63.52: reserved must be zero
3874 * 'n' is the number of physical bits supported by the CPU and is
3875 * apparently always <= 52. We know our 'n' but don't know what
3876 * the destinations 'n' is; it might be smaller, in which case
3877 * it masks (c) on loading. It might be larger, in which case
3878 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3879 * we're migrating to.
3882 if (cpu->fill_mtrr_mask) {
3883 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3884 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3885 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3886 } else {
3887 mtrr_top_bits = 0;
3890 for (i = 0; i < ret; i++) {
3891 uint32_t index = msrs[i].index;
3892 switch (index) {
3893 case MSR_IA32_SYSENTER_CS:
3894 env->sysenter_cs = msrs[i].data;
3895 break;
3896 case MSR_IA32_SYSENTER_ESP:
3897 env->sysenter_esp = msrs[i].data;
3898 break;
3899 case MSR_IA32_SYSENTER_EIP:
3900 env->sysenter_eip = msrs[i].data;
3901 break;
3902 case MSR_PAT:
3903 env->pat = msrs[i].data;
3904 break;
3905 case MSR_STAR:
3906 env->star = msrs[i].data;
3907 break;
3908 #ifdef TARGET_X86_64
3909 case MSR_CSTAR:
3910 env->cstar = msrs[i].data;
3911 break;
3912 case MSR_KERNELGSBASE:
3913 env->kernelgsbase = msrs[i].data;
3914 break;
3915 case MSR_FMASK:
3916 env->fmask = msrs[i].data;
3917 break;
3918 case MSR_LSTAR:
3919 env->lstar = msrs[i].data;
3920 break;
3921 #endif
3922 case MSR_IA32_TSC:
3923 env->tsc = msrs[i].data;
3924 break;
3925 case MSR_TSC_AUX:
3926 env->tsc_aux = msrs[i].data;
3927 break;
3928 case MSR_TSC_ADJUST:
3929 env->tsc_adjust = msrs[i].data;
3930 break;
3931 case MSR_IA32_TSCDEADLINE:
3932 env->tsc_deadline = msrs[i].data;
3933 break;
3934 case MSR_VM_HSAVE_PA:
3935 env->vm_hsave = msrs[i].data;
3936 break;
3937 case MSR_KVM_SYSTEM_TIME:
3938 env->system_time_msr = msrs[i].data;
3939 break;
3940 case MSR_KVM_WALL_CLOCK:
3941 env->wall_clock_msr = msrs[i].data;
3942 break;
3943 case MSR_MCG_STATUS:
3944 env->mcg_status = msrs[i].data;
3945 break;
3946 case MSR_MCG_CTL:
3947 env->mcg_ctl = msrs[i].data;
3948 break;
3949 case MSR_MCG_EXT_CTL:
3950 env->mcg_ext_ctl = msrs[i].data;
3951 break;
3952 case MSR_IA32_MISC_ENABLE:
3953 env->msr_ia32_misc_enable = msrs[i].data;
3954 break;
3955 case MSR_IA32_SMBASE:
3956 env->smbase = msrs[i].data;
3957 break;
3958 case MSR_SMI_COUNT:
3959 env->msr_smi_count = msrs[i].data;
3960 break;
3961 case MSR_IA32_FEATURE_CONTROL:
3962 env->msr_ia32_feature_control = msrs[i].data;
3963 break;
3964 case MSR_IA32_BNDCFGS:
3965 env->msr_bndcfgs = msrs[i].data;
3966 break;
3967 case MSR_IA32_XSS:
3968 env->xss = msrs[i].data;
3969 break;
3970 case MSR_IA32_UMWAIT_CONTROL:
3971 env->umwait = msrs[i].data;
3972 break;
3973 case MSR_IA32_PKRS:
3974 env->pkrs = msrs[i].data;
3975 break;
3976 default:
3977 if (msrs[i].index >= MSR_MC0_CTL &&
3978 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3979 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3981 break;
3982 case MSR_KVM_ASYNC_PF_EN:
3983 env->async_pf_en_msr = msrs[i].data;
3984 break;
3985 case MSR_KVM_ASYNC_PF_INT:
3986 env->async_pf_int_msr = msrs[i].data;
3987 break;
3988 case MSR_KVM_PV_EOI_EN:
3989 env->pv_eoi_en_msr = msrs[i].data;
3990 break;
3991 case MSR_KVM_STEAL_TIME:
3992 env->steal_time_msr = msrs[i].data;
3993 break;
3994 case MSR_KVM_POLL_CONTROL: {
3995 env->poll_control_msr = msrs[i].data;
3996 break;
3998 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3999 env->msr_fixed_ctr_ctrl = msrs[i].data;
4000 break;
4001 case MSR_CORE_PERF_GLOBAL_CTRL:
4002 env->msr_global_ctrl = msrs[i].data;
4003 break;
4004 case MSR_CORE_PERF_GLOBAL_STATUS:
4005 env->msr_global_status = msrs[i].data;
4006 break;
4007 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4008 env->msr_global_ovf_ctrl = msrs[i].data;
4009 break;
4010 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4011 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4012 break;
4013 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4014 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4015 break;
4016 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4017 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4018 break;
4019 case HV_X64_MSR_HYPERCALL:
4020 env->msr_hv_hypercall = msrs[i].data;
4021 break;
4022 case HV_X64_MSR_GUEST_OS_ID:
4023 env->msr_hv_guest_os_id = msrs[i].data;
4024 break;
4025 case HV_X64_MSR_APIC_ASSIST_PAGE:
4026 env->msr_hv_vapic = msrs[i].data;
4027 break;
4028 case HV_X64_MSR_REFERENCE_TSC:
4029 env->msr_hv_tsc = msrs[i].data;
4030 break;
4031 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4032 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4033 break;
4034 case HV_X64_MSR_VP_RUNTIME:
4035 env->msr_hv_runtime = msrs[i].data;
4036 break;
4037 case HV_X64_MSR_SCONTROL:
4038 env->msr_hv_synic_control = msrs[i].data;
4039 break;
4040 case HV_X64_MSR_SIEFP:
4041 env->msr_hv_synic_evt_page = msrs[i].data;
4042 break;
4043 case HV_X64_MSR_SIMP:
4044 env->msr_hv_synic_msg_page = msrs[i].data;
4045 break;
4046 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4047 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4048 break;
4049 case HV_X64_MSR_STIMER0_CONFIG:
4050 case HV_X64_MSR_STIMER1_CONFIG:
4051 case HV_X64_MSR_STIMER2_CONFIG:
4052 case HV_X64_MSR_STIMER3_CONFIG:
4053 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4054 msrs[i].data;
4055 break;
4056 case HV_X64_MSR_STIMER0_COUNT:
4057 case HV_X64_MSR_STIMER1_COUNT:
4058 case HV_X64_MSR_STIMER2_COUNT:
4059 case HV_X64_MSR_STIMER3_COUNT:
4060 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4061 msrs[i].data;
4062 break;
4063 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4064 env->msr_hv_reenlightenment_control = msrs[i].data;
4065 break;
4066 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4067 env->msr_hv_tsc_emulation_control = msrs[i].data;
4068 break;
4069 case HV_X64_MSR_TSC_EMULATION_STATUS:
4070 env->msr_hv_tsc_emulation_status = msrs[i].data;
4071 break;
4072 case HV_X64_MSR_SYNDBG_OPTIONS:
4073 env->msr_hv_syndbg_options = msrs[i].data;
4074 break;
4075 case MSR_MTRRdefType:
4076 env->mtrr_deftype = msrs[i].data;
4077 break;
4078 case MSR_MTRRfix64K_00000:
4079 env->mtrr_fixed[0] = msrs[i].data;
4080 break;
4081 case MSR_MTRRfix16K_80000:
4082 env->mtrr_fixed[1] = msrs[i].data;
4083 break;
4084 case MSR_MTRRfix16K_A0000:
4085 env->mtrr_fixed[2] = msrs[i].data;
4086 break;
4087 case MSR_MTRRfix4K_C0000:
4088 env->mtrr_fixed[3] = msrs[i].data;
4089 break;
4090 case MSR_MTRRfix4K_C8000:
4091 env->mtrr_fixed[4] = msrs[i].data;
4092 break;
4093 case MSR_MTRRfix4K_D0000:
4094 env->mtrr_fixed[5] = msrs[i].data;
4095 break;
4096 case MSR_MTRRfix4K_D8000:
4097 env->mtrr_fixed[6] = msrs[i].data;
4098 break;
4099 case MSR_MTRRfix4K_E0000:
4100 env->mtrr_fixed[7] = msrs[i].data;
4101 break;
4102 case MSR_MTRRfix4K_E8000:
4103 env->mtrr_fixed[8] = msrs[i].data;
4104 break;
4105 case MSR_MTRRfix4K_F0000:
4106 env->mtrr_fixed[9] = msrs[i].data;
4107 break;
4108 case MSR_MTRRfix4K_F8000:
4109 env->mtrr_fixed[10] = msrs[i].data;
4110 break;
4111 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4112 if (index & 1) {
4113 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4114 mtrr_top_bits;
4115 } else {
4116 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4118 break;
4119 case MSR_IA32_SPEC_CTRL:
4120 env->spec_ctrl = msrs[i].data;
4121 break;
4122 case MSR_AMD64_TSC_RATIO:
4123 env->amd_tsc_scale_msr = msrs[i].data;
4124 break;
4125 case MSR_IA32_TSX_CTRL:
4126 env->tsx_ctrl = msrs[i].data;
4127 break;
4128 case MSR_VIRT_SSBD:
4129 env->virt_ssbd = msrs[i].data;
4130 break;
4131 case MSR_IA32_RTIT_CTL:
4132 env->msr_rtit_ctrl = msrs[i].data;
4133 break;
4134 case MSR_IA32_RTIT_STATUS:
4135 env->msr_rtit_status = msrs[i].data;
4136 break;
4137 case MSR_IA32_RTIT_OUTPUT_BASE:
4138 env->msr_rtit_output_base = msrs[i].data;
4139 break;
4140 case MSR_IA32_RTIT_OUTPUT_MASK:
4141 env->msr_rtit_output_mask = msrs[i].data;
4142 break;
4143 case MSR_IA32_RTIT_CR3_MATCH:
4144 env->msr_rtit_cr3_match = msrs[i].data;
4145 break;
4146 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4147 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4148 break;
4149 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4150 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4151 msrs[i].data;
4152 break;
4153 case MSR_IA32_XFD:
4154 env->msr_xfd = msrs[i].data;
4155 break;
4156 case MSR_IA32_XFD_ERR:
4157 env->msr_xfd_err = msrs[i].data;
4158 break;
4159 case MSR_ARCH_LBR_CTL:
4160 env->msr_lbr_ctl = msrs[i].data;
4161 break;
4162 case MSR_ARCH_LBR_DEPTH:
4163 env->msr_lbr_depth = msrs[i].data;
4164 break;
4165 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4166 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4167 break;
4168 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4169 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4170 break;
4171 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4172 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4173 break;
4177 return 0;
4180 static int kvm_put_mp_state(X86CPU *cpu)
4182 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4184 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4187 static int kvm_get_mp_state(X86CPU *cpu)
4189 CPUState *cs = CPU(cpu);
4190 CPUX86State *env = &cpu->env;
4191 struct kvm_mp_state mp_state;
4192 int ret;
4194 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4195 if (ret < 0) {
4196 return ret;
4198 env->mp_state = mp_state.mp_state;
4199 if (kvm_irqchip_in_kernel()) {
4200 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4202 return 0;
4205 static int kvm_get_apic(X86CPU *cpu)
4207 DeviceState *apic = cpu->apic_state;
4208 struct kvm_lapic_state kapic;
4209 int ret;
4211 if (apic && kvm_irqchip_in_kernel()) {
4212 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4213 if (ret < 0) {
4214 return ret;
4217 kvm_get_apic_state(apic, &kapic);
4219 return 0;
4222 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4224 CPUState *cs = CPU(cpu);
4225 CPUX86State *env = &cpu->env;
4226 struct kvm_vcpu_events events = {};
4228 if (!kvm_has_vcpu_events()) {
4229 return 0;
4232 events.flags = 0;
4234 if (has_exception_payload) {
4235 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4236 events.exception.pending = env->exception_pending;
4237 events.exception_has_payload = env->exception_has_payload;
4238 events.exception_payload = env->exception_payload;
4240 events.exception.nr = env->exception_nr;
4241 events.exception.injected = env->exception_injected;
4242 events.exception.has_error_code = env->has_error_code;
4243 events.exception.error_code = env->error_code;
4245 events.interrupt.injected = (env->interrupt_injected >= 0);
4246 events.interrupt.nr = env->interrupt_injected;
4247 events.interrupt.soft = env->soft_interrupt;
4249 events.nmi.injected = env->nmi_injected;
4250 events.nmi.pending = env->nmi_pending;
4251 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4253 events.sipi_vector = env->sipi_vector;
4255 if (has_msr_smbase) {
4256 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4257 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4258 if (kvm_irqchip_in_kernel()) {
4259 /* As soon as these are moved to the kernel, remove them
4260 * from cs->interrupt_request.
4262 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4263 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4264 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4265 } else {
4266 /* Keep these in cs->interrupt_request. */
4267 events.smi.pending = 0;
4268 events.smi.latched_init = 0;
4270 /* Stop SMI delivery on old machine types to avoid a reboot
4271 * on an inward migration of an old VM.
4273 if (!cpu->kvm_no_smi_migration) {
4274 events.flags |= KVM_VCPUEVENT_VALID_SMM;
4278 if (level >= KVM_PUT_RESET_STATE) {
4279 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4280 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4281 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4285 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4288 static int kvm_get_vcpu_events(X86CPU *cpu)
4290 CPUX86State *env = &cpu->env;
4291 struct kvm_vcpu_events events;
4292 int ret;
4294 if (!kvm_has_vcpu_events()) {
4295 return 0;
4298 memset(&events, 0, sizeof(events));
4299 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4300 if (ret < 0) {
4301 return ret;
4304 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4305 env->exception_pending = events.exception.pending;
4306 env->exception_has_payload = events.exception_has_payload;
4307 env->exception_payload = events.exception_payload;
4308 } else {
4309 env->exception_pending = 0;
4310 env->exception_has_payload = false;
4312 env->exception_injected = events.exception.injected;
4313 env->exception_nr =
4314 (env->exception_pending || env->exception_injected) ?
4315 events.exception.nr : -1;
4316 env->has_error_code = events.exception.has_error_code;
4317 env->error_code = events.exception.error_code;
4319 env->interrupt_injected =
4320 events.interrupt.injected ? events.interrupt.nr : -1;
4321 env->soft_interrupt = events.interrupt.soft;
4323 env->nmi_injected = events.nmi.injected;
4324 env->nmi_pending = events.nmi.pending;
4325 if (events.nmi.masked) {
4326 env->hflags2 |= HF2_NMI_MASK;
4327 } else {
4328 env->hflags2 &= ~HF2_NMI_MASK;
4331 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4332 if (events.smi.smm) {
4333 env->hflags |= HF_SMM_MASK;
4334 } else {
4335 env->hflags &= ~HF_SMM_MASK;
4337 if (events.smi.pending) {
4338 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4339 } else {
4340 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4342 if (events.smi.smm_inside_nmi) {
4343 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4344 } else {
4345 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4347 if (events.smi.latched_init) {
4348 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4349 } else {
4350 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4354 env->sipi_vector = events.sipi_vector;
4356 return 0;
4359 static int kvm_guest_debug_workarounds(X86CPU *cpu)
4361 CPUState *cs = CPU(cpu);
4362 CPUX86State *env = &cpu->env;
4363 int ret = 0;
4364 unsigned long reinject_trap = 0;
4366 if (!kvm_has_vcpu_events()) {
4367 if (env->exception_nr == EXCP01_DB) {
4368 reinject_trap = KVM_GUESTDBG_INJECT_DB;
4369 } else if (env->exception_injected == EXCP03_INT3) {
4370 reinject_trap = KVM_GUESTDBG_INJECT_BP;
4372 kvm_reset_exception(env);
4376 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4377 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4378 * by updating the debug state once again if single-stepping is on.
4379 * Another reason to call kvm_update_guest_debug here is a pending debug
4380 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4381 * reinject them via SET_GUEST_DEBUG.
4383 if (reinject_trap ||
4384 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4385 ret = kvm_update_guest_debug(cs, reinject_trap);
4387 return ret;
4390 static int kvm_put_debugregs(X86CPU *cpu)
4392 CPUX86State *env = &cpu->env;
4393 struct kvm_debugregs dbgregs;
4394 int i;
4396 if (!kvm_has_debugregs()) {
4397 return 0;
4400 memset(&dbgregs, 0, sizeof(dbgregs));
4401 for (i = 0; i < 4; i++) {
4402 dbgregs.db[i] = env->dr[i];
4404 dbgregs.dr6 = env->dr[6];
4405 dbgregs.dr7 = env->dr[7];
4406 dbgregs.flags = 0;
4408 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4411 static int kvm_get_debugregs(X86CPU *cpu)
4413 CPUX86State *env = &cpu->env;
4414 struct kvm_debugregs dbgregs;
4415 int i, ret;
4417 if (!kvm_has_debugregs()) {
4418 return 0;
4421 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4422 if (ret < 0) {
4423 return ret;
4425 for (i = 0; i < 4; i++) {
4426 env->dr[i] = dbgregs.db[i];
4428 env->dr[4] = env->dr[6] = dbgregs.dr6;
4429 env->dr[5] = env->dr[7] = dbgregs.dr7;
4431 return 0;
4434 static int kvm_put_nested_state(X86CPU *cpu)
4436 CPUX86State *env = &cpu->env;
4437 int max_nested_state_len = kvm_max_nested_state_length();
4439 if (!env->nested_state) {
4440 return 0;
4444 * Copy flags that are affected by reset from env->hflags and env->hflags2.
4446 if (env->hflags & HF_GUEST_MASK) {
4447 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4448 } else {
4449 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4452 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4453 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4454 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4455 } else {
4456 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4459 assert(env->nested_state->size <= max_nested_state_len);
4460 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4463 static int kvm_get_nested_state(X86CPU *cpu)
4465 CPUX86State *env = &cpu->env;
4466 int max_nested_state_len = kvm_max_nested_state_length();
4467 int ret;
4469 if (!env->nested_state) {
4470 return 0;
4474 * It is possible that migration restored a smaller size into
4475 * nested_state->hdr.size than what our kernel support.
4476 * We preserve migration origin nested_state->hdr.size for
4477 * call to KVM_SET_NESTED_STATE but wish that our next call
4478 * to KVM_GET_NESTED_STATE will use max size our kernel support.
4480 env->nested_state->size = max_nested_state_len;
4482 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4483 if (ret < 0) {
4484 return ret;
4488 * Copy flags that are affected by reset to env->hflags and env->hflags2.
4490 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4491 env->hflags |= HF_GUEST_MASK;
4492 } else {
4493 env->hflags &= ~HF_GUEST_MASK;
4496 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4497 if (cpu_has_svm(env)) {
4498 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4499 env->hflags2 |= HF2_GIF_MASK;
4500 } else {
4501 env->hflags2 &= ~HF2_GIF_MASK;
4505 return ret;
4508 int kvm_arch_put_registers(CPUState *cpu, int level)
4510 X86CPU *x86_cpu = X86_CPU(cpu);
4511 int ret;
4513 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4515 /* must be before kvm_put_nested_state so that EFER.SVME is set */
4516 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4517 if (ret < 0) {
4518 return ret;
4521 if (level >= KVM_PUT_RESET_STATE) {
4522 ret = kvm_put_nested_state(x86_cpu);
4523 if (ret < 0) {
4524 return ret;
4527 ret = kvm_put_msr_feature_control(x86_cpu);
4528 if (ret < 0) {
4529 return ret;
4533 if (level == KVM_PUT_FULL_STATE) {
4534 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4535 * because TSC frequency mismatch shouldn't abort migration,
4536 * unless the user explicitly asked for a more strict TSC
4537 * setting (e.g. using an explicit "tsc-freq" option).
4539 kvm_arch_set_tsc_khz(cpu);
4542 ret = kvm_getput_regs(x86_cpu, 1);
4543 if (ret < 0) {
4544 return ret;
4546 ret = kvm_put_xsave(x86_cpu);
4547 if (ret < 0) {
4548 return ret;
4550 ret = kvm_put_xcrs(x86_cpu);
4551 if (ret < 0) {
4552 return ret;
4554 /* must be before kvm_put_msrs */
4555 ret = kvm_inject_mce_oldstyle(x86_cpu);
4556 if (ret < 0) {
4557 return ret;
4559 ret = kvm_put_msrs(x86_cpu, level);
4560 if (ret < 0) {
4561 return ret;
4563 ret = kvm_put_vcpu_events(x86_cpu, level);
4564 if (ret < 0) {
4565 return ret;
4567 if (level >= KVM_PUT_RESET_STATE) {
4568 ret = kvm_put_mp_state(x86_cpu);
4569 if (ret < 0) {
4570 return ret;
4574 ret = kvm_put_tscdeadline_msr(x86_cpu);
4575 if (ret < 0) {
4576 return ret;
4578 ret = kvm_put_debugregs(x86_cpu);
4579 if (ret < 0) {
4580 return ret;
4582 /* must be last */
4583 ret = kvm_guest_debug_workarounds(x86_cpu);
4584 if (ret < 0) {
4585 return ret;
4587 return 0;
4590 int kvm_arch_get_registers(CPUState *cs)
4592 X86CPU *cpu = X86_CPU(cs);
4593 int ret;
4595 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4597 ret = kvm_get_vcpu_events(cpu);
4598 if (ret < 0) {
4599 goto out;
4602 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4603 * KVM_GET_REGS and KVM_GET_SREGS.
4605 ret = kvm_get_mp_state(cpu);
4606 if (ret < 0) {
4607 goto out;
4609 ret = kvm_getput_regs(cpu, 0);
4610 if (ret < 0) {
4611 goto out;
4613 ret = kvm_get_xsave(cpu);
4614 if (ret < 0) {
4615 goto out;
4617 ret = kvm_get_xcrs(cpu);
4618 if (ret < 0) {
4619 goto out;
4621 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4622 if (ret < 0) {
4623 goto out;
4625 ret = kvm_get_msrs(cpu);
4626 if (ret < 0) {
4627 goto out;
4629 ret = kvm_get_apic(cpu);
4630 if (ret < 0) {
4631 goto out;
4633 ret = kvm_get_debugregs(cpu);
4634 if (ret < 0) {
4635 goto out;
4637 ret = kvm_get_nested_state(cpu);
4638 if (ret < 0) {
4639 goto out;
4641 ret = 0;
4642 out:
4643 cpu_sync_bndcs_hflags(&cpu->env);
4644 return ret;
4647 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4649 X86CPU *x86_cpu = X86_CPU(cpu);
4650 CPUX86State *env = &x86_cpu->env;
4651 int ret;
4653 /* Inject NMI */
4654 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4655 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4656 qemu_mutex_lock_iothread();
4657 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4658 qemu_mutex_unlock_iothread();
4659 DPRINTF("injected NMI\n");
4660 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4661 if (ret < 0) {
4662 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4663 strerror(-ret));
4666 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4667 qemu_mutex_lock_iothread();
4668 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4669 qemu_mutex_unlock_iothread();
4670 DPRINTF("injected SMI\n");
4671 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4672 if (ret < 0) {
4673 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4674 strerror(-ret));
4679 if (!kvm_pic_in_kernel()) {
4680 qemu_mutex_lock_iothread();
4683 /* Force the VCPU out of its inner loop to process any INIT requests
4684 * or (for userspace APIC, but it is cheap to combine the checks here)
4685 * pending TPR access reports.
4687 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4688 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4689 !(env->hflags & HF_SMM_MASK)) {
4690 cpu->exit_request = 1;
4692 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4693 cpu->exit_request = 1;
4697 if (!kvm_pic_in_kernel()) {
4698 /* Try to inject an interrupt if the guest can accept it */
4699 if (run->ready_for_interrupt_injection &&
4700 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4701 (env->eflags & IF_MASK)) {
4702 int irq;
4704 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4705 irq = cpu_get_pic_interrupt(env);
4706 if (irq >= 0) {
4707 struct kvm_interrupt intr;
4709 intr.irq = irq;
4710 DPRINTF("injected interrupt %d\n", irq);
4711 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4712 if (ret < 0) {
4713 fprintf(stderr,
4714 "KVM: injection failed, interrupt lost (%s)\n",
4715 strerror(-ret));
4720 /* If we have an interrupt but the guest is not ready to receive an
4721 * interrupt, request an interrupt window exit. This will
4722 * cause a return to userspace as soon as the guest is ready to
4723 * receive interrupts. */
4724 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4725 run->request_interrupt_window = 1;
4726 } else {
4727 run->request_interrupt_window = 0;
4730 DPRINTF("setting tpr\n");
4731 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4733 qemu_mutex_unlock_iothread();
4737 static void kvm_rate_limit_on_bus_lock(void)
4739 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4741 if (delay_ns) {
4742 g_usleep(delay_ns / SCALE_US);
4746 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4748 X86CPU *x86_cpu = X86_CPU(cpu);
4749 CPUX86State *env = &x86_cpu->env;
4751 if (run->flags & KVM_RUN_X86_SMM) {
4752 env->hflags |= HF_SMM_MASK;
4753 } else {
4754 env->hflags &= ~HF_SMM_MASK;
4756 if (run->if_flag) {
4757 env->eflags |= IF_MASK;
4758 } else {
4759 env->eflags &= ~IF_MASK;
4761 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4762 kvm_rate_limit_on_bus_lock();
4765 /* We need to protect the apic state against concurrent accesses from
4766 * different threads in case the userspace irqchip is used. */
4767 if (!kvm_irqchip_in_kernel()) {
4768 qemu_mutex_lock_iothread();
4770 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4771 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4772 if (!kvm_irqchip_in_kernel()) {
4773 qemu_mutex_unlock_iothread();
4775 return cpu_get_mem_attrs(env);
4778 int kvm_arch_process_async_events(CPUState *cs)
4780 X86CPU *cpu = X86_CPU(cs);
4781 CPUX86State *env = &cpu->env;
4783 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4784 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4785 assert(env->mcg_cap);
4787 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4789 kvm_cpu_synchronize_state(cs);
4791 if (env->exception_nr == EXCP08_DBLE) {
4792 /* this means triple fault */
4793 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4794 cs->exit_request = 1;
4795 return 0;
4797 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4798 env->has_error_code = 0;
4800 cs->halted = 0;
4801 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4802 env->mp_state = KVM_MP_STATE_RUNNABLE;
4806 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4807 !(env->hflags & HF_SMM_MASK)) {
4808 kvm_cpu_synchronize_state(cs);
4809 do_cpu_init(cpu);
4812 if (kvm_irqchip_in_kernel()) {
4813 return 0;
4816 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4817 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4818 apic_poll_irq(cpu->apic_state);
4820 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4821 (env->eflags & IF_MASK)) ||
4822 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4823 cs->halted = 0;
4825 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4826 kvm_cpu_synchronize_state(cs);
4827 do_cpu_sipi(cpu);
4829 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4830 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4831 kvm_cpu_synchronize_state(cs);
4832 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4833 env->tpr_access_type);
4836 return cs->halted;
4839 static int kvm_handle_halt(X86CPU *cpu)
4841 CPUState *cs = CPU(cpu);
4842 CPUX86State *env = &cpu->env;
4844 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4845 (env->eflags & IF_MASK)) &&
4846 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4847 cs->halted = 1;
4848 return EXCP_HLT;
4851 return 0;
4854 static int kvm_handle_tpr_access(X86CPU *cpu)
4856 CPUState *cs = CPU(cpu);
4857 struct kvm_run *run = cs->kvm_run;
4859 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4860 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4861 : TPR_ACCESS_READ);
4862 return 1;
4865 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4867 static const uint8_t int3 = 0xcc;
4869 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4870 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4871 return -EINVAL;
4873 return 0;
4876 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4878 uint8_t int3;
4880 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4881 return -EINVAL;
4883 if (int3 != 0xcc) {
4884 return 0;
4886 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4887 return -EINVAL;
4889 return 0;
4892 static struct {
4893 target_ulong addr;
4894 int len;
4895 int type;
4896 } hw_breakpoint[4];
4898 static int nb_hw_breakpoint;
4900 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4902 int n;
4904 for (n = 0; n < nb_hw_breakpoint; n++) {
4905 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4906 (hw_breakpoint[n].len == len || len == -1)) {
4907 return n;
4910 return -1;
4913 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4914 target_ulong len, int type)
4916 switch (type) {
4917 case GDB_BREAKPOINT_HW:
4918 len = 1;
4919 break;
4920 case GDB_WATCHPOINT_WRITE:
4921 case GDB_WATCHPOINT_ACCESS:
4922 switch (len) {
4923 case 1:
4924 break;
4925 case 2:
4926 case 4:
4927 case 8:
4928 if (addr & (len - 1)) {
4929 return -EINVAL;
4931 break;
4932 default:
4933 return -EINVAL;
4935 break;
4936 default:
4937 return -ENOSYS;
4940 if (nb_hw_breakpoint == 4) {
4941 return -ENOBUFS;
4943 if (find_hw_breakpoint(addr, len, type) >= 0) {
4944 return -EEXIST;
4946 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4947 hw_breakpoint[nb_hw_breakpoint].len = len;
4948 hw_breakpoint[nb_hw_breakpoint].type = type;
4949 nb_hw_breakpoint++;
4951 return 0;
4954 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4955 target_ulong len, int type)
4957 int n;
4959 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4960 if (n < 0) {
4961 return -ENOENT;
4963 nb_hw_breakpoint--;
4964 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4966 return 0;
4969 void kvm_arch_remove_all_hw_breakpoints(void)
4971 nb_hw_breakpoint = 0;
4974 static CPUWatchpoint hw_watchpoint;
4976 static int kvm_handle_debug(X86CPU *cpu,
4977 struct kvm_debug_exit_arch *arch_info)
4979 CPUState *cs = CPU(cpu);
4980 CPUX86State *env = &cpu->env;
4981 int ret = 0;
4982 int n;
4984 if (arch_info->exception == EXCP01_DB) {
4985 if (arch_info->dr6 & DR6_BS) {
4986 if (cs->singlestep_enabled) {
4987 ret = EXCP_DEBUG;
4989 } else {
4990 for (n = 0; n < 4; n++) {
4991 if (arch_info->dr6 & (1 << n)) {
4992 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4993 case 0x0:
4994 ret = EXCP_DEBUG;
4995 break;
4996 case 0x1:
4997 ret = EXCP_DEBUG;
4998 cs->watchpoint_hit = &hw_watchpoint;
4999 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5000 hw_watchpoint.flags = BP_MEM_WRITE;
5001 break;
5002 case 0x3:
5003 ret = EXCP_DEBUG;
5004 cs->watchpoint_hit = &hw_watchpoint;
5005 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5006 hw_watchpoint.flags = BP_MEM_ACCESS;
5007 break;
5012 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5013 ret = EXCP_DEBUG;
5015 if (ret == 0) {
5016 cpu_synchronize_state(cs);
5017 assert(env->exception_nr == -1);
5019 /* pass to guest */
5020 kvm_queue_exception(env, arch_info->exception,
5021 arch_info->exception == EXCP01_DB,
5022 arch_info->dr6);
5023 env->has_error_code = 0;
5026 return ret;
5029 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5031 const uint8_t type_code[] = {
5032 [GDB_BREAKPOINT_HW] = 0x0,
5033 [GDB_WATCHPOINT_WRITE] = 0x1,
5034 [GDB_WATCHPOINT_ACCESS] = 0x3
5036 const uint8_t len_code[] = {
5037 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5039 int n;
5041 if (kvm_sw_breakpoints_active(cpu)) {
5042 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5044 if (nb_hw_breakpoint > 0) {
5045 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5046 dbg->arch.debugreg[7] = 0x0600;
5047 for (n = 0; n < nb_hw_breakpoint; n++) {
5048 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5049 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5050 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5051 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5056 static bool has_sgx_provisioning;
5058 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5060 int fd, ret;
5062 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5063 return false;
5066 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5067 if (fd < 0) {
5068 return false;
5071 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5072 if (ret) {
5073 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5074 exit(1);
5076 close(fd);
5077 return true;
5080 bool kvm_enable_sgx_provisioning(KVMState *s)
5082 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5085 static bool host_supports_vmx(void)
5087 uint32_t ecx, unused;
5089 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5090 return ecx & CPUID_EXT_VMX;
5093 #define VMX_INVALID_GUEST_STATE 0x80000021
5095 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5097 X86CPU *cpu = X86_CPU(cs);
5098 uint64_t code;
5099 int ret;
5101 switch (run->exit_reason) {
5102 case KVM_EXIT_HLT:
5103 DPRINTF("handle_hlt\n");
5104 qemu_mutex_lock_iothread();
5105 ret = kvm_handle_halt(cpu);
5106 qemu_mutex_unlock_iothread();
5107 break;
5108 case KVM_EXIT_SET_TPR:
5109 ret = 0;
5110 break;
5111 case KVM_EXIT_TPR_ACCESS:
5112 qemu_mutex_lock_iothread();
5113 ret = kvm_handle_tpr_access(cpu);
5114 qemu_mutex_unlock_iothread();
5115 break;
5116 case KVM_EXIT_FAIL_ENTRY:
5117 code = run->fail_entry.hardware_entry_failure_reason;
5118 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5119 code);
5120 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5121 fprintf(stderr,
5122 "\nIf you're running a guest on an Intel machine without "
5123 "unrestricted mode\n"
5124 "support, the failure can be most likely due to the guest "
5125 "entering an invalid\n"
5126 "state for Intel VT. For example, the guest maybe running "
5127 "in big real mode\n"
5128 "which is not supported on less recent Intel processors."
5129 "\n\n");
5131 ret = -1;
5132 break;
5133 case KVM_EXIT_EXCEPTION:
5134 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5135 run->ex.exception, run->ex.error_code);
5136 ret = -1;
5137 break;
5138 case KVM_EXIT_DEBUG:
5139 DPRINTF("kvm_exit_debug\n");
5140 qemu_mutex_lock_iothread();
5141 ret = kvm_handle_debug(cpu, &run->debug.arch);
5142 qemu_mutex_unlock_iothread();
5143 break;
5144 case KVM_EXIT_HYPERV:
5145 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5146 break;
5147 case KVM_EXIT_IOAPIC_EOI:
5148 ioapic_eoi_broadcast(run->eoi.vector);
5149 ret = 0;
5150 break;
5151 case KVM_EXIT_X86_BUS_LOCK:
5152 /* already handled in kvm_arch_post_run */
5153 ret = 0;
5154 break;
5155 default:
5156 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5157 ret = -1;
5158 break;
5161 return ret;
5164 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5166 X86CPU *cpu = X86_CPU(cs);
5167 CPUX86State *env = &cpu->env;
5169 kvm_cpu_synchronize_state(cs);
5170 return !(env->cr[0] & CR0_PE_MASK) ||
5171 ((env->segs[R_CS].selector & 3) != 3);
5174 void kvm_arch_init_irq_routing(KVMState *s)
5176 /* We know at this point that we're using the in-kernel
5177 * irqchip, so we can use irqfds, and on x86 we know
5178 * we can use msi via irqfd and GSI routing.
5180 kvm_msi_via_irqfd_allowed = true;
5181 kvm_gsi_routing_allowed = true;
5183 if (kvm_irqchip_is_split()) {
5184 KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5185 int i;
5187 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5188 MSI routes for signaling interrupts to the local apics. */
5189 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5190 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5191 error_report("Could not enable split IRQ mode.");
5192 exit(1);
5195 kvm_irqchip_commit_route_changes(&c);
5199 int kvm_arch_irqchip_create(KVMState *s)
5201 int ret;
5202 if (kvm_kernel_irqchip_split()) {
5203 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5204 if (ret) {
5205 error_report("Could not enable split irqchip mode: %s",
5206 strerror(-ret));
5207 exit(1);
5208 } else {
5209 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5210 kvm_split_irqchip = true;
5211 return 1;
5213 } else {
5214 return 0;
5218 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5220 CPUX86State *env;
5221 uint64_t ext_id;
5223 if (!first_cpu) {
5224 return address;
5226 env = &X86_CPU(first_cpu)->env;
5227 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5228 return address;
5232 * If the remappable format bit is set, or the upper bits are
5233 * already set in address_hi, or the low extended bits aren't
5234 * there anyway, do nothing.
5236 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5237 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5238 return address;
5241 address &= ~ext_id;
5242 address |= ext_id << 35;
5243 return address;
5246 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5247 uint64_t address, uint32_t data, PCIDevice *dev)
5249 X86IOMMUState *iommu = x86_iommu_get_default();
5251 if (iommu) {
5252 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5254 if (class->int_remap) {
5255 int ret;
5256 MSIMessage src, dst;
5258 src.address = route->u.msi.address_hi;
5259 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5260 src.address |= route->u.msi.address_lo;
5261 src.data = route->u.msi.data;
5263 ret = class->int_remap(iommu, &src, &dst, dev ? \
5264 pci_requester_id(dev) : \
5265 X86_IOMMU_SID_INVALID);
5266 if (ret) {
5267 trace_kvm_x86_fixup_msi_error(route->gsi);
5268 return 1;
5272 * Handled untranslated compatibilty format interrupt with
5273 * extended destination ID in the low bits 11-5. */
5274 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5276 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5277 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5278 route->u.msi.data = dst.data;
5279 return 0;
5283 address = kvm_swizzle_msi_ext_dest_id(address);
5284 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5285 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5286 return 0;
5289 typedef struct MSIRouteEntry MSIRouteEntry;
5291 struct MSIRouteEntry {
5292 PCIDevice *dev; /* Device pointer */
5293 int vector; /* MSI/MSIX vector index */
5294 int virq; /* Virtual IRQ index */
5295 QLIST_ENTRY(MSIRouteEntry) list;
5298 /* List of used GSI routes */
5299 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5300 QLIST_HEAD_INITIALIZER(msi_route_list);
5302 static void kvm_update_msi_routes_all(void *private, bool global,
5303 uint32_t index, uint32_t mask)
5305 int cnt = 0, vector;
5306 MSIRouteEntry *entry;
5307 MSIMessage msg;
5308 PCIDevice *dev;
5310 /* TODO: explicit route update */
5311 QLIST_FOREACH(entry, &msi_route_list, list) {
5312 cnt++;
5313 vector = entry->vector;
5314 dev = entry->dev;
5315 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5316 msg = msix_get_message(dev, vector);
5317 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5318 msg = msi_get_message(dev, vector);
5319 } else {
5321 * Either MSI/MSIX is disabled for the device, or the
5322 * specific message was masked out. Skip this one.
5324 continue;
5326 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5328 kvm_irqchip_commit_routes(kvm_state);
5329 trace_kvm_x86_update_msi_routes(cnt);
5332 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5333 int vector, PCIDevice *dev)
5335 static bool notify_list_inited = false;
5336 MSIRouteEntry *entry;
5338 if (!dev) {
5339 /* These are (possibly) IOAPIC routes only used for split
5340 * kernel irqchip mode, while what we are housekeeping are
5341 * PCI devices only. */
5342 return 0;
5345 entry = g_new0(MSIRouteEntry, 1);
5346 entry->dev = dev;
5347 entry->vector = vector;
5348 entry->virq = route->gsi;
5349 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5351 trace_kvm_x86_add_msi_route(route->gsi);
5353 if (!notify_list_inited) {
5354 /* For the first time we do add route, add ourselves into
5355 * IOMMU's IEC notify list if needed. */
5356 X86IOMMUState *iommu = x86_iommu_get_default();
5357 if (iommu) {
5358 x86_iommu_iec_register_notifier(iommu,
5359 kvm_update_msi_routes_all,
5360 NULL);
5362 notify_list_inited = true;
5364 return 0;
5367 int kvm_arch_release_virq_post(int virq)
5369 MSIRouteEntry *entry, *next;
5370 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5371 if (entry->virq == virq) {
5372 trace_kvm_x86_remove_msi_route(virq);
5373 QLIST_REMOVE(entry, list);
5374 g_free(entry);
5375 break;
5378 return 0;
5381 int kvm_arch_msi_data_to_gsi(uint32_t data)
5383 abort();
5386 bool kvm_has_waitpkg(void)
5388 return has_msr_umwait;
5391 bool kvm_arch_cpu_check_are_resettable(void)
5393 return !sev_es_enabled();
5396 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025
5398 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5400 KVMState *s = kvm_state;
5401 uint64_t supported;
5403 mask &= XSTATE_DYNAMIC_MASK;
5404 if (!mask) {
5405 return;
5408 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5409 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5410 * about them already because they are not supported features.
5412 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5413 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5414 mask &= supported;
5416 while (mask) {
5417 int bit = ctz64(mask);
5418 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5419 if (rc) {
5421 * Older kernel version (<5.17) do not support
5422 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5423 * any dynamic feature from kvm_arch_get_supported_cpuid.
5425 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5426 "for feature bit %d", bit);
5428 mask &= ~BIT_ULL(bit);