Merge tag 'pull-target-arm-20240701' of https://git.linaro.org/people/pmaydell/qemu...
[qemu/kevin.git] / tcg / tcg-op-gvec.c
blob0308732d9b519ca5d7506049e80320f5d139b42a
1 /*
2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "tcg/tcg.h"
22 #include "tcg/tcg-temp-internal.h"
23 #include "tcg/tcg-op-common.h"
24 #include "tcg/tcg-op-gvec-common.h"
25 #include "tcg/tcg-gvec-desc.h"
27 #define MAX_UNROLL 4
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty[1] = { 0 };
31 #else
32 #define vecop_list_empty NULL
33 #endif
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
40 uint32_t max_align;
42 switch (oprsz) {
43 case 8:
44 case 16:
45 case 32:
46 tcg_debug_assert(oprsz <= maxsz);
47 break;
48 default:
49 tcg_debug_assert(oprsz == maxsz);
50 break;
52 tcg_debug_assert(maxsz <= (8 << SIMD_MAXSZ_BITS));
54 max_align = maxsz >= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz & max_align) == 0);
56 tcg_debug_assert((ofs & max_align) == 0);
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
62 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
68 check_overlap_2(d, a, s);
69 check_overlap_2(d, b, s);
70 check_overlap_2(a, b, s);
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
75 uint32_t c, uint32_t s)
77 check_overlap_2(d, a, s);
78 check_overlap_2(d, b, s);
79 check_overlap_2(d, c, s);
80 check_overlap_2(a, b, s);
81 check_overlap_2(a, c, s);
82 check_overlap_2(b, c, s);
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
88 uint32_t desc = 0;
90 check_size_align(oprsz, maxsz, 0);
91 tcg_debug_assert(data == sextract32(data, 0, SIMD_DATA_BITS));
93 oprsz = (oprsz / 8) - 1;
94 maxsz = (maxsz / 8) - 1;
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
101 if (oprsz == maxsz) {
102 oprsz = 2;
105 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
106 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
107 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
109 return desc;
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
114 uint32_t oprsz, uint32_t maxsz, int32_t data,
115 gen_helper_gvec_2 *fn)
117 TCGv_ptr a0, a1;
118 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
120 a0 = tcg_temp_ebb_new_ptr();
121 a1 = tcg_temp_ebb_new_ptr();
123 tcg_gen_addi_ptr(a0, tcg_env, dofs);
124 tcg_gen_addi_ptr(a1, tcg_env, aofs);
126 fn(a0, a1, desc);
128 tcg_temp_free_ptr(a0);
129 tcg_temp_free_ptr(a1);
132 /* Generate a call to a gvec-style helper with two vector operands
133 and one scalar operand. */
134 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
135 uint32_t oprsz, uint32_t maxsz, int32_t data,
136 gen_helper_gvec_2i *fn)
138 TCGv_ptr a0, a1;
139 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
141 a0 = tcg_temp_ebb_new_ptr();
142 a1 = tcg_temp_ebb_new_ptr();
144 tcg_gen_addi_ptr(a0, tcg_env, dofs);
145 tcg_gen_addi_ptr(a1, tcg_env, aofs);
147 fn(a0, a1, c, desc);
149 tcg_temp_free_ptr(a0);
150 tcg_temp_free_ptr(a1);
153 /* Generate a call to a gvec-style helper with three vector operands. */
154 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
155 uint32_t oprsz, uint32_t maxsz, int32_t data,
156 gen_helper_gvec_3 *fn)
158 TCGv_ptr a0, a1, a2;
159 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
161 a0 = tcg_temp_ebb_new_ptr();
162 a1 = tcg_temp_ebb_new_ptr();
163 a2 = tcg_temp_ebb_new_ptr();
165 tcg_gen_addi_ptr(a0, tcg_env, dofs);
166 tcg_gen_addi_ptr(a1, tcg_env, aofs);
167 tcg_gen_addi_ptr(a2, tcg_env, bofs);
169 fn(a0, a1, a2, desc);
171 tcg_temp_free_ptr(a0);
172 tcg_temp_free_ptr(a1);
173 tcg_temp_free_ptr(a2);
176 /* Generate a call to a gvec-style helper with four vector operands. */
177 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
178 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
179 int32_t data, gen_helper_gvec_4 *fn)
181 TCGv_ptr a0, a1, a2, a3;
182 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
184 a0 = tcg_temp_ebb_new_ptr();
185 a1 = tcg_temp_ebb_new_ptr();
186 a2 = tcg_temp_ebb_new_ptr();
187 a3 = tcg_temp_ebb_new_ptr();
189 tcg_gen_addi_ptr(a0, tcg_env, dofs);
190 tcg_gen_addi_ptr(a1, tcg_env, aofs);
191 tcg_gen_addi_ptr(a2, tcg_env, bofs);
192 tcg_gen_addi_ptr(a3, tcg_env, cofs);
194 fn(a0, a1, a2, a3, desc);
196 tcg_temp_free_ptr(a0);
197 tcg_temp_free_ptr(a1);
198 tcg_temp_free_ptr(a2);
199 tcg_temp_free_ptr(a3);
202 /* Generate a call to a gvec-style helper with five vector operands. */
203 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
204 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
205 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
207 TCGv_ptr a0, a1, a2, a3, a4;
208 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
210 a0 = tcg_temp_ebb_new_ptr();
211 a1 = tcg_temp_ebb_new_ptr();
212 a2 = tcg_temp_ebb_new_ptr();
213 a3 = tcg_temp_ebb_new_ptr();
214 a4 = tcg_temp_ebb_new_ptr();
216 tcg_gen_addi_ptr(a0, tcg_env, dofs);
217 tcg_gen_addi_ptr(a1, tcg_env, aofs);
218 tcg_gen_addi_ptr(a2, tcg_env, bofs);
219 tcg_gen_addi_ptr(a3, tcg_env, cofs);
220 tcg_gen_addi_ptr(a4, tcg_env, xofs);
222 fn(a0, a1, a2, a3, a4, desc);
224 tcg_temp_free_ptr(a0);
225 tcg_temp_free_ptr(a1);
226 tcg_temp_free_ptr(a2);
227 tcg_temp_free_ptr(a3);
228 tcg_temp_free_ptr(a4);
231 /* Generate a call to a gvec-style helper with three vector operands
232 and an extra pointer operand. */
233 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
234 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
235 int32_t data, gen_helper_gvec_2_ptr *fn)
237 TCGv_ptr a0, a1;
238 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
240 a0 = tcg_temp_ebb_new_ptr();
241 a1 = tcg_temp_ebb_new_ptr();
243 tcg_gen_addi_ptr(a0, tcg_env, dofs);
244 tcg_gen_addi_ptr(a1, tcg_env, aofs);
246 fn(a0, a1, ptr, desc);
248 tcg_temp_free_ptr(a0);
249 tcg_temp_free_ptr(a1);
252 /* Generate a call to a gvec-style helper with three vector operands
253 and an extra pointer operand. */
254 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
255 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
256 int32_t data, gen_helper_gvec_3_ptr *fn)
258 TCGv_ptr a0, a1, a2;
259 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
261 a0 = tcg_temp_ebb_new_ptr();
262 a1 = tcg_temp_ebb_new_ptr();
263 a2 = tcg_temp_ebb_new_ptr();
265 tcg_gen_addi_ptr(a0, tcg_env, dofs);
266 tcg_gen_addi_ptr(a1, tcg_env, aofs);
267 tcg_gen_addi_ptr(a2, tcg_env, bofs);
269 fn(a0, a1, a2, ptr, desc);
271 tcg_temp_free_ptr(a0);
272 tcg_temp_free_ptr(a1);
273 tcg_temp_free_ptr(a2);
276 /* Generate a call to a gvec-style helper with four vector operands
277 and an extra pointer operand. */
278 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
279 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
280 uint32_t maxsz, int32_t data,
281 gen_helper_gvec_4_ptr *fn)
283 TCGv_ptr a0, a1, a2, a3;
284 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
286 a0 = tcg_temp_ebb_new_ptr();
287 a1 = tcg_temp_ebb_new_ptr();
288 a2 = tcg_temp_ebb_new_ptr();
289 a3 = tcg_temp_ebb_new_ptr();
291 tcg_gen_addi_ptr(a0, tcg_env, dofs);
292 tcg_gen_addi_ptr(a1, tcg_env, aofs);
293 tcg_gen_addi_ptr(a2, tcg_env, bofs);
294 tcg_gen_addi_ptr(a3, tcg_env, cofs);
296 fn(a0, a1, a2, a3, ptr, desc);
298 tcg_temp_free_ptr(a0);
299 tcg_temp_free_ptr(a1);
300 tcg_temp_free_ptr(a2);
301 tcg_temp_free_ptr(a3);
304 /* Generate a call to a gvec-style helper with five vector operands
305 and an extra pointer operand. */
306 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
307 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
308 uint32_t oprsz, uint32_t maxsz, int32_t data,
309 gen_helper_gvec_5_ptr *fn)
311 TCGv_ptr a0, a1, a2, a3, a4;
312 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
314 a0 = tcg_temp_ebb_new_ptr();
315 a1 = tcg_temp_ebb_new_ptr();
316 a2 = tcg_temp_ebb_new_ptr();
317 a3 = tcg_temp_ebb_new_ptr();
318 a4 = tcg_temp_ebb_new_ptr();
320 tcg_gen_addi_ptr(a0, tcg_env, dofs);
321 tcg_gen_addi_ptr(a1, tcg_env, aofs);
322 tcg_gen_addi_ptr(a2, tcg_env, bofs);
323 tcg_gen_addi_ptr(a3, tcg_env, cofs);
324 tcg_gen_addi_ptr(a4, tcg_env, eofs);
326 fn(a0, a1, a2, a3, a4, ptr, desc);
328 tcg_temp_free_ptr(a0);
329 tcg_temp_free_ptr(a1);
330 tcg_temp_free_ptr(a2);
331 tcg_temp_free_ptr(a3);
332 tcg_temp_free_ptr(a4);
335 /* Return true if we want to implement something of OPRSZ bytes
336 in units of LNSZ. This limits the expansion of inline code. */
337 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
339 uint32_t q, r;
341 if (oprsz < lnsz) {
342 return false;
345 q = oprsz / lnsz;
346 r = oprsz % lnsz;
347 tcg_debug_assert((r & 7) == 0);
349 if (lnsz < 16) {
350 /* For sizes below 16, accept no remainder. */
351 if (r != 0) {
352 return false;
354 } else {
356 * Recall that ARM SVE allows vector sizes that are not a
357 * power of 2, but always a multiple of 16. The intent is
358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
359 * In addition, expand_clr needs to handle a multiple of 8.
360 * Thus we can handle the tail with one more operation per
361 * diminishing power of 2.
363 q += ctpop32(r);
366 return q <= MAX_UNROLL;
369 static void expand_clr(uint32_t dofs, uint32_t maxsz);
371 /* Duplicate C as per VECE. */
372 uint64_t (dup_const)(unsigned vece, uint64_t c)
374 switch (vece) {
375 case MO_8:
376 return 0x0101010101010101ull * (uint8_t)c;
377 case MO_16:
378 return 0x0001000100010001ull * (uint16_t)c;
379 case MO_32:
380 return 0x0000000100000001ull * (uint32_t)c;
381 case MO_64:
382 return c;
383 default:
384 g_assert_not_reached();
388 /* Duplicate IN into OUT as per VECE. */
389 void tcg_gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
391 switch (vece) {
392 case MO_8:
393 tcg_gen_ext8u_i32(out, in);
394 tcg_gen_muli_i32(out, out, 0x01010101);
395 break;
396 case MO_16:
397 tcg_gen_deposit_i32(out, in, in, 16, 16);
398 break;
399 case MO_32:
400 tcg_gen_mov_i32(out, in);
401 break;
402 default:
403 g_assert_not_reached();
407 void tcg_gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
409 switch (vece) {
410 case MO_8:
411 tcg_gen_ext8u_i64(out, in);
412 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
413 break;
414 case MO_16:
415 tcg_gen_ext16u_i64(out, in);
416 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
417 break;
418 case MO_32:
419 tcg_gen_deposit_i64(out, in, in, 32, 32);
420 break;
421 case MO_64:
422 tcg_gen_mov_i64(out, in);
423 break;
424 default:
425 g_assert_not_reached();
429 /* Select a supported vector type for implementing an operation on SIZE
430 * bytes. If OP is 0, assume that the real operation to be performed is
431 * required by all backends. Otherwise, make sure than OP can be performed
432 * on elements of size VECE in the selected type. Do not select V64 if
433 * PREFER_I64 is true. Return 0 if no vector type is selected.
435 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
436 uint32_t size, bool prefer_i64)
439 * Recall that ARM SVE allows vector sizes that are not a
440 * power of 2, but always a multiple of 16. The intent is
441 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 * It is hard to imagine a case in which v256 is supported
443 * but v128 is not, but check anyway.
444 * In addition, expand_clr needs to handle a multiple of 8.
446 if (TCG_TARGET_HAS_v256 &&
447 check_size_impl(size, 32) &&
448 tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) &&
449 (!(size & 16) ||
450 (TCG_TARGET_HAS_v128 &&
451 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) &&
452 (!(size & 8) ||
453 (TCG_TARGET_HAS_v64 &&
454 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
455 return TCG_TYPE_V256;
457 if (TCG_TARGET_HAS_v128 &&
458 check_size_impl(size, 16) &&
459 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) &&
460 (!(size & 8) ||
461 (TCG_TARGET_HAS_v64 &&
462 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
463 return TCG_TYPE_V128;
465 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
466 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
467 return TCG_TYPE_V64;
469 return 0;
472 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
473 uint32_t maxsz, TCGv_vec t_vec)
475 uint32_t i = 0;
477 tcg_debug_assert(oprsz >= 8);
480 * This may be expand_clr for the tail of an operation, e.g.
481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
482 * are misaligned wrt the maximum vector size, so do that first.
484 if (dofs & 8) {
485 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V64);
486 i += 8;
489 switch (type) {
490 case TCG_TYPE_V256:
492 * Recall that ARM SVE allows vector sizes that are not a
493 * power of 2, but always a multiple of 16. The intent is
494 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
496 for (; i + 32 <= oprsz; i += 32) {
497 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V256);
499 /* fallthru */
500 case TCG_TYPE_V128:
501 for (; i + 16 <= oprsz; i += 16) {
502 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V128);
504 break;
505 case TCG_TYPE_V64:
506 for (; i < oprsz; i += 8) {
507 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V64);
509 break;
510 default:
511 g_assert_not_reached();
514 if (oprsz < maxsz) {
515 expand_clr(dofs + oprsz, maxsz - oprsz);
519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
520 * Only one of IN_32 or IN_64 may be set;
521 * IN_C is used if IN_32 and IN_64 are unset.
523 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
524 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
525 uint64_t in_c)
527 TCGType type;
528 TCGv_i64 t_64;
529 TCGv_i32 t_32, t_desc;
530 TCGv_ptr t_ptr;
531 uint32_t i;
533 assert(vece <= (in_32 ? MO_32 : MO_64));
534 assert(in_32 == NULL || in_64 == NULL);
536 /* If we're storing 0, expand oprsz to maxsz. */
537 if (in_32 == NULL && in_64 == NULL) {
538 in_c = dup_const(vece, in_c);
539 if (in_c == 0) {
540 oprsz = maxsz;
541 vece = MO_8;
542 } else if (in_c == dup_const(MO_8, in_c)) {
543 vece = MO_8;
547 /* Implement inline with a vector type, if possible.
548 * Prefer integer when 64-bit host and no variable dup.
550 type = choose_vector_type(NULL, vece, oprsz,
551 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
552 && (in_64 == NULL || vece == MO_64)));
553 if (type != 0) {
554 TCGv_vec t_vec = tcg_temp_new_vec(type);
556 if (in_32) {
557 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
558 } else if (in_64) {
559 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
560 } else {
561 tcg_gen_dupi_vec(vece, t_vec, in_c);
563 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
564 return;
567 /* Otherwise, inline with an integer type, unless "large". */
568 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
569 t_64 = NULL;
570 t_32 = NULL;
572 if (in_32) {
573 /* We are given a 32-bit variable input. For a 64-bit host,
574 use a 64-bit operation unless the 32-bit operation would
575 be simple enough. */
576 if (TCG_TARGET_REG_BITS == 64
577 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
578 t_64 = tcg_temp_ebb_new_i64();
579 tcg_gen_extu_i32_i64(t_64, in_32);
580 tcg_gen_dup_i64(vece, t_64, t_64);
581 } else {
582 t_32 = tcg_temp_ebb_new_i32();
583 tcg_gen_dup_i32(vece, t_32, in_32);
585 } else if (in_64) {
586 /* We are given a 64-bit variable input. */
587 t_64 = tcg_temp_ebb_new_i64();
588 tcg_gen_dup_i64(vece, t_64, in_64);
589 } else {
590 /* We are given a constant input. */
591 /* For 64-bit hosts, use 64-bit constants for "simple" constants
592 or when we'd need too many 32-bit stores, or when a 64-bit
593 constant is really required. */
594 if (vece == MO_64
595 || (TCG_TARGET_REG_BITS == 64
596 && (in_c == 0 || in_c == -1
597 || !check_size_impl(oprsz, 4)))) {
598 t_64 = tcg_constant_i64(in_c);
599 } else {
600 t_32 = tcg_constant_i32(in_c);
604 /* Implement inline if we picked an implementation size above. */
605 if (t_32) {
606 for (i = 0; i < oprsz; i += 4) {
607 tcg_gen_st_i32(t_32, tcg_env, dofs + i);
609 tcg_temp_free_i32(t_32);
610 goto done;
612 if (t_64) {
613 for (i = 0; i < oprsz; i += 8) {
614 tcg_gen_st_i64(t_64, tcg_env, dofs + i);
616 tcg_temp_free_i64(t_64);
617 goto done;
621 /* Otherwise implement out of line. */
622 t_ptr = tcg_temp_ebb_new_ptr();
623 tcg_gen_addi_ptr(t_ptr, tcg_env, dofs);
626 * This may be expand_clr for the tail of an operation, e.g.
627 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
628 * wrt simd_desc and will assert. Simply pass all replicated byte
629 * stores through to memset.
631 if (oprsz == maxsz && vece == MO_8) {
632 TCGv_ptr t_size = tcg_constant_ptr(oprsz);
633 TCGv_i32 t_val;
635 if (in_32) {
636 t_val = in_32;
637 } else if (in_64) {
638 t_val = tcg_temp_ebb_new_i32();
639 tcg_gen_extrl_i64_i32(t_val, in_64);
640 } else {
641 t_val = tcg_constant_i32(in_c);
643 gen_helper_memset(t_ptr, t_ptr, t_val, t_size);
645 if (in_64) {
646 tcg_temp_free_i32(t_val);
648 tcg_temp_free_ptr(t_ptr);
649 return;
652 t_desc = tcg_constant_i32(simd_desc(oprsz, maxsz, 0));
654 if (vece == MO_64) {
655 if (in_64) {
656 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
657 } else {
658 t_64 = tcg_constant_i64(in_c);
659 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
661 } else {
662 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
663 static dup_fn * const fns[3] = {
664 gen_helper_gvec_dup8,
665 gen_helper_gvec_dup16,
666 gen_helper_gvec_dup32
669 if (in_32) {
670 fns[vece](t_ptr, t_desc, in_32);
671 } else if (in_64) {
672 t_32 = tcg_temp_ebb_new_i32();
673 tcg_gen_extrl_i64_i32(t_32, in_64);
674 fns[vece](t_ptr, t_desc, t_32);
675 tcg_temp_free_i32(t_32);
676 } else {
677 if (vece == MO_8) {
678 in_c &= 0xff;
679 } else if (vece == MO_16) {
680 in_c &= 0xffff;
682 t_32 = tcg_constant_i32(in_c);
683 fns[vece](t_ptr, t_desc, t_32);
687 tcg_temp_free_ptr(t_ptr);
688 return;
690 done:
691 if (oprsz < maxsz) {
692 expand_clr(dofs + oprsz, maxsz - oprsz);
696 /* Likewise, but with zero. */
697 static void expand_clr(uint32_t dofs, uint32_t maxsz)
699 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
702 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
703 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
704 bool load_dest, void (*fni)(TCGv_i32, TCGv_i32))
706 TCGv_i32 t0 = tcg_temp_new_i32();
707 TCGv_i32 t1 = tcg_temp_new_i32();
708 uint32_t i;
710 for (i = 0; i < oprsz; i += 4) {
711 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
712 if (load_dest) {
713 tcg_gen_ld_i32(t1, tcg_env, dofs + i);
715 fni(t1, t0);
716 tcg_gen_st_i32(t1, tcg_env, dofs + i);
718 tcg_temp_free_i32(t0);
719 tcg_temp_free_i32(t1);
722 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
723 int32_t c, bool load_dest,
724 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
726 TCGv_i32 t0 = tcg_temp_new_i32();
727 TCGv_i32 t1 = tcg_temp_new_i32();
728 uint32_t i;
730 for (i = 0; i < oprsz; i += 4) {
731 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
732 if (load_dest) {
733 tcg_gen_ld_i32(t1, tcg_env, dofs + i);
735 fni(t1, t0, c);
736 tcg_gen_st_i32(t1, tcg_env, dofs + i);
738 tcg_temp_free_i32(t0);
739 tcg_temp_free_i32(t1);
742 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
743 TCGv_i32 c, bool scalar_first,
744 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
746 TCGv_i32 t0 = tcg_temp_new_i32();
747 TCGv_i32 t1 = tcg_temp_new_i32();
748 uint32_t i;
750 for (i = 0; i < oprsz; i += 4) {
751 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
752 if (scalar_first) {
753 fni(t1, c, t0);
754 } else {
755 fni(t1, t0, c);
757 tcg_gen_st_i32(t1, tcg_env, dofs + i);
759 tcg_temp_free_i32(t0);
760 tcg_temp_free_i32(t1);
763 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
764 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
765 uint32_t bofs, uint32_t oprsz, bool load_dest,
766 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
768 TCGv_i32 t0 = tcg_temp_new_i32();
769 TCGv_i32 t1 = tcg_temp_new_i32();
770 TCGv_i32 t2 = tcg_temp_new_i32();
771 uint32_t i;
773 for (i = 0; i < oprsz; i += 4) {
774 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
775 tcg_gen_ld_i32(t1, tcg_env, bofs + i);
776 if (load_dest) {
777 tcg_gen_ld_i32(t2, tcg_env, dofs + i);
779 fni(t2, t0, t1);
780 tcg_gen_st_i32(t2, tcg_env, dofs + i);
782 tcg_temp_free_i32(t2);
783 tcg_temp_free_i32(t1);
784 tcg_temp_free_i32(t0);
787 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
788 uint32_t oprsz, int32_t c,
789 bool load_dest, bool write_aofs,
790 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
792 TCGv_i32 t0 = tcg_temp_new_i32();
793 TCGv_i32 t1 = tcg_temp_new_i32();
794 TCGv_i32 t2 = tcg_temp_new_i32();
795 uint32_t i;
797 for (i = 0; i < oprsz; i += 4) {
798 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
799 tcg_gen_ld_i32(t1, tcg_env, bofs + i);
800 if (load_dest) {
801 tcg_gen_ld_i32(t2, tcg_env, dofs + i);
803 fni(t2, t0, t1, c);
804 tcg_gen_st_i32(t2, tcg_env, dofs + i);
805 if (write_aofs) {
806 tcg_gen_st_i32(t0, tcg_env, aofs + i);
809 tcg_temp_free_i32(t0);
810 tcg_temp_free_i32(t1);
811 tcg_temp_free_i32(t2);
814 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
815 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
816 uint32_t cofs, uint32_t oprsz, bool write_aofs,
817 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
819 TCGv_i32 t0 = tcg_temp_new_i32();
820 TCGv_i32 t1 = tcg_temp_new_i32();
821 TCGv_i32 t2 = tcg_temp_new_i32();
822 TCGv_i32 t3 = tcg_temp_new_i32();
823 uint32_t i;
825 for (i = 0; i < oprsz; i += 4) {
826 tcg_gen_ld_i32(t1, tcg_env, aofs + i);
827 tcg_gen_ld_i32(t2, tcg_env, bofs + i);
828 tcg_gen_ld_i32(t3, tcg_env, cofs + i);
829 fni(t0, t1, t2, t3);
830 tcg_gen_st_i32(t0, tcg_env, dofs + i);
831 if (write_aofs) {
832 tcg_gen_st_i32(t1, tcg_env, aofs + i);
835 tcg_temp_free_i32(t3);
836 tcg_temp_free_i32(t2);
837 tcg_temp_free_i32(t1);
838 tcg_temp_free_i32(t0);
841 static void expand_4i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
842 uint32_t cofs, uint32_t oprsz, int32_t c,
843 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32,
844 int32_t))
846 TCGv_i32 t0 = tcg_temp_new_i32();
847 TCGv_i32 t1 = tcg_temp_new_i32();
848 TCGv_i32 t2 = tcg_temp_new_i32();
849 TCGv_i32 t3 = tcg_temp_new_i32();
850 uint32_t i;
852 for (i = 0; i < oprsz; i += 4) {
853 tcg_gen_ld_i32(t1, tcg_env, aofs + i);
854 tcg_gen_ld_i32(t2, tcg_env, bofs + i);
855 tcg_gen_ld_i32(t3, tcg_env, cofs + i);
856 fni(t0, t1, t2, t3, c);
857 tcg_gen_st_i32(t0, tcg_env, dofs + i);
859 tcg_temp_free_i32(t3);
860 tcg_temp_free_i32(t2);
861 tcg_temp_free_i32(t1);
862 tcg_temp_free_i32(t0);
865 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
866 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
867 bool load_dest, void (*fni)(TCGv_i64, TCGv_i64))
869 TCGv_i64 t0 = tcg_temp_new_i64();
870 TCGv_i64 t1 = tcg_temp_new_i64();
871 uint32_t i;
873 for (i = 0; i < oprsz; i += 8) {
874 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
875 if (load_dest) {
876 tcg_gen_ld_i64(t1, tcg_env, dofs + i);
878 fni(t1, t0);
879 tcg_gen_st_i64(t1, tcg_env, dofs + i);
881 tcg_temp_free_i64(t0);
882 tcg_temp_free_i64(t1);
885 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
886 int64_t c, bool load_dest,
887 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
889 TCGv_i64 t0 = tcg_temp_new_i64();
890 TCGv_i64 t1 = tcg_temp_new_i64();
891 uint32_t i;
893 for (i = 0; i < oprsz; i += 8) {
894 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
895 if (load_dest) {
896 tcg_gen_ld_i64(t1, tcg_env, dofs + i);
898 fni(t1, t0, c);
899 tcg_gen_st_i64(t1, tcg_env, dofs + i);
901 tcg_temp_free_i64(t0);
902 tcg_temp_free_i64(t1);
905 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
906 TCGv_i64 c, bool scalar_first,
907 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
909 TCGv_i64 t0 = tcg_temp_new_i64();
910 TCGv_i64 t1 = tcg_temp_new_i64();
911 uint32_t i;
913 for (i = 0; i < oprsz; i += 8) {
914 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
915 if (scalar_first) {
916 fni(t1, c, t0);
917 } else {
918 fni(t1, t0, c);
920 tcg_gen_st_i64(t1, tcg_env, dofs + i);
922 tcg_temp_free_i64(t0);
923 tcg_temp_free_i64(t1);
926 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
927 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
928 uint32_t bofs, uint32_t oprsz, bool load_dest,
929 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
931 TCGv_i64 t0 = tcg_temp_new_i64();
932 TCGv_i64 t1 = tcg_temp_new_i64();
933 TCGv_i64 t2 = tcg_temp_new_i64();
934 uint32_t i;
936 for (i = 0; i < oprsz; i += 8) {
937 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
938 tcg_gen_ld_i64(t1, tcg_env, bofs + i);
939 if (load_dest) {
940 tcg_gen_ld_i64(t2, tcg_env, dofs + i);
942 fni(t2, t0, t1);
943 tcg_gen_st_i64(t2, tcg_env, dofs + i);
945 tcg_temp_free_i64(t2);
946 tcg_temp_free_i64(t1);
947 tcg_temp_free_i64(t0);
950 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
951 uint32_t oprsz, int64_t c,
952 bool load_dest, bool write_aofs,
953 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
955 TCGv_i64 t0 = tcg_temp_new_i64();
956 TCGv_i64 t1 = tcg_temp_new_i64();
957 TCGv_i64 t2 = tcg_temp_new_i64();
958 uint32_t i;
960 for (i = 0; i < oprsz; i += 8) {
961 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
962 tcg_gen_ld_i64(t1, tcg_env, bofs + i);
963 if (load_dest) {
964 tcg_gen_ld_i64(t2, tcg_env, dofs + i);
966 fni(t2, t0, t1, c);
967 tcg_gen_st_i64(t2, tcg_env, dofs + i);
968 if (write_aofs) {
969 tcg_gen_st_i64(t0, tcg_env, aofs + i);
972 tcg_temp_free_i64(t0);
973 tcg_temp_free_i64(t1);
974 tcg_temp_free_i64(t2);
977 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
978 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
979 uint32_t cofs, uint32_t oprsz, bool write_aofs,
980 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
982 TCGv_i64 t0 = tcg_temp_new_i64();
983 TCGv_i64 t1 = tcg_temp_new_i64();
984 TCGv_i64 t2 = tcg_temp_new_i64();
985 TCGv_i64 t3 = tcg_temp_new_i64();
986 uint32_t i;
988 for (i = 0; i < oprsz; i += 8) {
989 tcg_gen_ld_i64(t1, tcg_env, aofs + i);
990 tcg_gen_ld_i64(t2, tcg_env, bofs + i);
991 tcg_gen_ld_i64(t3, tcg_env, cofs + i);
992 fni(t0, t1, t2, t3);
993 tcg_gen_st_i64(t0, tcg_env, dofs + i);
994 if (write_aofs) {
995 tcg_gen_st_i64(t1, tcg_env, aofs + i);
998 tcg_temp_free_i64(t3);
999 tcg_temp_free_i64(t2);
1000 tcg_temp_free_i64(t1);
1001 tcg_temp_free_i64(t0);
1004 static void expand_4i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1005 uint32_t cofs, uint32_t oprsz, int64_t c,
1006 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64,
1007 int64_t))
1009 TCGv_i64 t0 = tcg_temp_new_i64();
1010 TCGv_i64 t1 = tcg_temp_new_i64();
1011 TCGv_i64 t2 = tcg_temp_new_i64();
1012 TCGv_i64 t3 = tcg_temp_new_i64();
1013 uint32_t i;
1015 for (i = 0; i < oprsz; i += 8) {
1016 tcg_gen_ld_i64(t1, tcg_env, aofs + i);
1017 tcg_gen_ld_i64(t2, tcg_env, bofs + i);
1018 tcg_gen_ld_i64(t3, tcg_env, cofs + i);
1019 fni(t0, t1, t2, t3, c);
1020 tcg_gen_st_i64(t0, tcg_env, dofs + i);
1022 tcg_temp_free_i64(t3);
1023 tcg_temp_free_i64(t2);
1024 tcg_temp_free_i64(t1);
1025 tcg_temp_free_i64(t0);
1028 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
1029 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1030 uint32_t oprsz, uint32_t tysz, TCGType type,
1031 bool load_dest,
1032 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
1034 for (uint32_t i = 0; i < oprsz; i += tysz) {
1035 TCGv_vec t0 = tcg_temp_new_vec(type);
1036 TCGv_vec t1 = tcg_temp_new_vec(type);
1038 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
1039 if (load_dest) {
1040 tcg_gen_ld_vec(t1, tcg_env, dofs + i);
1042 fni(vece, t1, t0);
1043 tcg_gen_st_vec(t1, tcg_env, dofs + i);
1047 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
1048 using host vectors. */
1049 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1050 uint32_t oprsz, uint32_t tysz, TCGType type,
1051 int64_t c, bool load_dest,
1052 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
1054 for (uint32_t i = 0; i < oprsz; i += tysz) {
1055 TCGv_vec t0 = tcg_temp_new_vec(type);
1056 TCGv_vec t1 = tcg_temp_new_vec(type);
1058 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
1059 if (load_dest) {
1060 tcg_gen_ld_vec(t1, tcg_env, dofs + i);
1062 fni(vece, t1, t0, c);
1063 tcg_gen_st_vec(t1, tcg_env, dofs + i);
1067 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1068 uint32_t oprsz, uint32_t tysz, TCGType type,
1069 TCGv_vec c, bool scalar_first,
1070 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1072 for (uint32_t i = 0; i < oprsz; i += tysz) {
1073 TCGv_vec t0 = tcg_temp_new_vec(type);
1074 TCGv_vec t1 = tcg_temp_new_vec(type);
1076 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
1077 if (scalar_first) {
1078 fni(vece, t1, c, t0);
1079 } else {
1080 fni(vece, t1, t0, c);
1082 tcg_gen_st_vec(t1, tcg_env, dofs + i);
1086 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1087 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1088 uint32_t bofs, uint32_t oprsz,
1089 uint32_t tysz, TCGType type, bool load_dest,
1090 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1092 for (uint32_t i = 0; i < oprsz; i += tysz) {
1093 TCGv_vec t0 = tcg_temp_new_vec(type);
1094 TCGv_vec t1 = tcg_temp_new_vec(type);
1095 TCGv_vec t2 = tcg_temp_new_vec(type);
1097 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
1098 tcg_gen_ld_vec(t1, tcg_env, bofs + i);
1099 if (load_dest) {
1100 tcg_gen_ld_vec(t2, tcg_env, dofs + i);
1102 fni(vece, t2, t0, t1);
1103 tcg_gen_st_vec(t2, tcg_env, dofs + i);
1108 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1109 * using host vectors.
1111 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1112 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
1113 TCGType type, int64_t c,
1114 bool load_dest, bool write_aofs,
1115 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
1116 int64_t))
1118 for (uint32_t i = 0; i < oprsz; i += tysz) {
1119 TCGv_vec t0 = tcg_temp_new_vec(type);
1120 TCGv_vec t1 = tcg_temp_new_vec(type);
1121 TCGv_vec t2 = tcg_temp_new_vec(type);
1123 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
1124 tcg_gen_ld_vec(t1, tcg_env, bofs + i);
1125 if (load_dest) {
1126 tcg_gen_ld_vec(t2, tcg_env, dofs + i);
1128 fni(vece, t2, t0, t1, c);
1129 tcg_gen_st_vec(t2, tcg_env, dofs + i);
1130 if (write_aofs) {
1131 tcg_gen_st_vec(t0, tcg_env, aofs + i);
1136 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1137 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1138 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1139 uint32_t tysz, TCGType type, bool write_aofs,
1140 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1141 TCGv_vec, TCGv_vec))
1143 for (uint32_t i = 0; i < oprsz; i += tysz) {
1144 TCGv_vec t0 = tcg_temp_new_vec(type);
1145 TCGv_vec t1 = tcg_temp_new_vec(type);
1146 TCGv_vec t2 = tcg_temp_new_vec(type);
1147 TCGv_vec t3 = tcg_temp_new_vec(type);
1149 tcg_gen_ld_vec(t1, tcg_env, aofs + i);
1150 tcg_gen_ld_vec(t2, tcg_env, bofs + i);
1151 tcg_gen_ld_vec(t3, tcg_env, cofs + i);
1152 fni(vece, t0, t1, t2, t3);
1153 tcg_gen_st_vec(t0, tcg_env, dofs + i);
1154 if (write_aofs) {
1155 tcg_gen_st_vec(t1, tcg_env, aofs + i);
1161 * Expand OPSZ bytes worth of four-vector operands and an immediate operand
1162 * using host vectors.
1164 static void expand_4i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1165 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1166 uint32_t tysz, TCGType type, int64_t c,
1167 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1168 TCGv_vec, TCGv_vec, int64_t))
1170 for (uint32_t i = 0; i < oprsz; i += tysz) {
1171 TCGv_vec t0 = tcg_temp_new_vec(type);
1172 TCGv_vec t1 = tcg_temp_new_vec(type);
1173 TCGv_vec t2 = tcg_temp_new_vec(type);
1174 TCGv_vec t3 = tcg_temp_new_vec(type);
1176 tcg_gen_ld_vec(t1, tcg_env, aofs + i);
1177 tcg_gen_ld_vec(t2, tcg_env, bofs + i);
1178 tcg_gen_ld_vec(t3, tcg_env, cofs + i);
1179 fni(vece, t0, t1, t2, t3, c);
1180 tcg_gen_st_vec(t0, tcg_env, dofs + i);
1184 /* Expand a vector two-operand operation. */
1185 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
1186 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
1188 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1189 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1190 TCGType type;
1191 uint32_t some;
1193 check_size_align(oprsz, maxsz, dofs | aofs);
1194 check_overlap_2(dofs, aofs, maxsz);
1196 type = 0;
1197 if (g->fniv) {
1198 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1200 switch (type) {
1201 case TCG_TYPE_V256:
1202 /* Recall that ARM SVE allows vector sizes that are not a
1203 * power of 2, but always a multiple of 16. The intent is
1204 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1206 some = QEMU_ALIGN_DOWN(oprsz, 32);
1207 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1208 g->load_dest, g->fniv);
1209 if (some == oprsz) {
1210 break;
1212 dofs += some;
1213 aofs += some;
1214 oprsz -= some;
1215 maxsz -= some;
1216 /* fallthru */
1217 case TCG_TYPE_V128:
1218 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1219 g->load_dest, g->fniv);
1220 break;
1221 case TCG_TYPE_V64:
1222 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1223 g->load_dest, g->fniv);
1224 break;
1226 case 0:
1227 if (g->fni8 && check_size_impl(oprsz, 8)) {
1228 expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8);
1229 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1230 expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4);
1231 } else {
1232 assert(g->fno != NULL);
1233 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1234 oprsz = maxsz;
1236 break;
1238 default:
1239 g_assert_not_reached();
1241 tcg_swap_vecop_list(hold_list);
1243 if (oprsz < maxsz) {
1244 expand_clr(dofs + oprsz, maxsz - oprsz);
1248 /* Expand a vector operation with two vectors and an immediate. */
1249 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1250 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1252 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1253 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1254 TCGType type;
1255 uint32_t some;
1257 check_size_align(oprsz, maxsz, dofs | aofs);
1258 check_overlap_2(dofs, aofs, maxsz);
1260 type = 0;
1261 if (g->fniv) {
1262 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1264 switch (type) {
1265 case TCG_TYPE_V256:
1266 /* Recall that ARM SVE allows vector sizes that are not a
1267 * power of 2, but always a multiple of 16. The intent is
1268 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1270 some = QEMU_ALIGN_DOWN(oprsz, 32);
1271 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1272 c, g->load_dest, g->fniv);
1273 if (some == oprsz) {
1274 break;
1276 dofs += some;
1277 aofs += some;
1278 oprsz -= some;
1279 maxsz -= some;
1280 /* fallthru */
1281 case TCG_TYPE_V128:
1282 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1283 c, g->load_dest, g->fniv);
1284 break;
1285 case TCG_TYPE_V64:
1286 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1287 c, g->load_dest, g->fniv);
1288 break;
1290 case 0:
1291 if (g->fni8 && check_size_impl(oprsz, 8)) {
1292 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1293 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1294 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1295 } else {
1296 if (g->fno) {
1297 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1298 } else {
1299 TCGv_i64 tcg_c = tcg_constant_i64(c);
1300 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1301 maxsz, c, g->fnoi);
1303 oprsz = maxsz;
1305 break;
1307 default:
1308 g_assert_not_reached();
1310 tcg_swap_vecop_list(hold_list);
1312 if (oprsz < maxsz) {
1313 expand_clr(dofs + oprsz, maxsz - oprsz);
1317 /* Expand a vector operation with two vectors and a scalar. */
1318 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1319 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1321 TCGType type;
1323 check_size_align(oprsz, maxsz, dofs | aofs);
1324 check_overlap_2(dofs, aofs, maxsz);
1326 type = 0;
1327 if (g->fniv) {
1328 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1330 if (type != 0) {
1331 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1332 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1333 TCGv_vec t_vec = tcg_temp_new_vec(type);
1334 uint32_t some;
1336 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1338 switch (type) {
1339 case TCG_TYPE_V256:
1340 /* Recall that ARM SVE allows vector sizes that are not a
1341 * power of 2, but always a multiple of 16. The intent is
1342 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1344 some = QEMU_ALIGN_DOWN(oprsz, 32);
1345 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1346 t_vec, g->scalar_first, g->fniv);
1347 if (some == oprsz) {
1348 break;
1350 dofs += some;
1351 aofs += some;
1352 oprsz -= some;
1353 maxsz -= some;
1354 /* fallthru */
1356 case TCG_TYPE_V128:
1357 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1358 t_vec, g->scalar_first, g->fniv);
1359 break;
1361 case TCG_TYPE_V64:
1362 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1363 t_vec, g->scalar_first, g->fniv);
1364 break;
1366 default:
1367 g_assert_not_reached();
1369 tcg_temp_free_vec(t_vec);
1370 tcg_swap_vecop_list(hold_list);
1371 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1372 TCGv_i64 t64 = tcg_temp_new_i64();
1374 tcg_gen_dup_i64(g->vece, t64, c);
1375 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1376 tcg_temp_free_i64(t64);
1377 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1378 TCGv_i32 t32 = tcg_temp_new_i32();
1380 tcg_gen_extrl_i64_i32(t32, c);
1381 tcg_gen_dup_i32(g->vece, t32, t32);
1382 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1383 tcg_temp_free_i32(t32);
1384 } else {
1385 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1386 return;
1389 if (oprsz < maxsz) {
1390 expand_clr(dofs + oprsz, maxsz - oprsz);
1394 /* Expand a vector three-operand operation. */
1395 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1396 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1398 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1399 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1400 TCGType type;
1401 uint32_t some;
1403 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1404 check_overlap_3(dofs, aofs, bofs, maxsz);
1406 type = 0;
1407 if (g->fniv) {
1408 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1410 switch (type) {
1411 case TCG_TYPE_V256:
1412 /* Recall that ARM SVE allows vector sizes that are not a
1413 * power of 2, but always a multiple of 16. The intent is
1414 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1416 some = QEMU_ALIGN_DOWN(oprsz, 32);
1417 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1418 g->load_dest, g->fniv);
1419 if (some == oprsz) {
1420 break;
1422 dofs += some;
1423 aofs += some;
1424 bofs += some;
1425 oprsz -= some;
1426 maxsz -= some;
1427 /* fallthru */
1428 case TCG_TYPE_V128:
1429 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1430 g->load_dest, g->fniv);
1431 break;
1432 case TCG_TYPE_V64:
1433 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1434 g->load_dest, g->fniv);
1435 break;
1437 case 0:
1438 if (g->fni8 && check_size_impl(oprsz, 8)) {
1439 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1440 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1441 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1442 } else {
1443 assert(g->fno != NULL);
1444 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1445 maxsz, g->data, g->fno);
1446 oprsz = maxsz;
1448 break;
1450 default:
1451 g_assert_not_reached();
1453 tcg_swap_vecop_list(hold_list);
1455 if (oprsz < maxsz) {
1456 expand_clr(dofs + oprsz, maxsz - oprsz);
1460 /* Expand a vector operation with three vectors and an immediate. */
1461 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1462 uint32_t oprsz, uint32_t maxsz, int64_t c,
1463 const GVecGen3i *g)
1465 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1466 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1467 TCGType type;
1468 uint32_t some;
1470 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1471 check_overlap_3(dofs, aofs, bofs, maxsz);
1473 type = 0;
1474 if (g->fniv) {
1475 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1477 switch (type) {
1478 case TCG_TYPE_V256:
1480 * Recall that ARM SVE allows vector sizes that are not a
1481 * power of 2, but always a multiple of 16. The intent is
1482 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1484 some = QEMU_ALIGN_DOWN(oprsz, 32);
1485 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1486 c, g->load_dest, g->write_aofs, g->fniv);
1487 if (some == oprsz) {
1488 break;
1490 dofs += some;
1491 aofs += some;
1492 bofs += some;
1493 oprsz -= some;
1494 maxsz -= some;
1495 /* fallthru */
1496 case TCG_TYPE_V128:
1497 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1498 c, g->load_dest, g->write_aofs, g->fniv);
1499 break;
1500 case TCG_TYPE_V64:
1501 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1502 c, g->load_dest, g->write_aofs, g->fniv);
1503 break;
1505 case 0:
1506 if (g->fni8 && check_size_impl(oprsz, 8)) {
1507 expand_3i_i64(dofs, aofs, bofs, oprsz, c,
1508 g->load_dest, g->write_aofs, g->fni8);
1509 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1510 expand_3i_i32(dofs, aofs, bofs, oprsz, c,
1511 g->load_dest, g->write_aofs, g->fni4);
1512 } else {
1513 assert(g->fno != NULL);
1514 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1515 oprsz = maxsz;
1517 break;
1519 default:
1520 g_assert_not_reached();
1522 tcg_swap_vecop_list(hold_list);
1524 if (oprsz < maxsz) {
1525 expand_clr(dofs + oprsz, maxsz - oprsz);
1529 /* Expand a vector four-operand operation. */
1530 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1531 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1533 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1534 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1535 TCGType type;
1536 uint32_t some;
1538 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1539 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1541 type = 0;
1542 if (g->fniv) {
1543 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1545 switch (type) {
1546 case TCG_TYPE_V256:
1547 /* Recall that ARM SVE allows vector sizes that are not a
1548 * power of 2, but always a multiple of 16. The intent is
1549 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1551 some = QEMU_ALIGN_DOWN(oprsz, 32);
1552 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1553 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1554 if (some == oprsz) {
1555 break;
1557 dofs += some;
1558 aofs += some;
1559 bofs += some;
1560 cofs += some;
1561 oprsz -= some;
1562 maxsz -= some;
1563 /* fallthru */
1564 case TCG_TYPE_V128:
1565 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1566 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1567 break;
1568 case TCG_TYPE_V64:
1569 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1570 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1571 break;
1573 case 0:
1574 if (g->fni8 && check_size_impl(oprsz, 8)) {
1575 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1576 g->write_aofs, g->fni8);
1577 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1578 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1579 g->write_aofs, g->fni4);
1580 } else {
1581 assert(g->fno != NULL);
1582 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1583 oprsz, maxsz, g->data, g->fno);
1584 oprsz = maxsz;
1586 break;
1588 default:
1589 g_assert_not_reached();
1591 tcg_swap_vecop_list(hold_list);
1593 if (oprsz < maxsz) {
1594 expand_clr(dofs + oprsz, maxsz - oprsz);
1598 /* Expand a vector four-operand operation. */
1599 void tcg_gen_gvec_4i(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1600 uint32_t oprsz, uint32_t maxsz, int64_t c,
1601 const GVecGen4i *g)
1603 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1604 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1605 TCGType type;
1606 uint32_t some;
1608 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1609 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1611 type = 0;
1612 if (g->fniv) {
1613 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1615 switch (type) {
1616 case TCG_TYPE_V256:
1618 * Recall that ARM SVE allows vector sizes that are not a
1619 * power of 2, but always a multiple of 16. The intent is
1620 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1622 some = QEMU_ALIGN_DOWN(oprsz, 32);
1623 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, some,
1624 32, TCG_TYPE_V256, c, g->fniv);
1625 if (some == oprsz) {
1626 break;
1628 dofs += some;
1629 aofs += some;
1630 bofs += some;
1631 cofs += some;
1632 oprsz -= some;
1633 maxsz -= some;
1634 /* fallthru */
1635 case TCG_TYPE_V128:
1636 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1637 16, TCG_TYPE_V128, c, g->fniv);
1638 break;
1639 case TCG_TYPE_V64:
1640 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1641 8, TCG_TYPE_V64, c, g->fniv);
1642 break;
1644 case 0:
1645 if (g->fni8 && check_size_impl(oprsz, 8)) {
1646 expand_4i_i64(dofs, aofs, bofs, cofs, oprsz, c, g->fni8);
1647 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1648 expand_4i_i32(dofs, aofs, bofs, cofs, oprsz, c, g->fni4);
1649 } else {
1650 assert(g->fno != NULL);
1651 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1652 oprsz, maxsz, c, g->fno);
1653 oprsz = maxsz;
1655 break;
1657 default:
1658 g_assert_not_reached();
1660 tcg_swap_vecop_list(hold_list);
1662 if (oprsz < maxsz) {
1663 expand_clr(dofs + oprsz, maxsz - oprsz);
1668 * Expand specific vector operations.
1671 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1673 tcg_gen_mov_vec(a, b);
1676 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1677 uint32_t oprsz, uint32_t maxsz)
1679 static const GVecGen2 g = {
1680 .fni8 = tcg_gen_mov_i64,
1681 .fniv = vec_mov2,
1682 .fno = gen_helper_gvec_mov,
1683 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1685 if (dofs != aofs) {
1686 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1687 } else {
1688 check_size_align(oprsz, maxsz, dofs);
1689 if (oprsz < maxsz) {
1690 expand_clr(dofs + oprsz, maxsz - oprsz);
1695 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1696 uint32_t maxsz, TCGv_i32 in)
1698 check_size_align(oprsz, maxsz, dofs);
1699 tcg_debug_assert(vece <= MO_32);
1700 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1703 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1704 uint32_t maxsz, TCGv_i64 in)
1706 check_size_align(oprsz, maxsz, dofs);
1707 tcg_debug_assert(vece <= MO_64);
1708 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1711 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1712 uint32_t oprsz, uint32_t maxsz)
1714 check_size_align(oprsz, maxsz, dofs);
1715 if (vece <= MO_64) {
1716 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1717 if (type != 0) {
1718 TCGv_vec t_vec = tcg_temp_new_vec(type);
1719 tcg_gen_dup_mem_vec(vece, t_vec, tcg_env, aofs);
1720 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1721 } else if (vece <= MO_32) {
1722 TCGv_i32 in = tcg_temp_ebb_new_i32();
1723 switch (vece) {
1724 case MO_8:
1725 tcg_gen_ld8u_i32(in, tcg_env, aofs);
1726 break;
1727 case MO_16:
1728 tcg_gen_ld16u_i32(in, tcg_env, aofs);
1729 break;
1730 default:
1731 tcg_gen_ld_i32(in, tcg_env, aofs);
1732 break;
1734 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1735 tcg_temp_free_i32(in);
1736 } else {
1737 TCGv_i64 in = tcg_temp_ebb_new_i64();
1738 tcg_gen_ld_i64(in, tcg_env, aofs);
1739 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1740 tcg_temp_free_i64(in);
1742 } else if (vece == 4) {
1743 /* 128-bit duplicate. */
1744 int i;
1746 tcg_debug_assert(oprsz >= 16);
1747 if (TCG_TARGET_HAS_v128) {
1748 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1750 tcg_gen_ld_vec(in, tcg_env, aofs);
1751 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1752 tcg_gen_st_vec(in, tcg_env, dofs + i);
1754 } else {
1755 TCGv_i64 in0 = tcg_temp_ebb_new_i64();
1756 TCGv_i64 in1 = tcg_temp_ebb_new_i64();
1758 tcg_gen_ld_i64(in0, tcg_env, aofs);
1759 tcg_gen_ld_i64(in1, tcg_env, aofs + 8);
1760 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1761 tcg_gen_st_i64(in0, tcg_env, dofs + i);
1762 tcg_gen_st_i64(in1, tcg_env, dofs + i + 8);
1764 tcg_temp_free_i64(in0);
1765 tcg_temp_free_i64(in1);
1767 if (oprsz < maxsz) {
1768 expand_clr(dofs + oprsz, maxsz - oprsz);
1770 } else if (vece == 5) {
1771 /* 256-bit duplicate. */
1772 int i;
1774 tcg_debug_assert(oprsz >= 32);
1775 tcg_debug_assert(oprsz % 32 == 0);
1776 if (TCG_TARGET_HAS_v256) {
1777 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V256);
1779 tcg_gen_ld_vec(in, tcg_env, aofs);
1780 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1781 tcg_gen_st_vec(in, tcg_env, dofs + i);
1783 } else if (TCG_TARGET_HAS_v128) {
1784 TCGv_vec in0 = tcg_temp_new_vec(TCG_TYPE_V128);
1785 TCGv_vec in1 = tcg_temp_new_vec(TCG_TYPE_V128);
1787 tcg_gen_ld_vec(in0, tcg_env, aofs);
1788 tcg_gen_ld_vec(in1, tcg_env, aofs + 16);
1789 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1790 tcg_gen_st_vec(in0, tcg_env, dofs + i);
1791 tcg_gen_st_vec(in1, tcg_env, dofs + i + 16);
1793 } else {
1794 TCGv_i64 in[4];
1795 int j;
1797 for (j = 0; j < 4; ++j) {
1798 in[j] = tcg_temp_ebb_new_i64();
1799 tcg_gen_ld_i64(in[j], tcg_env, aofs + j * 8);
1801 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1802 for (j = 0; j < 4; ++j) {
1803 tcg_gen_st_i64(in[j], tcg_env, dofs + i + j * 8);
1806 for (j = 0; j < 4; ++j) {
1807 tcg_temp_free_i64(in[j]);
1810 if (oprsz < maxsz) {
1811 expand_clr(dofs + oprsz, maxsz - oprsz);
1813 } else {
1814 g_assert_not_reached();
1818 void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz,
1819 uint32_t maxsz, uint64_t x)
1821 check_size_align(oprsz, maxsz, dofs);
1822 do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x);
1825 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1826 uint32_t oprsz, uint32_t maxsz)
1828 static const GVecGen2 g = {
1829 .fni8 = tcg_gen_not_i64,
1830 .fniv = tcg_gen_not_vec,
1831 .fno = gen_helper_gvec_not,
1832 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1834 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1837 /* Perform a vector addition using normal addition and a mask. The mask
1838 should be the sign bit of each lane. This 6-operation form is more
1839 efficient than separate additions when there are 4 or more lanes in
1840 the 64-bit operation. */
1841 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1843 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
1844 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
1845 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
1847 tcg_gen_andc_i64(t1, a, m);
1848 tcg_gen_andc_i64(t2, b, m);
1849 tcg_gen_xor_i64(t3, a, b);
1850 tcg_gen_add_i64(d, t1, t2);
1851 tcg_gen_and_i64(t3, t3, m);
1852 tcg_gen_xor_i64(d, d, t3);
1854 tcg_temp_free_i64(t1);
1855 tcg_temp_free_i64(t2);
1856 tcg_temp_free_i64(t3);
1859 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1861 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
1862 gen_addv_mask(d, a, b, m);
1865 void tcg_gen_vec_add8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1867 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
1868 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
1869 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
1870 TCGv_i32 t3 = tcg_temp_ebb_new_i32();
1872 tcg_gen_andc_i32(t1, a, m);
1873 tcg_gen_andc_i32(t2, b, m);
1874 tcg_gen_xor_i32(t3, a, b);
1875 tcg_gen_add_i32(d, t1, t2);
1876 tcg_gen_and_i32(t3, t3, m);
1877 tcg_gen_xor_i32(d, d, t3);
1879 tcg_temp_free_i32(t1);
1880 tcg_temp_free_i32(t2);
1881 tcg_temp_free_i32(t3);
1884 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1886 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
1887 gen_addv_mask(d, a, b, m);
1890 void tcg_gen_vec_add16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1892 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
1893 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
1895 tcg_gen_andi_i32(t1, a, ~0xffff);
1896 tcg_gen_add_i32(t2, a, b);
1897 tcg_gen_add_i32(t1, t1, b);
1898 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
1900 tcg_temp_free_i32(t1);
1901 tcg_temp_free_i32(t2);
1904 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1906 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
1907 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
1909 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1910 tcg_gen_add_i64(t2, a, b);
1911 tcg_gen_add_i64(t1, t1, b);
1912 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1914 tcg_temp_free_i64(t1);
1915 tcg_temp_free_i64(t2);
1918 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1920 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1921 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1923 static const GVecGen3 g[4] = {
1924 { .fni8 = tcg_gen_vec_add8_i64,
1925 .fniv = tcg_gen_add_vec,
1926 .fno = gen_helper_gvec_add8,
1927 .opt_opc = vecop_list_add,
1928 .vece = MO_8 },
1929 { .fni8 = tcg_gen_vec_add16_i64,
1930 .fniv = tcg_gen_add_vec,
1931 .fno = gen_helper_gvec_add16,
1932 .opt_opc = vecop_list_add,
1933 .vece = MO_16 },
1934 { .fni4 = tcg_gen_add_i32,
1935 .fniv = tcg_gen_add_vec,
1936 .fno = gen_helper_gvec_add32,
1937 .opt_opc = vecop_list_add,
1938 .vece = MO_32 },
1939 { .fni8 = tcg_gen_add_i64,
1940 .fniv = tcg_gen_add_vec,
1941 .fno = gen_helper_gvec_add64,
1942 .opt_opc = vecop_list_add,
1943 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1944 .vece = MO_64 },
1947 tcg_debug_assert(vece <= MO_64);
1948 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1951 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1952 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1954 static const GVecGen2s g[4] = {
1955 { .fni8 = tcg_gen_vec_add8_i64,
1956 .fniv = tcg_gen_add_vec,
1957 .fno = gen_helper_gvec_adds8,
1958 .opt_opc = vecop_list_add,
1959 .vece = MO_8 },
1960 { .fni8 = tcg_gen_vec_add16_i64,
1961 .fniv = tcg_gen_add_vec,
1962 .fno = gen_helper_gvec_adds16,
1963 .opt_opc = vecop_list_add,
1964 .vece = MO_16 },
1965 { .fni4 = tcg_gen_add_i32,
1966 .fniv = tcg_gen_add_vec,
1967 .fno = gen_helper_gvec_adds32,
1968 .opt_opc = vecop_list_add,
1969 .vece = MO_32 },
1970 { .fni8 = tcg_gen_add_i64,
1971 .fniv = tcg_gen_add_vec,
1972 .fno = gen_helper_gvec_adds64,
1973 .opt_opc = vecop_list_add,
1974 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1975 .vece = MO_64 },
1978 tcg_debug_assert(vece <= MO_64);
1979 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1982 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1983 int64_t c, uint32_t oprsz, uint32_t maxsz)
1985 TCGv_i64 tmp = tcg_constant_i64(c);
1986 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1989 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
1991 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1992 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1994 static const GVecGen2s g[4] = {
1995 { .fni8 = tcg_gen_vec_sub8_i64,
1996 .fniv = tcg_gen_sub_vec,
1997 .fno = gen_helper_gvec_subs8,
1998 .opt_opc = vecop_list_sub,
1999 .vece = MO_8 },
2000 { .fni8 = tcg_gen_vec_sub16_i64,
2001 .fniv = tcg_gen_sub_vec,
2002 .fno = gen_helper_gvec_subs16,
2003 .opt_opc = vecop_list_sub,
2004 .vece = MO_16 },
2005 { .fni4 = tcg_gen_sub_i32,
2006 .fniv = tcg_gen_sub_vec,
2007 .fno = gen_helper_gvec_subs32,
2008 .opt_opc = vecop_list_sub,
2009 .vece = MO_32 },
2010 { .fni8 = tcg_gen_sub_i64,
2011 .fniv = tcg_gen_sub_vec,
2012 .fno = gen_helper_gvec_subs64,
2013 .opt_opc = vecop_list_sub,
2014 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2015 .vece = MO_64 },
2018 tcg_debug_assert(vece <= MO_64);
2019 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2022 /* Perform a vector subtraction using normal subtraction and a mask.
2023 Compare gen_addv_mask above. */
2024 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
2026 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2027 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2028 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
2030 tcg_gen_or_i64(t1, a, m);
2031 tcg_gen_andc_i64(t2, b, m);
2032 tcg_gen_eqv_i64(t3, a, b);
2033 tcg_gen_sub_i64(d, t1, t2);
2034 tcg_gen_and_i64(t3, t3, m);
2035 tcg_gen_xor_i64(d, d, t3);
2037 tcg_temp_free_i64(t1);
2038 tcg_temp_free_i64(t2);
2039 tcg_temp_free_i64(t3);
2042 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2044 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2045 gen_subv_mask(d, a, b, m);
2048 void tcg_gen_vec_sub8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2050 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
2051 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
2052 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
2053 TCGv_i32 t3 = tcg_temp_ebb_new_i32();
2055 tcg_gen_or_i32(t1, a, m);
2056 tcg_gen_andc_i32(t2, b, m);
2057 tcg_gen_eqv_i32(t3, a, b);
2058 tcg_gen_sub_i32(d, t1, t2);
2059 tcg_gen_and_i32(t3, t3, m);
2060 tcg_gen_xor_i32(d, d, t3);
2062 tcg_temp_free_i32(t1);
2063 tcg_temp_free_i32(t2);
2064 tcg_temp_free_i32(t3);
2067 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2069 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2070 gen_subv_mask(d, a, b, m);
2073 void tcg_gen_vec_sub16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2075 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
2076 TCGv_i32 t2 = tcg_temp_ebb_new_i32();
2078 tcg_gen_andi_i32(t1, b, ~0xffff);
2079 tcg_gen_sub_i32(t2, a, b);
2080 tcg_gen_sub_i32(t1, a, t1);
2081 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
2083 tcg_temp_free_i32(t1);
2084 tcg_temp_free_i32(t2);
2087 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2089 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2090 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2092 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2093 tcg_gen_sub_i64(t2, a, b);
2094 tcg_gen_sub_i64(t1, a, t1);
2095 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2097 tcg_temp_free_i64(t1);
2098 tcg_temp_free_i64(t2);
2101 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
2102 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2104 static const GVecGen3 g[4] = {
2105 { .fni8 = tcg_gen_vec_sub8_i64,
2106 .fniv = tcg_gen_sub_vec,
2107 .fno = gen_helper_gvec_sub8,
2108 .opt_opc = vecop_list_sub,
2109 .vece = MO_8 },
2110 { .fni8 = tcg_gen_vec_sub16_i64,
2111 .fniv = tcg_gen_sub_vec,
2112 .fno = gen_helper_gvec_sub16,
2113 .opt_opc = vecop_list_sub,
2114 .vece = MO_16 },
2115 { .fni4 = tcg_gen_sub_i32,
2116 .fniv = tcg_gen_sub_vec,
2117 .fno = gen_helper_gvec_sub32,
2118 .opt_opc = vecop_list_sub,
2119 .vece = MO_32 },
2120 { .fni8 = tcg_gen_sub_i64,
2121 .fniv = tcg_gen_sub_vec,
2122 .fno = gen_helper_gvec_sub64,
2123 .opt_opc = vecop_list_sub,
2124 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2125 .vece = MO_64 },
2128 tcg_debug_assert(vece <= MO_64);
2129 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2132 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
2134 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
2135 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2137 static const GVecGen3 g[4] = {
2138 { .fniv = tcg_gen_mul_vec,
2139 .fno = gen_helper_gvec_mul8,
2140 .opt_opc = vecop_list_mul,
2141 .vece = MO_8 },
2142 { .fniv = tcg_gen_mul_vec,
2143 .fno = gen_helper_gvec_mul16,
2144 .opt_opc = vecop_list_mul,
2145 .vece = MO_16 },
2146 { .fni4 = tcg_gen_mul_i32,
2147 .fniv = tcg_gen_mul_vec,
2148 .fno = gen_helper_gvec_mul32,
2149 .opt_opc = vecop_list_mul,
2150 .vece = MO_32 },
2151 { .fni8 = tcg_gen_mul_i64,
2152 .fniv = tcg_gen_mul_vec,
2153 .fno = gen_helper_gvec_mul64,
2154 .opt_opc = vecop_list_mul,
2155 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2156 .vece = MO_64 },
2159 tcg_debug_assert(vece <= MO_64);
2160 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2163 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
2164 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2166 static const GVecGen2s g[4] = {
2167 { .fniv = tcg_gen_mul_vec,
2168 .fno = gen_helper_gvec_muls8,
2169 .opt_opc = vecop_list_mul,
2170 .vece = MO_8 },
2171 { .fniv = tcg_gen_mul_vec,
2172 .fno = gen_helper_gvec_muls16,
2173 .opt_opc = vecop_list_mul,
2174 .vece = MO_16 },
2175 { .fni4 = tcg_gen_mul_i32,
2176 .fniv = tcg_gen_mul_vec,
2177 .fno = gen_helper_gvec_muls32,
2178 .opt_opc = vecop_list_mul,
2179 .vece = MO_32 },
2180 { .fni8 = tcg_gen_mul_i64,
2181 .fniv = tcg_gen_mul_vec,
2182 .fno = gen_helper_gvec_muls64,
2183 .opt_opc = vecop_list_mul,
2184 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2185 .vece = MO_64 },
2188 tcg_debug_assert(vece <= MO_64);
2189 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2192 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
2193 int64_t c, uint32_t oprsz, uint32_t maxsz)
2195 TCGv_i64 tmp = tcg_constant_i64(c);
2196 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
2199 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2200 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2202 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
2203 static const GVecGen3 g[4] = {
2204 { .fniv = tcg_gen_ssadd_vec,
2205 .fno = gen_helper_gvec_ssadd8,
2206 .opt_opc = vecop_list,
2207 .vece = MO_8 },
2208 { .fniv = tcg_gen_ssadd_vec,
2209 .fno = gen_helper_gvec_ssadd16,
2210 .opt_opc = vecop_list,
2211 .vece = MO_16 },
2212 { .fniv = tcg_gen_ssadd_vec,
2213 .fno = gen_helper_gvec_ssadd32,
2214 .opt_opc = vecop_list,
2215 .vece = MO_32 },
2216 { .fniv = tcg_gen_ssadd_vec,
2217 .fno = gen_helper_gvec_ssadd64,
2218 .opt_opc = vecop_list,
2219 .vece = MO_64 },
2221 tcg_debug_assert(vece <= MO_64);
2222 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2225 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
2226 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2228 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
2229 static const GVecGen3 g[4] = {
2230 { .fniv = tcg_gen_sssub_vec,
2231 .fno = gen_helper_gvec_sssub8,
2232 .opt_opc = vecop_list,
2233 .vece = MO_8 },
2234 { .fniv = tcg_gen_sssub_vec,
2235 .fno = gen_helper_gvec_sssub16,
2236 .opt_opc = vecop_list,
2237 .vece = MO_16 },
2238 { .fniv = tcg_gen_sssub_vec,
2239 .fno = gen_helper_gvec_sssub32,
2240 .opt_opc = vecop_list,
2241 .vece = MO_32 },
2242 { .fniv = tcg_gen_sssub_vec,
2243 .fno = gen_helper_gvec_sssub64,
2244 .opt_opc = vecop_list,
2245 .vece = MO_64 },
2247 tcg_debug_assert(vece <= MO_64);
2248 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2251 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2253 TCGv_i32 max = tcg_constant_i32(-1);
2254 tcg_gen_add_i32(d, a, b);
2255 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
2258 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2260 TCGv_i64 max = tcg_constant_i64(-1);
2261 tcg_gen_add_i64(d, a, b);
2262 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
2265 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2266 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2268 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
2269 static const GVecGen3 g[4] = {
2270 { .fniv = tcg_gen_usadd_vec,
2271 .fno = gen_helper_gvec_usadd8,
2272 .opt_opc = vecop_list,
2273 .vece = MO_8 },
2274 { .fniv = tcg_gen_usadd_vec,
2275 .fno = gen_helper_gvec_usadd16,
2276 .opt_opc = vecop_list,
2277 .vece = MO_16 },
2278 { .fni4 = tcg_gen_usadd_i32,
2279 .fniv = tcg_gen_usadd_vec,
2280 .fno = gen_helper_gvec_usadd32,
2281 .opt_opc = vecop_list,
2282 .vece = MO_32 },
2283 { .fni8 = tcg_gen_usadd_i64,
2284 .fniv = tcg_gen_usadd_vec,
2285 .fno = gen_helper_gvec_usadd64,
2286 .opt_opc = vecop_list,
2287 .vece = MO_64 }
2289 tcg_debug_assert(vece <= MO_64);
2290 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2293 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2295 TCGv_i32 min = tcg_constant_i32(0);
2296 tcg_gen_sub_i32(d, a, b);
2297 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
2300 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2302 TCGv_i64 min = tcg_constant_i64(0);
2303 tcg_gen_sub_i64(d, a, b);
2304 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
2307 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
2308 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2310 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
2311 static const GVecGen3 g[4] = {
2312 { .fniv = tcg_gen_ussub_vec,
2313 .fno = gen_helper_gvec_ussub8,
2314 .opt_opc = vecop_list,
2315 .vece = MO_8 },
2316 { .fniv = tcg_gen_ussub_vec,
2317 .fno = gen_helper_gvec_ussub16,
2318 .opt_opc = vecop_list,
2319 .vece = MO_16 },
2320 { .fni4 = tcg_gen_ussub_i32,
2321 .fniv = tcg_gen_ussub_vec,
2322 .fno = gen_helper_gvec_ussub32,
2323 .opt_opc = vecop_list,
2324 .vece = MO_32 },
2325 { .fni8 = tcg_gen_ussub_i64,
2326 .fniv = tcg_gen_ussub_vec,
2327 .fno = gen_helper_gvec_ussub64,
2328 .opt_opc = vecop_list,
2329 .vece = MO_64 }
2331 tcg_debug_assert(vece <= MO_64);
2332 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2335 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
2336 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2338 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
2339 static const GVecGen3 g[4] = {
2340 { .fniv = tcg_gen_smin_vec,
2341 .fno = gen_helper_gvec_smin8,
2342 .opt_opc = vecop_list,
2343 .vece = MO_8 },
2344 { .fniv = tcg_gen_smin_vec,
2345 .fno = gen_helper_gvec_smin16,
2346 .opt_opc = vecop_list,
2347 .vece = MO_16 },
2348 { .fni4 = tcg_gen_smin_i32,
2349 .fniv = tcg_gen_smin_vec,
2350 .fno = gen_helper_gvec_smin32,
2351 .opt_opc = vecop_list,
2352 .vece = MO_32 },
2353 { .fni8 = tcg_gen_smin_i64,
2354 .fniv = tcg_gen_smin_vec,
2355 .fno = gen_helper_gvec_smin64,
2356 .opt_opc = vecop_list,
2357 .vece = MO_64 }
2359 tcg_debug_assert(vece <= MO_64);
2360 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2363 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2364 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2366 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2367 static const GVecGen3 g[4] = {
2368 { .fniv = tcg_gen_umin_vec,
2369 .fno = gen_helper_gvec_umin8,
2370 .opt_opc = vecop_list,
2371 .vece = MO_8 },
2372 { .fniv = tcg_gen_umin_vec,
2373 .fno = gen_helper_gvec_umin16,
2374 .opt_opc = vecop_list,
2375 .vece = MO_16 },
2376 { .fni4 = tcg_gen_umin_i32,
2377 .fniv = tcg_gen_umin_vec,
2378 .fno = gen_helper_gvec_umin32,
2379 .opt_opc = vecop_list,
2380 .vece = MO_32 },
2381 { .fni8 = tcg_gen_umin_i64,
2382 .fniv = tcg_gen_umin_vec,
2383 .fno = gen_helper_gvec_umin64,
2384 .opt_opc = vecop_list,
2385 .vece = MO_64 }
2387 tcg_debug_assert(vece <= MO_64);
2388 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2391 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2392 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2394 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2395 static const GVecGen3 g[4] = {
2396 { .fniv = tcg_gen_smax_vec,
2397 .fno = gen_helper_gvec_smax8,
2398 .opt_opc = vecop_list,
2399 .vece = MO_8 },
2400 { .fniv = tcg_gen_smax_vec,
2401 .fno = gen_helper_gvec_smax16,
2402 .opt_opc = vecop_list,
2403 .vece = MO_16 },
2404 { .fni4 = tcg_gen_smax_i32,
2405 .fniv = tcg_gen_smax_vec,
2406 .fno = gen_helper_gvec_smax32,
2407 .opt_opc = vecop_list,
2408 .vece = MO_32 },
2409 { .fni8 = tcg_gen_smax_i64,
2410 .fniv = tcg_gen_smax_vec,
2411 .fno = gen_helper_gvec_smax64,
2412 .opt_opc = vecop_list,
2413 .vece = MO_64 }
2415 tcg_debug_assert(vece <= MO_64);
2416 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2419 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2420 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2422 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2423 static const GVecGen3 g[4] = {
2424 { .fniv = tcg_gen_umax_vec,
2425 .fno = gen_helper_gvec_umax8,
2426 .opt_opc = vecop_list,
2427 .vece = MO_8 },
2428 { .fniv = tcg_gen_umax_vec,
2429 .fno = gen_helper_gvec_umax16,
2430 .opt_opc = vecop_list,
2431 .vece = MO_16 },
2432 { .fni4 = tcg_gen_umax_i32,
2433 .fniv = tcg_gen_umax_vec,
2434 .fno = gen_helper_gvec_umax32,
2435 .opt_opc = vecop_list,
2436 .vece = MO_32 },
2437 { .fni8 = tcg_gen_umax_i64,
2438 .fniv = tcg_gen_umax_vec,
2439 .fno = gen_helper_gvec_umax64,
2440 .opt_opc = vecop_list,
2441 .vece = MO_64 }
2443 tcg_debug_assert(vece <= MO_64);
2444 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2447 /* Perform a vector negation using normal negation and a mask.
2448 Compare gen_subv_mask above. */
2449 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2451 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2452 TCGv_i64 t3 = tcg_temp_ebb_new_i64();
2454 tcg_gen_andc_i64(t3, m, b);
2455 tcg_gen_andc_i64(t2, b, m);
2456 tcg_gen_sub_i64(d, m, t2);
2457 tcg_gen_xor_i64(d, d, t3);
2459 tcg_temp_free_i64(t2);
2460 tcg_temp_free_i64(t3);
2463 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2465 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2466 gen_negv_mask(d, b, m);
2469 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2471 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2472 gen_negv_mask(d, b, m);
2475 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2477 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
2478 TCGv_i64 t2 = tcg_temp_ebb_new_i64();
2480 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2481 tcg_gen_neg_i64(t2, b);
2482 tcg_gen_neg_i64(t1, t1);
2483 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2485 tcg_temp_free_i64(t1);
2486 tcg_temp_free_i64(t2);
2489 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2490 uint32_t oprsz, uint32_t maxsz)
2492 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2493 static const GVecGen2 g[4] = {
2494 { .fni8 = tcg_gen_vec_neg8_i64,
2495 .fniv = tcg_gen_neg_vec,
2496 .fno = gen_helper_gvec_neg8,
2497 .opt_opc = vecop_list,
2498 .vece = MO_8 },
2499 { .fni8 = tcg_gen_vec_neg16_i64,
2500 .fniv = tcg_gen_neg_vec,
2501 .fno = gen_helper_gvec_neg16,
2502 .opt_opc = vecop_list,
2503 .vece = MO_16 },
2504 { .fni4 = tcg_gen_neg_i32,
2505 .fniv = tcg_gen_neg_vec,
2506 .fno = gen_helper_gvec_neg32,
2507 .opt_opc = vecop_list,
2508 .vece = MO_32 },
2509 { .fni8 = tcg_gen_neg_i64,
2510 .fniv = tcg_gen_neg_vec,
2511 .fno = gen_helper_gvec_neg64,
2512 .opt_opc = vecop_list,
2513 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2514 .vece = MO_64 },
2517 tcg_debug_assert(vece <= MO_64);
2518 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2521 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2523 TCGv_i64 t = tcg_temp_ebb_new_i64();
2524 int nbit = 8 << vece;
2526 /* Create -1 for each negative element. */
2527 tcg_gen_shri_i64(t, b, nbit - 1);
2528 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2529 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2532 * Invert (via xor -1) and add one.
2533 * Because of the ordering the msb is cleared,
2534 * so we never have carry into the next element.
2536 tcg_gen_xor_i64(d, b, t);
2537 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2538 tcg_gen_add_i64(d, d, t);
2540 tcg_temp_free_i64(t);
2543 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2545 gen_absv_mask(d, b, MO_8);
2548 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2550 gen_absv_mask(d, b, MO_16);
2553 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2554 uint32_t oprsz, uint32_t maxsz)
2556 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2557 static const GVecGen2 g[4] = {
2558 { .fni8 = tcg_gen_vec_abs8_i64,
2559 .fniv = tcg_gen_abs_vec,
2560 .fno = gen_helper_gvec_abs8,
2561 .opt_opc = vecop_list,
2562 .vece = MO_8 },
2563 { .fni8 = tcg_gen_vec_abs16_i64,
2564 .fniv = tcg_gen_abs_vec,
2565 .fno = gen_helper_gvec_abs16,
2566 .opt_opc = vecop_list,
2567 .vece = MO_16 },
2568 { .fni4 = tcg_gen_abs_i32,
2569 .fniv = tcg_gen_abs_vec,
2570 .fno = gen_helper_gvec_abs32,
2571 .opt_opc = vecop_list,
2572 .vece = MO_32 },
2573 { .fni8 = tcg_gen_abs_i64,
2574 .fniv = tcg_gen_abs_vec,
2575 .fno = gen_helper_gvec_abs64,
2576 .opt_opc = vecop_list,
2577 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2578 .vece = MO_64 },
2581 tcg_debug_assert(vece <= MO_64);
2582 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2585 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2586 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2588 static const GVecGen3 g = {
2589 .fni8 = tcg_gen_and_i64,
2590 .fniv = tcg_gen_and_vec,
2591 .fno = gen_helper_gvec_and,
2592 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2595 if (aofs == bofs) {
2596 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2597 } else {
2598 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2602 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2603 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2605 static const GVecGen3 g = {
2606 .fni8 = tcg_gen_or_i64,
2607 .fniv = tcg_gen_or_vec,
2608 .fno = gen_helper_gvec_or,
2609 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2612 if (aofs == bofs) {
2613 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2614 } else {
2615 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2619 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2620 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2622 static const GVecGen3 g = {
2623 .fni8 = tcg_gen_xor_i64,
2624 .fniv = tcg_gen_xor_vec,
2625 .fno = gen_helper_gvec_xor,
2626 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2629 if (aofs == bofs) {
2630 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2631 } else {
2632 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2636 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2637 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2639 static const GVecGen3 g = {
2640 .fni8 = tcg_gen_andc_i64,
2641 .fniv = tcg_gen_andc_vec,
2642 .fno = gen_helper_gvec_andc,
2643 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2646 if (aofs == bofs) {
2647 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2648 } else {
2649 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2653 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2654 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2656 static const GVecGen3 g = {
2657 .fni8 = tcg_gen_orc_i64,
2658 .fniv = tcg_gen_orc_vec,
2659 .fno = gen_helper_gvec_orc,
2660 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2663 if (aofs == bofs) {
2664 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2665 } else {
2666 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2670 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2671 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2673 static const GVecGen3 g = {
2674 .fni8 = tcg_gen_nand_i64,
2675 .fniv = tcg_gen_nand_vec,
2676 .fno = gen_helper_gvec_nand,
2677 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2680 if (aofs == bofs) {
2681 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2682 } else {
2683 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2687 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2688 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2690 static const GVecGen3 g = {
2691 .fni8 = tcg_gen_nor_i64,
2692 .fniv = tcg_gen_nor_vec,
2693 .fno = gen_helper_gvec_nor,
2694 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2697 if (aofs == bofs) {
2698 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2699 } else {
2700 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2704 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2705 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2707 static const GVecGen3 g = {
2708 .fni8 = tcg_gen_eqv_i64,
2709 .fniv = tcg_gen_eqv_vec,
2710 .fno = gen_helper_gvec_eqv,
2711 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2714 if (aofs == bofs) {
2715 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2716 } else {
2717 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2721 static const GVecGen2s gop_ands = {
2722 .fni8 = tcg_gen_and_i64,
2723 .fniv = tcg_gen_and_vec,
2724 .fno = gen_helper_gvec_ands,
2725 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2726 .vece = MO_64
2729 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2730 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2732 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2733 tcg_gen_dup_i64(vece, tmp, c);
2734 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2735 tcg_temp_free_i64(tmp);
2738 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2739 int64_t c, uint32_t oprsz, uint32_t maxsz)
2741 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2742 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2745 void tcg_gen_gvec_andcs(unsigned vece, uint32_t dofs, uint32_t aofs,
2746 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2748 static GVecGen2s g = {
2749 .fni8 = tcg_gen_andc_i64,
2750 .fniv = tcg_gen_andc_vec,
2751 .fno = gen_helper_gvec_andcs,
2752 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2753 .vece = MO_64
2756 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2757 tcg_gen_dup_i64(vece, tmp, c);
2758 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &g);
2759 tcg_temp_free_i64(tmp);
2762 static const GVecGen2s gop_xors = {
2763 .fni8 = tcg_gen_xor_i64,
2764 .fniv = tcg_gen_xor_vec,
2765 .fno = gen_helper_gvec_xors,
2766 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2767 .vece = MO_64
2770 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2771 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2773 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2774 tcg_gen_dup_i64(vece, tmp, c);
2775 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2776 tcg_temp_free_i64(tmp);
2779 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2780 int64_t c, uint32_t oprsz, uint32_t maxsz)
2782 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2783 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2786 static const GVecGen2s gop_ors = {
2787 .fni8 = tcg_gen_or_i64,
2788 .fniv = tcg_gen_or_vec,
2789 .fno = gen_helper_gvec_ors,
2790 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2791 .vece = MO_64
2794 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2795 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2797 TCGv_i64 tmp = tcg_temp_ebb_new_i64();
2798 tcg_gen_dup_i64(vece, tmp, c);
2799 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2800 tcg_temp_free_i64(tmp);
2803 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2804 int64_t c, uint32_t oprsz, uint32_t maxsz)
2806 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2807 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2810 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2812 uint64_t mask = dup_const(MO_8, 0xff << c);
2813 tcg_gen_shli_i64(d, a, c);
2814 tcg_gen_andi_i64(d, d, mask);
2817 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2819 uint64_t mask = dup_const(MO_16, 0xffff << c);
2820 tcg_gen_shli_i64(d, a, c);
2821 tcg_gen_andi_i64(d, d, mask);
2824 void tcg_gen_vec_shl8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2826 uint32_t mask = dup_const(MO_8, 0xff << c);
2827 tcg_gen_shli_i32(d, a, c);
2828 tcg_gen_andi_i32(d, d, mask);
2831 void tcg_gen_vec_shl16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2833 uint32_t mask = dup_const(MO_16, 0xffff << c);
2834 tcg_gen_shli_i32(d, a, c);
2835 tcg_gen_andi_i32(d, d, mask);
2838 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2839 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2841 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2842 static const GVecGen2i g[4] = {
2843 { .fni8 = tcg_gen_vec_shl8i_i64,
2844 .fniv = tcg_gen_shli_vec,
2845 .fno = gen_helper_gvec_shl8i,
2846 .opt_opc = vecop_list,
2847 .vece = MO_8 },
2848 { .fni8 = tcg_gen_vec_shl16i_i64,
2849 .fniv = tcg_gen_shli_vec,
2850 .fno = gen_helper_gvec_shl16i,
2851 .opt_opc = vecop_list,
2852 .vece = MO_16 },
2853 { .fni4 = tcg_gen_shli_i32,
2854 .fniv = tcg_gen_shli_vec,
2855 .fno = gen_helper_gvec_shl32i,
2856 .opt_opc = vecop_list,
2857 .vece = MO_32 },
2858 { .fni8 = tcg_gen_shli_i64,
2859 .fniv = tcg_gen_shli_vec,
2860 .fno = gen_helper_gvec_shl64i,
2861 .opt_opc = vecop_list,
2862 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2863 .vece = MO_64 },
2866 tcg_debug_assert(vece <= MO_64);
2867 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2868 if (shift == 0) {
2869 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2870 } else {
2871 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2875 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2877 uint64_t mask = dup_const(MO_8, 0xff >> c);
2878 tcg_gen_shri_i64(d, a, c);
2879 tcg_gen_andi_i64(d, d, mask);
2882 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2884 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2885 tcg_gen_shri_i64(d, a, c);
2886 tcg_gen_andi_i64(d, d, mask);
2889 void tcg_gen_vec_shr8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2891 uint32_t mask = dup_const(MO_8, 0xff >> c);
2892 tcg_gen_shri_i32(d, a, c);
2893 tcg_gen_andi_i32(d, d, mask);
2896 void tcg_gen_vec_shr16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2898 uint32_t mask = dup_const(MO_16, 0xffff >> c);
2899 tcg_gen_shri_i32(d, a, c);
2900 tcg_gen_andi_i32(d, d, mask);
2903 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2904 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2906 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2907 static const GVecGen2i g[4] = {
2908 { .fni8 = tcg_gen_vec_shr8i_i64,
2909 .fniv = tcg_gen_shri_vec,
2910 .fno = gen_helper_gvec_shr8i,
2911 .opt_opc = vecop_list,
2912 .vece = MO_8 },
2913 { .fni8 = tcg_gen_vec_shr16i_i64,
2914 .fniv = tcg_gen_shri_vec,
2915 .fno = gen_helper_gvec_shr16i,
2916 .opt_opc = vecop_list,
2917 .vece = MO_16 },
2918 { .fni4 = tcg_gen_shri_i32,
2919 .fniv = tcg_gen_shri_vec,
2920 .fno = gen_helper_gvec_shr32i,
2921 .opt_opc = vecop_list,
2922 .vece = MO_32 },
2923 { .fni8 = tcg_gen_shri_i64,
2924 .fniv = tcg_gen_shri_vec,
2925 .fno = gen_helper_gvec_shr64i,
2926 .opt_opc = vecop_list,
2927 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2928 .vece = MO_64 },
2931 tcg_debug_assert(vece <= MO_64);
2932 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2933 if (shift == 0) {
2934 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2935 } else {
2936 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2940 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2942 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2943 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2944 TCGv_i64 s = tcg_temp_ebb_new_i64();
2946 tcg_gen_shri_i64(d, a, c);
2947 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2948 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2949 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2950 tcg_gen_or_i64(d, d, s); /* include sign extension */
2951 tcg_temp_free_i64(s);
2954 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2956 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2957 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2958 TCGv_i64 s = tcg_temp_ebb_new_i64();
2960 tcg_gen_shri_i64(d, a, c);
2961 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2962 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2963 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2964 tcg_gen_or_i64(d, d, s); /* include sign extension */
2965 tcg_temp_free_i64(s);
2968 void tcg_gen_vec_sar8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2970 uint32_t s_mask = dup_const(MO_8, 0x80 >> c);
2971 uint32_t c_mask = dup_const(MO_8, 0xff >> c);
2972 TCGv_i32 s = tcg_temp_ebb_new_i32();
2974 tcg_gen_shri_i32(d, a, c);
2975 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
2976 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
2977 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
2978 tcg_gen_or_i32(d, d, s); /* include sign extension */
2979 tcg_temp_free_i32(s);
2982 void tcg_gen_vec_sar16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2984 uint32_t s_mask = dup_const(MO_16, 0x8000 >> c);
2985 uint32_t c_mask = dup_const(MO_16, 0xffff >> c);
2986 TCGv_i32 s = tcg_temp_ebb_new_i32();
2988 tcg_gen_shri_i32(d, a, c);
2989 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
2990 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
2991 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
2992 tcg_gen_or_i32(d, d, s); /* include sign extension */
2993 tcg_temp_free_i32(s);
2996 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2997 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2999 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
3000 static const GVecGen2i g[4] = {
3001 { .fni8 = tcg_gen_vec_sar8i_i64,
3002 .fniv = tcg_gen_sari_vec,
3003 .fno = gen_helper_gvec_sar8i,
3004 .opt_opc = vecop_list,
3005 .vece = MO_8 },
3006 { .fni8 = tcg_gen_vec_sar16i_i64,
3007 .fniv = tcg_gen_sari_vec,
3008 .fno = gen_helper_gvec_sar16i,
3009 .opt_opc = vecop_list,
3010 .vece = MO_16 },
3011 { .fni4 = tcg_gen_sari_i32,
3012 .fniv = tcg_gen_sari_vec,
3013 .fno = gen_helper_gvec_sar32i,
3014 .opt_opc = vecop_list,
3015 .vece = MO_32 },
3016 { .fni8 = tcg_gen_sari_i64,
3017 .fniv = tcg_gen_sari_vec,
3018 .fno = gen_helper_gvec_sar64i,
3019 .opt_opc = vecop_list,
3020 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3021 .vece = MO_64 },
3024 tcg_debug_assert(vece <= MO_64);
3025 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3026 if (shift == 0) {
3027 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
3028 } else {
3029 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
3033 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
3035 uint64_t mask = dup_const(MO_8, 0xff << c);
3037 tcg_gen_shli_i64(d, a, c);
3038 tcg_gen_shri_i64(a, a, 8 - c);
3039 tcg_gen_andi_i64(d, d, mask);
3040 tcg_gen_andi_i64(a, a, ~mask);
3041 tcg_gen_or_i64(d, d, a);
3044 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
3046 uint64_t mask = dup_const(MO_16, 0xffff << c);
3048 tcg_gen_shli_i64(d, a, c);
3049 tcg_gen_shri_i64(a, a, 16 - c);
3050 tcg_gen_andi_i64(d, d, mask);
3051 tcg_gen_andi_i64(a, a, ~mask);
3052 tcg_gen_or_i64(d, d, a);
3055 void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs,
3056 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3058 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
3059 static const GVecGen2i g[4] = {
3060 { .fni8 = tcg_gen_vec_rotl8i_i64,
3061 .fniv = tcg_gen_rotli_vec,
3062 .fno = gen_helper_gvec_rotl8i,
3063 .opt_opc = vecop_list,
3064 .vece = MO_8 },
3065 { .fni8 = tcg_gen_vec_rotl16i_i64,
3066 .fniv = tcg_gen_rotli_vec,
3067 .fno = gen_helper_gvec_rotl16i,
3068 .opt_opc = vecop_list,
3069 .vece = MO_16 },
3070 { .fni4 = tcg_gen_rotli_i32,
3071 .fniv = tcg_gen_rotli_vec,
3072 .fno = gen_helper_gvec_rotl32i,
3073 .opt_opc = vecop_list,
3074 .vece = MO_32 },
3075 { .fni8 = tcg_gen_rotli_i64,
3076 .fniv = tcg_gen_rotli_vec,
3077 .fno = gen_helper_gvec_rotl64i,
3078 .opt_opc = vecop_list,
3079 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3080 .vece = MO_64 },
3083 tcg_debug_assert(vece <= MO_64);
3084 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3085 if (shift == 0) {
3086 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
3087 } else {
3088 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
3092 void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs,
3093 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3095 tcg_debug_assert(vece <= MO_64);
3096 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3097 tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1),
3098 oprsz, maxsz);
3102 * Specialized generation vector shifts by a non-constant scalar.
3105 typedef struct {
3106 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
3107 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
3108 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
3109 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
3110 gen_helper_gvec_2 *fno[4];
3111 TCGOpcode s_list[2];
3112 TCGOpcode v_list[2];
3113 } GVecGen2sh;
3115 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3116 uint32_t oprsz, uint32_t tysz, TCGType type,
3117 TCGv_i32 shift,
3118 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
3120 for (uint32_t i = 0; i < oprsz; i += tysz) {
3121 TCGv_vec t0 = tcg_temp_new_vec(type);
3122 TCGv_vec t1 = tcg_temp_new_vec(type);
3124 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
3125 fni(vece, t1, t0, shift);
3126 tcg_gen_st_vec(t1, tcg_env, dofs + i);
3130 static void
3131 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
3132 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
3134 TCGType type;
3135 uint32_t some;
3137 check_size_align(oprsz, maxsz, dofs | aofs);
3138 check_overlap_2(dofs, aofs, maxsz);
3140 /* If the backend has a scalar expansion, great. */
3141 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
3142 if (type) {
3143 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3144 switch (type) {
3145 case TCG_TYPE_V256:
3146 some = QEMU_ALIGN_DOWN(oprsz, 32);
3147 expand_2sh_vec(vece, dofs, aofs, some, 32,
3148 TCG_TYPE_V256, shift, g->fniv_s);
3149 if (some == oprsz) {
3150 break;
3152 dofs += some;
3153 aofs += some;
3154 oprsz -= some;
3155 maxsz -= some;
3156 /* fallthru */
3157 case TCG_TYPE_V128:
3158 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
3159 TCG_TYPE_V128, shift, g->fniv_s);
3160 break;
3161 case TCG_TYPE_V64:
3162 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
3163 TCG_TYPE_V64, shift, g->fniv_s);
3164 break;
3165 default:
3166 g_assert_not_reached();
3168 tcg_swap_vecop_list(hold_list);
3169 goto clear_tail;
3172 /* If the backend supports variable vector shifts, also cool. */
3173 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
3174 if (type) {
3175 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3176 TCGv_vec v_shift = tcg_temp_new_vec(type);
3178 if (vece == MO_64) {
3179 TCGv_i64 sh64 = tcg_temp_ebb_new_i64();
3180 tcg_gen_extu_i32_i64(sh64, shift);
3181 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
3182 tcg_temp_free_i64(sh64);
3183 } else {
3184 tcg_gen_dup_i32_vec(vece, v_shift, shift);
3187 switch (type) {
3188 case TCG_TYPE_V256:
3189 some = QEMU_ALIGN_DOWN(oprsz, 32);
3190 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
3191 v_shift, false, g->fniv_v);
3192 if (some == oprsz) {
3193 break;
3195 dofs += some;
3196 aofs += some;
3197 oprsz -= some;
3198 maxsz -= some;
3199 /* fallthru */
3200 case TCG_TYPE_V128:
3201 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
3202 v_shift, false, g->fniv_v);
3203 break;
3204 case TCG_TYPE_V64:
3205 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
3206 v_shift, false, g->fniv_v);
3207 break;
3208 default:
3209 g_assert_not_reached();
3211 tcg_temp_free_vec(v_shift);
3212 tcg_swap_vecop_list(hold_list);
3213 goto clear_tail;
3216 /* Otherwise fall back to integral... */
3217 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3218 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
3219 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3220 TCGv_i64 sh64 = tcg_temp_ebb_new_i64();
3221 tcg_gen_extu_i32_i64(sh64, shift);
3222 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
3223 tcg_temp_free_i64(sh64);
3224 } else {
3225 TCGv_ptr a0 = tcg_temp_ebb_new_ptr();
3226 TCGv_ptr a1 = tcg_temp_ebb_new_ptr();
3227 TCGv_i32 desc = tcg_temp_ebb_new_i32();
3229 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
3230 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
3231 tcg_gen_addi_ptr(a0, tcg_env, dofs);
3232 tcg_gen_addi_ptr(a1, tcg_env, aofs);
3234 g->fno[vece](a0, a1, desc);
3236 tcg_temp_free_ptr(a0);
3237 tcg_temp_free_ptr(a1);
3238 tcg_temp_free_i32(desc);
3239 return;
3242 clear_tail:
3243 if (oprsz < maxsz) {
3244 expand_clr(dofs + oprsz, maxsz - oprsz);
3248 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
3249 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3251 static const GVecGen2sh g = {
3252 .fni4 = tcg_gen_shl_i32,
3253 .fni8 = tcg_gen_shl_i64,
3254 .fniv_s = tcg_gen_shls_vec,
3255 .fniv_v = tcg_gen_shlv_vec,
3256 .fno = {
3257 gen_helper_gvec_shl8i,
3258 gen_helper_gvec_shl16i,
3259 gen_helper_gvec_shl32i,
3260 gen_helper_gvec_shl64i,
3262 .s_list = { INDEX_op_shls_vec, 0 },
3263 .v_list = { INDEX_op_shlv_vec, 0 },
3266 tcg_debug_assert(vece <= MO_64);
3267 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3270 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
3271 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3273 static const GVecGen2sh g = {
3274 .fni4 = tcg_gen_shr_i32,
3275 .fni8 = tcg_gen_shr_i64,
3276 .fniv_s = tcg_gen_shrs_vec,
3277 .fniv_v = tcg_gen_shrv_vec,
3278 .fno = {
3279 gen_helper_gvec_shr8i,
3280 gen_helper_gvec_shr16i,
3281 gen_helper_gvec_shr32i,
3282 gen_helper_gvec_shr64i,
3284 .s_list = { INDEX_op_shrs_vec, 0 },
3285 .v_list = { INDEX_op_shrv_vec, 0 },
3288 tcg_debug_assert(vece <= MO_64);
3289 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3292 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
3293 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3295 static const GVecGen2sh g = {
3296 .fni4 = tcg_gen_sar_i32,
3297 .fni8 = tcg_gen_sar_i64,
3298 .fniv_s = tcg_gen_sars_vec,
3299 .fniv_v = tcg_gen_sarv_vec,
3300 .fno = {
3301 gen_helper_gvec_sar8i,
3302 gen_helper_gvec_sar16i,
3303 gen_helper_gvec_sar32i,
3304 gen_helper_gvec_sar64i,
3306 .s_list = { INDEX_op_sars_vec, 0 },
3307 .v_list = { INDEX_op_sarv_vec, 0 },
3310 tcg_debug_assert(vece <= MO_64);
3311 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3314 void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs,
3315 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3317 static const GVecGen2sh g = {
3318 .fni4 = tcg_gen_rotl_i32,
3319 .fni8 = tcg_gen_rotl_i64,
3320 .fniv_s = tcg_gen_rotls_vec,
3321 .fniv_v = tcg_gen_rotlv_vec,
3322 .fno = {
3323 gen_helper_gvec_rotl8i,
3324 gen_helper_gvec_rotl16i,
3325 gen_helper_gvec_rotl32i,
3326 gen_helper_gvec_rotl64i,
3328 .s_list = { INDEX_op_rotls_vec, 0 },
3329 .v_list = { INDEX_op_rotlv_vec, 0 },
3332 tcg_debug_assert(vece <= MO_64);
3333 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3336 void tcg_gen_gvec_rotrs(unsigned vece, uint32_t dofs, uint32_t aofs,
3337 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3339 TCGv_i32 tmp = tcg_temp_ebb_new_i32();
3341 tcg_gen_neg_i32(tmp, shift);
3342 tcg_gen_andi_i32(tmp, tmp, (8 << vece) - 1);
3343 tcg_gen_gvec_rotls(vece, dofs, aofs, tmp, oprsz, maxsz);
3344 tcg_temp_free_i32(tmp);
3348 * Expand D = A << (B % element bits)
3350 * Unlike scalar shifts, where it is easy for the target front end
3351 * to include the modulo as part of the expansion. If the target
3352 * naturally includes the modulo as part of the operation, great!
3353 * If the target has some other behaviour from out-of-range shifts,
3354 * then it could not use this function anyway, and would need to
3355 * do it's own expansion with custom functions.
3357 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
3358 TCGv_vec a, TCGv_vec b)
3360 TCGv_vec t = tcg_temp_new_vec_matching(d);
3361 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3363 tcg_gen_and_vec(vece, t, b, m);
3364 tcg_gen_shlv_vec(vece, d, a, t);
3365 tcg_temp_free_vec(t);
3368 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3370 TCGv_i32 t = tcg_temp_ebb_new_i32();
3372 tcg_gen_andi_i32(t, b, 31);
3373 tcg_gen_shl_i32(d, a, t);
3374 tcg_temp_free_i32(t);
3377 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3379 TCGv_i64 t = tcg_temp_ebb_new_i64();
3381 tcg_gen_andi_i64(t, b, 63);
3382 tcg_gen_shl_i64(d, a, t);
3383 tcg_temp_free_i64(t);
3386 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3387 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3389 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
3390 static const GVecGen3 g[4] = {
3391 { .fniv = tcg_gen_shlv_mod_vec,
3392 .fno = gen_helper_gvec_shl8v,
3393 .opt_opc = vecop_list,
3394 .vece = MO_8 },
3395 { .fniv = tcg_gen_shlv_mod_vec,
3396 .fno = gen_helper_gvec_shl16v,
3397 .opt_opc = vecop_list,
3398 .vece = MO_16 },
3399 { .fni4 = tcg_gen_shl_mod_i32,
3400 .fniv = tcg_gen_shlv_mod_vec,
3401 .fno = gen_helper_gvec_shl32v,
3402 .opt_opc = vecop_list,
3403 .vece = MO_32 },
3404 { .fni8 = tcg_gen_shl_mod_i64,
3405 .fniv = tcg_gen_shlv_mod_vec,
3406 .fno = gen_helper_gvec_shl64v,
3407 .opt_opc = vecop_list,
3408 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3409 .vece = MO_64 },
3412 tcg_debug_assert(vece <= MO_64);
3413 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3417 * Similarly for logical right shifts.
3420 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
3421 TCGv_vec a, TCGv_vec b)
3423 TCGv_vec t = tcg_temp_new_vec_matching(d);
3424 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3426 tcg_gen_and_vec(vece, t, b, m);
3427 tcg_gen_shrv_vec(vece, d, a, t);
3428 tcg_temp_free_vec(t);
3431 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3433 TCGv_i32 t = tcg_temp_ebb_new_i32();
3435 tcg_gen_andi_i32(t, b, 31);
3436 tcg_gen_shr_i32(d, a, t);
3437 tcg_temp_free_i32(t);
3440 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3442 TCGv_i64 t = tcg_temp_ebb_new_i64();
3444 tcg_gen_andi_i64(t, b, 63);
3445 tcg_gen_shr_i64(d, a, t);
3446 tcg_temp_free_i64(t);
3449 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3450 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3452 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
3453 static const GVecGen3 g[4] = {
3454 { .fniv = tcg_gen_shrv_mod_vec,
3455 .fno = gen_helper_gvec_shr8v,
3456 .opt_opc = vecop_list,
3457 .vece = MO_8 },
3458 { .fniv = tcg_gen_shrv_mod_vec,
3459 .fno = gen_helper_gvec_shr16v,
3460 .opt_opc = vecop_list,
3461 .vece = MO_16 },
3462 { .fni4 = tcg_gen_shr_mod_i32,
3463 .fniv = tcg_gen_shrv_mod_vec,
3464 .fno = gen_helper_gvec_shr32v,
3465 .opt_opc = vecop_list,
3466 .vece = MO_32 },
3467 { .fni8 = tcg_gen_shr_mod_i64,
3468 .fniv = tcg_gen_shrv_mod_vec,
3469 .fno = gen_helper_gvec_shr64v,
3470 .opt_opc = vecop_list,
3471 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3472 .vece = MO_64 },
3475 tcg_debug_assert(vece <= MO_64);
3476 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3480 * Similarly for arithmetic right shifts.
3483 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
3484 TCGv_vec a, TCGv_vec b)
3486 TCGv_vec t = tcg_temp_new_vec_matching(d);
3487 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3489 tcg_gen_and_vec(vece, t, b, m);
3490 tcg_gen_sarv_vec(vece, d, a, t);
3491 tcg_temp_free_vec(t);
3494 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3496 TCGv_i32 t = tcg_temp_ebb_new_i32();
3498 tcg_gen_andi_i32(t, b, 31);
3499 tcg_gen_sar_i32(d, a, t);
3500 tcg_temp_free_i32(t);
3503 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3505 TCGv_i64 t = tcg_temp_ebb_new_i64();
3507 tcg_gen_andi_i64(t, b, 63);
3508 tcg_gen_sar_i64(d, a, t);
3509 tcg_temp_free_i64(t);
3512 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3513 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3515 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3516 static const GVecGen3 g[4] = {
3517 { .fniv = tcg_gen_sarv_mod_vec,
3518 .fno = gen_helper_gvec_sar8v,
3519 .opt_opc = vecop_list,
3520 .vece = MO_8 },
3521 { .fniv = tcg_gen_sarv_mod_vec,
3522 .fno = gen_helper_gvec_sar16v,
3523 .opt_opc = vecop_list,
3524 .vece = MO_16 },
3525 { .fni4 = tcg_gen_sar_mod_i32,
3526 .fniv = tcg_gen_sarv_mod_vec,
3527 .fno = gen_helper_gvec_sar32v,
3528 .opt_opc = vecop_list,
3529 .vece = MO_32 },
3530 { .fni8 = tcg_gen_sar_mod_i64,
3531 .fniv = tcg_gen_sarv_mod_vec,
3532 .fno = gen_helper_gvec_sar64v,
3533 .opt_opc = vecop_list,
3534 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3535 .vece = MO_64 },
3538 tcg_debug_assert(vece <= MO_64);
3539 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3543 * Similarly for rotates.
3546 static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d,
3547 TCGv_vec a, TCGv_vec b)
3549 TCGv_vec t = tcg_temp_new_vec_matching(d);
3550 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3552 tcg_gen_and_vec(vece, t, b, m);
3553 tcg_gen_rotlv_vec(vece, d, a, t);
3554 tcg_temp_free_vec(t);
3557 static void tcg_gen_rotl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3559 TCGv_i32 t = tcg_temp_ebb_new_i32();
3561 tcg_gen_andi_i32(t, b, 31);
3562 tcg_gen_rotl_i32(d, a, t);
3563 tcg_temp_free_i32(t);
3566 static void tcg_gen_rotl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3568 TCGv_i64 t = tcg_temp_ebb_new_i64();
3570 tcg_gen_andi_i64(t, b, 63);
3571 tcg_gen_rotl_i64(d, a, t);
3572 tcg_temp_free_i64(t);
3575 void tcg_gen_gvec_rotlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3576 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3578 static const TCGOpcode vecop_list[] = { INDEX_op_rotlv_vec, 0 };
3579 static const GVecGen3 g[4] = {
3580 { .fniv = tcg_gen_rotlv_mod_vec,
3581 .fno = gen_helper_gvec_rotl8v,
3582 .opt_opc = vecop_list,
3583 .vece = MO_8 },
3584 { .fniv = tcg_gen_rotlv_mod_vec,
3585 .fno = gen_helper_gvec_rotl16v,
3586 .opt_opc = vecop_list,
3587 .vece = MO_16 },
3588 { .fni4 = tcg_gen_rotl_mod_i32,
3589 .fniv = tcg_gen_rotlv_mod_vec,
3590 .fno = gen_helper_gvec_rotl32v,
3591 .opt_opc = vecop_list,
3592 .vece = MO_32 },
3593 { .fni8 = tcg_gen_rotl_mod_i64,
3594 .fniv = tcg_gen_rotlv_mod_vec,
3595 .fno = gen_helper_gvec_rotl64v,
3596 .opt_opc = vecop_list,
3597 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3598 .vece = MO_64 },
3601 tcg_debug_assert(vece <= MO_64);
3602 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3605 static void tcg_gen_rotrv_mod_vec(unsigned vece, TCGv_vec d,
3606 TCGv_vec a, TCGv_vec b)
3608 TCGv_vec t = tcg_temp_new_vec_matching(d);
3609 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3611 tcg_gen_and_vec(vece, t, b, m);
3612 tcg_gen_rotrv_vec(vece, d, a, t);
3613 tcg_temp_free_vec(t);
3616 static void tcg_gen_rotr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3618 TCGv_i32 t = tcg_temp_ebb_new_i32();
3620 tcg_gen_andi_i32(t, b, 31);
3621 tcg_gen_rotr_i32(d, a, t);
3622 tcg_temp_free_i32(t);
3625 static void tcg_gen_rotr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3627 TCGv_i64 t = tcg_temp_ebb_new_i64();
3629 tcg_gen_andi_i64(t, b, 63);
3630 tcg_gen_rotr_i64(d, a, t);
3631 tcg_temp_free_i64(t);
3634 void tcg_gen_gvec_rotrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3635 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3637 static const TCGOpcode vecop_list[] = { INDEX_op_rotrv_vec, 0 };
3638 static const GVecGen3 g[4] = {
3639 { .fniv = tcg_gen_rotrv_mod_vec,
3640 .fno = gen_helper_gvec_rotr8v,
3641 .opt_opc = vecop_list,
3642 .vece = MO_8 },
3643 { .fniv = tcg_gen_rotrv_mod_vec,
3644 .fno = gen_helper_gvec_rotr16v,
3645 .opt_opc = vecop_list,
3646 .vece = MO_16 },
3647 { .fni4 = tcg_gen_rotr_mod_i32,
3648 .fniv = tcg_gen_rotrv_mod_vec,
3649 .fno = gen_helper_gvec_rotr32v,
3650 .opt_opc = vecop_list,
3651 .vece = MO_32 },
3652 { .fni8 = tcg_gen_rotr_mod_i64,
3653 .fniv = tcg_gen_rotrv_mod_vec,
3654 .fno = gen_helper_gvec_rotr64v,
3655 .opt_opc = vecop_list,
3656 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3657 .vece = MO_64 },
3660 tcg_debug_assert(vece <= MO_64);
3661 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3664 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3665 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3666 uint32_t oprsz, TCGCond cond)
3668 TCGv_i32 t0 = tcg_temp_ebb_new_i32();
3669 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
3670 uint32_t i;
3672 for (i = 0; i < oprsz; i += 4) {
3673 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
3674 tcg_gen_ld_i32(t1, tcg_env, bofs + i);
3675 tcg_gen_negsetcond_i32(cond, t0, t0, t1);
3676 tcg_gen_st_i32(t0, tcg_env, dofs + i);
3678 tcg_temp_free_i32(t1);
3679 tcg_temp_free_i32(t0);
3682 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3683 uint32_t oprsz, TCGCond cond)
3685 TCGv_i64 t0 = tcg_temp_ebb_new_i64();
3686 TCGv_i64 t1 = tcg_temp_ebb_new_i64();
3687 uint32_t i;
3689 for (i = 0; i < oprsz; i += 8) {
3690 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
3691 tcg_gen_ld_i64(t1, tcg_env, bofs + i);
3692 tcg_gen_negsetcond_i64(cond, t0, t0, t1);
3693 tcg_gen_st_i64(t0, tcg_env, dofs + i);
3695 tcg_temp_free_i64(t1);
3696 tcg_temp_free_i64(t0);
3699 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3700 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
3701 TCGType type, TCGCond cond)
3703 for (uint32_t i = 0; i < oprsz; i += tysz) {
3704 TCGv_vec t0 = tcg_temp_new_vec(type);
3705 TCGv_vec t1 = tcg_temp_new_vec(type);
3706 TCGv_vec t2 = tcg_temp_new_vec(type);
3708 tcg_gen_ld_vec(t0, tcg_env, aofs + i);
3709 tcg_gen_ld_vec(t1, tcg_env, bofs + i);
3710 tcg_gen_cmp_vec(cond, vece, t2, t0, t1);
3711 tcg_gen_st_vec(t2, tcg_env, dofs + i);
3715 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
3716 uint32_t aofs, uint32_t bofs,
3717 uint32_t oprsz, uint32_t maxsz)
3719 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3720 static gen_helper_gvec_3 * const eq_fn[4] = {
3721 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
3722 gen_helper_gvec_eq32, gen_helper_gvec_eq64
3724 static gen_helper_gvec_3 * const ne_fn[4] = {
3725 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
3726 gen_helper_gvec_ne32, gen_helper_gvec_ne64
3728 static gen_helper_gvec_3 * const lt_fn[4] = {
3729 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
3730 gen_helper_gvec_lt32, gen_helper_gvec_lt64
3732 static gen_helper_gvec_3 * const le_fn[4] = {
3733 gen_helper_gvec_le8, gen_helper_gvec_le16,
3734 gen_helper_gvec_le32, gen_helper_gvec_le64
3736 static gen_helper_gvec_3 * const ltu_fn[4] = {
3737 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
3738 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
3740 static gen_helper_gvec_3 * const leu_fn[4] = {
3741 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
3742 gen_helper_gvec_leu32, gen_helper_gvec_leu64
3744 static gen_helper_gvec_3 * const * const fns[16] = {
3745 [TCG_COND_EQ] = eq_fn,
3746 [TCG_COND_NE] = ne_fn,
3747 [TCG_COND_LT] = lt_fn,
3748 [TCG_COND_LE] = le_fn,
3749 [TCG_COND_LTU] = ltu_fn,
3750 [TCG_COND_LEU] = leu_fn,
3753 const TCGOpcode *hold_list;
3754 TCGType type;
3755 uint32_t some;
3757 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
3758 check_overlap_3(dofs, aofs, bofs, maxsz);
3760 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3761 do_dup(MO_8, dofs, oprsz, maxsz,
3762 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3763 return;
3767 * Implement inline with a vector type, if possible.
3768 * Prefer integer when 64-bit host and 64-bit comparison.
3770 hold_list = tcg_swap_vecop_list(cmp_list);
3771 type = choose_vector_type(cmp_list, vece, oprsz,
3772 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3773 switch (type) {
3774 case TCG_TYPE_V256:
3775 /* Recall that ARM SVE allows vector sizes that are not a
3776 * power of 2, but always a multiple of 16. The intent is
3777 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3779 some = QEMU_ALIGN_DOWN(oprsz, 32);
3780 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
3781 if (some == oprsz) {
3782 break;
3784 dofs += some;
3785 aofs += some;
3786 bofs += some;
3787 oprsz -= some;
3788 maxsz -= some;
3789 /* fallthru */
3790 case TCG_TYPE_V128:
3791 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
3792 break;
3793 case TCG_TYPE_V64:
3794 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
3795 break;
3797 case 0:
3798 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3799 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
3800 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3801 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
3802 } else {
3803 gen_helper_gvec_3 * const *fn = fns[cond];
3805 if (fn == NULL) {
3806 uint32_t tmp;
3807 tmp = aofs, aofs = bofs, bofs = tmp;
3808 cond = tcg_swap_cond(cond);
3809 fn = fns[cond];
3810 assert(fn != NULL);
3812 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
3813 oprsz = maxsz;
3815 break;
3817 default:
3818 g_assert_not_reached();
3820 tcg_swap_vecop_list(hold_list);
3822 if (oprsz < maxsz) {
3823 expand_clr(dofs + oprsz, maxsz - oprsz);
3827 static void expand_cmps_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3828 uint32_t oprsz, uint32_t tysz, TCGType type,
3829 TCGCond cond, TCGv_vec c)
3831 TCGv_vec t0 = tcg_temp_new_vec(type);
3832 TCGv_vec t1 = tcg_temp_new_vec(type);
3833 uint32_t i;
3835 for (i = 0; i < oprsz; i += tysz) {
3836 tcg_gen_ld_vec(t1, tcg_env, aofs + i);
3837 tcg_gen_cmp_vec(cond, vece, t0, t1, c);
3838 tcg_gen_st_vec(t0, tcg_env, dofs + i);
3842 void tcg_gen_gvec_cmps(TCGCond cond, unsigned vece, uint32_t dofs,
3843 uint32_t aofs, TCGv_i64 c,
3844 uint32_t oprsz, uint32_t maxsz)
3846 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3847 static gen_helper_gvec_2i * const eq_fn[4] = {
3848 gen_helper_gvec_eqs8, gen_helper_gvec_eqs16,
3849 gen_helper_gvec_eqs32, gen_helper_gvec_eqs64
3851 static gen_helper_gvec_2i * const lt_fn[4] = {
3852 gen_helper_gvec_lts8, gen_helper_gvec_lts16,
3853 gen_helper_gvec_lts32, gen_helper_gvec_lts64
3855 static gen_helper_gvec_2i * const le_fn[4] = {
3856 gen_helper_gvec_les8, gen_helper_gvec_les16,
3857 gen_helper_gvec_les32, gen_helper_gvec_les64
3859 static gen_helper_gvec_2i * const ltu_fn[4] = {
3860 gen_helper_gvec_ltus8, gen_helper_gvec_ltus16,
3861 gen_helper_gvec_ltus32, gen_helper_gvec_ltus64
3863 static gen_helper_gvec_2i * const leu_fn[4] = {
3864 gen_helper_gvec_leus8, gen_helper_gvec_leus16,
3865 gen_helper_gvec_leus32, gen_helper_gvec_leus64
3867 static gen_helper_gvec_2i * const * const fns[16] = {
3868 [TCG_COND_EQ] = eq_fn,
3869 [TCG_COND_LT] = lt_fn,
3870 [TCG_COND_LE] = le_fn,
3871 [TCG_COND_LTU] = ltu_fn,
3872 [TCG_COND_LEU] = leu_fn,
3875 TCGType type;
3877 check_size_align(oprsz, maxsz, dofs | aofs);
3878 check_overlap_2(dofs, aofs, maxsz);
3880 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3881 do_dup(MO_8, dofs, oprsz, maxsz,
3882 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3883 return;
3887 * Implement inline with a vector type, if possible.
3888 * Prefer integer when 64-bit host and 64-bit comparison.
3890 type = choose_vector_type(cmp_list, vece, oprsz,
3891 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3892 if (type != 0) {
3893 const TCGOpcode *hold_list = tcg_swap_vecop_list(cmp_list);
3894 TCGv_vec t_vec = tcg_temp_new_vec(type);
3895 uint32_t some;
3897 tcg_gen_dup_i64_vec(vece, t_vec, c);
3898 switch (type) {
3899 case TCG_TYPE_V256:
3900 some = QEMU_ALIGN_DOWN(oprsz, 32);
3901 expand_cmps_vec(vece, dofs, aofs, some, 32,
3902 TCG_TYPE_V256, cond, t_vec);
3903 aofs += some;
3904 dofs += some;
3905 oprsz -= some;
3906 maxsz -= some;
3907 /* fallthru */
3909 case TCG_TYPE_V128:
3910 some = QEMU_ALIGN_DOWN(oprsz, 16);
3911 expand_cmps_vec(vece, dofs, aofs, some, 16,
3912 TCG_TYPE_V128, cond, t_vec);
3913 break;
3915 case TCG_TYPE_V64:
3916 some = QEMU_ALIGN_DOWN(oprsz, 8);
3917 expand_cmps_vec(vece, dofs, aofs, some, 8,
3918 TCG_TYPE_V64, cond, t_vec);
3919 break;
3921 default:
3922 g_assert_not_reached();
3924 tcg_temp_free_vec(t_vec);
3925 tcg_swap_vecop_list(hold_list);
3926 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3927 TCGv_i64 t0 = tcg_temp_ebb_new_i64();
3928 uint32_t i;
3930 for (i = 0; i < oprsz; i += 8) {
3931 tcg_gen_ld_i64(t0, tcg_env, aofs + i);
3932 tcg_gen_negsetcond_i64(cond, t0, t0, c);
3933 tcg_gen_st_i64(t0, tcg_env, dofs + i);
3935 tcg_temp_free_i64(t0);
3936 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3937 TCGv_i32 t0 = tcg_temp_ebb_new_i32();
3938 TCGv_i32 t1 = tcg_temp_ebb_new_i32();
3939 uint32_t i;
3941 tcg_gen_extrl_i64_i32(t1, c);
3942 for (i = 0; i < oprsz; i += 8) {
3943 tcg_gen_ld_i32(t0, tcg_env, aofs + i);
3944 tcg_gen_negsetcond_i32(cond, t0, t0, t1);
3945 tcg_gen_st_i32(t0, tcg_env, dofs + i);
3947 tcg_temp_free_i32(t0);
3948 tcg_temp_free_i32(t1);
3949 } else {
3950 gen_helper_gvec_2i * const *fn = fns[cond];
3951 bool inv = false;
3953 if (fn == NULL) {
3954 cond = tcg_invert_cond(cond);
3955 fn = fns[cond];
3956 assert(fn != NULL);
3957 inv = true;
3959 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, inv, fn[vece]);
3960 return;
3963 if (oprsz < maxsz) {
3964 expand_clr(dofs + oprsz, maxsz - oprsz);
3968 void tcg_gen_gvec_cmpi(TCGCond cond, unsigned vece, uint32_t dofs,
3969 uint32_t aofs, int64_t c,
3970 uint32_t oprsz, uint32_t maxsz)
3972 TCGv_i64 tmp = tcg_constant_i64(c);
3973 tcg_gen_gvec_cmps(cond, vece, dofs, aofs, tmp, oprsz, maxsz);
3976 static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c)
3978 TCGv_i64 t = tcg_temp_ebb_new_i64();
3980 tcg_gen_and_i64(t, b, a);
3981 tcg_gen_andc_i64(d, c, a);
3982 tcg_gen_or_i64(d, d, t);
3983 tcg_temp_free_i64(t);
3986 void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs,
3987 uint32_t bofs, uint32_t cofs,
3988 uint32_t oprsz, uint32_t maxsz)
3990 static const GVecGen4 g = {
3991 .fni8 = tcg_gen_bitsel_i64,
3992 .fniv = tcg_gen_bitsel_vec,
3993 .fno = gen_helper_gvec_bitsel,
3996 tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g);