Merge tag 'pull-riscv-to-apply-20240806-2' of https://github.com/alistair23/qemu...
[qemu/kevin.git] / target / arm / tcg / translate-a64.c
blob148be2826ecef73a85be84e9e41b3046a9bd615a
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
35 static const char *regnames[] = {
36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
42 enum a64_shift_type {
43 A64_SHIFT_TYPE_LSL = 0,
44 A64_SHIFT_TYPE_LSR = 1,
45 A64_SHIFT_TYPE_ASR = 2,
46 A64_SHIFT_TYPE_ROR = 3
50 * Helpers for extracting complex instruction fields
54 * For load/store with an unsigned 12 bit immediate scaled by the element
55 * size. The input has the immediate field in bits [14:3] and the element
56 * size in [2:0].
58 static int uimm_scaled(DisasContext *s, int x)
60 unsigned imm = x >> 3;
61 unsigned scale = extract32(x, 0, 3);
62 return imm << scale;
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
68 return x << LOG2_TAG_GRANULE;
72 * Include the generated decoders.
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
78 /* Table based decoder typedefs - used when the relevant bits for decode
79 * are too awkwardly scattered across the instruction (eg SIMD).
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
83 typedef struct AArch64DecodeTable {
84 uint32_t pattern;
85 uint32_t mask;
86 AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
89 /* initialize TCG globals. */
90 void a64_translate_init(void)
92 int i;
94 cpu_pc = tcg_global_mem_new_i64(tcg_env,
95 offsetof(CPUARMState, pc),
96 "pc");
97 for (i = 0; i < 32; i++) {
98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99 offsetof(CPUARMState, xregs[i]),
100 regnames[i]);
103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104 offsetof(CPUARMState, exclusive_high), "exclusive_high");
108 * Return the core mmu_idx to use for A64 load/store insns which
109 * have a "unprivileged load/store" variant. Those insns access
110 * EL0 if executed from an EL which has control over EL0 (usually
111 * EL1) but behave like normal loads and stores if executed from
112 * elsewhere (eg EL3).
114 * @unpriv : true for the unprivileged encoding; false for the
115 * normal encoding (in which case we will return the same
116 * thing as get_mem_index().
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122 * which is the usual mmu_idx for this cpu state.
124 ARMMMUIdx useridx = s->mmu_idx;
126 if (unpriv && s->unpriv) {
128 * We have pre-computed the condition for AccType_UNPRIV.
129 * Therefore we should never get here with a mmu_idx for
130 * which we do not know the corresponding user mmu_idx.
132 switch (useridx) {
133 case ARMMMUIdx_E10_1:
134 case ARMMMUIdx_E10_1_PAN:
135 useridx = ARMMMUIdx_E10_0;
136 break;
137 case ARMMMUIdx_E20_2:
138 case ARMMMUIdx_E20_2_PAN:
139 useridx = ARMMMUIdx_E20_0;
140 break;
141 default:
142 g_assert_not_reached();
145 return arm_to_core_mmu_idx(useridx);
148 static void set_btype_raw(int val)
150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151 offsetof(CPUARMState, btype));
154 static void set_btype(DisasContext *s, int val)
156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
157 tcg_debug_assert(val >= 1 && val <= 3);
158 set_btype_raw(val);
159 s->btype = -1;
162 static void reset_btype(DisasContext *s)
164 if (s->btype != 0) {
165 set_btype_raw(0);
166 s->btype = 0;
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
172 assert(s->pc_save != -1);
173 if (tb_cflags(s->base.tb) & CF_PCREL) {
174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175 } else {
176 tcg_gen_movi_i64(dest, s->pc_curr + diff);
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
182 gen_pc_plus_diff(s, cpu_pc, diff);
183 s->pc_save = s->pc_curr + diff;
187 * Handle Top Byte Ignore (TBI) bits.
189 * If address tagging is enabled via the TCR TBI bits:
190 * + for EL2 and EL3 there is only one TBI bit, and if it is set
191 * then the address is zero-extended, clearing bits [63:56]
192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193 * and TBI1 controls addresses with bit 55 == 1.
194 * If the appropriate TBI bit is set for the address then
195 * the address is sign-extended from bit 55 into bits [63:56]
197 * Here We have concatenated TBI{1,0} into tbi.
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200 TCGv_i64 src, int tbi)
202 if (tbi == 0) {
203 /* Load unmodified address */
204 tcg_gen_mov_i64(dst, src);
205 } else if (!regime_has_2_ranges(s->mmu_idx)) {
206 /* Force tag byte to all zero */
207 tcg_gen_extract_i64(dst, src, 0, 56);
208 } else {
209 /* Sign-extend from bit 55. */
210 tcg_gen_sextract_i64(dst, src, 0, 56);
212 switch (tbi) {
213 case 1:
214 /* tbi0 but !tbi1: only use the extension if positive */
215 tcg_gen_and_i64(dst, dst, src);
216 break;
217 case 2:
218 /* !tbi0 but tbi1: only use the extension if negative */
219 tcg_gen_or_i64(dst, dst, src);
220 break;
221 case 3:
222 /* tbi0 and tbi1: always use the extension */
223 break;
224 default:
225 g_assert_not_reached();
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
233 * If address tagging is enabled for instructions via the TCR TBI bits,
234 * then loading an address into the PC will clear out any tag.
236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237 s->pc_save = -1;
241 * Handle MTE and/or TBI.
243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
244 * for the tag to be present in the FAR_ELx register. But for user-only
245 * mode we do not have a TLB with which to implement this, so we must
246 * remove the top byte now.
248 * Always return a fresh temporary that we can increment independently
249 * of the write-back address.
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
254 TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256 gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258 tcg_gen_mov_i64(clean, addr);
259 #endif
260 return clean;
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270 MMUAccessType acc, int log2_size)
272 gen_helper_probe_access(tcg_env, ptr,
273 tcg_constant_i32(acc),
274 tcg_constant_i32(get_mem_index(s)),
275 tcg_constant_i32(1 << log2_size));
279 * For MTE, check a single logical or atomic access. This probes a single
280 * address, the exact one specified. The size and alignment of the access
281 * is not relevant to MTE, per se, but watchpoints do require the size,
282 * and we want to recognize those before making any other changes to state.
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285 bool is_write, bool tag_checked,
286 MemOp memop, bool is_unpriv,
287 int core_idx)
289 if (tag_checked && s->mte_active[is_unpriv]) {
290 TCGv_i64 ret;
291 int desc = 0;
293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
300 ret = tcg_temp_new_i64();
301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
303 return ret;
305 return clean_data_tbi(s, addr);
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309 bool tag_checked, MemOp memop)
311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312 false, get_mem_index(s));
316 * For MTE, check multiple logical sequential accesses.
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319 bool tag_checked, int total_size, MemOp single_mop)
321 if (tag_checked && s->mte_active[0]) {
322 TCGv_i64 ret;
323 int desc = 0;
325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
332 ret = tcg_temp_new_i64();
333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
335 return ret;
337 return clean_data_tbi(s, addr);
341 * Generate the special alignment check that applies to AccType_ATOMIC
342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343 * naturally aligned, but it must not cross a 16-byte boundary.
344 * See AArch64.CheckAlignment().
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347 bool is_write, MemOp mop)
349 TCGv_i32 tmp;
350 TCGv_i64 addr;
351 TCGLabel *over_label;
352 MMUAccessType type;
353 int mmu_idx;
355 tmp = tcg_temp_new_i32();
356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357 tcg_gen_addi_i32(tmp, tmp, imm & 15);
358 tcg_gen_andi_i32(tmp, tmp, 15);
359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
361 over_label = gen_new_label();
362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
364 addr = tcg_temp_new_i64();
365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368 mmu_idx = get_mem_index(s);
369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370 tcg_constant_i32(mmu_idx));
372 gen_set_label(over_label);
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
379 MemOp size = mop & MO_SIZE;
381 if (size == MO_8) {
382 return mop;
386 * If size == MO_128, this is a LDXP, and the operation is single-copy
387 * atomic for each doubleword, not the entire quadword; it still must
388 * be quadword aligned.
390 if (size == MO_128) {
391 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392 MO_ATOM_IFALIGN_PAIR);
394 if (dc_isar_feature(aa64_lse2, s)) {
395 check_lse2_align(s, rn, 0, true, mop);
396 } else {
397 mop |= MO_ALIGN;
399 return finalize_memop(s, mop);
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404 bool is_write, MemOp mop)
406 MemOp size = mop & MO_SIZE;
408 if (size == MO_8) {
409 return mop;
411 if (size == MO_128) {
412 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413 MO_ATOM_IFALIGN_PAIR);
415 if (!dc_isar_feature(aa64_lse2, s)) {
416 mop |= MO_ALIGN;
417 } else if (!s->naa) {
418 check_lse2_align(s, rn, imm, is_write, mop);
420 return finalize_memop(s, mop);
423 typedef struct DisasCompare64 {
424 TCGCond cond;
425 TCGv_i64 value;
426 } DisasCompare64;
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
430 DisasCompare c32;
432 arm_test_cc(&c32, cc);
435 * Sign-extend the 32-bit value so that the GE/LT comparisons work
436 * properly. The NE/EQ comparisons are also fine with this choice.
438 c64->cond = c32.cond;
439 c64->value = tcg_temp_new_i64();
440 tcg_gen_ext_i32_i64(c64->value, c32.value);
443 static void gen_rebuild_hflags(DisasContext *s)
445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
448 static void gen_exception_internal(int excp)
450 assert(excp_is_internal(excp));
451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
456 gen_a64_update_pc(s, 0);
457 gen_exception_internal(excp);
458 s->base.is_jmp = DISAS_NORETURN;
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
463 gen_a64_update_pc(s, 0);
464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465 s->base.is_jmp = DISAS_NORETURN;
468 static void gen_step_complete_exception(DisasContext *s)
470 /* We just completed step of an insn. Move from Active-not-pending
471 * to Active-pending, and then also take the swstep exception.
472 * This corresponds to making the (IMPDEF) choice to prioritize
473 * swstep exceptions over asynchronous exceptions taken to an exception
474 * level where debug is disabled. This choice has the advantage that
475 * we do not need to maintain internal state corresponding to the
476 * ISV/EX syndrome bits between completion of the step and generation
477 * of the exception, and our syndrome information is always correct.
479 gen_ss_advance(s);
480 gen_swstep_exception(s, 1, s->is_ldex);
481 s->base.is_jmp = DISAS_NORETURN;
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
486 if (s->ss_active) {
487 return false;
489 return translator_use_goto_tb(&s->base, dest);
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
494 if (use_goto_tb(s, s->pc_curr + diff)) {
496 * For pcrel, the pc must always be up-to-date on entry to
497 * the linked TB, so that it can use simple additions for all
498 * further adjustments. For !pcrel, the linked TB is compiled
499 * to know its full virtual address, so we can delay the
500 * update to pc to the unlinked path. A long chain of links
501 * can thus avoid many updates to the PC.
503 if (tb_cflags(s->base.tb) & CF_PCREL) {
504 gen_a64_update_pc(s, diff);
505 tcg_gen_goto_tb(n);
506 } else {
507 tcg_gen_goto_tb(n);
508 gen_a64_update_pc(s, diff);
510 tcg_gen_exit_tb(s->base.tb, n);
511 s->base.is_jmp = DISAS_NORETURN;
512 } else {
513 gen_a64_update_pc(s, diff);
514 if (s->ss_active) {
515 gen_step_complete_exception(s);
516 } else {
517 tcg_gen_lookup_and_goto_ptr();
518 s->base.is_jmp = DISAS_NORETURN;
524 * Register access functions
526 * These functions are used for directly accessing a register in where
527 * changes to the final register value are likely to be made. If you
528 * need to use a register for temporary calculation (e.g. index type
529 * operations) use the read_* form.
531 * B1.2.1 Register mappings
533 * In instruction register encoding 31 can refer to ZR (zero register) or
534 * the SP (stack pointer) depending on context. In QEMU's case we map SP
535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536 * This is the point of the _sp forms.
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
540 if (reg == 31) {
541 TCGv_i64 t = tcg_temp_new_i64();
542 tcg_gen_movi_i64(t, 0);
543 return t;
544 } else {
545 return cpu_X[reg];
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
552 return cpu_X[reg];
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556 * representing the register contents. This TCGv is an auto-freed
557 * temporary so it need not be explicitly freed, and may be modified.
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
561 TCGv_i64 v = tcg_temp_new_i64();
562 if (reg != 31) {
563 if (sf) {
564 tcg_gen_mov_i64(v, cpu_X[reg]);
565 } else {
566 tcg_gen_ext32u_i64(v, cpu_X[reg]);
568 } else {
569 tcg_gen_movi_i64(v, 0);
571 return v;
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
576 TCGv_i64 v = tcg_temp_new_i64();
577 if (sf) {
578 tcg_gen_mov_i64(v, cpu_X[reg]);
579 } else {
580 tcg_gen_ext32u_i64(v, cpu_X[reg]);
582 return v;
585 /* Return the offset into CPUARMState of a slice (from
586 * the least significant end) of FP register Qn (ie
587 * Dn, Sn, Hn or Bn).
588 * (Note that this is not the same mapping as for A32; see cpu.h)
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
592 return vec_reg_offset(s, regno, 0, size);
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
598 return vec_reg_offset(s, regno, 1, MO_64);
601 /* Convenience accessors for reading and writing single and double
602 * FP registers. Writing clears the upper parts of the associated
603 * 128 bit vector register, as required by the architecture.
604 * Note that unlike the GP register accessors, the values returned
605 * by the read functions must be manually freed.
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
609 TCGv_i64 v = tcg_temp_new_i64();
611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612 return v;
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
617 TCGv_i32 v = tcg_temp_new_i32();
619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620 return v;
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
625 TCGv_i32 v = tcg_temp_new_i32();
627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628 return v;
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632 * If SVE is not enabled, then there are only 128 bits in the vector.
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
636 unsigned ofs = fp_reg_offset(s, rd, MO_64);
637 unsigned vsz = vec_full_reg_size(s);
639 /* Nop move, with side effect of clearing the tail. */
640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
645 unsigned ofs = fp_reg_offset(s, reg, MO_64);
647 tcg_gen_st_i64(v, tcg_env, ofs);
648 clear_vec_high(s, false, reg);
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
653 TCGv_i64 tmp = tcg_temp_new_i64();
655 tcg_gen_extu_i32_i64(tmp, v);
656 write_fp_dreg(s, reg, tmp);
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661 GVecGen2Fn *gvec_fn, int vece)
663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664 is_q ? 16 : 8, vec_full_reg_size(s));
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668 * an expander function.
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674 imm, is_q ? 16 : 8, vec_full_reg_size(s));
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679 GVecGen3Fn *gvec_fn, int vece)
681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687 int rx, GVecGen4Fn *gvec_fn, int vece)
689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691 is_q ? 16 : 8, vec_full_reg_size(s));
694 /* Expand a 2-operand operation using an out-of-line helper. */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696 int rn, int data, gen_helper_gvec_2 *fn)
698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699 vec_full_reg_offset(s, rn),
700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
703 /* Expand a 3-operand operation using an out-of-line helper. */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705 int rn, int rm, int data, gen_helper_gvec_3 *fn)
707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708 vec_full_reg_offset(s, rn),
709 vec_full_reg_offset(s, rm),
710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714 * an out-of-line helper.
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717 int rm, bool is_fp16, int data,
718 gen_helper_gvec_3_ptr *fn)
720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722 vec_full_reg_offset(s, rn),
723 vec_full_reg_offset(s, rm), fpst,
724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
727 /* Expand a 4-operand operation using an out-of-line helper. */
728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729 int rm, int ra, int data, gen_helper_gvec_4 *fn)
731 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732 vec_full_reg_offset(s, rn),
733 vec_full_reg_offset(s, rm),
734 vec_full_reg_offset(s, ra),
735 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
739 * Expand a 4-operand + fpstatus pointer + simd data value operation using
740 * an out-of-line helper.
742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743 int rm, int ra, bool is_fp16, int data,
744 gen_helper_gvec_4_ptr *fn)
746 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748 vec_full_reg_offset(s, rn),
749 vec_full_reg_offset(s, rm),
750 vec_full_reg_offset(s, ra), fpst,
751 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755 * than the 32 bit equivalent.
757 static inline void gen_set_NZ64(TCGv_i64 result)
759 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
766 if (sf) {
767 gen_set_NZ64(result);
768 } else {
769 tcg_gen_extrl_i64_i32(cpu_ZF, result);
770 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
772 tcg_gen_movi_i32(cpu_CF, 0);
773 tcg_gen_movi_i32(cpu_VF, 0);
776 /* dest = T0 + T1; compute C, N, V and Z flags */
777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
779 TCGv_i64 result, flag, tmp;
780 result = tcg_temp_new_i64();
781 flag = tcg_temp_new_i64();
782 tmp = tcg_temp_new_i64();
784 tcg_gen_movi_i64(tmp, 0);
785 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
787 tcg_gen_extrl_i64_i32(cpu_CF, flag);
789 gen_set_NZ64(result);
791 tcg_gen_xor_i64(flag, result, t0);
792 tcg_gen_xor_i64(tmp, t0, t1);
793 tcg_gen_andc_i64(flag, flag, tmp);
794 tcg_gen_extrh_i64_i32(cpu_VF, flag);
796 tcg_gen_mov_i64(dest, result);
799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
801 TCGv_i32 t0_32 = tcg_temp_new_i32();
802 TCGv_i32 t1_32 = tcg_temp_new_i32();
803 TCGv_i32 tmp = tcg_temp_new_i32();
805 tcg_gen_movi_i32(tmp, 0);
806 tcg_gen_extrl_i64_i32(t0_32, t0);
807 tcg_gen_extrl_i64_i32(t1_32, t1);
808 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811 tcg_gen_xor_i32(tmp, t0_32, t1_32);
812 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813 tcg_gen_extu_i32_i64(dest, cpu_NF);
816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
818 if (sf) {
819 gen_add64_CC(dest, t0, t1);
820 } else {
821 gen_add32_CC(dest, t0, t1);
825 /* dest = T0 - T1; compute C, N, V and Z flags */
826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
828 /* 64 bit arithmetic */
829 TCGv_i64 result, flag, tmp;
831 result = tcg_temp_new_i64();
832 flag = tcg_temp_new_i64();
833 tcg_gen_sub_i64(result, t0, t1);
835 gen_set_NZ64(result);
837 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838 tcg_gen_extrl_i64_i32(cpu_CF, flag);
840 tcg_gen_xor_i64(flag, result, t0);
841 tmp = tcg_temp_new_i64();
842 tcg_gen_xor_i64(tmp, t0, t1);
843 tcg_gen_and_i64(flag, flag, tmp);
844 tcg_gen_extrh_i64_i32(cpu_VF, flag);
845 tcg_gen_mov_i64(dest, result);
848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
850 /* 32 bit arithmetic */
851 TCGv_i32 t0_32 = tcg_temp_new_i32();
852 TCGv_i32 t1_32 = tcg_temp_new_i32();
853 TCGv_i32 tmp;
855 tcg_gen_extrl_i64_i32(t0_32, t0);
856 tcg_gen_extrl_i64_i32(t1_32, t1);
857 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861 tmp = tcg_temp_new_i32();
862 tcg_gen_xor_i32(tmp, t0_32, t1_32);
863 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864 tcg_gen_extu_i32_i64(dest, cpu_NF);
867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
869 if (sf) {
870 gen_sub64_CC(dest, t0, t1);
871 } else {
872 gen_sub32_CC(dest, t0, t1);
876 /* dest = T0 + T1 + CF; do not compute flags. */
877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
879 TCGv_i64 flag = tcg_temp_new_i64();
880 tcg_gen_extu_i32_i64(flag, cpu_CF);
881 tcg_gen_add_i64(dest, t0, t1);
882 tcg_gen_add_i64(dest, dest, flag);
884 if (!sf) {
885 tcg_gen_ext32u_i64(dest, dest);
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
892 if (sf) {
893 TCGv_i64 result = tcg_temp_new_i64();
894 TCGv_i64 cf_64 = tcg_temp_new_i64();
895 TCGv_i64 vf_64 = tcg_temp_new_i64();
896 TCGv_i64 tmp = tcg_temp_new_i64();
897 TCGv_i64 zero = tcg_constant_i64(0);
899 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903 gen_set_NZ64(result);
905 tcg_gen_xor_i64(vf_64, result, t0);
906 tcg_gen_xor_i64(tmp, t0, t1);
907 tcg_gen_andc_i64(vf_64, vf_64, tmp);
908 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
910 tcg_gen_mov_i64(dest, result);
911 } else {
912 TCGv_i32 t0_32 = tcg_temp_new_i32();
913 TCGv_i32 t1_32 = tcg_temp_new_i32();
914 TCGv_i32 tmp = tcg_temp_new_i32();
915 TCGv_i32 zero = tcg_constant_i32(0);
917 tcg_gen_extrl_i64_i32(t0_32, t0);
918 tcg_gen_extrl_i64_i32(t1_32, t1);
919 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
922 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924 tcg_gen_xor_i32(tmp, t0_32, t1_32);
925 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926 tcg_gen_extu_i32_i64(dest, cpu_NF);
931 * Load/Store generators
935 * Store from GPR register to memory.
937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938 TCGv_i64 tcg_addr, MemOp memop, int memidx,
939 bool iss_valid,
940 unsigned int iss_srt,
941 bool iss_sf, bool iss_ar)
943 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
945 if (iss_valid) {
946 uint32_t syn;
948 syn = syn_data_abort_with_iss(0,
949 (memop & MO_SIZE),
950 false,
951 iss_srt,
952 iss_sf,
953 iss_ar,
954 0, 0, 0, 0, 0, false);
955 disas_set_insn_syndrome(s, syn);
959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960 TCGv_i64 tcg_addr, MemOp memop,
961 bool iss_valid,
962 unsigned int iss_srt,
963 bool iss_sf, bool iss_ar)
965 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966 iss_valid, iss_srt, iss_sf, iss_ar);
970 * Load from memory to GPR register
972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973 MemOp memop, bool extend, int memidx,
974 bool iss_valid, unsigned int iss_srt,
975 bool iss_sf, bool iss_ar)
977 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
979 if (extend && (memop & MO_SIGN)) {
980 g_assert((memop & MO_SIZE) <= MO_32);
981 tcg_gen_ext32u_i64(dest, dest);
984 if (iss_valid) {
985 uint32_t syn;
987 syn = syn_data_abort_with_iss(0,
988 (memop & MO_SIZE),
989 (memop & MO_SIGN) != 0,
990 iss_srt,
991 iss_sf,
992 iss_ar,
993 0, 0, 0, 0, 0, false);
994 disas_set_insn_syndrome(s, syn);
998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999 MemOp memop, bool extend,
1000 bool iss_valid, unsigned int iss_srt,
1001 bool iss_sf, bool iss_ar)
1003 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004 iss_valid, iss_srt, iss_sf, iss_ar);
1008 * Store from FP register to memory
1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1012 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013 TCGv_i64 tmplo = tcg_temp_new_i64();
1015 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1017 if ((mop & MO_SIZE) < MO_128) {
1018 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019 } else {
1020 TCGv_i64 tmphi = tcg_temp_new_i64();
1021 TCGv_i128 t16 = tcg_temp_new_i128();
1023 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024 tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1026 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1031 * Load from memory to FP register
1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1035 /* This always zero-extends and writes to a full 128 bit wide vector */
1036 TCGv_i64 tmplo = tcg_temp_new_i64();
1037 TCGv_i64 tmphi = NULL;
1039 if ((mop & MO_SIZE) < MO_128) {
1040 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041 } else {
1042 TCGv_i128 t16 = tcg_temp_new_i128();
1044 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1046 tmphi = tcg_temp_new_i64();
1047 tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1050 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1052 if (tmphi) {
1053 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1055 clear_vec_high(s, tmphi != NULL, destidx);
1059 * Vector load/store helpers.
1061 * The principal difference between this and a FP load is that we don't
1062 * zero extend as we are filling a partial chunk of the vector register.
1063 * These functions don't support 128 bit loads/stores, which would be
1064 * normal load/store operations.
1066 * The _i32 versions are useful when operating on 32 bit quantities
1067 * (eg for floating point single or using Neon helper functions).
1070 /* Get value of an element within a vector register */
1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072 int element, MemOp memop)
1074 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075 switch ((unsigned)memop) {
1076 case MO_8:
1077 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078 break;
1079 case MO_16:
1080 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081 break;
1082 case MO_32:
1083 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084 break;
1085 case MO_8|MO_SIGN:
1086 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087 break;
1088 case MO_16|MO_SIGN:
1089 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090 break;
1091 case MO_32|MO_SIGN:
1092 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093 break;
1094 case MO_64:
1095 case MO_64|MO_SIGN:
1096 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097 break;
1098 default:
1099 g_assert_not_reached();
1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104 int element, MemOp memop)
1106 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107 switch (memop) {
1108 case MO_8:
1109 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110 break;
1111 case MO_16:
1112 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113 break;
1114 case MO_8|MO_SIGN:
1115 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116 break;
1117 case MO_16|MO_SIGN:
1118 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119 break;
1120 case MO_32:
1121 case MO_32|MO_SIGN:
1122 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123 break;
1124 default:
1125 g_assert_not_reached();
1129 /* Set value of an element within a vector register */
1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131 int element, MemOp memop)
1133 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134 switch (memop) {
1135 case MO_8:
1136 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137 break;
1138 case MO_16:
1139 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140 break;
1141 case MO_32:
1142 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143 break;
1144 case MO_64:
1145 tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146 break;
1147 default:
1148 g_assert_not_reached();
1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153 int destidx, int element, MemOp memop)
1155 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156 switch (memop) {
1157 case MO_8:
1158 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159 break;
1160 case MO_16:
1161 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162 break;
1163 case MO_32:
1164 tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165 break;
1166 default:
1167 g_assert_not_reached();
1171 /* Store from vector register to memory */
1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173 TCGv_i64 tcg_addr, MemOp mop)
1175 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1177 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1181 /* Load from memory to vector register */
1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183 TCGv_i64 tcg_addr, MemOp mop)
1185 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1187 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1191 /* Check that FP/Neon access is enabled. If it is, return
1192 * true. If not, emit code to generate an appropriate exception,
1193 * and return false; the caller should not emit any code for
1194 * the instruction. Note that this check must happen after all
1195 * unallocated-encoding checks (otherwise the syndrome information
1196 * for the resulting exception will be incorrect).
1198 static bool fp_access_check_only(DisasContext *s)
1200 if (s->fp_excp_el) {
1201 assert(!s->fp_access_checked);
1202 s->fp_access_checked = true;
1204 gen_exception_insn_el(s, 0, EXCP_UDEF,
1205 syn_fp_access_trap(1, 0xe, false, 0),
1206 s->fp_excp_el);
1207 return false;
1209 s->fp_access_checked = true;
1210 return true;
1213 static bool fp_access_check(DisasContext *s)
1215 if (!fp_access_check_only(s)) {
1216 return false;
1218 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219 gen_exception_insn(s, 0, EXCP_UDEF,
1220 syn_smetrap(SME_ET_Streaming, false));
1221 return false;
1223 return true;
1227 * Check that SVE access is enabled. If it is, return true.
1228 * If not, emit code to generate an appropriate exception and return false.
1229 * This function corresponds to CheckSVEEnabled().
1231 bool sve_access_check(DisasContext *s)
1233 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234 assert(dc_isar_feature(aa64_sme, s));
1235 if (!sme_sm_enabled_check(s)) {
1236 goto fail_exit;
1238 } else if (s->sve_excp_el) {
1239 gen_exception_insn_el(s, 0, EXCP_UDEF,
1240 syn_sve_access_trap(), s->sve_excp_el);
1241 goto fail_exit;
1243 s->sve_access_checked = true;
1244 return fp_access_check(s);
1246 fail_exit:
1247 /* Assert that we only raise one exception per instruction. */
1248 assert(!s->sve_access_checked);
1249 s->sve_access_checked = true;
1250 return false;
1254 * Check that SME access is enabled, raise an exception if not.
1255 * Note that this function corresponds to CheckSMEAccess and is
1256 * only used directly for cpregs.
1258 static bool sme_access_check(DisasContext *s)
1260 if (s->sme_excp_el) {
1261 gen_exception_insn_el(s, 0, EXCP_UDEF,
1262 syn_smetrap(SME_ET_AccessTrap, false),
1263 s->sme_excp_el);
1264 return false;
1266 return true;
1269 /* This function corresponds to CheckSMEEnabled. */
1270 bool sme_enabled_check(DisasContext *s)
1273 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274 * to be zero when fp_excp_el has priority. This is because we need
1275 * sme_excp_el by itself for cpregs access checks.
1277 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278 s->fp_access_checked = true;
1279 return sme_access_check(s);
1281 return fp_access_check_only(s);
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1287 if (!sme_enabled_check(s)) {
1288 return false;
1290 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291 gen_exception_insn(s, 0, EXCP_UDEF,
1292 syn_smetrap(SME_ET_NotStreaming, false));
1293 return false;
1295 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296 gen_exception_insn(s, 0, EXCP_UDEF,
1297 syn_smetrap(SME_ET_InactiveZA, false));
1298 return false;
1300 return true;
1304 * Expanders for AdvSIMD translation functions.
1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308 gen_helper_gvec_2 *fn)
1310 if (!a->q && a->esz == MO_64) {
1311 return false;
1313 if (fp_access_check(s)) {
1314 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1316 return true;
1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320 gen_helper_gvec_3 *fn)
1322 if (!a->q && a->esz == MO_64) {
1323 return false;
1325 if (fp_access_check(s)) {
1326 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1328 return true;
1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1333 if (!a->q && a->esz == MO_64) {
1334 return false;
1336 if (fp_access_check(s)) {
1337 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1339 return true;
1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1344 if (a->esz == MO_64) {
1345 return false;
1347 if (fp_access_check(s)) {
1348 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1350 return true;
1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1355 if (a->esz == MO_8) {
1356 return false;
1358 return do_gvec_fn3_no64(s, a, fn);
1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1363 if (!a->q && a->esz == MO_64) {
1364 return false;
1366 if (fp_access_check(s)) {
1367 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1369 return true;
1373 * This utility function is for doing register extension with an
1374 * optional shift. You will likely want to pass a temporary for the
1375 * destination register. See DecodeRegExtend() in the ARM ARM.
1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378 int option, unsigned int shift)
1380 int extsize = extract32(option, 0, 2);
1381 bool is_signed = extract32(option, 2, 1);
1383 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1387 static inline void gen_check_sp_alignment(DisasContext *s)
1389 /* The AArch64 architecture mandates that (if enabled via PSTATE
1390 * or SCTLR bits) there is a check that SP is 16-aligned on every
1391 * SP-relative load or store (with an exception generated if it is not).
1392 * In line with general QEMU practice regarding misaligned accesses,
1393 * we omit these checks for the sake of guest program performance.
1394 * This function is provided as a hook so we can more easily add these
1395 * checks in future (possibly as a "favour catching guest program bugs
1396 * over speed" user selectable option).
1401 * This provides a simple table based table lookup decoder. It is
1402 * intended to be used when the relevant bits for decode are too
1403 * awkwardly placed and switch/if based logic would be confusing and
1404 * deeply nested. Since it's a linear search through the table, tables
1405 * should be kept small.
1407 * It returns the first handler where insn & mask == pattern, or
1408 * NULL if there is no match.
1409 * The table is terminated by an empty mask (i.e. 0)
1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412 uint32_t insn)
1414 const AArch64DecodeTable *tptr = table;
1416 while (tptr->mask) {
1417 if ((insn & tptr->mask) == tptr->pattern) {
1418 return tptr->disas_fn;
1420 tptr++;
1422 return NULL;
1426 * The instruction disassembly implemented here matches
1427 * the instruction encoding classifications in chapter C4
1428 * of the ARM Architecture Reference Manual (DDI0487B_a);
1429 * classification names and decode diagrams here should generally
1430 * match up with those in the manual.
1433 static bool trans_B(DisasContext *s, arg_i *a)
1435 reset_btype(s);
1436 gen_goto_tb(s, 0, a->imm);
1437 return true;
1440 static bool trans_BL(DisasContext *s, arg_i *a)
1442 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443 reset_btype(s);
1444 gen_goto_tb(s, 0, a->imm);
1445 return true;
1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1451 DisasLabel match;
1452 TCGv_i64 tcg_cmp;
1454 tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455 reset_btype(s);
1457 match = gen_disas_label(s);
1458 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459 tcg_cmp, 0, match.label);
1460 gen_goto_tb(s, 0, 4);
1461 set_disas_label(s, match);
1462 gen_goto_tb(s, 1, a->imm);
1463 return true;
1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1468 DisasLabel match;
1469 TCGv_i64 tcg_cmp;
1471 tcg_cmp = tcg_temp_new_i64();
1472 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1474 reset_btype(s);
1476 match = gen_disas_label(s);
1477 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478 tcg_cmp, 0, match.label);
1479 gen_goto_tb(s, 0, 4);
1480 set_disas_label(s, match);
1481 gen_goto_tb(s, 1, a->imm);
1482 return true;
1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1487 /* BC.cond is only present with FEAT_HBC */
1488 if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489 return false;
1491 reset_btype(s);
1492 if (a->cond < 0x0e) {
1493 /* genuinely conditional branches */
1494 DisasLabel match = gen_disas_label(s);
1495 arm_gen_test_cc(a->cond, match.label);
1496 gen_goto_tb(s, 0, 4);
1497 set_disas_label(s, match);
1498 gen_goto_tb(s, 1, a->imm);
1499 } else {
1500 /* 0xe and 0xf are both "always" conditions */
1501 gen_goto_tb(s, 0, a->imm);
1503 return true;
1506 static void set_btype_for_br(DisasContext *s, int rn)
1508 if (dc_isar_feature(aa64_bti, s)) {
1509 /* BR to {x16,x17} or !guard -> 1, else 3. */
1510 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1514 static void set_btype_for_blr(DisasContext *s)
1516 if (dc_isar_feature(aa64_bti, s)) {
1517 /* BLR sets BTYPE to 2, regardless of source guarded page. */
1518 set_btype(s, 2);
1522 static bool trans_BR(DisasContext *s, arg_r *a)
1524 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1525 set_btype_for_br(s, a->rn);
1526 s->base.is_jmp = DISAS_JUMP;
1527 return true;
1530 static bool trans_BLR(DisasContext *s, arg_r *a)
1532 TCGv_i64 dst = cpu_reg(s, a->rn);
1533 TCGv_i64 lr = cpu_reg(s, 30);
1534 if (dst == lr) {
1535 TCGv_i64 tmp = tcg_temp_new_i64();
1536 tcg_gen_mov_i64(tmp, dst);
1537 dst = tmp;
1539 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1540 gen_a64_set_pc(s, dst);
1541 set_btype_for_blr(s);
1542 s->base.is_jmp = DISAS_JUMP;
1543 return true;
1546 static bool trans_RET(DisasContext *s, arg_r *a)
1548 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1549 s->base.is_jmp = DISAS_JUMP;
1550 return true;
1553 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1554 TCGv_i64 modifier, bool use_key_a)
1556 TCGv_i64 truedst;
1558 * Return the branch target for a BRAA/RETA/etc, which is either
1559 * just the destination dst, or that value with the pauth check
1560 * done and the code removed from the high bits.
1562 if (!s->pauth_active) {
1563 return dst;
1566 truedst = tcg_temp_new_i64();
1567 if (use_key_a) {
1568 gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1569 } else {
1570 gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1572 return truedst;
1575 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1577 TCGv_i64 dst;
1579 if (!dc_isar_feature(aa64_pauth, s)) {
1580 return false;
1583 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1584 gen_a64_set_pc(s, dst);
1585 set_btype_for_br(s, a->rn);
1586 s->base.is_jmp = DISAS_JUMP;
1587 return true;
1590 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1592 TCGv_i64 dst, lr;
1594 if (!dc_isar_feature(aa64_pauth, s)) {
1595 return false;
1598 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1599 lr = cpu_reg(s, 30);
1600 if (dst == lr) {
1601 TCGv_i64 tmp = tcg_temp_new_i64();
1602 tcg_gen_mov_i64(tmp, dst);
1603 dst = tmp;
1605 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1606 gen_a64_set_pc(s, dst);
1607 set_btype_for_blr(s);
1608 s->base.is_jmp = DISAS_JUMP;
1609 return true;
1612 static bool trans_RETA(DisasContext *s, arg_reta *a)
1614 TCGv_i64 dst;
1616 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1617 gen_a64_set_pc(s, dst);
1618 s->base.is_jmp = DISAS_JUMP;
1619 return true;
1622 static bool trans_BRA(DisasContext *s, arg_bra *a)
1624 TCGv_i64 dst;
1626 if (!dc_isar_feature(aa64_pauth, s)) {
1627 return false;
1629 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1630 gen_a64_set_pc(s, dst);
1631 set_btype_for_br(s, a->rn);
1632 s->base.is_jmp = DISAS_JUMP;
1633 return true;
1636 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1638 TCGv_i64 dst, lr;
1640 if (!dc_isar_feature(aa64_pauth, s)) {
1641 return false;
1643 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1644 lr = cpu_reg(s, 30);
1645 if (dst == lr) {
1646 TCGv_i64 tmp = tcg_temp_new_i64();
1647 tcg_gen_mov_i64(tmp, dst);
1648 dst = tmp;
1650 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1651 gen_a64_set_pc(s, dst);
1652 set_btype_for_blr(s);
1653 s->base.is_jmp = DISAS_JUMP;
1654 return true;
1657 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1659 TCGv_i64 dst;
1661 if (s->current_el == 0) {
1662 return false;
1664 if (s->trap_eret) {
1665 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1666 return true;
1668 dst = tcg_temp_new_i64();
1669 tcg_gen_ld_i64(dst, tcg_env,
1670 offsetof(CPUARMState, elr_el[s->current_el]));
1672 translator_io_start(&s->base);
1674 gen_helper_exception_return(tcg_env, dst);
1675 /* Must exit loop to check un-masked IRQs */
1676 s->base.is_jmp = DISAS_EXIT;
1677 return true;
1680 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1682 TCGv_i64 dst;
1684 if (!dc_isar_feature(aa64_pauth, s)) {
1685 return false;
1687 if (s->current_el == 0) {
1688 return false;
1690 /* The FGT trap takes precedence over an auth trap. */
1691 if (s->trap_eret) {
1692 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1693 return true;
1695 dst = tcg_temp_new_i64();
1696 tcg_gen_ld_i64(dst, tcg_env,
1697 offsetof(CPUARMState, elr_el[s->current_el]));
1699 dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1701 translator_io_start(&s->base);
1703 gen_helper_exception_return(tcg_env, dst);
1704 /* Must exit loop to check un-masked IRQs */
1705 s->base.is_jmp = DISAS_EXIT;
1706 return true;
1709 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1711 return true;
1714 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1717 * When running in MTTCG we don't generate jumps to the yield and
1718 * WFE helpers as it won't affect the scheduling of other vCPUs.
1719 * If we wanted to more completely model WFE/SEV so we don't busy
1720 * spin unnecessarily we would need to do something more involved.
1722 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1723 s->base.is_jmp = DISAS_YIELD;
1725 return true;
1728 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1730 s->base.is_jmp = DISAS_WFI;
1731 return true;
1734 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1737 * When running in MTTCG we don't generate jumps to the yield and
1738 * WFE helpers as it won't affect the scheduling of other vCPUs.
1739 * If we wanted to more completely model WFE/SEV so we don't busy
1740 * spin unnecessarily we would need to do something more involved.
1742 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1743 s->base.is_jmp = DISAS_WFE;
1745 return true;
1748 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1750 if (!dc_isar_feature(aa64_wfxt, s)) {
1751 return false;
1755 * Because we need to pass the register value to the helper,
1756 * it's easier to emit the code now, unlike trans_WFI which
1757 * defers it to aarch64_tr_tb_stop(). That means we need to
1758 * check ss_active so that single-stepping a WFIT doesn't halt.
1760 if (s->ss_active) {
1761 /* Act like a NOP under architectural singlestep */
1762 return true;
1765 gen_a64_update_pc(s, 4);
1766 gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1767 /* Go back to the main loop to check for interrupts */
1768 s->base.is_jmp = DISAS_EXIT;
1769 return true;
1772 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1774 if (!dc_isar_feature(aa64_wfxt, s)) {
1775 return false;
1779 * We rely here on our WFE implementation being a NOP, so we
1780 * don't need to do anything different to handle the WFET timeout
1781 * from what trans_WFE does.
1783 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1784 s->base.is_jmp = DISAS_WFE;
1786 return true;
1789 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1791 if (s->pauth_active) {
1792 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1794 return true;
1797 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1799 if (s->pauth_active) {
1800 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1802 return true;
1805 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1807 if (s->pauth_active) {
1808 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1810 return true;
1813 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1815 if (s->pauth_active) {
1816 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1818 return true;
1821 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1823 if (s->pauth_active) {
1824 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1826 return true;
1829 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1831 /* Without RAS, we must implement this as NOP. */
1832 if (dc_isar_feature(aa64_ras, s)) {
1834 * QEMU does not have a source of physical SErrors,
1835 * so we are only concerned with virtual SErrors.
1836 * The pseudocode in the ARM for this case is
1837 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1838 * AArch64.vESBOperation();
1839 * Most of the condition can be evaluated at translation time.
1840 * Test for EL2 present, and defer test for SEL2 to runtime.
1842 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1843 gen_helper_vesb(tcg_env);
1846 return true;
1849 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1851 if (s->pauth_active) {
1852 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1854 return true;
1857 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1859 if (s->pauth_active) {
1860 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1862 return true;
1865 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1867 if (s->pauth_active) {
1868 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1870 return true;
1873 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1875 if (s->pauth_active) {
1876 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1878 return true;
1881 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1883 if (s->pauth_active) {
1884 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1886 return true;
1889 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1891 if (s->pauth_active) {
1892 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1894 return true;
1897 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1899 if (s->pauth_active) {
1900 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1902 return true;
1905 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1907 if (s->pauth_active) {
1908 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1910 return true;
1913 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1915 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1916 return true;
1919 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1921 /* We handle DSB and DMB the same way */
1922 TCGBar bar;
1924 switch (a->types) {
1925 case 1: /* MBReqTypes_Reads */
1926 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1927 break;
1928 case 2: /* MBReqTypes_Writes */
1929 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1930 break;
1931 default: /* MBReqTypes_All */
1932 bar = TCG_BAR_SC | TCG_MO_ALL;
1933 break;
1935 tcg_gen_mb(bar);
1936 return true;
1939 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1942 * We need to break the TB after this insn to execute
1943 * self-modifying code correctly and also to take
1944 * any pending interrupts immediately.
1946 reset_btype(s);
1947 gen_goto_tb(s, 0, 4);
1948 return true;
1951 static bool trans_SB(DisasContext *s, arg_SB *a)
1953 if (!dc_isar_feature(aa64_sb, s)) {
1954 return false;
1957 * TODO: There is no speculation barrier opcode for TCG;
1958 * MB and end the TB instead.
1960 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1961 gen_goto_tb(s, 0, 4);
1962 return true;
1965 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1967 if (!dc_isar_feature(aa64_condm_4, s)) {
1968 return false;
1970 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1971 return true;
1974 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1976 TCGv_i32 z;
1978 if (!dc_isar_feature(aa64_condm_5, s)) {
1979 return false;
1982 z = tcg_temp_new_i32();
1984 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1987 * (!C & !Z) << 31
1988 * (!(C | Z)) << 31
1989 * ~((C | Z) << 31)
1990 * ~-(C | Z)
1991 * (C | Z) - 1
1993 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1994 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1996 /* !(Z & C) */
1997 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1998 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
2000 /* (!C & Z) << 31 -> -(Z & ~C) */
2001 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2002 tcg_gen_neg_i32(cpu_VF, cpu_VF);
2004 /* C | Z */
2005 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2007 return true;
2010 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2012 if (!dc_isar_feature(aa64_condm_5, s)) {
2013 return false;
2016 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
2017 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
2019 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2020 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2022 tcg_gen_movi_i32(cpu_NF, 0);
2023 tcg_gen_movi_i32(cpu_VF, 0);
2025 return true;
2028 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2030 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2031 return false;
2033 if (a->imm & 1) {
2034 set_pstate_bits(PSTATE_UAO);
2035 } else {
2036 clear_pstate_bits(PSTATE_UAO);
2038 gen_rebuild_hflags(s);
2039 s->base.is_jmp = DISAS_TOO_MANY;
2040 return true;
2043 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2045 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2046 return false;
2048 if (a->imm & 1) {
2049 set_pstate_bits(PSTATE_PAN);
2050 } else {
2051 clear_pstate_bits(PSTATE_PAN);
2053 gen_rebuild_hflags(s);
2054 s->base.is_jmp = DISAS_TOO_MANY;
2055 return true;
2058 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2060 if (s->current_el == 0) {
2061 return false;
2063 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2064 s->base.is_jmp = DISAS_TOO_MANY;
2065 return true;
2068 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2070 if (!dc_isar_feature(aa64_ssbs, s)) {
2071 return false;
2073 if (a->imm & 1) {
2074 set_pstate_bits(PSTATE_SSBS);
2075 } else {
2076 clear_pstate_bits(PSTATE_SSBS);
2078 /* Don't need to rebuild hflags since SSBS is a nop */
2079 s->base.is_jmp = DISAS_TOO_MANY;
2080 return true;
2083 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2085 if (!dc_isar_feature(aa64_dit, s)) {
2086 return false;
2088 if (a->imm & 1) {
2089 set_pstate_bits(PSTATE_DIT);
2090 } else {
2091 clear_pstate_bits(PSTATE_DIT);
2093 /* There's no need to rebuild hflags because DIT is a nop */
2094 s->base.is_jmp = DISAS_TOO_MANY;
2095 return true;
2098 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2100 if (dc_isar_feature(aa64_mte, s)) {
2101 /* Full MTE is enabled -- set the TCO bit as directed. */
2102 if (a->imm & 1) {
2103 set_pstate_bits(PSTATE_TCO);
2104 } else {
2105 clear_pstate_bits(PSTATE_TCO);
2107 gen_rebuild_hflags(s);
2108 /* Many factors, including TCO, go into MTE_ACTIVE. */
2109 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2110 return true;
2111 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2112 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
2113 return true;
2114 } else {
2115 /* Insn not present */
2116 return false;
2120 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2122 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2123 s->base.is_jmp = DISAS_TOO_MANY;
2124 return true;
2127 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2129 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2130 /* Exit the cpu loop to re-evaluate pending IRQs. */
2131 s->base.is_jmp = DISAS_UPDATE_EXIT;
2132 return true;
2135 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2137 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2138 return false;
2141 if (a->imm == 0) {
2142 clear_pstate_bits(PSTATE_ALLINT);
2143 } else if (s->current_el > 1) {
2144 set_pstate_bits(PSTATE_ALLINT);
2145 } else {
2146 gen_helper_msr_set_allint_el1(tcg_env);
2149 /* Exit the cpu loop to re-evaluate pending IRQs. */
2150 s->base.is_jmp = DISAS_UPDATE_EXIT;
2151 return true;
2154 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2156 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2157 return false;
2159 if (sme_access_check(s)) {
2160 int old = s->pstate_sm | (s->pstate_za << 1);
2161 int new = a->imm * 3;
2163 if ((old ^ new) & a->mask) {
2164 /* At least one bit changes. */
2165 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2166 tcg_constant_i32(a->mask));
2167 s->base.is_jmp = DISAS_TOO_MANY;
2170 return true;
2173 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2175 TCGv_i32 tmp = tcg_temp_new_i32();
2176 TCGv_i32 nzcv = tcg_temp_new_i32();
2178 /* build bit 31, N */
2179 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2180 /* build bit 30, Z */
2181 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2182 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2183 /* build bit 29, C */
2184 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2185 /* build bit 28, V */
2186 tcg_gen_shri_i32(tmp, cpu_VF, 31);
2187 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2188 /* generate result */
2189 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2192 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2194 TCGv_i32 nzcv = tcg_temp_new_i32();
2196 /* take NZCV from R[t] */
2197 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2199 /* bit 31, N */
2200 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2201 /* bit 30, Z */
2202 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2203 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2204 /* bit 29, C */
2205 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2206 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2207 /* bit 28, V */
2208 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2209 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2212 static void gen_sysreg_undef(DisasContext *s, bool isread,
2213 uint8_t op0, uint8_t op1, uint8_t op2,
2214 uint8_t crn, uint8_t crm, uint8_t rt)
2217 * Generate code to emit an UNDEF with correct syndrome
2218 * information for a failed system register access.
2219 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2220 * but if FEAT_IDST is implemented then read accesses to registers
2221 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2222 * syndrome.
2224 uint32_t syndrome;
2226 if (isread && dc_isar_feature(aa64_ids, s) &&
2227 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2228 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2229 } else {
2230 syndrome = syn_uncategorized();
2232 gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2235 /* MRS - move from system register
2236 * MSR (register) - move to system register
2237 * SYS
2238 * SYSL
2239 * These are all essentially the same insn in 'read' and 'write'
2240 * versions, with varying op0 fields.
2242 static void handle_sys(DisasContext *s, bool isread,
2243 unsigned int op0, unsigned int op1, unsigned int op2,
2244 unsigned int crn, unsigned int crm, unsigned int rt)
2246 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2247 crn, crm, op0, op1, op2);
2248 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2249 bool need_exit_tb = false;
2250 bool nv_trap_to_el2 = false;
2251 bool nv_redirect_reg = false;
2252 bool skip_fp_access_checks = false;
2253 bool nv2_mem_redirect = false;
2254 TCGv_ptr tcg_ri = NULL;
2255 TCGv_i64 tcg_rt;
2256 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2258 if (crn == 11 || crn == 15) {
2260 * Check for TIDCP trap, which must take precedence over
2261 * the UNDEF for "no such register" etc.
2263 switch (s->current_el) {
2264 case 0:
2265 if (dc_isar_feature(aa64_tidcp1, s)) {
2266 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2268 break;
2269 case 1:
2270 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2271 break;
2275 if (!ri) {
2276 /* Unknown register; this might be a guest error or a QEMU
2277 * unimplemented feature.
2279 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2280 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2281 isread ? "read" : "write", op0, op1, crn, crm, op2);
2282 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2283 return;
2286 if (s->nv2 && ri->nv2_redirect_offset) {
2288 * Some registers always redirect to memory; some only do so if
2289 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2290 * pairs which share an offset; see the table in R_CSRPQ).
2292 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2293 nv2_mem_redirect = s->nv1;
2294 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2295 nv2_mem_redirect = !s->nv1;
2296 } else {
2297 nv2_mem_redirect = true;
2301 /* Check access permissions */
2302 if (!cp_access_ok(s->current_el, ri, isread)) {
2304 * FEAT_NV/NV2 handling does not do the usual FP access checks
2305 * for registers only accessible at EL2 (though it *does* do them
2306 * for registers accessible at EL1).
2308 skip_fp_access_checks = true;
2309 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2311 * This is one of the few EL2 registers which should redirect
2312 * to the equivalent EL1 register. We do that after running
2313 * the EL2 register's accessfn.
2315 nv_redirect_reg = true;
2316 assert(!nv2_mem_redirect);
2317 } else if (nv2_mem_redirect) {
2319 * NV2 redirect-to-memory takes precedence over trap to EL2 or
2320 * UNDEF to EL1.
2322 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2324 * This register / instruction exists and is an EL2 register, so
2325 * we must trap to EL2 if accessed in nested virtualization EL1
2326 * instead of UNDEFing. We'll do that after the usual access checks.
2327 * (This makes a difference only for a couple of registers like
2328 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2329 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2330 * an accessfn which does nothing when called from EL1, because
2331 * the trap-to-EL3 controls which would apply to that register
2332 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2334 nv_trap_to_el2 = true;
2335 } else {
2336 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2337 return;
2341 if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2342 /* Emit code to perform further access permissions checks at
2343 * runtime; this may result in an exception.
2345 gen_a64_update_pc(s, 0);
2346 tcg_ri = tcg_temp_new_ptr();
2347 gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2348 tcg_constant_i32(key),
2349 tcg_constant_i32(syndrome),
2350 tcg_constant_i32(isread));
2351 } else if (ri->type & ARM_CP_RAISES_EXC) {
2353 * The readfn or writefn might raise an exception;
2354 * synchronize the CPU state in case it does.
2356 gen_a64_update_pc(s, 0);
2359 if (!skip_fp_access_checks) {
2360 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2361 return;
2362 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2363 return;
2364 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2365 return;
2369 if (nv_trap_to_el2) {
2370 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2371 return;
2374 if (nv_redirect_reg) {
2376 * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2377 * Conveniently in all cases the encoding of the EL1 register is
2378 * identical to the EL2 register except that opc1 is 0.
2379 * Get the reginfo for the EL1 register to use for the actual access.
2380 * We don't use the EL1 register's access function, and
2381 * fine-grained-traps on EL1 also do not apply here.
2383 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2384 crn, crm, op0, 0, op2);
2385 ri = get_arm_cp_reginfo(s->cp_regs, key);
2386 assert(ri);
2387 assert(cp_access_ok(s->current_el, ri, isread));
2389 * We might not have done an update_pc earlier, so check we don't
2390 * need it. We could support this in future if necessary.
2392 assert(!(ri->type & ARM_CP_RAISES_EXC));
2395 if (nv2_mem_redirect) {
2397 * This system register is being redirected into an EL2 memory access.
2398 * This means it is not an IO operation, doesn't change hflags,
2399 * and need not end the TB, because it has no side effects.
2401 * The access is 64-bit single copy atomic, guaranteed aligned because
2402 * of the definition of VCNR_EL2. Its endianness depends on
2403 * SCTLR_EL2.EE, not on the data endianness of EL1.
2404 * It is done under either the EL2 translation regime or the EL2&0
2405 * translation regime, depending on HCR_EL2.E2H. It behaves as if
2406 * PSTATE.PAN is 0.
2408 TCGv_i64 ptr = tcg_temp_new_i64();
2409 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2410 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2411 int memidx = arm_to_core_mmu_idx(armmemidx);
2412 uint32_t syn;
2414 mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2416 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2417 tcg_gen_addi_i64(ptr, ptr,
2418 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2419 tcg_rt = cpu_reg(s, rt);
2421 syn = syn_data_abort_vncr(0, !isread, 0);
2422 disas_set_insn_syndrome(s, syn);
2423 if (isread) {
2424 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2425 } else {
2426 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2428 return;
2431 /* Handle special cases first */
2432 switch (ri->type & ARM_CP_SPECIAL_MASK) {
2433 case 0:
2434 break;
2435 case ARM_CP_NOP:
2436 return;
2437 case ARM_CP_NZCV:
2438 tcg_rt = cpu_reg(s, rt);
2439 if (isread) {
2440 gen_get_nzcv(tcg_rt);
2441 } else {
2442 gen_set_nzcv(tcg_rt);
2444 return;
2445 case ARM_CP_CURRENTEL:
2448 * Reads as current EL value from pstate, which is
2449 * guaranteed to be constant by the tb flags.
2450 * For nested virt we should report EL2.
2452 int el = s->nv ? 2 : s->current_el;
2453 tcg_rt = cpu_reg(s, rt);
2454 tcg_gen_movi_i64(tcg_rt, el << 2);
2455 return;
2457 case ARM_CP_DC_ZVA:
2458 /* Writes clear the aligned block of memory which rt points into. */
2459 if (s->mte_active[0]) {
2460 int desc = 0;
2462 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2463 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2464 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2466 tcg_rt = tcg_temp_new_i64();
2467 gen_helper_mte_check_zva(tcg_rt, tcg_env,
2468 tcg_constant_i32(desc), cpu_reg(s, rt));
2469 } else {
2470 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2472 gen_helper_dc_zva(tcg_env, tcg_rt);
2473 return;
2474 case ARM_CP_DC_GVA:
2476 TCGv_i64 clean_addr, tag;
2479 * DC_GVA, like DC_ZVA, requires that we supply the original
2480 * pointer for an invalid page. Probe that address first.
2482 tcg_rt = cpu_reg(s, rt);
2483 clean_addr = clean_data_tbi(s, tcg_rt);
2484 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2486 if (s->ata[0]) {
2487 /* Extract the tag from the register to match STZGM. */
2488 tag = tcg_temp_new_i64();
2489 tcg_gen_shri_i64(tag, tcg_rt, 56);
2490 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2493 return;
2494 case ARM_CP_DC_GZVA:
2496 TCGv_i64 clean_addr, tag;
2498 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2499 tcg_rt = cpu_reg(s, rt);
2500 clean_addr = clean_data_tbi(s, tcg_rt);
2501 gen_helper_dc_zva(tcg_env, clean_addr);
2503 if (s->ata[0]) {
2504 /* Extract the tag from the register to match STZGM. */
2505 tag = tcg_temp_new_i64();
2506 tcg_gen_shri_i64(tag, tcg_rt, 56);
2507 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2510 return;
2511 default:
2512 g_assert_not_reached();
2515 if (ri->type & ARM_CP_IO) {
2516 /* I/O operations must end the TB here (whether read or write) */
2517 need_exit_tb = translator_io_start(&s->base);
2520 tcg_rt = cpu_reg(s, rt);
2522 if (isread) {
2523 if (ri->type & ARM_CP_CONST) {
2524 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2525 } else if (ri->readfn) {
2526 if (!tcg_ri) {
2527 tcg_ri = gen_lookup_cp_reg(key);
2529 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2530 } else {
2531 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2533 } else {
2534 if (ri->type & ARM_CP_CONST) {
2535 /* If not forbidden by access permissions, treat as WI */
2536 return;
2537 } else if (ri->writefn) {
2538 if (!tcg_ri) {
2539 tcg_ri = gen_lookup_cp_reg(key);
2541 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2542 } else {
2543 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2547 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2549 * A write to any coprocessor register that ends a TB
2550 * must rebuild the hflags for the next TB.
2552 gen_rebuild_hflags(s);
2554 * We default to ending the TB on a coprocessor register write,
2555 * but allow this to be suppressed by the register definition
2556 * (usually only necessary to work around guest bugs).
2558 need_exit_tb = true;
2560 if (need_exit_tb) {
2561 s->base.is_jmp = DISAS_UPDATE_EXIT;
2565 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2567 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2568 return true;
2571 static bool trans_SVC(DisasContext *s, arg_i *a)
2574 * For SVC, HVC and SMC we advance the single-step state
2575 * machine before taking the exception. This is architecturally
2576 * mandated, to ensure that single-stepping a system call
2577 * instruction works properly.
2579 uint32_t syndrome = syn_aa64_svc(a->imm);
2580 if (s->fgt_svc) {
2581 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2582 return true;
2584 gen_ss_advance(s);
2585 gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2586 return true;
2589 static bool trans_HVC(DisasContext *s, arg_i *a)
2591 int target_el = s->current_el == 3 ? 3 : 2;
2593 if (s->current_el == 0) {
2594 unallocated_encoding(s);
2595 return true;
2598 * The pre HVC helper handles cases when HVC gets trapped
2599 * as an undefined insn by runtime configuration.
2601 gen_a64_update_pc(s, 0);
2602 gen_helper_pre_hvc(tcg_env);
2603 /* Architecture requires ss advance before we do the actual work */
2604 gen_ss_advance(s);
2605 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2606 return true;
2609 static bool trans_SMC(DisasContext *s, arg_i *a)
2611 if (s->current_el == 0) {
2612 unallocated_encoding(s);
2613 return true;
2615 gen_a64_update_pc(s, 0);
2616 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2617 /* Architecture requires ss advance before we do the actual work */
2618 gen_ss_advance(s);
2619 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2620 return true;
2623 static bool trans_BRK(DisasContext *s, arg_i *a)
2625 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2626 return true;
2629 static bool trans_HLT(DisasContext *s, arg_i *a)
2632 * HLT. This has two purposes.
2633 * Architecturally, it is an external halting debug instruction.
2634 * Since QEMU doesn't implement external debug, we treat this as
2635 * it is required for halting debug disabled: it will UNDEF.
2636 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2638 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2639 gen_exception_internal_insn(s, EXCP_SEMIHOST);
2640 } else {
2641 unallocated_encoding(s);
2643 return true;
2647 * Load/Store exclusive instructions are implemented by remembering
2648 * the value/address loaded, and seeing if these are the same
2649 * when the store is performed. This is not actually the architecturally
2650 * mandated semantics, but it works for typical guest code sequences
2651 * and avoids having to monitor regular stores.
2653 * The store exclusive uses the atomic cmpxchg primitives to avoid
2654 * races in multi-threaded linux-user and when MTTCG softmmu is
2655 * enabled.
2657 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2658 int size, bool is_pair)
2660 int idx = get_mem_index(s);
2661 TCGv_i64 dirty_addr, clean_addr;
2662 MemOp memop = check_atomic_align(s, rn, size + is_pair);
2664 s->is_ldex = true;
2665 dirty_addr = cpu_reg_sp(s, rn);
2666 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2668 g_assert(size <= 3);
2669 if (is_pair) {
2670 g_assert(size >= 2);
2671 if (size == 2) {
2672 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2673 if (s->be_data == MO_LE) {
2674 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2675 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2676 } else {
2677 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2678 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2680 } else {
2681 TCGv_i128 t16 = tcg_temp_new_i128();
2683 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2685 if (s->be_data == MO_LE) {
2686 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2687 cpu_exclusive_high, t16);
2688 } else {
2689 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2690 cpu_exclusive_val, t16);
2692 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2693 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2695 } else {
2696 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2697 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2699 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2702 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2703 int rn, int size, int is_pair)
2705 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2706 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2707 * [addr] = {Rt};
2708 * if (is_pair) {
2709 * [addr + datasize] = {Rt2};
2711 * {Rd} = 0;
2712 * } else {
2713 * {Rd} = 1;
2715 * env->exclusive_addr = -1;
2717 TCGLabel *fail_label = gen_new_label();
2718 TCGLabel *done_label = gen_new_label();
2719 TCGv_i64 tmp, clean_addr;
2720 MemOp memop;
2723 * FIXME: We are out of spec here. We have recorded only the address
2724 * from load_exclusive, not the entire range, and we assume that the
2725 * size of the access on both sides match. The architecture allows the
2726 * store to be smaller than the load, so long as the stored bytes are
2727 * within the range recorded by the load.
2730 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2731 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2732 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2735 * The write, and any associated faults, only happen if the virtual
2736 * and physical addresses pass the exclusive monitor check. These
2737 * faults are exceedingly unlikely, because normally the guest uses
2738 * the exact same address register for the load_exclusive, and we
2739 * would have recognized these faults there.
2741 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2742 * unaligned 4-byte write within the range of an aligned 8-byte load.
2743 * With LSE2, the store would need to cross a 16-byte boundary when the
2744 * load did not, which would mean the store is outside the range
2745 * recorded for the monitor, which would have failed a corrected monitor
2746 * check above. For now, we assume no size change and retain the
2747 * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2749 * It is possible to trigger an MTE fault, by performing the load with
2750 * a virtual address with a valid tag and performing the store with the
2751 * same virtual address and a different invalid tag.
2753 memop = size + is_pair;
2754 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2755 memop |= MO_ALIGN;
2757 memop = finalize_memop(s, memop);
2758 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2760 tmp = tcg_temp_new_i64();
2761 if (is_pair) {
2762 if (size == 2) {
2763 if (s->be_data == MO_LE) {
2764 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2765 } else {
2766 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2768 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2769 cpu_exclusive_val, tmp,
2770 get_mem_index(s), memop);
2771 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2772 } else {
2773 TCGv_i128 t16 = tcg_temp_new_i128();
2774 TCGv_i128 c16 = tcg_temp_new_i128();
2775 TCGv_i64 a, b;
2777 if (s->be_data == MO_LE) {
2778 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2779 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2780 cpu_exclusive_high);
2781 } else {
2782 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2783 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2784 cpu_exclusive_val);
2787 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2788 get_mem_index(s), memop);
2790 a = tcg_temp_new_i64();
2791 b = tcg_temp_new_i64();
2792 if (s->be_data == MO_LE) {
2793 tcg_gen_extr_i128_i64(a, b, t16);
2794 } else {
2795 tcg_gen_extr_i128_i64(b, a, t16);
2798 tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2799 tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2800 tcg_gen_or_i64(tmp, a, b);
2802 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2804 } else {
2805 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2806 cpu_reg(s, rt), get_mem_index(s), memop);
2807 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2809 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2810 tcg_gen_br(done_label);
2812 gen_set_label(fail_label);
2813 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2814 gen_set_label(done_label);
2815 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2818 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2819 int rn, int size)
2821 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2822 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2823 int memidx = get_mem_index(s);
2824 TCGv_i64 clean_addr;
2825 MemOp memop;
2827 if (rn == 31) {
2828 gen_check_sp_alignment(s);
2830 memop = check_atomic_align(s, rn, size);
2831 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2832 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2833 memidx, memop);
2836 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2837 int rn, int size)
2839 TCGv_i64 s1 = cpu_reg(s, rs);
2840 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2841 TCGv_i64 t1 = cpu_reg(s, rt);
2842 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2843 TCGv_i64 clean_addr;
2844 int memidx = get_mem_index(s);
2845 MemOp memop;
2847 if (rn == 31) {
2848 gen_check_sp_alignment(s);
2851 /* This is a single atomic access, despite the "pair". */
2852 memop = check_atomic_align(s, rn, size + 1);
2853 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2855 if (size == 2) {
2856 TCGv_i64 cmp = tcg_temp_new_i64();
2857 TCGv_i64 val = tcg_temp_new_i64();
2859 if (s->be_data == MO_LE) {
2860 tcg_gen_concat32_i64(val, t1, t2);
2861 tcg_gen_concat32_i64(cmp, s1, s2);
2862 } else {
2863 tcg_gen_concat32_i64(val, t2, t1);
2864 tcg_gen_concat32_i64(cmp, s2, s1);
2867 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2869 if (s->be_data == MO_LE) {
2870 tcg_gen_extr32_i64(s1, s2, cmp);
2871 } else {
2872 tcg_gen_extr32_i64(s2, s1, cmp);
2874 } else {
2875 TCGv_i128 cmp = tcg_temp_new_i128();
2876 TCGv_i128 val = tcg_temp_new_i128();
2878 if (s->be_data == MO_LE) {
2879 tcg_gen_concat_i64_i128(val, t1, t2);
2880 tcg_gen_concat_i64_i128(cmp, s1, s2);
2881 } else {
2882 tcg_gen_concat_i64_i128(val, t2, t1);
2883 tcg_gen_concat_i64_i128(cmp, s2, s1);
2886 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2888 if (s->be_data == MO_LE) {
2889 tcg_gen_extr_i128_i64(s1, s2, cmp);
2890 } else {
2891 tcg_gen_extr_i128_i64(s2, s1, cmp);
2897 * Compute the ISS.SF bit for syndrome information if an exception
2898 * is taken on a load or store. This indicates whether the instruction
2899 * is accessing a 32-bit or 64-bit register. This logic is derived
2900 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2902 static bool ldst_iss_sf(int size, bool sign, bool ext)
2905 if (sign) {
2907 * Signed loads are 64 bit results if we are not going to
2908 * do a zero-extend from 32 to 64 after the load.
2909 * (For a store, sign and ext are always false.)
2911 return !ext;
2912 } else {
2913 /* Unsigned loads/stores work at the specified size */
2914 return size == MO_64;
2918 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2920 if (a->rn == 31) {
2921 gen_check_sp_alignment(s);
2923 if (a->lasr) {
2924 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2926 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2927 return true;
2930 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2932 if (a->rn == 31) {
2933 gen_check_sp_alignment(s);
2935 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2936 if (a->lasr) {
2937 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2939 return true;
2942 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2944 TCGv_i64 clean_addr;
2945 MemOp memop;
2946 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2949 * StoreLORelease is the same as Store-Release for QEMU, but
2950 * needs the feature-test.
2952 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2953 return false;
2955 /* Generate ISS for non-exclusive accesses including LASR. */
2956 if (a->rn == 31) {
2957 gen_check_sp_alignment(s);
2959 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2960 memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2961 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2962 true, a->rn != 31, memop);
2963 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2964 iss_sf, a->lasr);
2965 return true;
2968 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2970 TCGv_i64 clean_addr;
2971 MemOp memop;
2972 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2974 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2975 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2976 return false;
2978 /* Generate ISS for non-exclusive accesses including LASR. */
2979 if (a->rn == 31) {
2980 gen_check_sp_alignment(s);
2982 memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2983 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2984 false, a->rn != 31, memop);
2985 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2986 a->rt, iss_sf, a->lasr);
2987 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2988 return true;
2991 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2993 if (a->rn == 31) {
2994 gen_check_sp_alignment(s);
2996 if (a->lasr) {
2997 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2999 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3000 return true;
3003 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3005 if (a->rn == 31) {
3006 gen_check_sp_alignment(s);
3008 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3009 if (a->lasr) {
3010 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3012 return true;
3015 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3017 if (!dc_isar_feature(aa64_atomics, s)) {
3018 return false;
3020 if (((a->rt | a->rs) & 1) != 0) {
3021 return false;
3024 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3025 return true;
3028 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3030 if (!dc_isar_feature(aa64_atomics, s)) {
3031 return false;
3033 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3034 return true;
3037 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3039 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3040 TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3041 TCGv_i64 clean_addr = tcg_temp_new_i64();
3042 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3044 gen_pc_plus_diff(s, clean_addr, a->imm);
3045 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3046 false, true, a->rt, iss_sf, false);
3047 return true;
3050 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3052 /* Load register (literal), vector version */
3053 TCGv_i64 clean_addr;
3054 MemOp memop;
3056 if (!fp_access_check(s)) {
3057 return true;
3059 memop = finalize_memop_asimd(s, a->sz);
3060 clean_addr = tcg_temp_new_i64();
3061 gen_pc_plus_diff(s, clean_addr, a->imm);
3062 do_fp_ld(s, a->rt, clean_addr, memop);
3063 return true;
3066 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3067 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3068 uint64_t offset, bool is_store, MemOp mop)
3070 if (a->rn == 31) {
3071 gen_check_sp_alignment(s);
3074 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3075 if (!a->p) {
3076 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3079 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3080 (a->w || a->rn != 31), 2 << a->sz, mop);
3083 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3084 TCGv_i64 dirty_addr, uint64_t offset)
3086 if (a->w) {
3087 if (a->p) {
3088 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3090 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3094 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3096 uint64_t offset = a->imm << a->sz;
3097 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3098 MemOp mop = finalize_memop(s, a->sz);
3100 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3101 tcg_rt = cpu_reg(s, a->rt);
3102 tcg_rt2 = cpu_reg(s, a->rt2);
3104 * We built mop above for the single logical access -- rebuild it
3105 * now for the paired operation.
3107 * With LSE2, non-sign-extending pairs are treated atomically if
3108 * aligned, and if unaligned one of the pair will be completely
3109 * within a 16-byte block and that element will be atomic.
3110 * Otherwise each element is separately atomic.
3111 * In all cases, issue one operation with the correct atomicity.
3113 mop = a->sz + 1;
3114 if (s->align_mem) {
3115 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3117 mop = finalize_memop_pair(s, mop);
3118 if (a->sz == 2) {
3119 TCGv_i64 tmp = tcg_temp_new_i64();
3121 if (s->be_data == MO_LE) {
3122 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3123 } else {
3124 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3126 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3127 } else {
3128 TCGv_i128 tmp = tcg_temp_new_i128();
3130 if (s->be_data == MO_LE) {
3131 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3132 } else {
3133 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3135 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3137 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3138 return true;
3141 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3143 uint64_t offset = a->imm << a->sz;
3144 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3145 MemOp mop = finalize_memop(s, a->sz);
3147 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3148 tcg_rt = cpu_reg(s, a->rt);
3149 tcg_rt2 = cpu_reg(s, a->rt2);
3152 * We built mop above for the single logical access -- rebuild it
3153 * now for the paired operation.
3155 * With LSE2, non-sign-extending pairs are treated atomically if
3156 * aligned, and if unaligned one of the pair will be completely
3157 * within a 16-byte block and that element will be atomic.
3158 * Otherwise each element is separately atomic.
3159 * In all cases, issue one operation with the correct atomicity.
3161 * This treats sign-extending loads like zero-extending loads,
3162 * since that reuses the most code below.
3164 mop = a->sz + 1;
3165 if (s->align_mem) {
3166 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3168 mop = finalize_memop_pair(s, mop);
3169 if (a->sz == 2) {
3170 int o2 = s->be_data == MO_LE ? 32 : 0;
3171 int o1 = o2 ^ 32;
3173 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3174 if (a->sign) {
3175 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3176 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3177 } else {
3178 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3179 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3181 } else {
3182 TCGv_i128 tmp = tcg_temp_new_i128();
3184 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3185 if (s->be_data == MO_LE) {
3186 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3187 } else {
3188 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3191 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3192 return true;
3195 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3197 uint64_t offset = a->imm << a->sz;
3198 TCGv_i64 clean_addr, dirty_addr;
3199 MemOp mop;
3201 if (!fp_access_check(s)) {
3202 return true;
3205 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3206 mop = finalize_memop_asimd(s, a->sz);
3207 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3208 do_fp_st(s, a->rt, clean_addr, mop);
3209 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3210 do_fp_st(s, a->rt2, clean_addr, mop);
3211 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3212 return true;
3215 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3217 uint64_t offset = a->imm << a->sz;
3218 TCGv_i64 clean_addr, dirty_addr;
3219 MemOp mop;
3221 if (!fp_access_check(s)) {
3222 return true;
3225 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3226 mop = finalize_memop_asimd(s, a->sz);
3227 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3228 do_fp_ld(s, a->rt, clean_addr, mop);
3229 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3230 do_fp_ld(s, a->rt2, clean_addr, mop);
3231 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3232 return true;
3235 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3237 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3238 uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3239 MemOp mop;
3240 TCGv_i128 tmp;
3242 /* STGP only comes in one size. */
3243 tcg_debug_assert(a->sz == MO_64);
3245 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3246 return false;
3249 if (a->rn == 31) {
3250 gen_check_sp_alignment(s);
3253 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3254 if (!a->p) {
3255 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3258 clean_addr = clean_data_tbi(s, dirty_addr);
3259 tcg_rt = cpu_reg(s, a->rt);
3260 tcg_rt2 = cpu_reg(s, a->rt2);
3263 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3264 * and one tag operation. We implement it as one single aligned 16-byte
3265 * memory operation for convenience. Note that the alignment ensures
3266 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3268 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3270 tmp = tcg_temp_new_i128();
3271 if (s->be_data == MO_LE) {
3272 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3273 } else {
3274 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3276 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3278 /* Perform the tag store, if tag access enabled. */
3279 if (s->ata[0]) {
3280 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3281 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3282 } else {
3283 gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3287 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3288 return true;
3291 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3292 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3293 uint64_t offset, bool is_store, MemOp mop)
3295 int memidx;
3297 if (a->rn == 31) {
3298 gen_check_sp_alignment(s);
3301 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3302 if (!a->p) {
3303 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3305 memidx = get_a64_user_mem_index(s, a->unpriv);
3306 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3307 a->w || a->rn != 31,
3308 mop, a->unpriv, memidx);
3311 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3312 TCGv_i64 dirty_addr, uint64_t offset)
3314 if (a->w) {
3315 if (a->p) {
3316 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3318 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3322 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3324 bool iss_sf, iss_valid = !a->w;
3325 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3326 int memidx = get_a64_user_mem_index(s, a->unpriv);
3327 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3329 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3331 tcg_rt = cpu_reg(s, a->rt);
3332 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3334 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3335 iss_valid, a->rt, iss_sf, false);
3336 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3337 return true;
3340 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3342 bool iss_sf, iss_valid = !a->w;
3343 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3344 int memidx = get_a64_user_mem_index(s, a->unpriv);
3345 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3347 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3349 tcg_rt = cpu_reg(s, a->rt);
3350 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3352 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3353 a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3354 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3355 return true;
3358 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3360 TCGv_i64 clean_addr, dirty_addr;
3361 MemOp mop;
3363 if (!fp_access_check(s)) {
3364 return true;
3366 mop = finalize_memop_asimd(s, a->sz);
3367 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3368 do_fp_st(s, a->rt, clean_addr, mop);
3369 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3370 return true;
3373 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3375 TCGv_i64 clean_addr, dirty_addr;
3376 MemOp mop;
3378 if (!fp_access_check(s)) {
3379 return true;
3381 mop = finalize_memop_asimd(s, a->sz);
3382 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3383 do_fp_ld(s, a->rt, clean_addr, mop);
3384 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3385 return true;
3388 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3389 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3390 bool is_store, MemOp memop)
3392 TCGv_i64 tcg_rm;
3394 if (a->rn == 31) {
3395 gen_check_sp_alignment(s);
3397 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3399 tcg_rm = read_cpu_reg(s, a->rm, 1);
3400 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3402 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3403 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3406 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3408 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3409 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3410 MemOp memop;
3412 if (extract32(a->opt, 1, 1) == 0) {
3413 return false;
3416 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3417 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3418 tcg_rt = cpu_reg(s, a->rt);
3419 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3420 a->ext, true, a->rt, iss_sf, false);
3421 return true;
3424 static bool trans_STR(DisasContext *s, arg_ldst *a)
3426 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3427 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3428 MemOp memop;
3430 if (extract32(a->opt, 1, 1) == 0) {
3431 return false;
3434 memop = finalize_memop(s, a->sz);
3435 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3436 tcg_rt = cpu_reg(s, a->rt);
3437 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3438 return true;
3441 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3443 TCGv_i64 clean_addr, dirty_addr;
3444 MemOp memop;
3446 if (extract32(a->opt, 1, 1) == 0) {
3447 return false;
3450 if (!fp_access_check(s)) {
3451 return true;
3454 memop = finalize_memop_asimd(s, a->sz);
3455 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3456 do_fp_ld(s, a->rt, clean_addr, memop);
3457 return true;
3460 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3462 TCGv_i64 clean_addr, dirty_addr;
3463 MemOp memop;
3465 if (extract32(a->opt, 1, 1) == 0) {
3466 return false;
3469 if (!fp_access_check(s)) {
3470 return true;
3473 memop = finalize_memop_asimd(s, a->sz);
3474 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3475 do_fp_st(s, a->rt, clean_addr, memop);
3476 return true;
3480 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3481 int sign, bool invert)
3483 MemOp mop = a->sz | sign;
3484 TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3486 if (a->rn == 31) {
3487 gen_check_sp_alignment(s);
3489 mop = check_atomic_align(s, a->rn, mop);
3490 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3491 a->rn != 31, mop);
3492 tcg_rs = read_cpu_reg(s, a->rs, true);
3493 tcg_rt = cpu_reg(s, a->rt);
3494 if (invert) {
3495 tcg_gen_not_i64(tcg_rs, tcg_rs);
3498 * The tcg atomic primitives are all full barriers. Therefore we
3499 * can ignore the Acquire and Release bits of this instruction.
3501 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3503 if (mop & MO_SIGN) {
3504 switch (a->sz) {
3505 case MO_8:
3506 tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3507 break;
3508 case MO_16:
3509 tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3510 break;
3511 case MO_32:
3512 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3513 break;
3514 case MO_64:
3515 break;
3516 default:
3517 g_assert_not_reached();
3520 return true;
3523 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3524 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3525 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3526 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3527 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3528 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3529 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3530 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3531 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3533 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3535 bool iss_sf = ldst_iss_sf(a->sz, false, false);
3536 TCGv_i64 clean_addr;
3537 MemOp mop;
3539 if (!dc_isar_feature(aa64_atomics, s) ||
3540 !dc_isar_feature(aa64_rcpc_8_3, s)) {
3541 return false;
3543 if (a->rn == 31) {
3544 gen_check_sp_alignment(s);
3546 mop = check_ordered_align(s, a->rn, 0, false, a->sz);
3547 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3548 a->rn != 31, mop);
3550 * LDAPR* are a special case because they are a simple load, not a
3551 * fetch-and-do-something op.
3552 * The architectural consistency requirements here are weaker than
3553 * full load-acquire (we only need "load-acquire processor consistent"),
3554 * but we choose to implement them as full LDAQ.
3556 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3557 true, a->rt, iss_sf, true);
3558 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3559 return true;
3562 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3564 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3565 MemOp memop;
3567 /* Load with pointer authentication */
3568 if (!dc_isar_feature(aa64_pauth, s)) {
3569 return false;
3572 if (a->rn == 31) {
3573 gen_check_sp_alignment(s);
3575 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3577 if (s->pauth_active) {
3578 if (!a->m) {
3579 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3580 tcg_constant_i64(0));
3581 } else {
3582 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3583 tcg_constant_i64(0));
3587 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3589 memop = finalize_memop(s, MO_64);
3591 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3592 clean_addr = gen_mte_check1(s, dirty_addr, false,
3593 a->w || a->rn != 31, memop);
3595 tcg_rt = cpu_reg(s, a->rt);
3596 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3597 /* extend */ false, /* iss_valid */ !a->w,
3598 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3600 if (a->w) {
3601 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3603 return true;
3606 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3608 TCGv_i64 clean_addr, dirty_addr;
3609 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3610 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3612 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3613 return false;
3616 if (a->rn == 31) {
3617 gen_check_sp_alignment(s);
3620 mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3621 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3622 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3623 clean_addr = clean_data_tbi(s, dirty_addr);
3626 * Load-AcquirePC semantics; we implement as the slightly more
3627 * restrictive Load-Acquire.
3629 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3630 a->rt, iss_sf, true);
3631 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3632 return true;
3635 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3637 TCGv_i64 clean_addr, dirty_addr;
3638 MemOp mop = a->sz;
3639 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3641 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3642 return false;
3645 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3647 if (a->rn == 31) {
3648 gen_check_sp_alignment(s);
3651 mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3652 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3653 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3654 clean_addr = clean_data_tbi(s, dirty_addr);
3656 /* Store-Release semantics */
3657 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3658 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3659 return true;
3662 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3664 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3665 MemOp endian, align, mop;
3667 int total; /* total bytes */
3668 int elements; /* elements per vector */
3669 int r;
3670 int size = a->sz;
3672 if (!a->p && a->rm != 0) {
3673 /* For non-postindexed accesses the Rm field must be 0 */
3674 return false;
3676 if (size == 3 && !a->q && a->selem != 1) {
3677 return false;
3679 if (!fp_access_check(s)) {
3680 return true;
3683 if (a->rn == 31) {
3684 gen_check_sp_alignment(s);
3687 /* For our purposes, bytes are always little-endian. */
3688 endian = s->be_data;
3689 if (size == 0) {
3690 endian = MO_LE;
3693 total = a->rpt * a->selem * (a->q ? 16 : 8);
3694 tcg_rn = cpu_reg_sp(s, a->rn);
3697 * Issue the MTE check vs the logical repeat count, before we
3698 * promote consecutive little-endian elements below.
3700 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3701 finalize_memop_asimd(s, size));
3704 * Consecutive little-endian elements from a single register
3705 * can be promoted to a larger little-endian operation.
3707 align = MO_ALIGN;
3708 if (a->selem == 1 && endian == MO_LE) {
3709 align = pow2_align(size);
3710 size = 3;
3712 if (!s->align_mem) {
3713 align = 0;
3715 mop = endian | size | align;
3717 elements = (a->q ? 16 : 8) >> size;
3718 tcg_ebytes = tcg_constant_i64(1 << size);
3719 for (r = 0; r < a->rpt; r++) {
3720 int e;
3721 for (e = 0; e < elements; e++) {
3722 int xs;
3723 for (xs = 0; xs < a->selem; xs++) {
3724 int tt = (a->rt + r + xs) % 32;
3725 do_vec_ld(s, tt, e, clean_addr, mop);
3726 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3732 * For non-quad operations, setting a slice of the low 64 bits of
3733 * the register clears the high 64 bits (in the ARM ARM pseudocode
3734 * this is implicit in the fact that 'rval' is a 64 bit wide
3735 * variable). For quad operations, we might still need to zero
3736 * the high bits of SVE.
3738 for (r = 0; r < a->rpt * a->selem; r++) {
3739 int tt = (a->rt + r) % 32;
3740 clear_vec_high(s, a->q, tt);
3743 if (a->p) {
3744 if (a->rm == 31) {
3745 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746 } else {
3747 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3750 return true;
3753 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3755 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3756 MemOp endian, align, mop;
3758 int total; /* total bytes */
3759 int elements; /* elements per vector */
3760 int r;
3761 int size = a->sz;
3763 if (!a->p && a->rm != 0) {
3764 /* For non-postindexed accesses the Rm field must be 0 */
3765 return false;
3767 if (size == 3 && !a->q && a->selem != 1) {
3768 return false;
3770 if (!fp_access_check(s)) {
3771 return true;
3774 if (a->rn == 31) {
3775 gen_check_sp_alignment(s);
3778 /* For our purposes, bytes are always little-endian. */
3779 endian = s->be_data;
3780 if (size == 0) {
3781 endian = MO_LE;
3784 total = a->rpt * a->selem * (a->q ? 16 : 8);
3785 tcg_rn = cpu_reg_sp(s, a->rn);
3788 * Issue the MTE check vs the logical repeat count, before we
3789 * promote consecutive little-endian elements below.
3791 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3792 finalize_memop_asimd(s, size));
3795 * Consecutive little-endian elements from a single register
3796 * can be promoted to a larger little-endian operation.
3798 align = MO_ALIGN;
3799 if (a->selem == 1 && endian == MO_LE) {
3800 align = pow2_align(size);
3801 size = 3;
3803 if (!s->align_mem) {
3804 align = 0;
3806 mop = endian | size | align;
3808 elements = (a->q ? 16 : 8) >> size;
3809 tcg_ebytes = tcg_constant_i64(1 << size);
3810 for (r = 0; r < a->rpt; r++) {
3811 int e;
3812 for (e = 0; e < elements; e++) {
3813 int xs;
3814 for (xs = 0; xs < a->selem; xs++) {
3815 int tt = (a->rt + r + xs) % 32;
3816 do_vec_st(s, tt, e, clean_addr, mop);
3817 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3822 if (a->p) {
3823 if (a->rm == 31) {
3824 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3825 } else {
3826 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3829 return true;
3832 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3834 int xs, total, rt;
3835 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3836 MemOp mop;
3838 if (!a->p && a->rm != 0) {
3839 return false;
3841 if (!fp_access_check(s)) {
3842 return true;
3845 if (a->rn == 31) {
3846 gen_check_sp_alignment(s);
3849 total = a->selem << a->scale;
3850 tcg_rn = cpu_reg_sp(s, a->rn);
3852 mop = finalize_memop_asimd(s, a->scale);
3853 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3854 total, mop);
3856 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3857 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3858 do_vec_st(s, rt, a->index, clean_addr, mop);
3859 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3862 if (a->p) {
3863 if (a->rm == 31) {
3864 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3865 } else {
3866 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3869 return true;
3872 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3874 int xs, total, rt;
3875 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3876 MemOp mop;
3878 if (!a->p && a->rm != 0) {
3879 return false;
3881 if (!fp_access_check(s)) {
3882 return true;
3885 if (a->rn == 31) {
3886 gen_check_sp_alignment(s);
3889 total = a->selem << a->scale;
3890 tcg_rn = cpu_reg_sp(s, a->rn);
3892 mop = finalize_memop_asimd(s, a->scale);
3893 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3894 total, mop);
3896 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3897 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3898 do_vec_ld(s, rt, a->index, clean_addr, mop);
3899 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3902 if (a->p) {
3903 if (a->rm == 31) {
3904 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3905 } else {
3906 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3909 return true;
3912 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3914 int xs, total, rt;
3915 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3916 MemOp mop;
3918 if (!a->p && a->rm != 0) {
3919 return false;
3921 if (!fp_access_check(s)) {
3922 return true;
3925 if (a->rn == 31) {
3926 gen_check_sp_alignment(s);
3929 total = a->selem << a->scale;
3930 tcg_rn = cpu_reg_sp(s, a->rn);
3932 mop = finalize_memop_asimd(s, a->scale);
3933 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3934 total, mop);
3936 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3937 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3938 /* Load and replicate to all elements */
3939 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3941 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3942 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3943 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3944 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3947 if (a->p) {
3948 if (a->rm == 31) {
3949 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3950 } else {
3951 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3954 return true;
3957 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3959 TCGv_i64 addr, clean_addr, tcg_rt;
3960 int size = 4 << s->dcz_blocksize;
3962 if (!dc_isar_feature(aa64_mte, s)) {
3963 return false;
3965 if (s->current_el == 0) {
3966 return false;
3969 if (a->rn == 31) {
3970 gen_check_sp_alignment(s);
3973 addr = read_cpu_reg_sp(s, a->rn, true);
3974 tcg_gen_addi_i64(addr, addr, a->imm);
3975 tcg_rt = cpu_reg(s, a->rt);
3977 if (s->ata[0]) {
3978 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3981 * The non-tags portion of STZGM is mostly like DC_ZVA,
3982 * except the alignment happens before the access.
3984 clean_addr = clean_data_tbi(s, addr);
3985 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3986 gen_helper_dc_zva(tcg_env, clean_addr);
3987 return true;
3990 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3992 TCGv_i64 addr, clean_addr, tcg_rt;
3994 if (!dc_isar_feature(aa64_mte, s)) {
3995 return false;
3997 if (s->current_el == 0) {
3998 return false;
4001 if (a->rn == 31) {
4002 gen_check_sp_alignment(s);
4005 addr = read_cpu_reg_sp(s, a->rn, true);
4006 tcg_gen_addi_i64(addr, addr, a->imm);
4007 tcg_rt = cpu_reg(s, a->rt);
4009 if (s->ata[0]) {
4010 gen_helper_stgm(tcg_env, addr, tcg_rt);
4011 } else {
4012 MMUAccessType acc = MMU_DATA_STORE;
4013 int size = 4 << s->gm_blocksize;
4015 clean_addr = clean_data_tbi(s, addr);
4016 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4017 gen_probe_access(s, clean_addr, acc, size);
4019 return true;
4022 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4024 TCGv_i64 addr, clean_addr, tcg_rt;
4026 if (!dc_isar_feature(aa64_mte, s)) {
4027 return false;
4029 if (s->current_el == 0) {
4030 return false;
4033 if (a->rn == 31) {
4034 gen_check_sp_alignment(s);
4037 addr = read_cpu_reg_sp(s, a->rn, true);
4038 tcg_gen_addi_i64(addr, addr, a->imm);
4039 tcg_rt = cpu_reg(s, a->rt);
4041 if (s->ata[0]) {
4042 gen_helper_ldgm(tcg_rt, tcg_env, addr);
4043 } else {
4044 MMUAccessType acc = MMU_DATA_LOAD;
4045 int size = 4 << s->gm_blocksize;
4047 clean_addr = clean_data_tbi(s, addr);
4048 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4049 gen_probe_access(s, clean_addr, acc, size);
4050 /* The result tags are zeros. */
4051 tcg_gen_movi_i64(tcg_rt, 0);
4053 return true;
4056 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4058 TCGv_i64 addr, clean_addr, tcg_rt;
4060 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4061 return false;
4064 if (a->rn == 31) {
4065 gen_check_sp_alignment(s);
4068 addr = read_cpu_reg_sp(s, a->rn, true);
4069 if (!a->p) {
4070 /* pre-index or signed offset */
4071 tcg_gen_addi_i64(addr, addr, a->imm);
4074 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4075 tcg_rt = cpu_reg(s, a->rt);
4076 if (s->ata[0]) {
4077 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4078 } else {
4080 * Tag access disabled: we must check for aborts on the load
4081 * load from [rn+offset], and then insert a 0 tag into rt.
4083 clean_addr = clean_data_tbi(s, addr);
4084 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4085 gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4088 if (a->w) {
4089 /* pre-index or post-index */
4090 if (a->p) {
4091 /* post-index */
4092 tcg_gen_addi_i64(addr, addr, a->imm);
4094 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4096 return true;
4099 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4101 TCGv_i64 addr, tcg_rt;
4103 if (a->rn == 31) {
4104 gen_check_sp_alignment(s);
4107 addr = read_cpu_reg_sp(s, a->rn, true);
4108 if (!a->p) {
4109 /* pre-index or signed offset */
4110 tcg_gen_addi_i64(addr, addr, a->imm);
4112 tcg_rt = cpu_reg_sp(s, a->rt);
4113 if (!s->ata[0]) {
4115 * For STG and ST2G, we need to check alignment and probe memory.
4116 * TODO: For STZG and STZ2G, we could rely on the stores below,
4117 * at least for system mode; user-only won't enforce alignment.
4119 if (is_pair) {
4120 gen_helper_st2g_stub(tcg_env, addr);
4121 } else {
4122 gen_helper_stg_stub(tcg_env, addr);
4124 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4125 if (is_pair) {
4126 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4127 } else {
4128 gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4130 } else {
4131 if (is_pair) {
4132 gen_helper_st2g(tcg_env, addr, tcg_rt);
4133 } else {
4134 gen_helper_stg(tcg_env, addr, tcg_rt);
4138 if (is_zero) {
4139 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4140 TCGv_i64 zero64 = tcg_constant_i64(0);
4141 TCGv_i128 zero128 = tcg_temp_new_i128();
4142 int mem_index = get_mem_index(s);
4143 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4145 tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4147 /* This is 1 or 2 atomic 16-byte operations. */
4148 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4149 if (is_pair) {
4150 tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4151 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4155 if (a->w) {
4156 /* pre-index or post-index */
4157 if (a->p) {
4158 /* post-index */
4159 tcg_gen_addi_i64(addr, addr, a->imm);
4161 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4163 return true;
4166 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4167 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4168 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4169 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4171 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4173 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4174 bool is_setg, SetFn fn)
4176 int memidx;
4177 uint32_t syndrome, desc = 0;
4179 if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4180 return false;
4184 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4185 * us to pull this check before the CheckMOPSEnabled() test
4186 * (which we do in the helper function)
4188 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4189 a->rd == 31 || a->rn == 31) {
4190 return false;
4193 memidx = get_a64_user_mem_index(s, a->unpriv);
4196 * We pass option_a == true, matching our implementation;
4197 * we pass wrong_option == false: helper function may set that bit.
4199 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4200 is_epilogue, false, true, a->rd, a->rs, a->rn);
4202 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4203 /* We may need to do MTE tag checking, so assemble the descriptor */
4204 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4205 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4206 desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4207 /* SIZEM1 and ALIGN we leave 0 (byte write) */
4209 /* The helper function always needs the memidx even with MTE disabled */
4210 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4213 * The helper needs the register numbers, but since they're in
4214 * the syndrome anyway, we let it extract them from there rather
4215 * than passing in an extra three integer arguments.
4217 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4218 return true;
4221 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4222 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4223 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4224 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4225 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4226 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4228 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4230 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4232 int rmemidx, wmemidx;
4233 uint32_t syndrome, rdesc = 0, wdesc = 0;
4234 bool wunpriv = extract32(a->options, 0, 1);
4235 bool runpriv = extract32(a->options, 1, 1);
4238 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4239 * us to pull this check before the CheckMOPSEnabled() test
4240 * (which we do in the helper function)
4242 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4243 a->rd == 31 || a->rs == 31 || a->rn == 31) {
4244 return false;
4247 rmemidx = get_a64_user_mem_index(s, runpriv);
4248 wmemidx = get_a64_user_mem_index(s, wunpriv);
4251 * We pass option_a == true, matching our implementation;
4252 * we pass wrong_option == false: helper function may set that bit.
4254 syndrome = syn_mop(false, false, a->options, is_epilogue,
4255 false, true, a->rd, a->rs, a->rn);
4257 /* If we need to do MTE tag checking, assemble the descriptors */
4258 if (s->mte_active[runpriv]) {
4259 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4260 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4262 if (s->mte_active[wunpriv]) {
4263 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4264 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4265 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4267 /* The helper function needs these parts of the descriptor regardless */
4268 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4269 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4272 * The helper needs the register numbers, but since they're in
4273 * the syndrome anyway, we let it extract them from there rather
4274 * than passing in an extra three integer arguments.
4276 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4277 tcg_constant_i32(rdesc));
4278 return true;
4281 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4282 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4283 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4284 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4285 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4286 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4288 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4290 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4291 bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4293 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4294 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4295 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4297 fn(tcg_rd, tcg_rn, tcg_imm);
4298 if (!a->sf) {
4299 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4301 return true;
4305 * PC-rel. addressing
4308 static bool trans_ADR(DisasContext *s, arg_ri *a)
4310 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4311 return true;
4314 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4316 int64_t offset = (int64_t)a->imm << 12;
4318 /* The page offset is ok for CF_PCREL. */
4319 offset -= s->pc_curr & 0xfff;
4320 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4321 return true;
4325 * Add/subtract (immediate)
4327 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4328 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4329 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4330 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4333 * Add/subtract (immediate, with tags)
4336 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4337 bool sub_op)
4339 TCGv_i64 tcg_rn, tcg_rd;
4340 int imm;
4342 imm = a->uimm6 << LOG2_TAG_GRANULE;
4343 if (sub_op) {
4344 imm = -imm;
4347 tcg_rn = cpu_reg_sp(s, a->rn);
4348 tcg_rd = cpu_reg_sp(s, a->rd);
4350 if (s->ata[0]) {
4351 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4352 tcg_constant_i32(imm),
4353 tcg_constant_i32(a->uimm4));
4354 } else {
4355 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4356 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4358 return true;
4361 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4362 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4364 /* The input should be a value in the bottom e bits (with higher
4365 * bits zero); returns that value replicated into every element
4366 * of size e in a 64 bit integer.
4368 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4370 assert(e != 0);
4371 while (e < 64) {
4372 mask |= mask << e;
4373 e *= 2;
4375 return mask;
4379 * Logical (immediate)
4383 * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4384 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4385 * value (ie should cause a guest UNDEF exception), and true if they are
4386 * valid, in which case the decoded bit pattern is written to result.
4388 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4389 unsigned int imms, unsigned int immr)
4391 uint64_t mask;
4392 unsigned e, levels, s, r;
4393 int len;
4395 assert(immn < 2 && imms < 64 && immr < 64);
4397 /* The bit patterns we create here are 64 bit patterns which
4398 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4399 * 64 bits each. Each element contains the same value: a run
4400 * of between 1 and e-1 non-zero bits, rotated within the
4401 * element by between 0 and e-1 bits.
4403 * The element size and run length are encoded into immn (1 bit)
4404 * and imms (6 bits) as follows:
4405 * 64 bit elements: immn = 1, imms = <length of run - 1>
4406 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4407 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4408 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4409 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4410 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4411 * Notice that immn = 0, imms = 11111x is the only combination
4412 * not covered by one of the above options; this is reserved.
4413 * Further, <length of run - 1> all-ones is a reserved pattern.
4415 * In all cases the rotation is by immr % e (and immr is 6 bits).
4418 /* First determine the element size */
4419 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4420 if (len < 1) {
4421 /* This is the immn == 0, imms == 0x11111x case */
4422 return false;
4424 e = 1 << len;
4426 levels = e - 1;
4427 s = imms & levels;
4428 r = immr & levels;
4430 if (s == levels) {
4431 /* <length of run - 1> mustn't be all-ones. */
4432 return false;
4435 /* Create the value of one element: s+1 set bits rotated
4436 * by r within the element (which is e bits wide)...
4438 mask = MAKE_64BIT_MASK(0, s + 1);
4439 if (r) {
4440 mask = (mask >> r) | (mask << (e - r));
4441 mask &= MAKE_64BIT_MASK(0, e);
4443 /* ...then replicate the element over the whole 64 bit value */
4444 mask = bitfield_replicate(mask, e);
4445 *result = mask;
4446 return true;
4449 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4450 void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4452 TCGv_i64 tcg_rd, tcg_rn;
4453 uint64_t imm;
4455 /* Some immediate field values are reserved. */
4456 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4457 extract32(a->dbm, 0, 6),
4458 extract32(a->dbm, 6, 6))) {
4459 return false;
4461 if (!a->sf) {
4462 imm &= 0xffffffffull;
4465 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4466 tcg_rn = cpu_reg(s, a->rn);
4468 fn(tcg_rd, tcg_rn, imm);
4469 if (set_cc) {
4470 gen_logic_CC(a->sf, tcg_rd);
4472 if (!a->sf) {
4473 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4475 return true;
4478 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4479 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4480 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4481 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4484 * Move wide (immediate)
4487 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4489 int pos = a->hw << 4;
4490 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4491 return true;
4494 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4496 int pos = a->hw << 4;
4497 uint64_t imm = a->imm;
4499 imm = ~(imm << pos);
4500 if (!a->sf) {
4501 imm = (uint32_t)imm;
4503 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4504 return true;
4507 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4509 int pos = a->hw << 4;
4510 TCGv_i64 tcg_rd, tcg_im;
4512 tcg_rd = cpu_reg(s, a->rd);
4513 tcg_im = tcg_constant_i64(a->imm);
4514 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4515 if (!a->sf) {
4516 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4518 return true;
4522 * Bitfield
4525 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4527 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4528 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4529 unsigned int bitsize = a->sf ? 64 : 32;
4530 unsigned int ri = a->immr;
4531 unsigned int si = a->imms;
4532 unsigned int pos, len;
4534 if (si >= ri) {
4535 /* Wd<s-r:0> = Wn<s:r> */
4536 len = (si - ri) + 1;
4537 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4538 if (!a->sf) {
4539 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4541 } else {
4542 /* Wd<32+s-r,32-r> = Wn<s:0> */
4543 len = si + 1;
4544 pos = (bitsize - ri) & (bitsize - 1);
4546 if (len < ri) {
4548 * Sign extend the destination field from len to fill the
4549 * balance of the word. Let the deposit below insert all
4550 * of those sign bits.
4552 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4553 len = ri;
4557 * We start with zero, and we haven't modified any bits outside
4558 * bitsize, therefore no final zero-extension is unneeded for !sf.
4560 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4562 return true;
4565 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4567 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4568 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4569 unsigned int bitsize = a->sf ? 64 : 32;
4570 unsigned int ri = a->immr;
4571 unsigned int si = a->imms;
4572 unsigned int pos, len;
4574 tcg_rd = cpu_reg(s, a->rd);
4575 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4577 if (si >= ri) {
4578 /* Wd<s-r:0> = Wn<s:r> */
4579 len = (si - ri) + 1;
4580 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4581 } else {
4582 /* Wd<32+s-r,32-r> = Wn<s:0> */
4583 len = si + 1;
4584 pos = (bitsize - ri) & (bitsize - 1);
4585 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4587 return true;
4590 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4592 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4593 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4594 unsigned int bitsize = a->sf ? 64 : 32;
4595 unsigned int ri = a->immr;
4596 unsigned int si = a->imms;
4597 unsigned int pos, len;
4599 tcg_rd = cpu_reg(s, a->rd);
4600 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4602 if (si >= ri) {
4603 /* Wd<s-r:0> = Wn<s:r> */
4604 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4605 len = (si - ri) + 1;
4606 pos = 0;
4607 } else {
4608 /* Wd<32+s-r,32-r> = Wn<s:0> */
4609 len = si + 1;
4610 pos = (bitsize - ri) & (bitsize - 1);
4613 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4614 if (!a->sf) {
4615 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4617 return true;
4620 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4622 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4624 tcg_rd = cpu_reg(s, a->rd);
4626 if (unlikely(a->imm == 0)) {
4628 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4629 * so an extract from bit 0 is a special case.
4631 if (a->sf) {
4632 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4633 } else {
4634 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4636 } else {
4637 tcg_rm = cpu_reg(s, a->rm);
4638 tcg_rn = cpu_reg(s, a->rn);
4640 if (a->sf) {
4641 /* Specialization to ROR happens in EXTRACT2. */
4642 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4643 } else {
4644 TCGv_i32 t0 = tcg_temp_new_i32();
4646 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4647 if (a->rm == a->rn) {
4648 tcg_gen_rotri_i32(t0, t0, a->imm);
4649 } else {
4650 TCGv_i32 t1 = tcg_temp_new_i32();
4651 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4652 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4654 tcg_gen_extu_i32_i64(tcg_rd, t0);
4657 return true;
4661 * Cryptographic AES, SHA, SHA512
4664 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4665 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4666 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4667 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4669 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4670 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4671 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4672 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4674 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4675 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4676 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4678 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4679 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4680 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4682 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4683 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4684 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4685 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4686 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4687 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4688 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4690 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4691 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4693 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4694 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4696 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4698 if (!dc_isar_feature(aa64_sm3, s)) {
4699 return false;
4701 if (fp_access_check(s)) {
4702 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4703 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4704 TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4705 TCGv_i32 tcg_res = tcg_temp_new_i32();
4706 unsigned vsz, dofs;
4708 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4709 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4710 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4712 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4713 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4714 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4715 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4717 /* Clear the whole register first, then store bits [127:96]. */
4718 vsz = vec_full_reg_size(s);
4719 dofs = vec_full_reg_offset(s, a->rd);
4720 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4721 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4723 return true;
4726 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4728 if (fp_access_check(s)) {
4729 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4731 return true;
4733 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4734 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4735 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4736 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4738 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4740 if (!dc_isar_feature(aa64_sha3, s)) {
4741 return false;
4743 if (fp_access_check(s)) {
4744 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4745 vec_full_reg_offset(s, a->rn),
4746 vec_full_reg_offset(s, a->rm), a->imm, 16,
4747 vec_full_reg_size(s));
4749 return true;
4753 * Advanced SIMD copy
4756 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4758 unsigned esz = ctz32(imm);
4759 if (esz <= MO_64) {
4760 *pesz = esz;
4761 *pidx = imm >> (esz + 1);
4762 return true;
4764 return false;
4767 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4769 MemOp esz;
4770 unsigned idx;
4772 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4773 return false;
4775 if (fp_access_check(s)) {
4777 * This instruction just extracts the specified element and
4778 * zero-extends it into the bottom of the destination register.
4780 TCGv_i64 tmp = tcg_temp_new_i64();
4781 read_vec_element(s, tmp, a->rn, idx, esz);
4782 write_fp_dreg(s, a->rd, tmp);
4784 return true;
4787 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4789 MemOp esz;
4790 unsigned idx;
4792 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4793 return false;
4795 if (esz == MO_64 && !a->q) {
4796 return false;
4798 if (fp_access_check(s)) {
4799 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4800 vec_reg_offset(s, a->rn, idx, esz),
4801 a->q ? 16 : 8, vec_full_reg_size(s));
4803 return true;
4806 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4808 MemOp esz;
4809 unsigned idx;
4811 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4812 return false;
4814 if (esz == MO_64 && !a->q) {
4815 return false;
4817 if (fp_access_check(s)) {
4818 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4819 a->q ? 16 : 8, vec_full_reg_size(s),
4820 cpu_reg(s, a->rn));
4822 return true;
4825 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4827 MemOp esz;
4828 unsigned idx;
4830 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4831 return false;
4833 if (is_signed) {
4834 if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4835 return false;
4837 } else {
4838 if (esz == MO_64 ? !a->q : a->q) {
4839 return false;
4842 if (fp_access_check(s)) {
4843 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4844 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4845 if (is_signed && !a->q) {
4846 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4849 return true;
4852 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4853 TRANS(UMOV, do_smov_umov, a, 0)
4855 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4857 MemOp esz;
4858 unsigned idx;
4860 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4861 return false;
4863 if (fp_access_check(s)) {
4864 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4865 clear_vec_high(s, true, a->rd);
4867 return true;
4870 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4872 MemOp esz;
4873 unsigned didx, sidx;
4875 if (!decode_esz_idx(a->di, &esz, &didx)) {
4876 return false;
4878 sidx = a->si >> esz;
4879 if (fp_access_check(s)) {
4880 TCGv_i64 tmp = tcg_temp_new_i64();
4882 read_vec_element(s, tmp, a->rn, sidx, esz);
4883 write_vec_element(s, tmp, a->rd, didx, esz);
4885 /* INS is considered a 128-bit write for SVE. */
4886 clear_vec_high(s, true, a->rd);
4888 return true;
4892 * Advanced SIMD three same
4895 typedef struct FPScalar {
4896 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4897 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4898 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4899 } FPScalar;
4901 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4903 switch (a->esz) {
4904 case MO_64:
4905 if (fp_access_check(s)) {
4906 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4907 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4908 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4909 write_fp_dreg(s, a->rd, t0);
4911 break;
4912 case MO_32:
4913 if (fp_access_check(s)) {
4914 TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4915 TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4916 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4917 write_fp_sreg(s, a->rd, t0);
4919 break;
4920 case MO_16:
4921 if (!dc_isar_feature(aa64_fp16, s)) {
4922 return false;
4924 if (fp_access_check(s)) {
4925 TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4926 TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4927 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4928 write_fp_sreg(s, a->rd, t0);
4930 break;
4931 default:
4932 return false;
4934 return true;
4937 static const FPScalar f_scalar_fadd = {
4938 gen_helper_vfp_addh,
4939 gen_helper_vfp_adds,
4940 gen_helper_vfp_addd,
4942 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4944 static const FPScalar f_scalar_fsub = {
4945 gen_helper_vfp_subh,
4946 gen_helper_vfp_subs,
4947 gen_helper_vfp_subd,
4949 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4951 static const FPScalar f_scalar_fdiv = {
4952 gen_helper_vfp_divh,
4953 gen_helper_vfp_divs,
4954 gen_helper_vfp_divd,
4956 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4958 static const FPScalar f_scalar_fmul = {
4959 gen_helper_vfp_mulh,
4960 gen_helper_vfp_muls,
4961 gen_helper_vfp_muld,
4963 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4965 static const FPScalar f_scalar_fmax = {
4966 gen_helper_advsimd_maxh,
4967 gen_helper_vfp_maxs,
4968 gen_helper_vfp_maxd,
4970 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4972 static const FPScalar f_scalar_fmin = {
4973 gen_helper_advsimd_minh,
4974 gen_helper_vfp_mins,
4975 gen_helper_vfp_mind,
4977 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4979 static const FPScalar f_scalar_fmaxnm = {
4980 gen_helper_advsimd_maxnumh,
4981 gen_helper_vfp_maxnums,
4982 gen_helper_vfp_maxnumd,
4984 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4986 static const FPScalar f_scalar_fminnm = {
4987 gen_helper_advsimd_minnumh,
4988 gen_helper_vfp_minnums,
4989 gen_helper_vfp_minnumd,
4991 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4993 static const FPScalar f_scalar_fmulx = {
4994 gen_helper_advsimd_mulxh,
4995 gen_helper_vfp_mulxs,
4996 gen_helper_vfp_mulxd,
4998 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
5000 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5002 gen_helper_vfp_mulh(d, n, m, s);
5003 gen_vfp_negh(d, d);
5006 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5008 gen_helper_vfp_muls(d, n, m, s);
5009 gen_vfp_negs(d, d);
5012 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5014 gen_helper_vfp_muld(d, n, m, s);
5015 gen_vfp_negd(d, d);
5018 static const FPScalar f_scalar_fnmul = {
5019 gen_fnmul_h,
5020 gen_fnmul_s,
5021 gen_fnmul_d,
5023 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5025 static const FPScalar f_scalar_fcmeq = {
5026 gen_helper_advsimd_ceq_f16,
5027 gen_helper_neon_ceq_f32,
5028 gen_helper_neon_ceq_f64,
5030 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5032 static const FPScalar f_scalar_fcmge = {
5033 gen_helper_advsimd_cge_f16,
5034 gen_helper_neon_cge_f32,
5035 gen_helper_neon_cge_f64,
5037 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5039 static const FPScalar f_scalar_fcmgt = {
5040 gen_helper_advsimd_cgt_f16,
5041 gen_helper_neon_cgt_f32,
5042 gen_helper_neon_cgt_f64,
5044 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5046 static const FPScalar f_scalar_facge = {
5047 gen_helper_advsimd_acge_f16,
5048 gen_helper_neon_acge_f32,
5049 gen_helper_neon_acge_f64,
5051 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5053 static const FPScalar f_scalar_facgt = {
5054 gen_helper_advsimd_acgt_f16,
5055 gen_helper_neon_acgt_f32,
5056 gen_helper_neon_acgt_f64,
5058 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5060 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5062 gen_helper_vfp_subh(d, n, m, s);
5063 gen_vfp_absh(d, d);
5066 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5068 gen_helper_vfp_subs(d, n, m, s);
5069 gen_vfp_abss(d, d);
5072 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5074 gen_helper_vfp_subd(d, n, m, s);
5075 gen_vfp_absd(d, d);
5078 static const FPScalar f_scalar_fabd = {
5079 gen_fabd_h,
5080 gen_fabd_s,
5081 gen_fabd_d,
5083 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5085 static const FPScalar f_scalar_frecps = {
5086 gen_helper_recpsf_f16,
5087 gen_helper_recpsf_f32,
5088 gen_helper_recpsf_f64,
5090 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5092 static const FPScalar f_scalar_frsqrts = {
5093 gen_helper_rsqrtsf_f16,
5094 gen_helper_rsqrtsf_f32,
5095 gen_helper_rsqrtsf_f64,
5097 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5099 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5100 MemOp sgn_n, MemOp sgn_m,
5101 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5102 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5104 TCGv_i64 t0, t1, t2, qc;
5105 MemOp esz = a->esz;
5107 if (!fp_access_check(s)) {
5108 return true;
5111 t0 = tcg_temp_new_i64();
5112 t1 = tcg_temp_new_i64();
5113 t2 = tcg_temp_new_i64();
5114 qc = tcg_temp_new_i64();
5115 read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5116 read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5117 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5119 if (esz == MO_64) {
5120 gen_d(t0, qc, t1, t2);
5121 } else {
5122 gen_bhs(t0, qc, t1, t2, esz);
5123 tcg_gen_ext_i64(t0, t0, esz);
5126 write_fp_dreg(s, a->rd, t0);
5127 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5128 return true;
5131 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5132 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5133 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5134 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5135 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5136 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5138 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5139 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5141 if (fp_access_check(s)) {
5142 TCGv_i64 t0 = tcg_temp_new_i64();
5143 TCGv_i64 t1 = tcg_temp_new_i64();
5145 read_vec_element(s, t0, a->rn, 0, MO_64);
5146 read_vec_element(s, t1, a->rm, 0, MO_64);
5147 fn(t0, t0, t1);
5148 write_fp_dreg(s, a->rd, t0);
5150 return true;
5153 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5154 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5155 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5156 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5157 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5158 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5160 typedef struct ENVScalar2 {
5161 NeonGenTwoOpEnvFn *gen_bhs[3];
5162 NeonGenTwo64OpEnvFn *gen_d;
5163 } ENVScalar2;
5165 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5167 if (!fp_access_check(s)) {
5168 return true;
5170 if (a->esz == MO_64) {
5171 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5172 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5173 f->gen_d(t0, tcg_env, t0, t1);
5174 write_fp_dreg(s, a->rd, t0);
5175 } else {
5176 TCGv_i32 t0 = tcg_temp_new_i32();
5177 TCGv_i32 t1 = tcg_temp_new_i32();
5179 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5180 read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5181 f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5182 write_fp_sreg(s, a->rd, t0);
5184 return true;
5187 static const ENVScalar2 f_scalar_sqshl = {
5188 { gen_helper_neon_qshl_s8,
5189 gen_helper_neon_qshl_s16,
5190 gen_helper_neon_qshl_s32 },
5191 gen_helper_neon_qshl_s64,
5193 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5195 static const ENVScalar2 f_scalar_uqshl = {
5196 { gen_helper_neon_qshl_u8,
5197 gen_helper_neon_qshl_u16,
5198 gen_helper_neon_qshl_u32 },
5199 gen_helper_neon_qshl_u64,
5201 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5203 static const ENVScalar2 f_scalar_sqrshl = {
5204 { gen_helper_neon_qrshl_s8,
5205 gen_helper_neon_qrshl_s16,
5206 gen_helper_neon_qrshl_s32 },
5207 gen_helper_neon_qrshl_s64,
5209 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5211 static const ENVScalar2 f_scalar_uqrshl = {
5212 { gen_helper_neon_qrshl_u8,
5213 gen_helper_neon_qrshl_u16,
5214 gen_helper_neon_qrshl_u32 },
5215 gen_helper_neon_qrshl_u64,
5217 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5219 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5220 const ENVScalar2 *f)
5222 if (a->esz == MO_16 || a->esz == MO_32) {
5223 return do_env_scalar2(s, a, f);
5225 return false;
5228 static const ENVScalar2 f_scalar_sqdmulh = {
5229 { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5231 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5233 static const ENVScalar2 f_scalar_sqrdmulh = {
5234 { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5236 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5238 typedef struct ENVScalar3 {
5239 NeonGenThreeOpEnvFn *gen_hs[2];
5240 } ENVScalar3;
5242 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5243 const ENVScalar3 *f)
5245 TCGv_i32 t0, t1, t2;
5247 if (a->esz != MO_16 && a->esz != MO_32) {
5248 return false;
5250 if (!fp_access_check(s)) {
5251 return true;
5254 t0 = tcg_temp_new_i32();
5255 t1 = tcg_temp_new_i32();
5256 t2 = tcg_temp_new_i32();
5257 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5258 read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5259 read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5260 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5261 write_fp_sreg(s, a->rd, t0);
5262 return true;
5265 static const ENVScalar3 f_scalar_sqrdmlah = {
5266 { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5268 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5270 static const ENVScalar3 f_scalar_sqrdmlsh = {
5271 { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5273 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5275 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5277 if (fp_access_check(s)) {
5278 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5279 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5280 tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5281 write_fp_dreg(s, a->rd, t0);
5283 return true;
5286 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5287 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5288 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5289 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5290 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5291 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5293 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data,
5294 gen_helper_gvec_3_ptr * const fns[3])
5296 MemOp esz = a->esz;
5298 switch (esz) {
5299 case MO_64:
5300 if (!a->q) {
5301 return false;
5303 break;
5304 case MO_32:
5305 break;
5306 case MO_16:
5307 if (!dc_isar_feature(aa64_fp16, s)) {
5308 return false;
5310 break;
5311 default:
5312 return false;
5314 if (fp_access_check(s)) {
5315 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5316 esz == MO_16, data, fns[esz - 1]);
5318 return true;
5321 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5322 gen_helper_gvec_fadd_h,
5323 gen_helper_gvec_fadd_s,
5324 gen_helper_gvec_fadd_d,
5326 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd)
5328 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5329 gen_helper_gvec_fsub_h,
5330 gen_helper_gvec_fsub_s,
5331 gen_helper_gvec_fsub_d,
5333 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub)
5335 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5336 gen_helper_gvec_fdiv_h,
5337 gen_helper_gvec_fdiv_s,
5338 gen_helper_gvec_fdiv_d,
5340 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv)
5342 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5343 gen_helper_gvec_fmul_h,
5344 gen_helper_gvec_fmul_s,
5345 gen_helper_gvec_fmul_d,
5347 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul)
5349 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5350 gen_helper_gvec_fmax_h,
5351 gen_helper_gvec_fmax_s,
5352 gen_helper_gvec_fmax_d,
5354 TRANS(FMAX_v, do_fp3_vector, a, 0, f_vector_fmax)
5356 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5357 gen_helper_gvec_fmin_h,
5358 gen_helper_gvec_fmin_s,
5359 gen_helper_gvec_fmin_d,
5361 TRANS(FMIN_v, do_fp3_vector, a, 0, f_vector_fmin)
5363 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5364 gen_helper_gvec_fmaxnum_h,
5365 gen_helper_gvec_fmaxnum_s,
5366 gen_helper_gvec_fmaxnum_d,
5368 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm)
5370 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5371 gen_helper_gvec_fminnum_h,
5372 gen_helper_gvec_fminnum_s,
5373 gen_helper_gvec_fminnum_d,
5375 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm)
5377 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5378 gen_helper_gvec_fmulx_h,
5379 gen_helper_gvec_fmulx_s,
5380 gen_helper_gvec_fmulx_d,
5382 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx)
5384 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5385 gen_helper_gvec_vfma_h,
5386 gen_helper_gvec_vfma_s,
5387 gen_helper_gvec_vfma_d,
5389 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla)
5391 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5392 gen_helper_gvec_vfms_h,
5393 gen_helper_gvec_vfms_s,
5394 gen_helper_gvec_vfms_d,
5396 TRANS(FMLS_v, do_fp3_vector, a, 0, f_vector_fmls)
5398 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5399 gen_helper_gvec_fceq_h,
5400 gen_helper_gvec_fceq_s,
5401 gen_helper_gvec_fceq_d,
5403 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq)
5405 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5406 gen_helper_gvec_fcge_h,
5407 gen_helper_gvec_fcge_s,
5408 gen_helper_gvec_fcge_d,
5410 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge)
5412 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5413 gen_helper_gvec_fcgt_h,
5414 gen_helper_gvec_fcgt_s,
5415 gen_helper_gvec_fcgt_d,
5417 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt)
5419 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5420 gen_helper_gvec_facge_h,
5421 gen_helper_gvec_facge_s,
5422 gen_helper_gvec_facge_d,
5424 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge)
5426 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5427 gen_helper_gvec_facgt_h,
5428 gen_helper_gvec_facgt_s,
5429 gen_helper_gvec_facgt_d,
5431 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt)
5433 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5434 gen_helper_gvec_fabd_h,
5435 gen_helper_gvec_fabd_s,
5436 gen_helper_gvec_fabd_d,
5438 TRANS(FABD_v, do_fp3_vector, a, 0, f_vector_fabd)
5440 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5441 gen_helper_gvec_recps_h,
5442 gen_helper_gvec_recps_s,
5443 gen_helper_gvec_recps_d,
5445 TRANS(FRECPS_v, do_fp3_vector, a, 0, f_vector_frecps)
5447 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5448 gen_helper_gvec_rsqrts_h,
5449 gen_helper_gvec_rsqrts_s,
5450 gen_helper_gvec_rsqrts_d,
5452 TRANS(FRSQRTS_v, do_fp3_vector, a, 0, f_vector_frsqrts)
5454 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5455 gen_helper_gvec_faddp_h,
5456 gen_helper_gvec_faddp_s,
5457 gen_helper_gvec_faddp_d,
5459 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp)
5461 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5462 gen_helper_gvec_fmaxp_h,
5463 gen_helper_gvec_fmaxp_s,
5464 gen_helper_gvec_fmaxp_d,
5466 TRANS(FMAXP_v, do_fp3_vector, a, 0, f_vector_fmaxp)
5468 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5469 gen_helper_gvec_fminp_h,
5470 gen_helper_gvec_fminp_s,
5471 gen_helper_gvec_fminp_d,
5473 TRANS(FMINP_v, do_fp3_vector, a, 0, f_vector_fminp)
5475 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5476 gen_helper_gvec_fmaxnump_h,
5477 gen_helper_gvec_fmaxnump_s,
5478 gen_helper_gvec_fmaxnump_d,
5480 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp)
5482 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5483 gen_helper_gvec_fminnump_h,
5484 gen_helper_gvec_fminnump_s,
5485 gen_helper_gvec_fminnump_d,
5487 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp)
5489 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5491 if (fp_access_check(s)) {
5492 int data = (is_2 << 1) | is_s;
5493 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5494 vec_full_reg_offset(s, a->rn),
5495 vec_full_reg_offset(s, a->rm), tcg_env,
5496 a->q ? 16 : 8, vec_full_reg_size(s),
5497 data, gen_helper_gvec_fmlal_a64);
5499 return true;
5502 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5503 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5504 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5505 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5507 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5508 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5509 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5510 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5511 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5513 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5514 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5515 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5516 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5517 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5519 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5521 if (fp_access_check(s)) {
5522 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5524 return true;
5527 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5528 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5529 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5531 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5532 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5533 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5534 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5535 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5536 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5538 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5539 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5540 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5541 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5542 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5543 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5544 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5545 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5547 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5548 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5549 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5550 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5551 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5552 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5553 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5554 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5555 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5556 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5557 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5558 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5559 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5560 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5561 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5562 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5563 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5564 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5565 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5566 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5568 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5570 if (a->esz == MO_64 && !a->q) {
5571 return false;
5573 if (fp_access_check(s)) {
5574 tcg_gen_gvec_cmp(cond, a->esz,
5575 vec_full_reg_offset(s, a->rd),
5576 vec_full_reg_offset(s, a->rn),
5577 vec_full_reg_offset(s, a->rm),
5578 a->q ? 16 : 8, vec_full_reg_size(s));
5580 return true;
5583 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5584 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5585 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5586 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5587 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5588 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5590 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5591 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5592 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5593 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5595 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
5596 gen_helper_gvec_4 *fn)
5598 if (fp_access_check(s)) {
5599 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5601 return true;
5604 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
5605 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
5606 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
5607 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfdot)
5608 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfmmla)
5609 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b)
5610 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b)
5611 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b)
5613 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
5615 if (!dc_isar_feature(aa64_bf16, s)) {
5616 return false;
5618 if (fp_access_check(s)) {
5619 /* Q bit selects BFMLALB vs BFMLALT. */
5620 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q,
5621 gen_helper_gvec_bfmlal);
5623 return true;
5626 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = {
5627 gen_helper_gvec_fcaddh,
5628 gen_helper_gvec_fcadds,
5629 gen_helper_gvec_fcaddd,
5631 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0, f_vector_fcadd)
5632 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1, f_vector_fcadd)
5634 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a)
5636 gen_helper_gvec_4_ptr *fn;
5638 if (!dc_isar_feature(aa64_fcma, s)) {
5639 return false;
5641 switch (a->esz) {
5642 case MO_64:
5643 if (!a->q) {
5644 return false;
5646 fn = gen_helper_gvec_fcmlad;
5647 break;
5648 case MO_32:
5649 fn = gen_helper_gvec_fcmlas;
5650 break;
5651 case MO_16:
5652 if (!dc_isar_feature(aa64_fp16, s)) {
5653 return false;
5655 fn = gen_helper_gvec_fcmlah;
5656 break;
5657 default:
5658 return false;
5660 if (fp_access_check(s)) {
5661 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5662 a->esz == MO_16, a->rot, fn);
5664 return true;
5668 * Widening vector x vector/indexed.
5670 * These read from the top or bottom half of a 128-bit vector.
5671 * After widening, optionally accumulate with a 128-bit vector.
5672 * Implement these inline, as the number of elements are limited
5673 * and the related SVE and SME operations on larger vectors use
5674 * even/odd elements instead of top/bottom half.
5676 * If idx >= 0, operand 2 is indexed, otherwise vector.
5677 * If acc, operand 0 is loaded with rd.
5680 /* For low half, iterating up. */
5681 static bool do_3op_widening(DisasContext *s, MemOp memop, int top,
5682 int rd, int rn, int rm, int idx,
5683 NeonGenTwo64OpFn *fn, bool acc)
5685 TCGv_i64 tcg_op0 = tcg_temp_new_i64();
5686 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
5687 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
5688 MemOp esz = memop & MO_SIZE;
5689 int half = 8 >> esz;
5690 int top_swap, top_half;
5692 /* There are no 64x64->128 bit operations. */
5693 if (esz >= MO_64) {
5694 return false;
5696 if (!fp_access_check(s)) {
5697 return true;
5700 if (idx >= 0) {
5701 read_vec_element(s, tcg_op2, rm, idx, memop);
5705 * For top half inputs, iterate forward; backward for bottom half.
5706 * This means the store to the destination will not occur until
5707 * overlapping input inputs are consumed.
5708 * Use top_swap to conditionally invert the forward iteration index.
5710 top_swap = top ? 0 : half - 1;
5711 top_half = top ? half : 0;
5713 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
5714 int elt = elt_fwd ^ top_swap;
5716 read_vec_element(s, tcg_op1, rn, elt + top_half, memop);
5717 if (idx < 0) {
5718 read_vec_element(s, tcg_op2, rm, elt + top_half, memop);
5720 if (acc) {
5721 read_vec_element(s, tcg_op0, rd, elt, memop + 1);
5723 fn(tcg_op0, tcg_op1, tcg_op2);
5724 write_vec_element(s, tcg_op0, rd, elt, esz + 1);
5726 clear_vec_high(s, 1, rd);
5727 return true;
5730 static void gen_muladd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5732 TCGv_i64 t = tcg_temp_new_i64();
5733 tcg_gen_mul_i64(t, n, m);
5734 tcg_gen_add_i64(d, d, t);
5737 static void gen_mulsub_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5739 TCGv_i64 t = tcg_temp_new_i64();
5740 tcg_gen_mul_i64(t, n, m);
5741 tcg_gen_sub_i64(d, d, t);
5744 TRANS(SMULL_v, do_3op_widening,
5745 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5746 tcg_gen_mul_i64, false)
5747 TRANS(UMULL_v, do_3op_widening,
5748 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5749 tcg_gen_mul_i64, false)
5750 TRANS(SMLAL_v, do_3op_widening,
5751 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5752 gen_muladd_i64, true)
5753 TRANS(UMLAL_v, do_3op_widening,
5754 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5755 gen_muladd_i64, true)
5756 TRANS(SMLSL_v, do_3op_widening,
5757 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5758 gen_mulsub_i64, true)
5759 TRANS(UMLSL_v, do_3op_widening,
5760 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5761 gen_mulsub_i64, true)
5763 TRANS(SMULL_vi, do_3op_widening,
5764 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5765 tcg_gen_mul_i64, false)
5766 TRANS(UMULL_vi, do_3op_widening,
5767 a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5768 tcg_gen_mul_i64, false)
5769 TRANS(SMLAL_vi, do_3op_widening,
5770 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5771 gen_muladd_i64, true)
5772 TRANS(UMLAL_vi, do_3op_widening,
5773 a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5774 gen_muladd_i64, true)
5775 TRANS(SMLSL_vi, do_3op_widening,
5776 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5777 gen_mulsub_i64, true)
5778 TRANS(UMLSL_vi, do_3op_widening,
5779 a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5780 gen_mulsub_i64, true)
5782 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5784 TCGv_i64 t1 = tcg_temp_new_i64();
5785 TCGv_i64 t2 = tcg_temp_new_i64();
5787 tcg_gen_sub_i64(t1, n, m);
5788 tcg_gen_sub_i64(t2, m, n);
5789 tcg_gen_movcond_i64(TCG_COND_GE, d, n, m, t1, t2);
5792 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5794 TCGv_i64 t1 = tcg_temp_new_i64();
5795 TCGv_i64 t2 = tcg_temp_new_i64();
5797 tcg_gen_sub_i64(t1, n, m);
5798 tcg_gen_sub_i64(t2, m, n);
5799 tcg_gen_movcond_i64(TCG_COND_GEU, d, n, m, t1, t2);
5802 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5804 TCGv_i64 t = tcg_temp_new_i64();
5805 gen_sabd_i64(t, n, m);
5806 tcg_gen_add_i64(d, d, t);
5809 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5811 TCGv_i64 t = tcg_temp_new_i64();
5812 gen_uabd_i64(t, n, m);
5813 tcg_gen_add_i64(d, d, t);
5816 TRANS(SADDL_v, do_3op_widening,
5817 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5818 tcg_gen_add_i64, false)
5819 TRANS(UADDL_v, do_3op_widening,
5820 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5821 tcg_gen_add_i64, false)
5822 TRANS(SSUBL_v, do_3op_widening,
5823 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5824 tcg_gen_sub_i64, false)
5825 TRANS(USUBL_v, do_3op_widening,
5826 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5827 tcg_gen_sub_i64, false)
5828 TRANS(SABDL_v, do_3op_widening,
5829 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5830 gen_sabd_i64, false)
5831 TRANS(UABDL_v, do_3op_widening,
5832 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5833 gen_uabd_i64, false)
5834 TRANS(SABAL_v, do_3op_widening,
5835 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5836 gen_saba_i64, true)
5837 TRANS(UABAL_v, do_3op_widening,
5838 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5839 gen_uaba_i64, true)
5841 static void gen_sqdmull_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5843 tcg_gen_mul_i64(d, n, m);
5844 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, d);
5847 static void gen_sqdmull_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5849 tcg_gen_mul_i64(d, n, m);
5850 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, d);
5853 static void gen_sqdmlal_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5855 TCGv_i64 t = tcg_temp_new_i64();
5857 tcg_gen_mul_i64(t, n, m);
5858 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
5859 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
5862 static void gen_sqdmlal_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5864 TCGv_i64 t = tcg_temp_new_i64();
5866 tcg_gen_mul_i64(t, n, m);
5867 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
5868 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
5871 static void gen_sqdmlsl_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5873 TCGv_i64 t = tcg_temp_new_i64();
5875 tcg_gen_mul_i64(t, n, m);
5876 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
5877 tcg_gen_neg_i64(t, t);
5878 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
5881 static void gen_sqdmlsl_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5883 TCGv_i64 t = tcg_temp_new_i64();
5885 tcg_gen_mul_i64(t, n, m);
5886 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
5887 tcg_gen_neg_i64(t, t);
5888 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
5891 TRANS(SQDMULL_v, do_3op_widening,
5892 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5893 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
5894 TRANS(SQDMLAL_v, do_3op_widening,
5895 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5896 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
5897 TRANS(SQDMLSL_v, do_3op_widening,
5898 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5899 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
5901 TRANS(SQDMULL_vi, do_3op_widening,
5902 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5903 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
5904 TRANS(SQDMLAL_vi, do_3op_widening,
5905 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5906 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
5907 TRANS(SQDMLSL_vi, do_3op_widening,
5908 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5909 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
5911 static bool do_addsub_wide(DisasContext *s, arg_qrrr_e *a,
5912 MemOp sign, bool sub)
5914 TCGv_i64 tcg_op0, tcg_op1;
5915 MemOp esz = a->esz;
5916 int half = 8 >> esz;
5917 bool top = a->q;
5918 int top_swap = top ? 0 : half - 1;
5919 int top_half = top ? half : 0;
5921 /* There are no 64x64->128 bit operations. */
5922 if (esz >= MO_64) {
5923 return false;
5925 if (!fp_access_check(s)) {
5926 return true;
5928 tcg_op0 = tcg_temp_new_i64();
5929 tcg_op1 = tcg_temp_new_i64();
5931 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
5932 int elt = elt_fwd ^ top_swap;
5934 read_vec_element(s, tcg_op1, a->rm, elt + top_half, esz | sign);
5935 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
5936 if (sub) {
5937 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
5938 } else {
5939 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
5941 write_vec_element(s, tcg_op0, a->rd, elt, esz + 1);
5943 clear_vec_high(s, 1, a->rd);
5944 return true;
5947 TRANS(SADDW, do_addsub_wide, a, MO_SIGN, false)
5948 TRANS(UADDW, do_addsub_wide, a, 0, false)
5949 TRANS(SSUBW, do_addsub_wide, a, MO_SIGN, true)
5950 TRANS(USUBW, do_addsub_wide, a, 0, true)
5952 static bool do_addsub_highnarrow(DisasContext *s, arg_qrrr_e *a,
5953 bool sub, bool round)
5955 TCGv_i64 tcg_op0, tcg_op1;
5956 MemOp esz = a->esz;
5957 int half = 8 >> esz;
5958 bool top = a->q;
5959 int ebits = 8 << esz;
5960 uint64_t rbit = 1ull << (ebits - 1);
5961 int top_swap, top_half;
5963 /* There are no 128x128->64 bit operations. */
5964 if (esz >= MO_64) {
5965 return false;
5967 if (!fp_access_check(s)) {
5968 return true;
5970 tcg_op0 = tcg_temp_new_i64();
5971 tcg_op1 = tcg_temp_new_i64();
5974 * For top half inputs, iterate backward; forward for bottom half.
5975 * This means the store to the destination will not occur until
5976 * overlapping input inputs are consumed.
5978 top_swap = top ? half - 1 : 0;
5979 top_half = top ? half : 0;
5981 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
5982 int elt = elt_fwd ^ top_swap;
5984 read_vec_element(s, tcg_op1, a->rm, elt, esz + 1);
5985 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
5986 if (sub) {
5987 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
5988 } else {
5989 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
5991 if (round) {
5992 tcg_gen_addi_i64(tcg_op0, tcg_op0, rbit);
5994 tcg_gen_shri_i64(tcg_op0, tcg_op0, ebits);
5995 write_vec_element(s, tcg_op0, a->rd, elt + top_half, esz);
5997 clear_vec_high(s, top, a->rd);
5998 return true;
6001 TRANS(ADDHN, do_addsub_highnarrow, a, false, false)
6002 TRANS(SUBHN, do_addsub_highnarrow, a, true, false)
6003 TRANS(RADDHN, do_addsub_highnarrow, a, false, true)
6004 TRANS(RSUBHN, do_addsub_highnarrow, a, true, true)
6006 static bool do_pmull(DisasContext *s, arg_qrrr_e *a, gen_helper_gvec_3 *fn)
6008 if (fp_access_check(s)) {
6009 /* The Q field specifies lo/hi half input for these insns. */
6010 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->q, fn);
6012 return true;
6015 TRANS(PMULL_p8, do_pmull, a, gen_helper_neon_pmull_h)
6016 TRANS_FEAT(PMULL_p64, aa64_pmull, do_pmull, a, gen_helper_gvec_pmull_q)
6019 * Advanced SIMD scalar/vector x indexed element
6022 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
6024 switch (a->esz) {
6025 case MO_64:
6026 if (fp_access_check(s)) {
6027 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
6028 TCGv_i64 t1 = tcg_temp_new_i64();
6030 read_vec_element(s, t1, a->rm, a->idx, MO_64);
6031 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6032 write_fp_dreg(s, a->rd, t0);
6034 break;
6035 case MO_32:
6036 if (fp_access_check(s)) {
6037 TCGv_i32 t0 = read_fp_sreg(s, a->rn);
6038 TCGv_i32 t1 = tcg_temp_new_i32();
6040 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
6041 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6042 write_fp_sreg(s, a->rd, t0);
6044 break;
6045 case MO_16:
6046 if (!dc_isar_feature(aa64_fp16, s)) {
6047 return false;
6049 if (fp_access_check(s)) {
6050 TCGv_i32 t0 = read_fp_hreg(s, a->rn);
6051 TCGv_i32 t1 = tcg_temp_new_i32();
6053 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
6054 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6055 write_fp_sreg(s, a->rd, t0);
6057 break;
6058 default:
6059 g_assert_not_reached();
6061 return true;
6064 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
6065 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
6067 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
6069 switch (a->esz) {
6070 case MO_64:
6071 if (fp_access_check(s)) {
6072 TCGv_i64 t0 = read_fp_dreg(s, a->rd);
6073 TCGv_i64 t1 = read_fp_dreg(s, a->rn);
6074 TCGv_i64 t2 = tcg_temp_new_i64();
6076 read_vec_element(s, t2, a->rm, a->idx, MO_64);
6077 if (neg) {
6078 gen_vfp_negd(t1, t1);
6080 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
6081 write_fp_dreg(s, a->rd, t0);
6083 break;
6084 case MO_32:
6085 if (fp_access_check(s)) {
6086 TCGv_i32 t0 = read_fp_sreg(s, a->rd);
6087 TCGv_i32 t1 = read_fp_sreg(s, a->rn);
6088 TCGv_i32 t2 = tcg_temp_new_i32();
6090 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
6091 if (neg) {
6092 gen_vfp_negs(t1, t1);
6094 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
6095 write_fp_sreg(s, a->rd, t0);
6097 break;
6098 case MO_16:
6099 if (!dc_isar_feature(aa64_fp16, s)) {
6100 return false;
6102 if (fp_access_check(s)) {
6103 TCGv_i32 t0 = read_fp_hreg(s, a->rd);
6104 TCGv_i32 t1 = read_fp_hreg(s, a->rn);
6105 TCGv_i32 t2 = tcg_temp_new_i32();
6107 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
6108 if (neg) {
6109 gen_vfp_negh(t1, t1);
6111 gen_helper_advsimd_muladdh(t0, t1, t2, t0,
6112 fpstatus_ptr(FPST_FPCR_F16));
6113 write_fp_sreg(s, a->rd, t0);
6115 break;
6116 default:
6117 g_assert_not_reached();
6119 return true;
6122 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
6123 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
6125 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
6126 const ENVScalar2 *f)
6128 if (a->esz < MO_16 || a->esz > MO_32) {
6129 return false;
6131 if (fp_access_check(s)) {
6132 TCGv_i32 t0 = tcg_temp_new_i32();
6133 TCGv_i32 t1 = tcg_temp_new_i32();
6135 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6136 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6137 f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
6138 write_fp_sreg(s, a->rd, t0);
6140 return true;
6143 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
6144 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
6146 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
6147 const ENVScalar3 *f)
6149 if (a->esz < MO_16 || a->esz > MO_32) {
6150 return false;
6152 if (fp_access_check(s)) {
6153 TCGv_i32 t0 = tcg_temp_new_i32();
6154 TCGv_i32 t1 = tcg_temp_new_i32();
6155 TCGv_i32 t2 = tcg_temp_new_i32();
6157 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6158 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6159 read_vec_element_i32(s, t2, a->rd, 0, a->esz);
6160 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
6161 write_fp_sreg(s, a->rd, t0);
6163 return true;
6166 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
6167 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
6169 static bool do_scalar_muladd_widening_idx(DisasContext *s, arg_rrx_e *a,
6170 NeonGenTwo64OpFn *fn, bool acc)
6172 if (fp_access_check(s)) {
6173 TCGv_i64 t0 = tcg_temp_new_i64();
6174 TCGv_i64 t1 = tcg_temp_new_i64();
6175 TCGv_i64 t2 = tcg_temp_new_i64();
6176 unsigned vsz, dofs;
6178 if (acc) {
6179 read_vec_element(s, t0, a->rd, 0, a->esz + 1);
6181 read_vec_element(s, t1, a->rn, 0, a->esz | MO_SIGN);
6182 read_vec_element(s, t2, a->rm, a->idx, a->esz | MO_SIGN);
6183 fn(t0, t1, t2);
6185 /* Clear the whole register first, then store scalar. */
6186 vsz = vec_full_reg_size(s);
6187 dofs = vec_full_reg_offset(s, a->rd);
6188 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
6189 write_vec_element(s, t0, a->rd, 0, a->esz + 1);
6191 return true;
6194 TRANS(SQDMULL_si, do_scalar_muladd_widening_idx, a,
6195 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6196 TRANS(SQDMLAL_si, do_scalar_muladd_widening_idx, a,
6197 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6198 TRANS(SQDMLSL_si, do_scalar_muladd_widening_idx, a,
6199 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6201 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6202 gen_helper_gvec_3_ptr * const fns[3])
6204 MemOp esz = a->esz;
6206 switch (esz) {
6207 case MO_64:
6208 if (!a->q) {
6209 return false;
6211 break;
6212 case MO_32:
6213 break;
6214 case MO_16:
6215 if (!dc_isar_feature(aa64_fp16, s)) {
6216 return false;
6218 break;
6219 default:
6220 g_assert_not_reached();
6222 if (fp_access_check(s)) {
6223 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
6224 esz == MO_16, a->idx, fns[esz - 1]);
6226 return true;
6229 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
6230 gen_helper_gvec_fmul_idx_h,
6231 gen_helper_gvec_fmul_idx_s,
6232 gen_helper_gvec_fmul_idx_d,
6234 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
6236 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
6237 gen_helper_gvec_fmulx_idx_h,
6238 gen_helper_gvec_fmulx_idx_s,
6239 gen_helper_gvec_fmulx_idx_d,
6241 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
6243 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
6245 static gen_helper_gvec_4_ptr * const fns[3] = {
6246 gen_helper_gvec_fmla_idx_h,
6247 gen_helper_gvec_fmla_idx_s,
6248 gen_helper_gvec_fmla_idx_d,
6250 MemOp esz = a->esz;
6252 switch (esz) {
6253 case MO_64:
6254 if (!a->q) {
6255 return false;
6257 break;
6258 case MO_32:
6259 break;
6260 case MO_16:
6261 if (!dc_isar_feature(aa64_fp16, s)) {
6262 return false;
6264 break;
6265 default:
6266 g_assert_not_reached();
6268 if (fp_access_check(s)) {
6269 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6270 esz == MO_16, (a->idx << 1) | neg,
6271 fns[esz - 1]);
6273 return true;
6276 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
6277 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
6279 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
6281 if (fp_access_check(s)) {
6282 int data = (a->idx << 2) | (is_2 << 1) | is_s;
6283 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
6284 vec_full_reg_offset(s, a->rn),
6285 vec_full_reg_offset(s, a->rm), tcg_env,
6286 a->q ? 16 : 8, vec_full_reg_size(s),
6287 data, gen_helper_gvec_fmlal_idx_a64);
6289 return true;
6292 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
6293 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
6294 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
6295 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
6297 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6298 gen_helper_gvec_3 * const fns[2])
6300 assert(a->esz == MO_16 || a->esz == MO_32);
6301 if (fp_access_check(s)) {
6302 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
6304 return true;
6307 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
6308 gen_helper_gvec_mul_idx_h,
6309 gen_helper_gvec_mul_idx_s,
6311 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
6313 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
6315 static gen_helper_gvec_4 * const fns[2][2] = {
6316 { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
6317 { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
6320 assert(a->esz == MO_16 || a->esz == MO_32);
6321 if (fp_access_check(s)) {
6322 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
6323 a->idx, fns[a->esz - 1][sub]);
6325 return true;
6328 TRANS(MLA_vi, do_mla_vector_idx, a, false)
6329 TRANS(MLS_vi, do_mla_vector_idx, a, true)
6331 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
6332 gen_helper_gvec_4 * const fns[2])
6334 assert(a->esz == MO_16 || a->esz == MO_32);
6335 if (fp_access_check(s)) {
6336 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
6337 vec_full_reg_offset(s, a->rn),
6338 vec_full_reg_offset(s, a->rm),
6339 offsetof(CPUARMState, vfp.qc),
6340 a->q ? 16 : 8, vec_full_reg_size(s),
6341 a->idx, fns[a->esz - 1]);
6343 return true;
6346 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
6347 gen_helper_neon_sqdmulh_idx_h,
6348 gen_helper_neon_sqdmulh_idx_s,
6350 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
6352 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
6353 gen_helper_neon_sqrdmulh_idx_h,
6354 gen_helper_neon_sqrdmulh_idx_s,
6356 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
6358 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
6359 gen_helper_neon_sqrdmlah_idx_h,
6360 gen_helper_neon_sqrdmlah_idx_s,
6362 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6363 f_vector_idx_sqrdmlah)
6365 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
6366 gen_helper_neon_sqrdmlsh_idx_h,
6367 gen_helper_neon_sqrdmlsh_idx_s,
6369 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6370 f_vector_idx_sqrdmlsh)
6372 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
6373 gen_helper_gvec_4 *fn)
6375 if (fp_access_check(s)) {
6376 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6378 return true;
6381 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
6382 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
6383 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6384 gen_helper_gvec_sudot_idx_b)
6385 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6386 gen_helper_gvec_usdot_idx_b)
6387 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx, a,
6388 gen_helper_gvec_bfdot_idx)
6390 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
6392 if (!dc_isar_feature(aa64_bf16, s)) {
6393 return false;
6395 if (fp_access_check(s)) {
6396 /* Q bit selects BFMLALB vs BFMLALT. */
6397 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0,
6398 (a->idx << 1) | a->q,
6399 gen_helper_gvec_bfmlal_idx);
6401 return true;
6404 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a)
6406 gen_helper_gvec_4_ptr *fn;
6408 if (!dc_isar_feature(aa64_fcma, s)) {
6409 return false;
6411 switch (a->esz) {
6412 case MO_16:
6413 if (!dc_isar_feature(aa64_fp16, s)) {
6414 return false;
6416 fn = gen_helper_gvec_fcmlah_idx;
6417 break;
6418 case MO_32:
6419 fn = gen_helper_gvec_fcmlas_idx;
6420 break;
6421 default:
6422 g_assert_not_reached();
6424 if (fp_access_check(s)) {
6425 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6426 a->esz == MO_16, (a->idx << 2) | a->rot, fn);
6428 return true;
6432 * Advanced SIMD scalar pairwise
6435 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
6437 switch (a->esz) {
6438 case MO_64:
6439 if (fp_access_check(s)) {
6440 TCGv_i64 t0 = tcg_temp_new_i64();
6441 TCGv_i64 t1 = tcg_temp_new_i64();
6443 read_vec_element(s, t0, a->rn, 0, MO_64);
6444 read_vec_element(s, t1, a->rn, 1, MO_64);
6445 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6446 write_fp_dreg(s, a->rd, t0);
6448 break;
6449 case MO_32:
6450 if (fp_access_check(s)) {
6451 TCGv_i32 t0 = tcg_temp_new_i32();
6452 TCGv_i32 t1 = tcg_temp_new_i32();
6454 read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6455 read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6456 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6457 write_fp_sreg(s, a->rd, t0);
6459 break;
6460 case MO_16:
6461 if (!dc_isar_feature(aa64_fp16, s)) {
6462 return false;
6464 if (fp_access_check(s)) {
6465 TCGv_i32 t0 = tcg_temp_new_i32();
6466 TCGv_i32 t1 = tcg_temp_new_i32();
6468 read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6469 read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6470 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6471 write_fp_sreg(s, a->rd, t0);
6473 break;
6474 default:
6475 g_assert_not_reached();
6477 return true;
6480 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6481 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
6482 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
6483 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6484 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6486 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6488 if (fp_access_check(s)) {
6489 TCGv_i64 t0 = tcg_temp_new_i64();
6490 TCGv_i64 t1 = tcg_temp_new_i64();
6492 read_vec_element(s, t0, a->rn, 0, MO_64);
6493 read_vec_element(s, t1, a->rn, 1, MO_64);
6494 tcg_gen_add_i64(t0, t0, t1);
6495 write_fp_dreg(s, a->rd, t0);
6497 return true;
6501 * Floating-point conditional select
6504 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6506 TCGv_i64 t_true, t_false;
6507 DisasCompare64 c;
6509 switch (a->esz) {
6510 case MO_32:
6511 case MO_64:
6512 break;
6513 case MO_16:
6514 if (!dc_isar_feature(aa64_fp16, s)) {
6515 return false;
6517 break;
6518 default:
6519 return false;
6522 if (!fp_access_check(s)) {
6523 return true;
6526 /* Zero extend sreg & hreg inputs to 64 bits now. */
6527 t_true = tcg_temp_new_i64();
6528 t_false = tcg_temp_new_i64();
6529 read_vec_element(s, t_true, a->rn, 0, a->esz);
6530 read_vec_element(s, t_false, a->rm, 0, a->esz);
6532 a64_test_cc(&c, a->cond);
6533 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6534 t_true, t_false);
6537 * Note that sregs & hregs write back zeros to the high bits,
6538 * and we've already done the zero-extension.
6540 write_fp_dreg(s, a->rd, t_true);
6541 return true;
6545 * Floating-point data-processing (3 source)
6548 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6550 TCGv_ptr fpst;
6553 * These are fused multiply-add. Note that doing the negations here
6554 * as separate steps is correct: an input NaN should come out with
6555 * its sign bit flipped if it is a negated-input.
6557 switch (a->esz) {
6558 case MO_64:
6559 if (fp_access_check(s)) {
6560 TCGv_i64 tn = read_fp_dreg(s, a->rn);
6561 TCGv_i64 tm = read_fp_dreg(s, a->rm);
6562 TCGv_i64 ta = read_fp_dreg(s, a->ra);
6564 if (neg_a) {
6565 gen_vfp_negd(ta, ta);
6567 if (neg_n) {
6568 gen_vfp_negd(tn, tn);
6570 fpst = fpstatus_ptr(FPST_FPCR);
6571 gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6572 write_fp_dreg(s, a->rd, ta);
6574 break;
6576 case MO_32:
6577 if (fp_access_check(s)) {
6578 TCGv_i32 tn = read_fp_sreg(s, a->rn);
6579 TCGv_i32 tm = read_fp_sreg(s, a->rm);
6580 TCGv_i32 ta = read_fp_sreg(s, a->ra);
6582 if (neg_a) {
6583 gen_vfp_negs(ta, ta);
6585 if (neg_n) {
6586 gen_vfp_negs(tn, tn);
6588 fpst = fpstatus_ptr(FPST_FPCR);
6589 gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6590 write_fp_sreg(s, a->rd, ta);
6592 break;
6594 case MO_16:
6595 if (!dc_isar_feature(aa64_fp16, s)) {
6596 return false;
6598 if (fp_access_check(s)) {
6599 TCGv_i32 tn = read_fp_hreg(s, a->rn);
6600 TCGv_i32 tm = read_fp_hreg(s, a->rm);
6601 TCGv_i32 ta = read_fp_hreg(s, a->ra);
6603 if (neg_a) {
6604 gen_vfp_negh(ta, ta);
6606 if (neg_n) {
6607 gen_vfp_negh(tn, tn);
6609 fpst = fpstatus_ptr(FPST_FPCR_F16);
6610 gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6611 write_fp_sreg(s, a->rd, ta);
6613 break;
6615 default:
6616 return false;
6618 return true;
6621 TRANS(FMADD, do_fmadd, a, false, false)
6622 TRANS(FNMADD, do_fmadd, a, true, true)
6623 TRANS(FMSUB, do_fmadd, a, false, true)
6624 TRANS(FNMSUB, do_fmadd, a, true, false)
6626 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6627 * Note that it is the caller's responsibility to ensure that the
6628 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6629 * mandated semantics for out of range shifts.
6631 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6632 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6634 switch (shift_type) {
6635 case A64_SHIFT_TYPE_LSL:
6636 tcg_gen_shl_i64(dst, src, shift_amount);
6637 break;
6638 case A64_SHIFT_TYPE_LSR:
6639 tcg_gen_shr_i64(dst, src, shift_amount);
6640 break;
6641 case A64_SHIFT_TYPE_ASR:
6642 if (!sf) {
6643 tcg_gen_ext32s_i64(dst, src);
6645 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6646 break;
6647 case A64_SHIFT_TYPE_ROR:
6648 if (sf) {
6649 tcg_gen_rotr_i64(dst, src, shift_amount);
6650 } else {
6651 TCGv_i32 t0, t1;
6652 t0 = tcg_temp_new_i32();
6653 t1 = tcg_temp_new_i32();
6654 tcg_gen_extrl_i64_i32(t0, src);
6655 tcg_gen_extrl_i64_i32(t1, shift_amount);
6656 tcg_gen_rotr_i32(t0, t0, t1);
6657 tcg_gen_extu_i32_i64(dst, t0);
6659 break;
6660 default:
6661 assert(FALSE); /* all shift types should be handled */
6662 break;
6665 if (!sf) { /* zero extend final result */
6666 tcg_gen_ext32u_i64(dst, dst);
6670 /* Shift a TCGv src by immediate, put result in dst.
6671 * The shift amount must be in range (this should always be true as the
6672 * relevant instructions will UNDEF on bad shift immediates).
6674 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6675 enum a64_shift_type shift_type, unsigned int shift_i)
6677 assert(shift_i < (sf ? 64 : 32));
6679 if (shift_i == 0) {
6680 tcg_gen_mov_i64(dst, src);
6681 } else {
6682 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6686 /* Logical (shifted register)
6687 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
6688 * +----+-----+-----------+-------+---+------+--------+------+------+
6689 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
6690 * +----+-----+-----------+-------+---+------+--------+------+------+
6692 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6694 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6695 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6697 sf = extract32(insn, 31, 1);
6698 opc = extract32(insn, 29, 2);
6699 shift_type = extract32(insn, 22, 2);
6700 invert = extract32(insn, 21, 1);
6701 rm = extract32(insn, 16, 5);
6702 shift_amount = extract32(insn, 10, 6);
6703 rn = extract32(insn, 5, 5);
6704 rd = extract32(insn, 0, 5);
6706 if (!sf && (shift_amount & (1 << 5))) {
6707 unallocated_encoding(s);
6708 return;
6711 tcg_rd = cpu_reg(s, rd);
6713 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6714 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6715 * register-register MOV and MVN, so it is worth special casing.
6717 tcg_rm = cpu_reg(s, rm);
6718 if (invert) {
6719 tcg_gen_not_i64(tcg_rd, tcg_rm);
6720 if (!sf) {
6721 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6723 } else {
6724 if (sf) {
6725 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6726 } else {
6727 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6730 return;
6733 tcg_rm = read_cpu_reg(s, rm, sf);
6735 if (shift_amount) {
6736 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6739 tcg_rn = cpu_reg(s, rn);
6741 switch (opc | (invert << 2)) {
6742 case 0: /* AND */
6743 case 3: /* ANDS */
6744 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6745 break;
6746 case 1: /* ORR */
6747 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6748 break;
6749 case 2: /* EOR */
6750 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6751 break;
6752 case 4: /* BIC */
6753 case 7: /* BICS */
6754 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6755 break;
6756 case 5: /* ORN */
6757 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6758 break;
6759 case 6: /* EON */
6760 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6761 break;
6762 default:
6763 assert(FALSE);
6764 break;
6767 if (!sf) {
6768 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6771 if (opc == 3) {
6772 gen_logic_CC(sf, tcg_rd);
6777 * Add/subtract (extended register)
6779 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
6780 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6781 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
6782 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6784 * sf: 0 -> 32bit, 1 -> 64bit
6785 * op: 0 -> add , 1 -> sub
6786 * S: 1 -> set flags
6787 * opt: 00
6788 * option: extension type (see DecodeRegExtend)
6789 * imm3: optional shift to Rm
6791 * Rd = Rn + LSL(extend(Rm), amount)
6793 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6795 int rd = extract32(insn, 0, 5);
6796 int rn = extract32(insn, 5, 5);
6797 int imm3 = extract32(insn, 10, 3);
6798 int option = extract32(insn, 13, 3);
6799 int rm = extract32(insn, 16, 5);
6800 int opt = extract32(insn, 22, 2);
6801 bool setflags = extract32(insn, 29, 1);
6802 bool sub_op = extract32(insn, 30, 1);
6803 bool sf = extract32(insn, 31, 1);
6805 TCGv_i64 tcg_rm, tcg_rn; /* temps */
6806 TCGv_i64 tcg_rd;
6807 TCGv_i64 tcg_result;
6809 if (imm3 > 4 || opt != 0) {
6810 unallocated_encoding(s);
6811 return;
6814 /* non-flag setting ops may use SP */
6815 if (!setflags) {
6816 tcg_rd = cpu_reg_sp(s, rd);
6817 } else {
6818 tcg_rd = cpu_reg(s, rd);
6820 tcg_rn = read_cpu_reg_sp(s, rn, sf);
6822 tcg_rm = read_cpu_reg(s, rm, sf);
6823 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6825 tcg_result = tcg_temp_new_i64();
6827 if (!setflags) {
6828 if (sub_op) {
6829 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6830 } else {
6831 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6833 } else {
6834 if (sub_op) {
6835 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6836 } else {
6837 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6841 if (sf) {
6842 tcg_gen_mov_i64(tcg_rd, tcg_result);
6843 } else {
6844 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6849 * Add/subtract (shifted register)
6851 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
6852 * +--+--+--+-----------+-----+--+-------+---------+------+------+
6853 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
6854 * +--+--+--+-----------+-----+--+-------+---------+------+------+
6856 * sf: 0 -> 32bit, 1 -> 64bit
6857 * op: 0 -> add , 1 -> sub
6858 * S: 1 -> set flags
6859 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6860 * imm6: Shift amount to apply to Rm before the add/sub
6862 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6864 int rd = extract32(insn, 0, 5);
6865 int rn = extract32(insn, 5, 5);
6866 int imm6 = extract32(insn, 10, 6);
6867 int rm = extract32(insn, 16, 5);
6868 int shift_type = extract32(insn, 22, 2);
6869 bool setflags = extract32(insn, 29, 1);
6870 bool sub_op = extract32(insn, 30, 1);
6871 bool sf = extract32(insn, 31, 1);
6873 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6874 TCGv_i64 tcg_rn, tcg_rm;
6875 TCGv_i64 tcg_result;
6877 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6878 unallocated_encoding(s);
6879 return;
6882 tcg_rn = read_cpu_reg(s, rn, sf);
6883 tcg_rm = read_cpu_reg(s, rm, sf);
6885 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6887 tcg_result = tcg_temp_new_i64();
6889 if (!setflags) {
6890 if (sub_op) {
6891 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6892 } else {
6893 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6895 } else {
6896 if (sub_op) {
6897 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6898 } else {
6899 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6903 if (sf) {
6904 tcg_gen_mov_i64(tcg_rd, tcg_result);
6905 } else {
6906 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6910 /* Data-processing (3 source)
6912 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
6913 * +--+------+-----------+------+------+----+------+------+------+
6914 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
6915 * +--+------+-----------+------+------+----+------+------+------+
6917 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6919 int rd = extract32(insn, 0, 5);
6920 int rn = extract32(insn, 5, 5);
6921 int ra = extract32(insn, 10, 5);
6922 int rm = extract32(insn, 16, 5);
6923 int op_id = (extract32(insn, 29, 3) << 4) |
6924 (extract32(insn, 21, 3) << 1) |
6925 extract32(insn, 15, 1);
6926 bool sf = extract32(insn, 31, 1);
6927 bool is_sub = extract32(op_id, 0, 1);
6928 bool is_high = extract32(op_id, 2, 1);
6929 bool is_signed = false;
6930 TCGv_i64 tcg_op1;
6931 TCGv_i64 tcg_op2;
6932 TCGv_i64 tcg_tmp;
6934 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6935 switch (op_id) {
6936 case 0x42: /* SMADDL */
6937 case 0x43: /* SMSUBL */
6938 case 0x44: /* SMULH */
6939 is_signed = true;
6940 break;
6941 case 0x0: /* MADD (32bit) */
6942 case 0x1: /* MSUB (32bit) */
6943 case 0x40: /* MADD (64bit) */
6944 case 0x41: /* MSUB (64bit) */
6945 case 0x4a: /* UMADDL */
6946 case 0x4b: /* UMSUBL */
6947 case 0x4c: /* UMULH */
6948 break;
6949 default:
6950 unallocated_encoding(s);
6951 return;
6954 if (is_high) {
6955 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6956 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6957 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6958 TCGv_i64 tcg_rm = cpu_reg(s, rm);
6960 if (is_signed) {
6961 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6962 } else {
6963 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6965 return;
6968 tcg_op1 = tcg_temp_new_i64();
6969 tcg_op2 = tcg_temp_new_i64();
6970 tcg_tmp = tcg_temp_new_i64();
6972 if (op_id < 0x42) {
6973 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6974 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6975 } else {
6976 if (is_signed) {
6977 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6978 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6979 } else {
6980 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6981 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6985 if (ra == 31 && !is_sub) {
6986 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6987 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6988 } else {
6989 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6990 if (is_sub) {
6991 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6992 } else {
6993 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6997 if (!sf) {
6998 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
7002 /* Add/subtract (with carry)
7003 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
7004 * +--+--+--+------------------------+------+-------------+------+-----+
7005 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
7006 * +--+--+--+------------------------+------+-------------+------+-----+
7009 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
7011 unsigned int sf, op, setflags, rm, rn, rd;
7012 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
7014 sf = extract32(insn, 31, 1);
7015 op = extract32(insn, 30, 1);
7016 setflags = extract32(insn, 29, 1);
7017 rm = extract32(insn, 16, 5);
7018 rn = extract32(insn, 5, 5);
7019 rd = extract32(insn, 0, 5);
7021 tcg_rd = cpu_reg(s, rd);
7022 tcg_rn = cpu_reg(s, rn);
7024 if (op) {
7025 tcg_y = tcg_temp_new_i64();
7026 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
7027 } else {
7028 tcg_y = cpu_reg(s, rm);
7031 if (setflags) {
7032 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
7033 } else {
7034 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
7039 * Rotate right into flags
7040 * 31 30 29 21 15 10 5 4 0
7041 * +--+--+--+-----------------+--------+-----------+------+--+------+
7042 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
7043 * +--+--+--+-----------------+--------+-----------+------+--+------+
7045 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
7047 int mask = extract32(insn, 0, 4);
7048 int o2 = extract32(insn, 4, 1);
7049 int rn = extract32(insn, 5, 5);
7050 int imm6 = extract32(insn, 15, 6);
7051 int sf_op_s = extract32(insn, 29, 3);
7052 TCGv_i64 tcg_rn;
7053 TCGv_i32 nzcv;
7055 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
7056 unallocated_encoding(s);
7057 return;
7060 tcg_rn = read_cpu_reg(s, rn, 1);
7061 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
7063 nzcv = tcg_temp_new_i32();
7064 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
7066 if (mask & 8) { /* N */
7067 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
7069 if (mask & 4) { /* Z */
7070 tcg_gen_not_i32(cpu_ZF, nzcv);
7071 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
7073 if (mask & 2) { /* C */
7074 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
7076 if (mask & 1) { /* V */
7077 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
7082 * Evaluate into flags
7083 * 31 30 29 21 15 14 10 5 4 0
7084 * +--+--+--+-----------------+---------+----+---------+------+--+------+
7085 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
7086 * +--+--+--+-----------------+---------+----+---------+------+--+------+
7088 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
7090 int o3_mask = extract32(insn, 0, 5);
7091 int rn = extract32(insn, 5, 5);
7092 int o2 = extract32(insn, 15, 6);
7093 int sz = extract32(insn, 14, 1);
7094 int sf_op_s = extract32(insn, 29, 3);
7095 TCGv_i32 tmp;
7096 int shift;
7098 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
7099 !dc_isar_feature(aa64_condm_4, s)) {
7100 unallocated_encoding(s);
7101 return;
7103 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
7105 tmp = tcg_temp_new_i32();
7106 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
7107 tcg_gen_shli_i32(cpu_NF, tmp, shift);
7108 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
7109 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
7110 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
7113 /* Conditional compare (immediate / register)
7114 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
7115 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
7116 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
7117 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
7118 * [1] y [0] [0]
7120 static void disas_cc(DisasContext *s, uint32_t insn)
7122 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
7123 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
7124 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
7125 DisasCompare c;
7127 if (!extract32(insn, 29, 1)) {
7128 unallocated_encoding(s);
7129 return;
7131 if (insn & (1 << 10 | 1 << 4)) {
7132 unallocated_encoding(s);
7133 return;
7135 sf = extract32(insn, 31, 1);
7136 op = extract32(insn, 30, 1);
7137 is_imm = extract32(insn, 11, 1);
7138 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
7139 cond = extract32(insn, 12, 4);
7140 rn = extract32(insn, 5, 5);
7141 nzcv = extract32(insn, 0, 4);
7143 /* Set T0 = !COND. */
7144 tcg_t0 = tcg_temp_new_i32();
7145 arm_test_cc(&c, cond);
7146 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
7148 /* Load the arguments for the new comparison. */
7149 if (is_imm) {
7150 tcg_y = tcg_temp_new_i64();
7151 tcg_gen_movi_i64(tcg_y, y);
7152 } else {
7153 tcg_y = cpu_reg(s, y);
7155 tcg_rn = cpu_reg(s, rn);
7157 /* Set the flags for the new comparison. */
7158 tcg_tmp = tcg_temp_new_i64();
7159 if (op) {
7160 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
7161 } else {
7162 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
7165 /* If COND was false, force the flags to #nzcv. Compute two masks
7166 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
7167 * For tcg hosts that support ANDC, we can make do with just T1.
7168 * In either case, allow the tcg optimizer to delete any unused mask.
7170 tcg_t1 = tcg_temp_new_i32();
7171 tcg_t2 = tcg_temp_new_i32();
7172 tcg_gen_neg_i32(tcg_t1, tcg_t0);
7173 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
7175 if (nzcv & 8) { /* N */
7176 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
7177 } else {
7178 if (TCG_TARGET_HAS_andc_i32) {
7179 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
7180 } else {
7181 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
7184 if (nzcv & 4) { /* Z */
7185 if (TCG_TARGET_HAS_andc_i32) {
7186 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
7187 } else {
7188 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
7190 } else {
7191 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
7193 if (nzcv & 2) { /* C */
7194 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
7195 } else {
7196 if (TCG_TARGET_HAS_andc_i32) {
7197 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
7198 } else {
7199 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
7202 if (nzcv & 1) { /* V */
7203 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
7204 } else {
7205 if (TCG_TARGET_HAS_andc_i32) {
7206 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
7207 } else {
7208 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
7213 /* Conditional select
7214 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
7215 * +----+----+---+-----------------+------+------+-----+------+------+
7216 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
7217 * +----+----+---+-----------------+------+------+-----+------+------+
7219 static void disas_cond_select(DisasContext *s, uint32_t insn)
7221 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
7222 TCGv_i64 tcg_rd, zero;
7223 DisasCompare64 c;
7225 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
7226 /* S == 1 or op2<1> == 1 */
7227 unallocated_encoding(s);
7228 return;
7230 sf = extract32(insn, 31, 1);
7231 else_inv = extract32(insn, 30, 1);
7232 rm = extract32(insn, 16, 5);
7233 cond = extract32(insn, 12, 4);
7234 else_inc = extract32(insn, 10, 1);
7235 rn = extract32(insn, 5, 5);
7236 rd = extract32(insn, 0, 5);
7238 tcg_rd = cpu_reg(s, rd);
7240 a64_test_cc(&c, cond);
7241 zero = tcg_constant_i64(0);
7243 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
7244 /* CSET & CSETM. */
7245 if (else_inv) {
7246 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
7247 tcg_rd, c.value, zero);
7248 } else {
7249 tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
7250 tcg_rd, c.value, zero);
7252 } else {
7253 TCGv_i64 t_true = cpu_reg(s, rn);
7254 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
7255 if (else_inv && else_inc) {
7256 tcg_gen_neg_i64(t_false, t_false);
7257 } else if (else_inv) {
7258 tcg_gen_not_i64(t_false, t_false);
7259 } else if (else_inc) {
7260 tcg_gen_addi_i64(t_false, t_false, 1);
7262 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
7265 if (!sf) {
7266 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7270 static void handle_clz(DisasContext *s, unsigned int sf,
7271 unsigned int rn, unsigned int rd)
7273 TCGv_i64 tcg_rd, tcg_rn;
7274 tcg_rd = cpu_reg(s, rd);
7275 tcg_rn = cpu_reg(s, rn);
7277 if (sf) {
7278 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
7279 } else {
7280 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
7281 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
7282 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
7283 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
7287 static void handle_cls(DisasContext *s, unsigned int sf,
7288 unsigned int rn, unsigned int rd)
7290 TCGv_i64 tcg_rd, tcg_rn;
7291 tcg_rd = cpu_reg(s, rd);
7292 tcg_rn = cpu_reg(s, rn);
7294 if (sf) {
7295 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
7296 } else {
7297 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
7298 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
7299 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
7300 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
7304 static void handle_rbit(DisasContext *s, unsigned int sf,
7305 unsigned int rn, unsigned int rd)
7307 TCGv_i64 tcg_rd, tcg_rn;
7308 tcg_rd = cpu_reg(s, rd);
7309 tcg_rn = cpu_reg(s, rn);
7311 if (sf) {
7312 gen_helper_rbit64(tcg_rd, tcg_rn);
7313 } else {
7314 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
7315 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
7316 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
7317 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
7321 /* REV with sf==1, opcode==3 ("REV64") */
7322 static void handle_rev64(DisasContext *s, unsigned int sf,
7323 unsigned int rn, unsigned int rd)
7325 if (!sf) {
7326 unallocated_encoding(s);
7327 return;
7329 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
7332 /* REV with sf==0, opcode==2
7333 * REV32 (sf==1, opcode==2)
7335 static void handle_rev32(DisasContext *s, unsigned int sf,
7336 unsigned int rn, unsigned int rd)
7338 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7339 TCGv_i64 tcg_rn = cpu_reg(s, rn);
7341 if (sf) {
7342 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
7343 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
7344 } else {
7345 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
7349 /* REV16 (opcode==1) */
7350 static void handle_rev16(DisasContext *s, unsigned int sf,
7351 unsigned int rn, unsigned int rd)
7353 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7354 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7355 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7356 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
7358 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
7359 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
7360 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
7361 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
7362 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
7365 /* Data-processing (1 source)
7366 * 31 30 29 28 21 20 16 15 10 9 5 4 0
7367 * +----+---+---+-----------------+---------+--------+------+------+
7368 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
7369 * +----+---+---+-----------------+---------+--------+------+------+
7371 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
7373 unsigned int sf, opcode, opcode2, rn, rd;
7374 TCGv_i64 tcg_rd;
7376 if (extract32(insn, 29, 1)) {
7377 unallocated_encoding(s);
7378 return;
7381 sf = extract32(insn, 31, 1);
7382 opcode = extract32(insn, 10, 6);
7383 opcode2 = extract32(insn, 16, 5);
7384 rn = extract32(insn, 5, 5);
7385 rd = extract32(insn, 0, 5);
7387 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
7389 switch (MAP(sf, opcode2, opcode)) {
7390 case MAP(0, 0x00, 0x00): /* RBIT */
7391 case MAP(1, 0x00, 0x00):
7392 handle_rbit(s, sf, rn, rd);
7393 break;
7394 case MAP(0, 0x00, 0x01): /* REV16 */
7395 case MAP(1, 0x00, 0x01):
7396 handle_rev16(s, sf, rn, rd);
7397 break;
7398 case MAP(0, 0x00, 0x02): /* REV/REV32 */
7399 case MAP(1, 0x00, 0x02):
7400 handle_rev32(s, sf, rn, rd);
7401 break;
7402 case MAP(1, 0x00, 0x03): /* REV64 */
7403 handle_rev64(s, sf, rn, rd);
7404 break;
7405 case MAP(0, 0x00, 0x04): /* CLZ */
7406 case MAP(1, 0x00, 0x04):
7407 handle_clz(s, sf, rn, rd);
7408 break;
7409 case MAP(0, 0x00, 0x05): /* CLS */
7410 case MAP(1, 0x00, 0x05):
7411 handle_cls(s, sf, rn, rd);
7412 break;
7413 case MAP(1, 0x01, 0x00): /* PACIA */
7414 if (s->pauth_active) {
7415 tcg_rd = cpu_reg(s, rd);
7416 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7417 } else if (!dc_isar_feature(aa64_pauth, s)) {
7418 goto do_unallocated;
7420 break;
7421 case MAP(1, 0x01, 0x01): /* PACIB */
7422 if (s->pauth_active) {
7423 tcg_rd = cpu_reg(s, rd);
7424 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7425 } else if (!dc_isar_feature(aa64_pauth, s)) {
7426 goto do_unallocated;
7428 break;
7429 case MAP(1, 0x01, 0x02): /* PACDA */
7430 if (s->pauth_active) {
7431 tcg_rd = cpu_reg(s, rd);
7432 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7433 } else if (!dc_isar_feature(aa64_pauth, s)) {
7434 goto do_unallocated;
7436 break;
7437 case MAP(1, 0x01, 0x03): /* PACDB */
7438 if (s->pauth_active) {
7439 tcg_rd = cpu_reg(s, rd);
7440 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7441 } else if (!dc_isar_feature(aa64_pauth, s)) {
7442 goto do_unallocated;
7444 break;
7445 case MAP(1, 0x01, 0x04): /* AUTIA */
7446 if (s->pauth_active) {
7447 tcg_rd = cpu_reg(s, rd);
7448 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7449 } else if (!dc_isar_feature(aa64_pauth, s)) {
7450 goto do_unallocated;
7452 break;
7453 case MAP(1, 0x01, 0x05): /* AUTIB */
7454 if (s->pauth_active) {
7455 tcg_rd = cpu_reg(s, rd);
7456 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7457 } else if (!dc_isar_feature(aa64_pauth, s)) {
7458 goto do_unallocated;
7460 break;
7461 case MAP(1, 0x01, 0x06): /* AUTDA */
7462 if (s->pauth_active) {
7463 tcg_rd = cpu_reg(s, rd);
7464 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7465 } else if (!dc_isar_feature(aa64_pauth, s)) {
7466 goto do_unallocated;
7468 break;
7469 case MAP(1, 0x01, 0x07): /* AUTDB */
7470 if (s->pauth_active) {
7471 tcg_rd = cpu_reg(s, rd);
7472 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7473 } else if (!dc_isar_feature(aa64_pauth, s)) {
7474 goto do_unallocated;
7476 break;
7477 case MAP(1, 0x01, 0x08): /* PACIZA */
7478 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7479 goto do_unallocated;
7480 } else if (s->pauth_active) {
7481 tcg_rd = cpu_reg(s, rd);
7482 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7484 break;
7485 case MAP(1, 0x01, 0x09): /* PACIZB */
7486 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7487 goto do_unallocated;
7488 } else if (s->pauth_active) {
7489 tcg_rd = cpu_reg(s, rd);
7490 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7492 break;
7493 case MAP(1, 0x01, 0x0a): /* PACDZA */
7494 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7495 goto do_unallocated;
7496 } else if (s->pauth_active) {
7497 tcg_rd = cpu_reg(s, rd);
7498 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7500 break;
7501 case MAP(1, 0x01, 0x0b): /* PACDZB */
7502 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7503 goto do_unallocated;
7504 } else if (s->pauth_active) {
7505 tcg_rd = cpu_reg(s, rd);
7506 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7508 break;
7509 case MAP(1, 0x01, 0x0c): /* AUTIZA */
7510 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7511 goto do_unallocated;
7512 } else if (s->pauth_active) {
7513 tcg_rd = cpu_reg(s, rd);
7514 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7516 break;
7517 case MAP(1, 0x01, 0x0d): /* AUTIZB */
7518 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7519 goto do_unallocated;
7520 } else if (s->pauth_active) {
7521 tcg_rd = cpu_reg(s, rd);
7522 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7524 break;
7525 case MAP(1, 0x01, 0x0e): /* AUTDZA */
7526 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7527 goto do_unallocated;
7528 } else if (s->pauth_active) {
7529 tcg_rd = cpu_reg(s, rd);
7530 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7532 break;
7533 case MAP(1, 0x01, 0x0f): /* AUTDZB */
7534 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7535 goto do_unallocated;
7536 } else if (s->pauth_active) {
7537 tcg_rd = cpu_reg(s, rd);
7538 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7540 break;
7541 case MAP(1, 0x01, 0x10): /* XPACI */
7542 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7543 goto do_unallocated;
7544 } else if (s->pauth_active) {
7545 tcg_rd = cpu_reg(s, rd);
7546 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
7548 break;
7549 case MAP(1, 0x01, 0x11): /* XPACD */
7550 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7551 goto do_unallocated;
7552 } else if (s->pauth_active) {
7553 tcg_rd = cpu_reg(s, rd);
7554 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
7556 break;
7557 default:
7558 do_unallocated:
7559 unallocated_encoding(s);
7560 break;
7563 #undef MAP
7566 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
7567 unsigned int rm, unsigned int rn, unsigned int rd)
7569 TCGv_i64 tcg_n, tcg_m, tcg_rd;
7570 tcg_rd = cpu_reg(s, rd);
7572 if (!sf && is_signed) {
7573 tcg_n = tcg_temp_new_i64();
7574 tcg_m = tcg_temp_new_i64();
7575 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
7576 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
7577 } else {
7578 tcg_n = read_cpu_reg(s, rn, sf);
7579 tcg_m = read_cpu_reg(s, rm, sf);
7582 if (is_signed) {
7583 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7584 } else {
7585 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7588 if (!sf) { /* zero extend final result */
7589 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7593 /* LSLV, LSRV, ASRV, RORV */
7594 static void handle_shift_reg(DisasContext *s,
7595 enum a64_shift_type shift_type, unsigned int sf,
7596 unsigned int rm, unsigned int rn, unsigned int rd)
7598 TCGv_i64 tcg_shift = tcg_temp_new_i64();
7599 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7600 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7602 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7603 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7606 /* CRC32[BHWX], CRC32C[BHWX] */
7607 static void handle_crc32(DisasContext *s,
7608 unsigned int sf, unsigned int sz, bool crc32c,
7609 unsigned int rm, unsigned int rn, unsigned int rd)
7611 TCGv_i64 tcg_acc, tcg_val;
7612 TCGv_i32 tcg_bytes;
7614 if (!dc_isar_feature(aa64_crc32, s)
7615 || (sf == 1 && sz != 3)
7616 || (sf == 0 && sz == 3)) {
7617 unallocated_encoding(s);
7618 return;
7621 if (sz == 3) {
7622 tcg_val = cpu_reg(s, rm);
7623 } else {
7624 uint64_t mask;
7625 switch (sz) {
7626 case 0:
7627 mask = 0xFF;
7628 break;
7629 case 1:
7630 mask = 0xFFFF;
7631 break;
7632 case 2:
7633 mask = 0xFFFFFFFF;
7634 break;
7635 default:
7636 g_assert_not_reached();
7638 tcg_val = tcg_temp_new_i64();
7639 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7642 tcg_acc = cpu_reg(s, rn);
7643 tcg_bytes = tcg_constant_i32(1 << sz);
7645 if (crc32c) {
7646 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7647 } else {
7648 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7652 /* Data-processing (2 source)
7653 * 31 30 29 28 21 20 16 15 10 9 5 4 0
7654 * +----+---+---+-----------------+------+--------+------+------+
7655 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
7656 * +----+---+---+-----------------+------+--------+------+------+
7658 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7660 unsigned int sf, rm, opcode, rn, rd, setflag;
7661 sf = extract32(insn, 31, 1);
7662 setflag = extract32(insn, 29, 1);
7663 rm = extract32(insn, 16, 5);
7664 opcode = extract32(insn, 10, 6);
7665 rn = extract32(insn, 5, 5);
7666 rd = extract32(insn, 0, 5);
7668 if (setflag && opcode != 0) {
7669 unallocated_encoding(s);
7670 return;
7673 switch (opcode) {
7674 case 0: /* SUBP(S) */
7675 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7676 goto do_unallocated;
7677 } else {
7678 TCGv_i64 tcg_n, tcg_m, tcg_d;
7680 tcg_n = read_cpu_reg_sp(s, rn, true);
7681 tcg_m = read_cpu_reg_sp(s, rm, true);
7682 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7683 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7684 tcg_d = cpu_reg(s, rd);
7686 if (setflag) {
7687 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7688 } else {
7689 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7692 break;
7693 case 2: /* UDIV */
7694 handle_div(s, false, sf, rm, rn, rd);
7695 break;
7696 case 3: /* SDIV */
7697 handle_div(s, true, sf, rm, rn, rd);
7698 break;
7699 case 4: /* IRG */
7700 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7701 goto do_unallocated;
7703 if (s->ata[0]) {
7704 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7705 cpu_reg_sp(s, rn), cpu_reg(s, rm));
7706 } else {
7707 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7708 cpu_reg_sp(s, rn));
7710 break;
7711 case 5: /* GMI */
7712 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7713 goto do_unallocated;
7714 } else {
7715 TCGv_i64 t = tcg_temp_new_i64();
7717 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7718 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7719 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7721 break;
7722 case 8: /* LSLV */
7723 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7724 break;
7725 case 9: /* LSRV */
7726 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7727 break;
7728 case 10: /* ASRV */
7729 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7730 break;
7731 case 11: /* RORV */
7732 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7733 break;
7734 case 12: /* PACGA */
7735 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7736 goto do_unallocated;
7738 gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7739 cpu_reg(s, rn), cpu_reg_sp(s, rm));
7740 break;
7741 case 16:
7742 case 17:
7743 case 18:
7744 case 19:
7745 case 20:
7746 case 21:
7747 case 22:
7748 case 23: /* CRC32 */
7750 int sz = extract32(opcode, 0, 2);
7751 bool crc32c = extract32(opcode, 2, 1);
7752 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7753 break;
7755 default:
7756 do_unallocated:
7757 unallocated_encoding(s);
7758 break;
7763 * Data processing - register
7764 * 31 30 29 28 25 21 20 16 10 0
7765 * +--+---+--+---+-------+-----+-------+-------+---------+
7766 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
7767 * +--+---+--+---+-------+-----+-------+-------+---------+
7769 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7771 int op0 = extract32(insn, 30, 1);
7772 int op1 = extract32(insn, 28, 1);
7773 int op2 = extract32(insn, 21, 4);
7774 int op3 = extract32(insn, 10, 6);
7776 if (!op1) {
7777 if (op2 & 8) {
7778 if (op2 & 1) {
7779 /* Add/sub (extended register) */
7780 disas_add_sub_ext_reg(s, insn);
7781 } else {
7782 /* Add/sub (shifted register) */
7783 disas_add_sub_reg(s, insn);
7785 } else {
7786 /* Logical (shifted register) */
7787 disas_logic_reg(s, insn);
7789 return;
7792 switch (op2) {
7793 case 0x0:
7794 switch (op3) {
7795 case 0x00: /* Add/subtract (with carry) */
7796 disas_adc_sbc(s, insn);
7797 break;
7799 case 0x01: /* Rotate right into flags */
7800 case 0x21:
7801 disas_rotate_right_into_flags(s, insn);
7802 break;
7804 case 0x02: /* Evaluate into flags */
7805 case 0x12:
7806 case 0x22:
7807 case 0x32:
7808 disas_evaluate_into_flags(s, insn);
7809 break;
7811 default:
7812 goto do_unallocated;
7814 break;
7816 case 0x2: /* Conditional compare */
7817 disas_cc(s, insn); /* both imm and reg forms */
7818 break;
7820 case 0x4: /* Conditional select */
7821 disas_cond_select(s, insn);
7822 break;
7824 case 0x6: /* Data-processing */
7825 if (op0) { /* (1 source) */
7826 disas_data_proc_1src(s, insn);
7827 } else { /* (2 source) */
7828 disas_data_proc_2src(s, insn);
7830 break;
7831 case 0x8 ... 0xf: /* (3 source) */
7832 disas_data_proc_3src(s, insn);
7833 break;
7835 default:
7836 do_unallocated:
7837 unallocated_encoding(s);
7838 break;
7842 static void handle_fp_compare(DisasContext *s, int size,
7843 unsigned int rn, unsigned int rm,
7844 bool cmp_with_zero, bool signal_all_nans)
7846 TCGv_i64 tcg_flags = tcg_temp_new_i64();
7847 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7849 if (size == MO_64) {
7850 TCGv_i64 tcg_vn, tcg_vm;
7852 tcg_vn = read_fp_dreg(s, rn);
7853 if (cmp_with_zero) {
7854 tcg_vm = tcg_constant_i64(0);
7855 } else {
7856 tcg_vm = read_fp_dreg(s, rm);
7858 if (signal_all_nans) {
7859 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7860 } else {
7861 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7863 } else {
7864 TCGv_i32 tcg_vn = tcg_temp_new_i32();
7865 TCGv_i32 tcg_vm = tcg_temp_new_i32();
7867 read_vec_element_i32(s, tcg_vn, rn, 0, size);
7868 if (cmp_with_zero) {
7869 tcg_gen_movi_i32(tcg_vm, 0);
7870 } else {
7871 read_vec_element_i32(s, tcg_vm, rm, 0, size);
7874 switch (size) {
7875 case MO_32:
7876 if (signal_all_nans) {
7877 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7878 } else {
7879 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7881 break;
7882 case MO_16:
7883 if (signal_all_nans) {
7884 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7885 } else {
7886 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7888 break;
7889 default:
7890 g_assert_not_reached();
7894 gen_set_nzcv(tcg_flags);
7897 /* Floating point compare
7898 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
7899 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7900 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
7901 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7903 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7905 unsigned int mos, type, rm, op, rn, opc, op2r;
7906 int size;
7908 mos = extract32(insn, 29, 3);
7909 type = extract32(insn, 22, 2);
7910 rm = extract32(insn, 16, 5);
7911 op = extract32(insn, 14, 2);
7912 rn = extract32(insn, 5, 5);
7913 opc = extract32(insn, 3, 2);
7914 op2r = extract32(insn, 0, 3);
7916 if (mos || op || op2r) {
7917 unallocated_encoding(s);
7918 return;
7921 switch (type) {
7922 case 0:
7923 size = MO_32;
7924 break;
7925 case 1:
7926 size = MO_64;
7927 break;
7928 case 3:
7929 size = MO_16;
7930 if (dc_isar_feature(aa64_fp16, s)) {
7931 break;
7933 /* fallthru */
7934 default:
7935 unallocated_encoding(s);
7936 return;
7939 if (!fp_access_check(s)) {
7940 return;
7943 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7946 /* Floating point conditional compare
7947 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
7948 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7949 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
7950 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7952 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7954 unsigned int mos, type, rm, cond, rn, op, nzcv;
7955 TCGLabel *label_continue = NULL;
7956 int size;
7958 mos = extract32(insn, 29, 3);
7959 type = extract32(insn, 22, 2);
7960 rm = extract32(insn, 16, 5);
7961 cond = extract32(insn, 12, 4);
7962 rn = extract32(insn, 5, 5);
7963 op = extract32(insn, 4, 1);
7964 nzcv = extract32(insn, 0, 4);
7966 if (mos) {
7967 unallocated_encoding(s);
7968 return;
7971 switch (type) {
7972 case 0:
7973 size = MO_32;
7974 break;
7975 case 1:
7976 size = MO_64;
7977 break;
7978 case 3:
7979 size = MO_16;
7980 if (dc_isar_feature(aa64_fp16, s)) {
7981 break;
7983 /* fallthru */
7984 default:
7985 unallocated_encoding(s);
7986 return;
7989 if (!fp_access_check(s)) {
7990 return;
7993 if (cond < 0x0e) { /* not always */
7994 TCGLabel *label_match = gen_new_label();
7995 label_continue = gen_new_label();
7996 arm_gen_test_cc(cond, label_match);
7997 /* nomatch: */
7998 gen_set_nzcv(tcg_constant_i64(nzcv << 28));
7999 tcg_gen_br(label_continue);
8000 gen_set_label(label_match);
8003 handle_fp_compare(s, size, rn, rm, false, op);
8005 if (cond < 0x0e) {
8006 gen_set_label(label_continue);
8010 /* Floating-point data-processing (1 source) - half precision */
8011 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
8013 TCGv_ptr fpst = NULL;
8014 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
8015 TCGv_i32 tcg_res = tcg_temp_new_i32();
8017 switch (opcode) {
8018 case 0x0: /* FMOV */
8019 tcg_gen_mov_i32(tcg_res, tcg_op);
8020 break;
8021 case 0x1: /* FABS */
8022 gen_vfp_absh(tcg_res, tcg_op);
8023 break;
8024 case 0x2: /* FNEG */
8025 gen_vfp_negh(tcg_res, tcg_op);
8026 break;
8027 case 0x3: /* FSQRT */
8028 fpst = fpstatus_ptr(FPST_FPCR_F16);
8029 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
8030 break;
8031 case 0x8: /* FRINTN */
8032 case 0x9: /* FRINTP */
8033 case 0xa: /* FRINTM */
8034 case 0xb: /* FRINTZ */
8035 case 0xc: /* FRINTA */
8037 TCGv_i32 tcg_rmode;
8039 fpst = fpstatus_ptr(FPST_FPCR_F16);
8040 tcg_rmode = gen_set_rmode(opcode & 7, fpst);
8041 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
8042 gen_restore_rmode(tcg_rmode, fpst);
8043 break;
8045 case 0xe: /* FRINTX */
8046 fpst = fpstatus_ptr(FPST_FPCR_F16);
8047 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
8048 break;
8049 case 0xf: /* FRINTI */
8050 fpst = fpstatus_ptr(FPST_FPCR_F16);
8051 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
8052 break;
8053 default:
8054 g_assert_not_reached();
8057 write_fp_sreg(s, rd, tcg_res);
8060 /* Floating-point data-processing (1 source) - single precision */
8061 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
8063 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
8064 TCGv_i32 tcg_op, tcg_res;
8065 TCGv_ptr fpst;
8066 int rmode = -1;
8068 tcg_op = read_fp_sreg(s, rn);
8069 tcg_res = tcg_temp_new_i32();
8071 switch (opcode) {
8072 case 0x0: /* FMOV */
8073 tcg_gen_mov_i32(tcg_res, tcg_op);
8074 goto done;
8075 case 0x1: /* FABS */
8076 gen_vfp_abss(tcg_res, tcg_op);
8077 goto done;
8078 case 0x2: /* FNEG */
8079 gen_vfp_negs(tcg_res, tcg_op);
8080 goto done;
8081 case 0x3: /* FSQRT */
8082 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
8083 goto done;
8084 case 0x6: /* BFCVT */
8085 gen_fpst = gen_helper_bfcvt;
8086 break;
8087 case 0x8: /* FRINTN */
8088 case 0x9: /* FRINTP */
8089 case 0xa: /* FRINTM */
8090 case 0xb: /* FRINTZ */
8091 case 0xc: /* FRINTA */
8092 rmode = opcode & 7;
8093 gen_fpst = gen_helper_rints;
8094 break;
8095 case 0xe: /* FRINTX */
8096 gen_fpst = gen_helper_rints_exact;
8097 break;
8098 case 0xf: /* FRINTI */
8099 gen_fpst = gen_helper_rints;
8100 break;
8101 case 0x10: /* FRINT32Z */
8102 rmode = FPROUNDING_ZERO;
8103 gen_fpst = gen_helper_frint32_s;
8104 break;
8105 case 0x11: /* FRINT32X */
8106 gen_fpst = gen_helper_frint32_s;
8107 break;
8108 case 0x12: /* FRINT64Z */
8109 rmode = FPROUNDING_ZERO;
8110 gen_fpst = gen_helper_frint64_s;
8111 break;
8112 case 0x13: /* FRINT64X */
8113 gen_fpst = gen_helper_frint64_s;
8114 break;
8115 default:
8116 g_assert_not_reached();
8119 fpst = fpstatus_ptr(FPST_FPCR);
8120 if (rmode >= 0) {
8121 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
8122 gen_fpst(tcg_res, tcg_op, fpst);
8123 gen_restore_rmode(tcg_rmode, fpst);
8124 } else {
8125 gen_fpst(tcg_res, tcg_op, fpst);
8128 done:
8129 write_fp_sreg(s, rd, tcg_res);
8132 /* Floating-point data-processing (1 source) - double precision */
8133 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
8135 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
8136 TCGv_i64 tcg_op, tcg_res;
8137 TCGv_ptr fpst;
8138 int rmode = -1;
8140 switch (opcode) {
8141 case 0x0: /* FMOV */
8142 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
8143 return;
8146 tcg_op = read_fp_dreg(s, rn);
8147 tcg_res = tcg_temp_new_i64();
8149 switch (opcode) {
8150 case 0x1: /* FABS */
8151 gen_vfp_absd(tcg_res, tcg_op);
8152 goto done;
8153 case 0x2: /* FNEG */
8154 gen_vfp_negd(tcg_res, tcg_op);
8155 goto done;
8156 case 0x3: /* FSQRT */
8157 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
8158 goto done;
8159 case 0x8: /* FRINTN */
8160 case 0x9: /* FRINTP */
8161 case 0xa: /* FRINTM */
8162 case 0xb: /* FRINTZ */
8163 case 0xc: /* FRINTA */
8164 rmode = opcode & 7;
8165 gen_fpst = gen_helper_rintd;
8166 break;
8167 case 0xe: /* FRINTX */
8168 gen_fpst = gen_helper_rintd_exact;
8169 break;
8170 case 0xf: /* FRINTI */
8171 gen_fpst = gen_helper_rintd;
8172 break;
8173 case 0x10: /* FRINT32Z */
8174 rmode = FPROUNDING_ZERO;
8175 gen_fpst = gen_helper_frint32_d;
8176 break;
8177 case 0x11: /* FRINT32X */
8178 gen_fpst = gen_helper_frint32_d;
8179 break;
8180 case 0x12: /* FRINT64Z */
8181 rmode = FPROUNDING_ZERO;
8182 gen_fpst = gen_helper_frint64_d;
8183 break;
8184 case 0x13: /* FRINT64X */
8185 gen_fpst = gen_helper_frint64_d;
8186 break;
8187 default:
8188 g_assert_not_reached();
8191 fpst = fpstatus_ptr(FPST_FPCR);
8192 if (rmode >= 0) {
8193 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
8194 gen_fpst(tcg_res, tcg_op, fpst);
8195 gen_restore_rmode(tcg_rmode, fpst);
8196 } else {
8197 gen_fpst(tcg_res, tcg_op, fpst);
8200 done:
8201 write_fp_dreg(s, rd, tcg_res);
8204 static void handle_fp_fcvt(DisasContext *s, int opcode,
8205 int rd, int rn, int dtype, int ntype)
8207 switch (ntype) {
8208 case 0x0:
8210 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
8211 if (dtype == 1) {
8212 /* Single to double */
8213 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8214 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
8215 write_fp_dreg(s, rd, tcg_rd);
8216 } else {
8217 /* Single to half */
8218 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8219 TCGv_i32 ahp = get_ahp_flag();
8220 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8222 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
8223 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
8224 write_fp_sreg(s, rd, tcg_rd);
8226 break;
8228 case 0x1:
8230 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8231 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8232 if (dtype == 0) {
8233 /* Double to single */
8234 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
8235 } else {
8236 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8237 TCGv_i32 ahp = get_ahp_flag();
8238 /* Double to half */
8239 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
8240 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
8242 write_fp_sreg(s, rd, tcg_rd);
8243 break;
8245 case 0x3:
8247 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
8248 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
8249 TCGv_i32 tcg_ahp = get_ahp_flag();
8250 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
8251 if (dtype == 0) {
8252 /* Half to single */
8253 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8254 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
8255 write_fp_sreg(s, rd, tcg_rd);
8256 } else {
8257 /* Half to double */
8258 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8259 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
8260 write_fp_dreg(s, rd, tcg_rd);
8262 break;
8264 default:
8265 g_assert_not_reached();
8269 /* Floating point data-processing (1 source)
8270 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
8271 * +---+---+---+-----------+------+---+--------+-----------+------+------+
8272 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
8273 * +---+---+---+-----------+------+---+--------+-----------+------+------+
8275 static void disas_fp_1src(DisasContext *s, uint32_t insn)
8277 int mos = extract32(insn, 29, 3);
8278 int type = extract32(insn, 22, 2);
8279 int opcode = extract32(insn, 15, 6);
8280 int rn = extract32(insn, 5, 5);
8281 int rd = extract32(insn, 0, 5);
8283 if (mos) {
8284 goto do_unallocated;
8287 switch (opcode) {
8288 case 0x4: case 0x5: case 0x7:
8290 /* FCVT between half, single and double precision */
8291 int dtype = extract32(opcode, 0, 2);
8292 if (type == 2 || dtype == type) {
8293 goto do_unallocated;
8295 if (!fp_access_check(s)) {
8296 return;
8299 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
8300 break;
8303 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
8304 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
8305 goto do_unallocated;
8307 /* fall through */
8308 case 0x0 ... 0x3:
8309 case 0x8 ... 0xc:
8310 case 0xe ... 0xf:
8311 /* 32-to-32 and 64-to-64 ops */
8312 switch (type) {
8313 case 0:
8314 if (!fp_access_check(s)) {
8315 return;
8317 handle_fp_1src_single(s, opcode, rd, rn);
8318 break;
8319 case 1:
8320 if (!fp_access_check(s)) {
8321 return;
8323 handle_fp_1src_double(s, opcode, rd, rn);
8324 break;
8325 case 3:
8326 if (!dc_isar_feature(aa64_fp16, s)) {
8327 goto do_unallocated;
8330 if (!fp_access_check(s)) {
8331 return;
8333 handle_fp_1src_half(s, opcode, rd, rn);
8334 break;
8335 default:
8336 goto do_unallocated;
8338 break;
8340 case 0x6:
8341 switch (type) {
8342 case 1: /* BFCVT */
8343 if (!dc_isar_feature(aa64_bf16, s)) {
8344 goto do_unallocated;
8346 if (!fp_access_check(s)) {
8347 return;
8349 handle_fp_1src_single(s, opcode, rd, rn);
8350 break;
8351 default:
8352 goto do_unallocated;
8354 break;
8356 default:
8357 do_unallocated:
8358 unallocated_encoding(s);
8359 break;
8363 /* Floating point immediate
8364 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
8365 * +---+---+---+-----------+------+---+------------+-------+------+------+
8366 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
8367 * +---+---+---+-----------+------+---+------------+-------+------+------+
8369 static void disas_fp_imm(DisasContext *s, uint32_t insn)
8371 int rd = extract32(insn, 0, 5);
8372 int imm5 = extract32(insn, 5, 5);
8373 int imm8 = extract32(insn, 13, 8);
8374 int type = extract32(insn, 22, 2);
8375 int mos = extract32(insn, 29, 3);
8376 uint64_t imm;
8377 MemOp sz;
8379 if (mos || imm5) {
8380 unallocated_encoding(s);
8381 return;
8384 switch (type) {
8385 case 0:
8386 sz = MO_32;
8387 break;
8388 case 1:
8389 sz = MO_64;
8390 break;
8391 case 3:
8392 sz = MO_16;
8393 if (dc_isar_feature(aa64_fp16, s)) {
8394 break;
8396 /* fallthru */
8397 default:
8398 unallocated_encoding(s);
8399 return;
8402 if (!fp_access_check(s)) {
8403 return;
8406 imm = vfp_expand_imm(sz, imm8);
8407 write_fp_dreg(s, rd, tcg_constant_i64(imm));
8410 /* Handle floating point <=> fixed point conversions. Note that we can
8411 * also deal with fp <=> integer conversions as a special case (scale == 64)
8412 * OPTME: consider handling that special case specially or at least skipping
8413 * the call to scalbn in the helpers for zero shifts.
8415 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
8416 bool itof, int rmode, int scale, int sf, int type)
8418 bool is_signed = !(opcode & 1);
8419 TCGv_ptr tcg_fpstatus;
8420 TCGv_i32 tcg_shift, tcg_single;
8421 TCGv_i64 tcg_double;
8423 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
8425 tcg_shift = tcg_constant_i32(64 - scale);
8427 if (itof) {
8428 TCGv_i64 tcg_int = cpu_reg(s, rn);
8429 if (!sf) {
8430 TCGv_i64 tcg_extend = tcg_temp_new_i64();
8432 if (is_signed) {
8433 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
8434 } else {
8435 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
8438 tcg_int = tcg_extend;
8441 switch (type) {
8442 case 1: /* float64 */
8443 tcg_double = tcg_temp_new_i64();
8444 if (is_signed) {
8445 gen_helper_vfp_sqtod(tcg_double, tcg_int,
8446 tcg_shift, tcg_fpstatus);
8447 } else {
8448 gen_helper_vfp_uqtod(tcg_double, tcg_int,
8449 tcg_shift, tcg_fpstatus);
8451 write_fp_dreg(s, rd, tcg_double);
8452 break;
8454 case 0: /* float32 */
8455 tcg_single = tcg_temp_new_i32();
8456 if (is_signed) {
8457 gen_helper_vfp_sqtos(tcg_single, tcg_int,
8458 tcg_shift, tcg_fpstatus);
8459 } else {
8460 gen_helper_vfp_uqtos(tcg_single, tcg_int,
8461 tcg_shift, tcg_fpstatus);
8463 write_fp_sreg(s, rd, tcg_single);
8464 break;
8466 case 3: /* float16 */
8467 tcg_single = tcg_temp_new_i32();
8468 if (is_signed) {
8469 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
8470 tcg_shift, tcg_fpstatus);
8471 } else {
8472 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
8473 tcg_shift, tcg_fpstatus);
8475 write_fp_sreg(s, rd, tcg_single);
8476 break;
8478 default:
8479 g_assert_not_reached();
8481 } else {
8482 TCGv_i64 tcg_int = cpu_reg(s, rd);
8483 TCGv_i32 tcg_rmode;
8485 if (extract32(opcode, 2, 1)) {
8486 /* There are too many rounding modes to all fit into rmode,
8487 * so FCVTA[US] is a special case.
8489 rmode = FPROUNDING_TIEAWAY;
8492 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
8494 switch (type) {
8495 case 1: /* float64 */
8496 tcg_double = read_fp_dreg(s, rn);
8497 if (is_signed) {
8498 if (!sf) {
8499 gen_helper_vfp_tosld(tcg_int, tcg_double,
8500 tcg_shift, tcg_fpstatus);
8501 } else {
8502 gen_helper_vfp_tosqd(tcg_int, tcg_double,
8503 tcg_shift, tcg_fpstatus);
8505 } else {
8506 if (!sf) {
8507 gen_helper_vfp_tould(tcg_int, tcg_double,
8508 tcg_shift, tcg_fpstatus);
8509 } else {
8510 gen_helper_vfp_touqd(tcg_int, tcg_double,
8511 tcg_shift, tcg_fpstatus);
8514 if (!sf) {
8515 tcg_gen_ext32u_i64(tcg_int, tcg_int);
8517 break;
8519 case 0: /* float32 */
8520 tcg_single = read_fp_sreg(s, rn);
8521 if (sf) {
8522 if (is_signed) {
8523 gen_helper_vfp_tosqs(tcg_int, tcg_single,
8524 tcg_shift, tcg_fpstatus);
8525 } else {
8526 gen_helper_vfp_touqs(tcg_int, tcg_single,
8527 tcg_shift, tcg_fpstatus);
8529 } else {
8530 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8531 if (is_signed) {
8532 gen_helper_vfp_tosls(tcg_dest, tcg_single,
8533 tcg_shift, tcg_fpstatus);
8534 } else {
8535 gen_helper_vfp_touls(tcg_dest, tcg_single,
8536 tcg_shift, tcg_fpstatus);
8538 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8540 break;
8542 case 3: /* float16 */
8543 tcg_single = read_fp_sreg(s, rn);
8544 if (sf) {
8545 if (is_signed) {
8546 gen_helper_vfp_tosqh(tcg_int, tcg_single,
8547 tcg_shift, tcg_fpstatus);
8548 } else {
8549 gen_helper_vfp_touqh(tcg_int, tcg_single,
8550 tcg_shift, tcg_fpstatus);
8552 } else {
8553 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8554 if (is_signed) {
8555 gen_helper_vfp_toslh(tcg_dest, tcg_single,
8556 tcg_shift, tcg_fpstatus);
8557 } else {
8558 gen_helper_vfp_toulh(tcg_dest, tcg_single,
8559 tcg_shift, tcg_fpstatus);
8561 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8563 break;
8565 default:
8566 g_assert_not_reached();
8569 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8573 /* Floating point <-> fixed point conversions
8574 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
8575 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8576 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
8577 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8579 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
8581 int rd = extract32(insn, 0, 5);
8582 int rn = extract32(insn, 5, 5);
8583 int scale = extract32(insn, 10, 6);
8584 int opcode = extract32(insn, 16, 3);
8585 int rmode = extract32(insn, 19, 2);
8586 int type = extract32(insn, 22, 2);
8587 bool sbit = extract32(insn, 29, 1);
8588 bool sf = extract32(insn, 31, 1);
8589 bool itof;
8591 if (sbit || (!sf && scale < 32)) {
8592 unallocated_encoding(s);
8593 return;
8596 switch (type) {
8597 case 0: /* float32 */
8598 case 1: /* float64 */
8599 break;
8600 case 3: /* float16 */
8601 if (dc_isar_feature(aa64_fp16, s)) {
8602 break;
8604 /* fallthru */
8605 default:
8606 unallocated_encoding(s);
8607 return;
8610 switch ((rmode << 3) | opcode) {
8611 case 0x2: /* SCVTF */
8612 case 0x3: /* UCVTF */
8613 itof = true;
8614 break;
8615 case 0x18: /* FCVTZS */
8616 case 0x19: /* FCVTZU */
8617 itof = false;
8618 break;
8619 default:
8620 unallocated_encoding(s);
8621 return;
8624 if (!fp_access_check(s)) {
8625 return;
8628 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8631 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8633 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8634 * without conversion.
8637 if (itof) {
8638 TCGv_i64 tcg_rn = cpu_reg(s, rn);
8639 TCGv_i64 tmp;
8641 switch (type) {
8642 case 0:
8643 /* 32 bit */
8644 tmp = tcg_temp_new_i64();
8645 tcg_gen_ext32u_i64(tmp, tcg_rn);
8646 write_fp_dreg(s, rd, tmp);
8647 break;
8648 case 1:
8649 /* 64 bit */
8650 write_fp_dreg(s, rd, tcg_rn);
8651 break;
8652 case 2:
8653 /* 64 bit to top half. */
8654 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8655 clear_vec_high(s, true, rd);
8656 break;
8657 case 3:
8658 /* 16 bit */
8659 tmp = tcg_temp_new_i64();
8660 tcg_gen_ext16u_i64(tmp, tcg_rn);
8661 write_fp_dreg(s, rd, tmp);
8662 break;
8663 default:
8664 g_assert_not_reached();
8666 } else {
8667 TCGv_i64 tcg_rd = cpu_reg(s, rd);
8669 switch (type) {
8670 case 0:
8671 /* 32 bit */
8672 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8673 break;
8674 case 1:
8675 /* 64 bit */
8676 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8677 break;
8678 case 2:
8679 /* 64 bits from top half */
8680 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8681 break;
8682 case 3:
8683 /* 16 bit */
8684 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8685 break;
8686 default:
8687 g_assert_not_reached();
8692 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8694 TCGv_i64 t = read_fp_dreg(s, rn);
8695 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8697 gen_helper_fjcvtzs(t, t, fpstatus);
8699 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8700 tcg_gen_extrh_i64_i32(cpu_ZF, t);
8701 tcg_gen_movi_i32(cpu_CF, 0);
8702 tcg_gen_movi_i32(cpu_NF, 0);
8703 tcg_gen_movi_i32(cpu_VF, 0);
8706 /* Floating point <-> integer conversions
8707 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
8708 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8709 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8710 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8712 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8714 int rd = extract32(insn, 0, 5);
8715 int rn = extract32(insn, 5, 5);
8716 int opcode = extract32(insn, 16, 3);
8717 int rmode = extract32(insn, 19, 2);
8718 int type = extract32(insn, 22, 2);
8719 bool sbit = extract32(insn, 29, 1);
8720 bool sf = extract32(insn, 31, 1);
8721 bool itof = false;
8723 if (sbit) {
8724 goto do_unallocated;
8727 switch (opcode) {
8728 case 2: /* SCVTF */
8729 case 3: /* UCVTF */
8730 itof = true;
8731 /* fallthru */
8732 case 4: /* FCVTAS */
8733 case 5: /* FCVTAU */
8734 if (rmode != 0) {
8735 goto do_unallocated;
8737 /* fallthru */
8738 case 0: /* FCVT[NPMZ]S */
8739 case 1: /* FCVT[NPMZ]U */
8740 switch (type) {
8741 case 0: /* float32 */
8742 case 1: /* float64 */
8743 break;
8744 case 3: /* float16 */
8745 if (!dc_isar_feature(aa64_fp16, s)) {
8746 goto do_unallocated;
8748 break;
8749 default:
8750 goto do_unallocated;
8752 if (!fp_access_check(s)) {
8753 return;
8755 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8756 break;
8758 default:
8759 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8760 case 0b01100110: /* FMOV half <-> 32-bit int */
8761 case 0b01100111:
8762 case 0b11100110: /* FMOV half <-> 64-bit int */
8763 case 0b11100111:
8764 if (!dc_isar_feature(aa64_fp16, s)) {
8765 goto do_unallocated;
8767 /* fallthru */
8768 case 0b00000110: /* FMOV 32-bit */
8769 case 0b00000111:
8770 case 0b10100110: /* FMOV 64-bit */
8771 case 0b10100111:
8772 case 0b11001110: /* FMOV top half of 128-bit */
8773 case 0b11001111:
8774 if (!fp_access_check(s)) {
8775 return;
8777 itof = opcode & 1;
8778 handle_fmov(s, rd, rn, type, itof);
8779 break;
8781 case 0b00111110: /* FJCVTZS */
8782 if (!dc_isar_feature(aa64_jscvt, s)) {
8783 goto do_unallocated;
8784 } else if (fp_access_check(s)) {
8785 handle_fjcvtzs(s, rd, rn);
8787 break;
8789 default:
8790 do_unallocated:
8791 unallocated_encoding(s);
8792 return;
8794 break;
8798 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8799 * 31 30 29 28 25 24 0
8800 * +---+---+---+---------+-----------------------------+
8801 * | | 0 | | 1 1 1 1 | |
8802 * +---+---+---+---------+-----------------------------+
8804 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8806 if (extract32(insn, 24, 1)) {
8807 unallocated_encoding(s); /* in decodetree */
8808 } else if (extract32(insn, 21, 1) == 0) {
8809 /* Floating point to fixed point conversions */
8810 disas_fp_fixed_conv(s, insn);
8811 } else {
8812 switch (extract32(insn, 10, 2)) {
8813 case 1:
8814 /* Floating point conditional compare */
8815 disas_fp_ccomp(s, insn);
8816 break;
8817 case 2:
8818 /* Floating point data-processing (2 source) */
8819 unallocated_encoding(s); /* in decodetree */
8820 break;
8821 case 3:
8822 /* Floating point conditional select */
8823 unallocated_encoding(s); /* in decodetree */
8824 break;
8825 case 0:
8826 switch (ctz32(extract32(insn, 12, 4))) {
8827 case 0: /* [15:12] == xxx1 */
8828 /* Floating point immediate */
8829 disas_fp_imm(s, insn);
8830 break;
8831 case 1: /* [15:12] == xx10 */
8832 /* Floating point compare */
8833 disas_fp_compare(s, insn);
8834 break;
8835 case 2: /* [15:12] == x100 */
8836 /* Floating point data-processing (1 source) */
8837 disas_fp_1src(s, insn);
8838 break;
8839 case 3: /* [15:12] == 1000 */
8840 unallocated_encoding(s);
8841 break;
8842 default: /* [15:12] == 0000 */
8843 /* Floating point <-> integer conversions */
8844 disas_fp_int_conv(s, insn);
8845 break;
8847 break;
8852 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8853 int pos)
8855 /* Extract 64 bits from the middle of two concatenated 64 bit
8856 * vector register slices left:right. The extracted bits start
8857 * at 'pos' bits into the right (least significant) side.
8858 * We return the result in tcg_right, and guarantee not to
8859 * trash tcg_left.
8861 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8862 assert(pos > 0 && pos < 64);
8864 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8865 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8866 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8869 /* EXT
8870 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8871 * +---+---+-------------+-----+---+------+---+------+---+------+------+
8872 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
8873 * +---+---+-------------+-----+---+------+---+------+---+------+------+
8875 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8877 int is_q = extract32(insn, 30, 1);
8878 int op2 = extract32(insn, 22, 2);
8879 int imm4 = extract32(insn, 11, 4);
8880 int rm = extract32(insn, 16, 5);
8881 int rn = extract32(insn, 5, 5);
8882 int rd = extract32(insn, 0, 5);
8883 int pos = imm4 << 3;
8884 TCGv_i64 tcg_resl, tcg_resh;
8886 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8887 unallocated_encoding(s);
8888 return;
8891 if (!fp_access_check(s)) {
8892 return;
8895 tcg_resh = tcg_temp_new_i64();
8896 tcg_resl = tcg_temp_new_i64();
8898 /* Vd gets bits starting at pos bits into Vm:Vn. This is
8899 * either extracting 128 bits from a 128:128 concatenation, or
8900 * extracting 64 bits from a 64:64 concatenation.
8902 if (!is_q) {
8903 read_vec_element(s, tcg_resl, rn, 0, MO_64);
8904 if (pos != 0) {
8905 read_vec_element(s, tcg_resh, rm, 0, MO_64);
8906 do_ext64(s, tcg_resh, tcg_resl, pos);
8908 } else {
8909 TCGv_i64 tcg_hh;
8910 typedef struct {
8911 int reg;
8912 int elt;
8913 } EltPosns;
8914 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8915 EltPosns *elt = eltposns;
8917 if (pos >= 64) {
8918 elt++;
8919 pos -= 64;
8922 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8923 elt++;
8924 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8925 elt++;
8926 if (pos != 0) {
8927 do_ext64(s, tcg_resh, tcg_resl, pos);
8928 tcg_hh = tcg_temp_new_i64();
8929 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8930 do_ext64(s, tcg_hh, tcg_resh, pos);
8934 write_vec_element(s, tcg_resl, rd, 0, MO_64);
8935 if (is_q) {
8936 write_vec_element(s, tcg_resh, rd, 1, MO_64);
8938 clear_vec_high(s, is_q, rd);
8941 /* TBL/TBX
8942 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
8943 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8944 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
8945 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8947 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8949 int op2 = extract32(insn, 22, 2);
8950 int is_q = extract32(insn, 30, 1);
8951 int rm = extract32(insn, 16, 5);
8952 int rn = extract32(insn, 5, 5);
8953 int rd = extract32(insn, 0, 5);
8954 int is_tbx = extract32(insn, 12, 1);
8955 int len = (extract32(insn, 13, 2) + 1) * 16;
8957 if (op2 != 0) {
8958 unallocated_encoding(s);
8959 return;
8962 if (!fp_access_check(s)) {
8963 return;
8966 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8967 vec_full_reg_offset(s, rm), tcg_env,
8968 is_q ? 16 : 8, vec_full_reg_size(s),
8969 (len << 6) | (is_tbx << 5) | rn,
8970 gen_helper_simd_tblx);
8973 /* ZIP/UZP/TRN
8974 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
8975 * +---+---+-------------+------+---+------+---+------------------+------+
8976 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
8977 * +---+---+-------------+------+---+------+---+------------------+------+
8979 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8981 int rd = extract32(insn, 0, 5);
8982 int rn = extract32(insn, 5, 5);
8983 int rm = extract32(insn, 16, 5);
8984 int size = extract32(insn, 22, 2);
8985 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8986 * bit 2 indicates 1 vs 2 variant of the insn.
8988 int opcode = extract32(insn, 12, 2);
8989 bool part = extract32(insn, 14, 1);
8990 bool is_q = extract32(insn, 30, 1);
8991 int esize = 8 << size;
8992 int i;
8993 int datasize = is_q ? 128 : 64;
8994 int elements = datasize / esize;
8995 TCGv_i64 tcg_res[2], tcg_ele;
8997 if (opcode == 0 || (size == 3 && !is_q)) {
8998 unallocated_encoding(s);
8999 return;
9002 if (!fp_access_check(s)) {
9003 return;
9006 tcg_res[0] = tcg_temp_new_i64();
9007 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
9008 tcg_ele = tcg_temp_new_i64();
9010 for (i = 0; i < elements; i++) {
9011 int o, w;
9013 switch (opcode) {
9014 case 1: /* UZP1/2 */
9016 int midpoint = elements / 2;
9017 if (i < midpoint) {
9018 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
9019 } else {
9020 read_vec_element(s, tcg_ele, rm,
9021 2 * (i - midpoint) + part, size);
9023 break;
9025 case 2: /* TRN1/2 */
9026 if (i & 1) {
9027 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
9028 } else {
9029 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
9031 break;
9032 case 3: /* ZIP1/2 */
9034 int base = part * elements / 2;
9035 if (i & 1) {
9036 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
9037 } else {
9038 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
9040 break;
9042 default:
9043 g_assert_not_reached();
9046 w = (i * esize) / 64;
9047 o = (i * esize) % 64;
9048 if (o == 0) {
9049 tcg_gen_mov_i64(tcg_res[w], tcg_ele);
9050 } else {
9051 tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
9052 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
9056 for (i = 0; i <= is_q; ++i) {
9057 write_vec_element(s, tcg_res[i], rd, i, MO_64);
9059 clear_vec_high(s, is_q, rd);
9063 * do_reduction_op helper
9065 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
9066 * important for correct NaN propagation that we do these
9067 * operations in exactly the order specified by the pseudocode.
9069 * This is a recursive function, TCG temps should be freed by the
9070 * calling function once it is done with the values.
9072 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
9073 int esize, int size, int vmap, TCGv_ptr fpst)
9075 if (esize == size) {
9076 int element;
9077 MemOp msize = esize == 16 ? MO_16 : MO_32;
9078 TCGv_i32 tcg_elem;
9080 /* We should have one register left here */
9081 assert(ctpop8(vmap) == 1);
9082 element = ctz32(vmap);
9083 assert(element < 8);
9085 tcg_elem = tcg_temp_new_i32();
9086 read_vec_element_i32(s, tcg_elem, rn, element, msize);
9087 return tcg_elem;
9088 } else {
9089 int bits = size / 2;
9090 int shift = ctpop8(vmap) / 2;
9091 int vmap_lo = (vmap >> shift) & vmap;
9092 int vmap_hi = (vmap & ~vmap_lo);
9093 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
9095 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
9096 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
9097 tcg_res = tcg_temp_new_i32();
9099 switch (fpopcode) {
9100 case 0x0c: /* fmaxnmv half-precision */
9101 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
9102 break;
9103 case 0x0f: /* fmaxv half-precision */
9104 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
9105 break;
9106 case 0x1c: /* fminnmv half-precision */
9107 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
9108 break;
9109 case 0x1f: /* fminv half-precision */
9110 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
9111 break;
9112 case 0x2c: /* fmaxnmv */
9113 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
9114 break;
9115 case 0x2f: /* fmaxv */
9116 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
9117 break;
9118 case 0x3c: /* fminnmv */
9119 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
9120 break;
9121 case 0x3f: /* fminv */
9122 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
9123 break;
9124 default:
9125 g_assert_not_reached();
9127 return tcg_res;
9131 /* AdvSIMD across lanes
9132 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9133 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9134 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
9135 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9137 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
9139 int rd = extract32(insn, 0, 5);
9140 int rn = extract32(insn, 5, 5);
9141 int size = extract32(insn, 22, 2);
9142 int opcode = extract32(insn, 12, 5);
9143 bool is_q = extract32(insn, 30, 1);
9144 bool is_u = extract32(insn, 29, 1);
9145 bool is_fp = false;
9146 bool is_min = false;
9147 int esize;
9148 int elements;
9149 int i;
9150 TCGv_i64 tcg_res, tcg_elt;
9152 switch (opcode) {
9153 case 0x1b: /* ADDV */
9154 if (is_u) {
9155 unallocated_encoding(s);
9156 return;
9158 /* fall through */
9159 case 0x3: /* SADDLV, UADDLV */
9160 case 0xa: /* SMAXV, UMAXV */
9161 case 0x1a: /* SMINV, UMINV */
9162 if (size == 3 || (size == 2 && !is_q)) {
9163 unallocated_encoding(s);
9164 return;
9166 break;
9167 case 0xc: /* FMAXNMV, FMINNMV */
9168 case 0xf: /* FMAXV, FMINV */
9169 /* Bit 1 of size field encodes min vs max and the actual size
9170 * depends on the encoding of the U bit. If not set (and FP16
9171 * enabled) then we do half-precision float instead of single
9172 * precision.
9174 is_min = extract32(size, 1, 1);
9175 is_fp = true;
9176 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
9177 size = 1;
9178 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
9179 unallocated_encoding(s);
9180 return;
9181 } else {
9182 size = 2;
9184 break;
9185 default:
9186 unallocated_encoding(s);
9187 return;
9190 if (!fp_access_check(s)) {
9191 return;
9194 esize = 8 << size;
9195 elements = (is_q ? 128 : 64) / esize;
9197 tcg_res = tcg_temp_new_i64();
9198 tcg_elt = tcg_temp_new_i64();
9200 /* These instructions operate across all lanes of a vector
9201 * to produce a single result. We can guarantee that a 64
9202 * bit intermediate is sufficient:
9203 * + for [US]ADDLV the maximum element size is 32 bits, and
9204 * the result type is 64 bits
9205 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
9206 * same as the element size, which is 32 bits at most
9207 * For the integer operations we can choose to work at 64
9208 * or 32 bits and truncate at the end; for simplicity
9209 * we use 64 bits always. The floating point
9210 * ops do require 32 bit intermediates, though.
9212 if (!is_fp) {
9213 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
9215 for (i = 1; i < elements; i++) {
9216 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
9218 switch (opcode) {
9219 case 0x03: /* SADDLV / UADDLV */
9220 case 0x1b: /* ADDV */
9221 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
9222 break;
9223 case 0x0a: /* SMAXV / UMAXV */
9224 if (is_u) {
9225 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
9226 } else {
9227 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
9229 break;
9230 case 0x1a: /* SMINV / UMINV */
9231 if (is_u) {
9232 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
9233 } else {
9234 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
9236 break;
9237 default:
9238 g_assert_not_reached();
9242 } else {
9243 /* Floating point vector reduction ops which work across 32
9244 * bit (single) or 16 bit (half-precision) intermediates.
9245 * Note that correct NaN propagation requires that we do these
9246 * operations in exactly the order specified by the pseudocode.
9248 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9249 int fpopcode = opcode | is_min << 4 | is_u << 5;
9250 int vmap = (1 << elements) - 1;
9251 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
9252 (is_q ? 128 : 64), vmap, fpst);
9253 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
9256 /* Now truncate the result to the width required for the final output */
9257 if (opcode == 0x03) {
9258 /* SADDLV, UADDLV: result is 2*esize */
9259 size++;
9262 switch (size) {
9263 case 0:
9264 tcg_gen_ext8u_i64(tcg_res, tcg_res);
9265 break;
9266 case 1:
9267 tcg_gen_ext16u_i64(tcg_res, tcg_res);
9268 break;
9269 case 2:
9270 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9271 break;
9272 case 3:
9273 break;
9274 default:
9275 g_assert_not_reached();
9278 write_fp_dreg(s, rd, tcg_res);
9281 /* AdvSIMD modified immediate
9282 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
9283 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
9284 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
9285 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
9287 * There are a number of operations that can be carried out here:
9288 * MOVI - move (shifted) imm into register
9289 * MVNI - move inverted (shifted) imm into register
9290 * ORR - bitwise OR of (shifted) imm with register
9291 * BIC - bitwise clear of (shifted) imm with register
9292 * With ARMv8.2 we also have:
9293 * FMOV half-precision
9295 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
9297 int rd = extract32(insn, 0, 5);
9298 int cmode = extract32(insn, 12, 4);
9299 int o2 = extract32(insn, 11, 1);
9300 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
9301 bool is_neg = extract32(insn, 29, 1);
9302 bool is_q = extract32(insn, 30, 1);
9303 uint64_t imm = 0;
9305 if (o2) {
9306 if (cmode != 0xf || is_neg) {
9307 unallocated_encoding(s);
9308 return;
9310 /* FMOV (vector, immediate) - half-precision */
9311 if (!dc_isar_feature(aa64_fp16, s)) {
9312 unallocated_encoding(s);
9313 return;
9315 imm = vfp_expand_imm(MO_16, abcdefgh);
9316 /* now duplicate across the lanes */
9317 imm = dup_const(MO_16, imm);
9318 } else {
9319 if (cmode == 0xf && is_neg && !is_q) {
9320 unallocated_encoding(s);
9321 return;
9323 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
9326 if (!fp_access_check(s)) {
9327 return;
9330 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
9331 /* MOVI or MVNI, with MVNI negation handled above. */
9332 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
9333 vec_full_reg_size(s), imm);
9334 } else {
9335 /* ORR or BIC, with BIC negation to AND handled above. */
9336 if (is_neg) {
9337 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
9338 } else {
9339 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
9345 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
9347 * This code is handles the common shifting code and is used by both
9348 * the vector and scalar code.
9350 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
9351 TCGv_i64 tcg_rnd, bool accumulate,
9352 bool is_u, int size, int shift)
9354 bool extended_result = false;
9355 bool round = tcg_rnd != NULL;
9356 int ext_lshift = 0;
9357 TCGv_i64 tcg_src_hi;
9359 if (round && size == 3) {
9360 extended_result = true;
9361 ext_lshift = 64 - shift;
9362 tcg_src_hi = tcg_temp_new_i64();
9363 } else if (shift == 64) {
9364 if (!accumulate && is_u) {
9365 /* result is zero */
9366 tcg_gen_movi_i64(tcg_res, 0);
9367 return;
9371 /* Deal with the rounding step */
9372 if (round) {
9373 if (extended_result) {
9374 TCGv_i64 tcg_zero = tcg_constant_i64(0);
9375 if (!is_u) {
9376 /* take care of sign extending tcg_res */
9377 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
9378 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
9379 tcg_src, tcg_src_hi,
9380 tcg_rnd, tcg_zero);
9381 } else {
9382 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
9383 tcg_src, tcg_zero,
9384 tcg_rnd, tcg_zero);
9386 } else {
9387 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
9391 /* Now do the shift right */
9392 if (round && extended_result) {
9393 /* extended case, >64 bit precision required */
9394 if (ext_lshift == 0) {
9395 /* special case, only high bits matter */
9396 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
9397 } else {
9398 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
9399 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
9400 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
9402 } else {
9403 if (is_u) {
9404 if (shift == 64) {
9405 /* essentially shifting in 64 zeros */
9406 tcg_gen_movi_i64(tcg_src, 0);
9407 } else {
9408 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
9410 } else {
9411 if (shift == 64) {
9412 /* effectively extending the sign-bit */
9413 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
9414 } else {
9415 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
9420 if (accumulate) {
9421 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
9422 } else {
9423 tcg_gen_mov_i64(tcg_res, tcg_src);
9427 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
9428 static void handle_scalar_simd_shri(DisasContext *s,
9429 bool is_u, int immh, int immb,
9430 int opcode, int rn, int rd)
9432 const int size = 3;
9433 int immhb = immh << 3 | immb;
9434 int shift = 2 * (8 << size) - immhb;
9435 bool accumulate = false;
9436 bool round = false;
9437 bool insert = false;
9438 TCGv_i64 tcg_rn;
9439 TCGv_i64 tcg_rd;
9440 TCGv_i64 tcg_round;
9442 if (!extract32(immh, 3, 1)) {
9443 unallocated_encoding(s);
9444 return;
9447 if (!fp_access_check(s)) {
9448 return;
9451 switch (opcode) {
9452 case 0x02: /* SSRA / USRA (accumulate) */
9453 accumulate = true;
9454 break;
9455 case 0x04: /* SRSHR / URSHR (rounding) */
9456 round = true;
9457 break;
9458 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9459 accumulate = round = true;
9460 break;
9461 case 0x08: /* SRI */
9462 insert = true;
9463 break;
9466 if (round) {
9467 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9468 } else {
9469 tcg_round = NULL;
9472 tcg_rn = read_fp_dreg(s, rn);
9473 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9475 if (insert) {
9476 /* shift count same as element size is valid but does nothing;
9477 * special case to avoid potential shift by 64.
9479 int esize = 8 << size;
9480 if (shift != esize) {
9481 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
9482 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
9484 } else {
9485 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9486 accumulate, is_u, size, shift);
9489 write_fp_dreg(s, rd, tcg_rd);
9492 /* SHL/SLI - Scalar shift left */
9493 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
9494 int immh, int immb, int opcode,
9495 int rn, int rd)
9497 int size = 32 - clz32(immh) - 1;
9498 int immhb = immh << 3 | immb;
9499 int shift = immhb - (8 << size);
9500 TCGv_i64 tcg_rn;
9501 TCGv_i64 tcg_rd;
9503 if (!extract32(immh, 3, 1)) {
9504 unallocated_encoding(s);
9505 return;
9508 if (!fp_access_check(s)) {
9509 return;
9512 tcg_rn = read_fp_dreg(s, rn);
9513 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9515 if (insert) {
9516 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
9517 } else {
9518 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
9521 write_fp_dreg(s, rd, tcg_rd);
9524 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
9525 * (signed/unsigned) narrowing */
9526 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
9527 bool is_u_shift, bool is_u_narrow,
9528 int immh, int immb, int opcode,
9529 int rn, int rd)
9531 int immhb = immh << 3 | immb;
9532 int size = 32 - clz32(immh) - 1;
9533 int esize = 8 << size;
9534 int shift = (2 * esize) - immhb;
9535 int elements = is_scalar ? 1 : (64 / esize);
9536 bool round = extract32(opcode, 0, 1);
9537 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
9538 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
9539 TCGv_i32 tcg_rd_narrowed;
9540 TCGv_i64 tcg_final;
9542 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
9543 { gen_helper_neon_narrow_sat_s8,
9544 gen_helper_neon_unarrow_sat8 },
9545 { gen_helper_neon_narrow_sat_s16,
9546 gen_helper_neon_unarrow_sat16 },
9547 { gen_helper_neon_narrow_sat_s32,
9548 gen_helper_neon_unarrow_sat32 },
9549 { NULL, NULL },
9551 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
9552 gen_helper_neon_narrow_sat_u8,
9553 gen_helper_neon_narrow_sat_u16,
9554 gen_helper_neon_narrow_sat_u32,
9555 NULL
9557 NeonGenNarrowEnvFn *narrowfn;
9559 int i;
9561 assert(size < 4);
9563 if (extract32(immh, 3, 1)) {
9564 unallocated_encoding(s);
9565 return;
9568 if (!fp_access_check(s)) {
9569 return;
9572 if (is_u_shift) {
9573 narrowfn = unsigned_narrow_fns[size];
9574 } else {
9575 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
9578 tcg_rn = tcg_temp_new_i64();
9579 tcg_rd = tcg_temp_new_i64();
9580 tcg_rd_narrowed = tcg_temp_new_i32();
9581 tcg_final = tcg_temp_new_i64();
9583 if (round) {
9584 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9585 } else {
9586 tcg_round = NULL;
9589 for (i = 0; i < elements; i++) {
9590 read_vec_element(s, tcg_rn, rn, i, ldop);
9591 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9592 false, is_u_shift, size+1, shift);
9593 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9594 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9595 if (i == 0) {
9596 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9597 } else {
9598 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9602 if (!is_q) {
9603 write_vec_element(s, tcg_final, rd, 0, MO_64);
9604 } else {
9605 write_vec_element(s, tcg_final, rd, 1, MO_64);
9607 clear_vec_high(s, is_q, rd);
9610 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
9611 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9612 bool src_unsigned, bool dst_unsigned,
9613 int immh, int immb, int rn, int rd)
9615 int immhb = immh << 3 | immb;
9616 int size = 32 - clz32(immh) - 1;
9617 int shift = immhb - (8 << size);
9618 int pass;
9620 assert(immh != 0);
9621 assert(!(scalar && is_q));
9623 if (!scalar) {
9624 if (!is_q && extract32(immh, 3, 1)) {
9625 unallocated_encoding(s);
9626 return;
9629 /* Since we use the variable-shift helpers we must
9630 * replicate the shift count into each element of
9631 * the tcg_shift value.
9633 switch (size) {
9634 case 0:
9635 shift |= shift << 8;
9636 /* fall through */
9637 case 1:
9638 shift |= shift << 16;
9639 break;
9640 case 2:
9641 case 3:
9642 break;
9643 default:
9644 g_assert_not_reached();
9648 if (!fp_access_check(s)) {
9649 return;
9652 if (size == 3) {
9653 TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9654 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9655 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9656 { NULL, gen_helper_neon_qshl_u64 },
9658 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9659 int maxpass = is_q ? 2 : 1;
9661 for (pass = 0; pass < maxpass; pass++) {
9662 TCGv_i64 tcg_op = tcg_temp_new_i64();
9664 read_vec_element(s, tcg_op, rn, pass, MO_64);
9665 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9666 write_vec_element(s, tcg_op, rd, pass, MO_64);
9668 clear_vec_high(s, is_q, rd);
9669 } else {
9670 TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9671 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9673 { gen_helper_neon_qshl_s8,
9674 gen_helper_neon_qshl_s16,
9675 gen_helper_neon_qshl_s32 },
9676 { gen_helper_neon_qshlu_s8,
9677 gen_helper_neon_qshlu_s16,
9678 gen_helper_neon_qshlu_s32 }
9679 }, {
9680 { NULL, NULL, NULL },
9681 { gen_helper_neon_qshl_u8,
9682 gen_helper_neon_qshl_u16,
9683 gen_helper_neon_qshl_u32 }
9686 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9687 MemOp memop = scalar ? size : MO_32;
9688 int maxpass = scalar ? 1 : is_q ? 4 : 2;
9690 for (pass = 0; pass < maxpass; pass++) {
9691 TCGv_i32 tcg_op = tcg_temp_new_i32();
9693 read_vec_element_i32(s, tcg_op, rn, pass, memop);
9694 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9695 if (scalar) {
9696 switch (size) {
9697 case 0:
9698 tcg_gen_ext8u_i32(tcg_op, tcg_op);
9699 break;
9700 case 1:
9701 tcg_gen_ext16u_i32(tcg_op, tcg_op);
9702 break;
9703 case 2:
9704 break;
9705 default:
9706 g_assert_not_reached();
9708 write_fp_sreg(s, rd, tcg_op);
9709 } else {
9710 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9714 if (!scalar) {
9715 clear_vec_high(s, is_q, rd);
9720 /* Common vector code for handling integer to FP conversion */
9721 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9722 int elements, int is_signed,
9723 int fracbits, int size)
9725 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9726 TCGv_i32 tcg_shift = NULL;
9728 MemOp mop = size | (is_signed ? MO_SIGN : 0);
9729 int pass;
9731 if (fracbits || size == MO_64) {
9732 tcg_shift = tcg_constant_i32(fracbits);
9735 if (size == MO_64) {
9736 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9737 TCGv_i64 tcg_double = tcg_temp_new_i64();
9739 for (pass = 0; pass < elements; pass++) {
9740 read_vec_element(s, tcg_int64, rn, pass, mop);
9742 if (is_signed) {
9743 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9744 tcg_shift, tcg_fpst);
9745 } else {
9746 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9747 tcg_shift, tcg_fpst);
9749 if (elements == 1) {
9750 write_fp_dreg(s, rd, tcg_double);
9751 } else {
9752 write_vec_element(s, tcg_double, rd, pass, MO_64);
9755 } else {
9756 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9757 TCGv_i32 tcg_float = tcg_temp_new_i32();
9759 for (pass = 0; pass < elements; pass++) {
9760 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9762 switch (size) {
9763 case MO_32:
9764 if (fracbits) {
9765 if (is_signed) {
9766 gen_helper_vfp_sltos(tcg_float, tcg_int32,
9767 tcg_shift, tcg_fpst);
9768 } else {
9769 gen_helper_vfp_ultos(tcg_float, tcg_int32,
9770 tcg_shift, tcg_fpst);
9772 } else {
9773 if (is_signed) {
9774 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9775 } else {
9776 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9779 break;
9780 case MO_16:
9781 if (fracbits) {
9782 if (is_signed) {
9783 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9784 tcg_shift, tcg_fpst);
9785 } else {
9786 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9787 tcg_shift, tcg_fpst);
9789 } else {
9790 if (is_signed) {
9791 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9792 } else {
9793 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9796 break;
9797 default:
9798 g_assert_not_reached();
9801 if (elements == 1) {
9802 write_fp_sreg(s, rd, tcg_float);
9803 } else {
9804 write_vec_element_i32(s, tcg_float, rd, pass, size);
9809 clear_vec_high(s, elements << size == 16, rd);
9812 /* UCVTF/SCVTF - Integer to FP conversion */
9813 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9814 bool is_q, bool is_u,
9815 int immh, int immb, int opcode,
9816 int rn, int rd)
9818 int size, elements, fracbits;
9819 int immhb = immh << 3 | immb;
9821 if (immh & 8) {
9822 size = MO_64;
9823 if (!is_scalar && !is_q) {
9824 unallocated_encoding(s);
9825 return;
9827 } else if (immh & 4) {
9828 size = MO_32;
9829 } else if (immh & 2) {
9830 size = MO_16;
9831 if (!dc_isar_feature(aa64_fp16, s)) {
9832 unallocated_encoding(s);
9833 return;
9835 } else {
9836 /* immh == 0 would be a failure of the decode logic */
9837 g_assert(immh == 1);
9838 unallocated_encoding(s);
9839 return;
9842 if (is_scalar) {
9843 elements = 1;
9844 } else {
9845 elements = (8 << is_q) >> size;
9847 fracbits = (16 << size) - immhb;
9849 if (!fp_access_check(s)) {
9850 return;
9853 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9856 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9857 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9858 bool is_q, bool is_u,
9859 int immh, int immb, int rn, int rd)
9861 int immhb = immh << 3 | immb;
9862 int pass, size, fracbits;
9863 TCGv_ptr tcg_fpstatus;
9864 TCGv_i32 tcg_rmode, tcg_shift;
9866 if (immh & 0x8) {
9867 size = MO_64;
9868 if (!is_scalar && !is_q) {
9869 unallocated_encoding(s);
9870 return;
9872 } else if (immh & 0x4) {
9873 size = MO_32;
9874 } else if (immh & 0x2) {
9875 size = MO_16;
9876 if (!dc_isar_feature(aa64_fp16, s)) {
9877 unallocated_encoding(s);
9878 return;
9880 } else {
9881 /* Should have split out AdvSIMD modified immediate earlier. */
9882 assert(immh == 1);
9883 unallocated_encoding(s);
9884 return;
9887 if (!fp_access_check(s)) {
9888 return;
9891 assert(!(is_scalar && is_q));
9893 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9894 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9895 fracbits = (16 << size) - immhb;
9896 tcg_shift = tcg_constant_i32(fracbits);
9898 if (size == MO_64) {
9899 int maxpass = is_scalar ? 1 : 2;
9901 for (pass = 0; pass < maxpass; pass++) {
9902 TCGv_i64 tcg_op = tcg_temp_new_i64();
9904 read_vec_element(s, tcg_op, rn, pass, MO_64);
9905 if (is_u) {
9906 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9907 } else {
9908 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9910 write_vec_element(s, tcg_op, rd, pass, MO_64);
9912 clear_vec_high(s, is_q, rd);
9913 } else {
9914 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9915 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9917 switch (size) {
9918 case MO_16:
9919 if (is_u) {
9920 fn = gen_helper_vfp_touhh;
9921 } else {
9922 fn = gen_helper_vfp_toshh;
9924 break;
9925 case MO_32:
9926 if (is_u) {
9927 fn = gen_helper_vfp_touls;
9928 } else {
9929 fn = gen_helper_vfp_tosls;
9931 break;
9932 default:
9933 g_assert_not_reached();
9936 for (pass = 0; pass < maxpass; pass++) {
9937 TCGv_i32 tcg_op = tcg_temp_new_i32();
9939 read_vec_element_i32(s, tcg_op, rn, pass, size);
9940 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9941 if (is_scalar) {
9942 if (size == MO_16 && !is_u) {
9943 tcg_gen_ext16u_i32(tcg_op, tcg_op);
9945 write_fp_sreg(s, rd, tcg_op);
9946 } else {
9947 write_vec_element_i32(s, tcg_op, rd, pass, size);
9950 if (!is_scalar) {
9951 clear_vec_high(s, is_q, rd);
9955 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9958 /* AdvSIMD scalar shift by immediate
9959 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9960 * +-----+---+-------------+------+------+--------+---+------+------+
9961 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9962 * +-----+---+-------------+------+------+--------+---+------+------+
9964 * This is the scalar version so it works on a fixed sized registers
9966 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9968 int rd = extract32(insn, 0, 5);
9969 int rn = extract32(insn, 5, 5);
9970 int opcode = extract32(insn, 11, 5);
9971 int immb = extract32(insn, 16, 3);
9972 int immh = extract32(insn, 19, 4);
9973 bool is_u = extract32(insn, 29, 1);
9975 if (immh == 0) {
9976 unallocated_encoding(s);
9977 return;
9980 switch (opcode) {
9981 case 0x08: /* SRI */
9982 if (!is_u) {
9983 unallocated_encoding(s);
9984 return;
9986 /* fall through */
9987 case 0x00: /* SSHR / USHR */
9988 case 0x02: /* SSRA / USRA */
9989 case 0x04: /* SRSHR / URSHR */
9990 case 0x06: /* SRSRA / URSRA */
9991 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9992 break;
9993 case 0x0a: /* SHL / SLI */
9994 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9995 break;
9996 case 0x1c: /* SCVTF, UCVTF */
9997 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9998 opcode, rn, rd);
9999 break;
10000 case 0x10: /* SQSHRUN, SQSHRUN2 */
10001 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
10002 if (!is_u) {
10003 unallocated_encoding(s);
10004 return;
10006 handle_vec_simd_sqshrn(s, true, false, false, true,
10007 immh, immb, opcode, rn, rd);
10008 break;
10009 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
10010 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
10011 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
10012 immh, immb, opcode, rn, rd);
10013 break;
10014 case 0xc: /* SQSHLU */
10015 if (!is_u) {
10016 unallocated_encoding(s);
10017 return;
10019 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
10020 break;
10021 case 0xe: /* SQSHL, UQSHL */
10022 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
10023 break;
10024 case 0x1f: /* FCVTZS, FCVTZU */
10025 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
10026 break;
10027 default:
10028 unallocated_encoding(s);
10029 break;
10033 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
10034 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
10035 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
10037 /* Handle 64->64 opcodes which are shared between the scalar and
10038 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
10039 * is valid in either group and also the double-precision fp ops.
10040 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
10041 * requires them.
10043 TCGCond cond;
10045 switch (opcode) {
10046 case 0x4: /* CLS, CLZ */
10047 if (u) {
10048 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
10049 } else {
10050 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
10052 break;
10053 case 0x5: /* NOT */
10054 /* This opcode is shared with CNT and RBIT but we have earlier
10055 * enforced that size == 3 if and only if this is the NOT insn.
10057 tcg_gen_not_i64(tcg_rd, tcg_rn);
10058 break;
10059 case 0x7: /* SQABS, SQNEG */
10060 if (u) {
10061 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
10062 } else {
10063 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
10065 break;
10066 case 0xa: /* CMLT */
10067 cond = TCG_COND_LT;
10068 do_cmop:
10069 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
10070 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
10071 break;
10072 case 0x8: /* CMGT, CMGE */
10073 cond = u ? TCG_COND_GE : TCG_COND_GT;
10074 goto do_cmop;
10075 case 0x9: /* CMEQ, CMLE */
10076 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10077 goto do_cmop;
10078 case 0xb: /* ABS, NEG */
10079 if (u) {
10080 tcg_gen_neg_i64(tcg_rd, tcg_rn);
10081 } else {
10082 tcg_gen_abs_i64(tcg_rd, tcg_rn);
10084 break;
10085 case 0x2f: /* FABS */
10086 gen_vfp_absd(tcg_rd, tcg_rn);
10087 break;
10088 case 0x6f: /* FNEG */
10089 gen_vfp_negd(tcg_rd, tcg_rn);
10090 break;
10091 case 0x7f: /* FSQRT */
10092 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
10093 break;
10094 case 0x1a: /* FCVTNS */
10095 case 0x1b: /* FCVTMS */
10096 case 0x1c: /* FCVTAS */
10097 case 0x3a: /* FCVTPS */
10098 case 0x3b: /* FCVTZS */
10099 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
10100 break;
10101 case 0x5a: /* FCVTNU */
10102 case 0x5b: /* FCVTMU */
10103 case 0x5c: /* FCVTAU */
10104 case 0x7a: /* FCVTPU */
10105 case 0x7b: /* FCVTZU */
10106 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
10107 break;
10108 case 0x18: /* FRINTN */
10109 case 0x19: /* FRINTM */
10110 case 0x38: /* FRINTP */
10111 case 0x39: /* FRINTZ */
10112 case 0x58: /* FRINTA */
10113 case 0x79: /* FRINTI */
10114 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
10115 break;
10116 case 0x59: /* FRINTX */
10117 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
10118 break;
10119 case 0x1e: /* FRINT32Z */
10120 case 0x5e: /* FRINT32X */
10121 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
10122 break;
10123 case 0x1f: /* FRINT64Z */
10124 case 0x5f: /* FRINT64X */
10125 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
10126 break;
10127 default:
10128 g_assert_not_reached();
10132 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
10133 bool is_scalar, bool is_u, bool is_q,
10134 int size, int rn, int rd)
10136 bool is_double = (size == MO_64);
10137 TCGv_ptr fpst;
10139 if (!fp_access_check(s)) {
10140 return;
10143 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
10145 if (is_double) {
10146 TCGv_i64 tcg_op = tcg_temp_new_i64();
10147 TCGv_i64 tcg_zero = tcg_constant_i64(0);
10148 TCGv_i64 tcg_res = tcg_temp_new_i64();
10149 NeonGenTwoDoubleOpFn *genfn;
10150 bool swap = false;
10151 int pass;
10153 switch (opcode) {
10154 case 0x2e: /* FCMLT (zero) */
10155 swap = true;
10156 /* fallthrough */
10157 case 0x2c: /* FCMGT (zero) */
10158 genfn = gen_helper_neon_cgt_f64;
10159 break;
10160 case 0x2d: /* FCMEQ (zero) */
10161 genfn = gen_helper_neon_ceq_f64;
10162 break;
10163 case 0x6d: /* FCMLE (zero) */
10164 swap = true;
10165 /* fall through */
10166 case 0x6c: /* FCMGE (zero) */
10167 genfn = gen_helper_neon_cge_f64;
10168 break;
10169 default:
10170 g_assert_not_reached();
10173 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10174 read_vec_element(s, tcg_op, rn, pass, MO_64);
10175 if (swap) {
10176 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10177 } else {
10178 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10180 write_vec_element(s, tcg_res, rd, pass, MO_64);
10183 clear_vec_high(s, !is_scalar, rd);
10184 } else {
10185 TCGv_i32 tcg_op = tcg_temp_new_i32();
10186 TCGv_i32 tcg_zero = tcg_constant_i32(0);
10187 TCGv_i32 tcg_res = tcg_temp_new_i32();
10188 NeonGenTwoSingleOpFn *genfn;
10189 bool swap = false;
10190 int pass, maxpasses;
10192 if (size == MO_16) {
10193 switch (opcode) {
10194 case 0x2e: /* FCMLT (zero) */
10195 swap = true;
10196 /* fall through */
10197 case 0x2c: /* FCMGT (zero) */
10198 genfn = gen_helper_advsimd_cgt_f16;
10199 break;
10200 case 0x2d: /* FCMEQ (zero) */
10201 genfn = gen_helper_advsimd_ceq_f16;
10202 break;
10203 case 0x6d: /* FCMLE (zero) */
10204 swap = true;
10205 /* fall through */
10206 case 0x6c: /* FCMGE (zero) */
10207 genfn = gen_helper_advsimd_cge_f16;
10208 break;
10209 default:
10210 g_assert_not_reached();
10212 } else {
10213 switch (opcode) {
10214 case 0x2e: /* FCMLT (zero) */
10215 swap = true;
10216 /* fall through */
10217 case 0x2c: /* FCMGT (zero) */
10218 genfn = gen_helper_neon_cgt_f32;
10219 break;
10220 case 0x2d: /* FCMEQ (zero) */
10221 genfn = gen_helper_neon_ceq_f32;
10222 break;
10223 case 0x6d: /* FCMLE (zero) */
10224 swap = true;
10225 /* fall through */
10226 case 0x6c: /* FCMGE (zero) */
10227 genfn = gen_helper_neon_cge_f32;
10228 break;
10229 default:
10230 g_assert_not_reached();
10234 if (is_scalar) {
10235 maxpasses = 1;
10236 } else {
10237 int vector_size = 8 << is_q;
10238 maxpasses = vector_size >> size;
10241 for (pass = 0; pass < maxpasses; pass++) {
10242 read_vec_element_i32(s, tcg_op, rn, pass, size);
10243 if (swap) {
10244 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10245 } else {
10246 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10248 if (is_scalar) {
10249 write_fp_sreg(s, rd, tcg_res);
10250 } else {
10251 write_vec_element_i32(s, tcg_res, rd, pass, size);
10255 if (!is_scalar) {
10256 clear_vec_high(s, is_q, rd);
10261 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10262 bool is_scalar, bool is_u, bool is_q,
10263 int size, int rn, int rd)
10265 bool is_double = (size == 3);
10266 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10268 if (is_double) {
10269 TCGv_i64 tcg_op = tcg_temp_new_i64();
10270 TCGv_i64 tcg_res = tcg_temp_new_i64();
10271 int pass;
10273 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10274 read_vec_element(s, tcg_op, rn, pass, MO_64);
10275 switch (opcode) {
10276 case 0x3d: /* FRECPE */
10277 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10278 break;
10279 case 0x3f: /* FRECPX */
10280 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10281 break;
10282 case 0x7d: /* FRSQRTE */
10283 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10284 break;
10285 default:
10286 g_assert_not_reached();
10288 write_vec_element(s, tcg_res, rd, pass, MO_64);
10290 clear_vec_high(s, !is_scalar, rd);
10291 } else {
10292 TCGv_i32 tcg_op = tcg_temp_new_i32();
10293 TCGv_i32 tcg_res = tcg_temp_new_i32();
10294 int pass, maxpasses;
10296 if (is_scalar) {
10297 maxpasses = 1;
10298 } else {
10299 maxpasses = is_q ? 4 : 2;
10302 for (pass = 0; pass < maxpasses; pass++) {
10303 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10305 switch (opcode) {
10306 case 0x3c: /* URECPE */
10307 gen_helper_recpe_u32(tcg_res, tcg_op);
10308 break;
10309 case 0x3d: /* FRECPE */
10310 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10311 break;
10312 case 0x3f: /* FRECPX */
10313 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10314 break;
10315 case 0x7d: /* FRSQRTE */
10316 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10317 break;
10318 default:
10319 g_assert_not_reached();
10322 if (is_scalar) {
10323 write_fp_sreg(s, rd, tcg_res);
10324 } else {
10325 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10328 if (!is_scalar) {
10329 clear_vec_high(s, is_q, rd);
10334 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10335 int opcode, bool u, bool is_q,
10336 int size, int rn, int rd)
10338 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10339 * in the source becomes a size element in the destination).
10341 int pass;
10342 TCGv_i32 tcg_res[2];
10343 int destelt = is_q ? 2 : 0;
10344 int passes = scalar ? 1 : 2;
10346 if (scalar) {
10347 tcg_res[1] = tcg_constant_i32(0);
10350 for (pass = 0; pass < passes; pass++) {
10351 TCGv_i64 tcg_op = tcg_temp_new_i64();
10352 NeonGenNarrowFn *genfn = NULL;
10353 NeonGenNarrowEnvFn *genenvfn = NULL;
10355 if (scalar) {
10356 read_vec_element(s, tcg_op, rn, pass, size + 1);
10357 } else {
10358 read_vec_element(s, tcg_op, rn, pass, MO_64);
10360 tcg_res[pass] = tcg_temp_new_i32();
10362 switch (opcode) {
10363 case 0x12: /* XTN, SQXTUN */
10365 static NeonGenNarrowFn * const xtnfns[3] = {
10366 gen_helper_neon_narrow_u8,
10367 gen_helper_neon_narrow_u16,
10368 tcg_gen_extrl_i64_i32,
10370 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10371 gen_helper_neon_unarrow_sat8,
10372 gen_helper_neon_unarrow_sat16,
10373 gen_helper_neon_unarrow_sat32,
10375 if (u) {
10376 genenvfn = sqxtunfns[size];
10377 } else {
10378 genfn = xtnfns[size];
10380 break;
10382 case 0x14: /* SQXTN, UQXTN */
10384 static NeonGenNarrowEnvFn * const fns[3][2] = {
10385 { gen_helper_neon_narrow_sat_s8,
10386 gen_helper_neon_narrow_sat_u8 },
10387 { gen_helper_neon_narrow_sat_s16,
10388 gen_helper_neon_narrow_sat_u16 },
10389 { gen_helper_neon_narrow_sat_s32,
10390 gen_helper_neon_narrow_sat_u32 },
10392 genenvfn = fns[size][u];
10393 break;
10395 case 0x16: /* FCVTN, FCVTN2 */
10396 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10397 if (size == 2) {
10398 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10399 } else {
10400 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10401 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10402 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10403 TCGv_i32 ahp = get_ahp_flag();
10405 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10406 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10407 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10408 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10410 break;
10411 case 0x36: /* BFCVTN, BFCVTN2 */
10413 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10414 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10416 break;
10417 case 0x56: /* FCVTXN, FCVTXN2 */
10418 /* 64 bit to 32 bit float conversion
10419 * with von Neumann rounding (round to odd)
10421 assert(size == 2);
10422 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10423 break;
10424 default:
10425 g_assert_not_reached();
10428 if (genfn) {
10429 genfn(tcg_res[pass], tcg_op);
10430 } else if (genenvfn) {
10431 genenvfn(tcg_res[pass], tcg_env, tcg_op);
10435 for (pass = 0; pass < 2; pass++) {
10436 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10438 clear_vec_high(s, is_q, rd);
10441 /* AdvSIMD scalar two reg misc
10442 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10443 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10444 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10445 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10447 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10449 int rd = extract32(insn, 0, 5);
10450 int rn = extract32(insn, 5, 5);
10451 int opcode = extract32(insn, 12, 5);
10452 int size = extract32(insn, 22, 2);
10453 bool u = extract32(insn, 29, 1);
10454 bool is_fcvt = false;
10455 int rmode;
10456 TCGv_i32 tcg_rmode;
10457 TCGv_ptr tcg_fpstatus;
10459 switch (opcode) {
10460 case 0x7: /* SQABS / SQNEG */
10461 break;
10462 case 0xa: /* CMLT */
10463 if (u) {
10464 unallocated_encoding(s);
10465 return;
10467 /* fall through */
10468 case 0x8: /* CMGT, CMGE */
10469 case 0x9: /* CMEQ, CMLE */
10470 case 0xb: /* ABS, NEG */
10471 if (size != 3) {
10472 unallocated_encoding(s);
10473 return;
10475 break;
10476 case 0x12: /* SQXTUN */
10477 if (!u) {
10478 unallocated_encoding(s);
10479 return;
10481 /* fall through */
10482 case 0x14: /* SQXTN, UQXTN */
10483 if (size == 3) {
10484 unallocated_encoding(s);
10485 return;
10487 if (!fp_access_check(s)) {
10488 return;
10490 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10491 return;
10492 case 0xc ... 0xf:
10493 case 0x16 ... 0x1d:
10494 case 0x1f:
10495 /* Floating point: U, size[1] and opcode indicate operation;
10496 * size[0] indicates single or double precision.
10498 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10499 size = extract32(size, 0, 1) ? 3 : 2;
10500 switch (opcode) {
10501 case 0x2c: /* FCMGT (zero) */
10502 case 0x2d: /* FCMEQ (zero) */
10503 case 0x2e: /* FCMLT (zero) */
10504 case 0x6c: /* FCMGE (zero) */
10505 case 0x6d: /* FCMLE (zero) */
10506 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10507 return;
10508 case 0x1d: /* SCVTF */
10509 case 0x5d: /* UCVTF */
10511 bool is_signed = (opcode == 0x1d);
10512 if (!fp_access_check(s)) {
10513 return;
10515 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10516 return;
10518 case 0x3d: /* FRECPE */
10519 case 0x3f: /* FRECPX */
10520 case 0x7d: /* FRSQRTE */
10521 if (!fp_access_check(s)) {
10522 return;
10524 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10525 return;
10526 case 0x1a: /* FCVTNS */
10527 case 0x1b: /* FCVTMS */
10528 case 0x3a: /* FCVTPS */
10529 case 0x3b: /* FCVTZS */
10530 case 0x5a: /* FCVTNU */
10531 case 0x5b: /* FCVTMU */
10532 case 0x7a: /* FCVTPU */
10533 case 0x7b: /* FCVTZU */
10534 is_fcvt = true;
10535 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10536 break;
10537 case 0x1c: /* FCVTAS */
10538 case 0x5c: /* FCVTAU */
10539 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10540 is_fcvt = true;
10541 rmode = FPROUNDING_TIEAWAY;
10542 break;
10543 case 0x56: /* FCVTXN, FCVTXN2 */
10544 if (size == 2) {
10545 unallocated_encoding(s);
10546 return;
10548 if (!fp_access_check(s)) {
10549 return;
10551 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10552 return;
10553 default:
10554 unallocated_encoding(s);
10555 return;
10557 break;
10558 default:
10559 case 0x3: /* USQADD / SUQADD */
10560 unallocated_encoding(s);
10561 return;
10564 if (!fp_access_check(s)) {
10565 return;
10568 if (is_fcvt) {
10569 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10570 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10571 } else {
10572 tcg_fpstatus = NULL;
10573 tcg_rmode = NULL;
10576 if (size == 3) {
10577 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10578 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10580 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10581 write_fp_dreg(s, rd, tcg_rd);
10582 } else {
10583 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10584 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10586 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10588 switch (opcode) {
10589 case 0x7: /* SQABS, SQNEG */
10591 NeonGenOneOpEnvFn *genfn;
10592 static NeonGenOneOpEnvFn * const fns[3][2] = {
10593 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10594 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10595 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10597 genfn = fns[size][u];
10598 genfn(tcg_rd, tcg_env, tcg_rn);
10599 break;
10601 case 0x1a: /* FCVTNS */
10602 case 0x1b: /* FCVTMS */
10603 case 0x1c: /* FCVTAS */
10604 case 0x3a: /* FCVTPS */
10605 case 0x3b: /* FCVTZS */
10606 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10607 tcg_fpstatus);
10608 break;
10609 case 0x5a: /* FCVTNU */
10610 case 0x5b: /* FCVTMU */
10611 case 0x5c: /* FCVTAU */
10612 case 0x7a: /* FCVTPU */
10613 case 0x7b: /* FCVTZU */
10614 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10615 tcg_fpstatus);
10616 break;
10617 default:
10618 g_assert_not_reached();
10621 write_fp_sreg(s, rd, tcg_rd);
10624 if (is_fcvt) {
10625 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10629 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10630 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10631 int immh, int immb, int opcode, int rn, int rd)
10633 int size = 32 - clz32(immh) - 1;
10634 int immhb = immh << 3 | immb;
10635 int shift = 2 * (8 << size) - immhb;
10636 GVecGen2iFn *gvec_fn;
10638 if (extract32(immh, 3, 1) && !is_q) {
10639 unallocated_encoding(s);
10640 return;
10642 tcg_debug_assert(size <= 3);
10644 if (!fp_access_check(s)) {
10645 return;
10648 switch (opcode) {
10649 case 0x02: /* SSRA / USRA (accumulate) */
10650 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10651 break;
10653 case 0x08: /* SRI */
10654 gvec_fn = gen_gvec_sri;
10655 break;
10657 case 0x00: /* SSHR / USHR */
10658 if (is_u) {
10659 if (shift == 8 << size) {
10660 /* Shift count the same size as element size produces zero. */
10661 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10662 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10663 return;
10665 gvec_fn = tcg_gen_gvec_shri;
10666 } else {
10667 /* Shift count the same size as element size produces all sign. */
10668 if (shift == 8 << size) {
10669 shift -= 1;
10671 gvec_fn = tcg_gen_gvec_sari;
10673 break;
10675 case 0x04: /* SRSHR / URSHR (rounding) */
10676 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10677 break;
10679 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10680 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10681 break;
10683 default:
10684 g_assert_not_reached();
10687 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10690 /* SHL/SLI - Vector shift left */
10691 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10692 int immh, int immb, int opcode, int rn, int rd)
10694 int size = 32 - clz32(immh) - 1;
10695 int immhb = immh << 3 | immb;
10696 int shift = immhb - (8 << size);
10698 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10699 assert(size >= 0 && size <= 3);
10701 if (extract32(immh, 3, 1) && !is_q) {
10702 unallocated_encoding(s);
10703 return;
10706 if (!fp_access_check(s)) {
10707 return;
10710 if (insert) {
10711 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10712 } else {
10713 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10717 /* USHLL/SHLL - Vector shift left with widening */
10718 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10719 int immh, int immb, int opcode, int rn, int rd)
10721 int size = 32 - clz32(immh) - 1;
10722 int immhb = immh << 3 | immb;
10723 int shift = immhb - (8 << size);
10724 int dsize = 64;
10725 int esize = 8 << size;
10726 int elements = dsize/esize;
10727 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10728 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10729 int i;
10731 if (size >= 3) {
10732 unallocated_encoding(s);
10733 return;
10736 if (!fp_access_check(s)) {
10737 return;
10740 /* For the LL variants the store is larger than the load,
10741 * so if rd == rn we would overwrite parts of our input.
10742 * So load everything right now and use shifts in the main loop.
10744 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10746 for (i = 0; i < elements; i++) {
10747 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10748 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10749 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10750 write_vec_element(s, tcg_rd, rd, i, size + 1);
10754 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10755 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10756 int immh, int immb, int opcode, int rn, int rd)
10758 int immhb = immh << 3 | immb;
10759 int size = 32 - clz32(immh) - 1;
10760 int dsize = 64;
10761 int esize = 8 << size;
10762 int elements = dsize/esize;
10763 int shift = (2 * esize) - immhb;
10764 bool round = extract32(opcode, 0, 1);
10765 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10766 TCGv_i64 tcg_round;
10767 int i;
10769 if (extract32(immh, 3, 1)) {
10770 unallocated_encoding(s);
10771 return;
10774 if (!fp_access_check(s)) {
10775 return;
10778 tcg_rn = tcg_temp_new_i64();
10779 tcg_rd = tcg_temp_new_i64();
10780 tcg_final = tcg_temp_new_i64();
10781 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10783 if (round) {
10784 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10785 } else {
10786 tcg_round = NULL;
10789 for (i = 0; i < elements; i++) {
10790 read_vec_element(s, tcg_rn, rn, i, size+1);
10791 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10792 false, true, size+1, shift);
10794 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10797 if (!is_q) {
10798 write_vec_element(s, tcg_final, rd, 0, MO_64);
10799 } else {
10800 write_vec_element(s, tcg_final, rd, 1, MO_64);
10803 clear_vec_high(s, is_q, rd);
10807 /* AdvSIMD shift by immediate
10808 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10809 * +---+---+---+-------------+------+------+--------+---+------+------+
10810 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10811 * +---+---+---+-------------+------+------+--------+---+------+------+
10813 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10815 int rd = extract32(insn, 0, 5);
10816 int rn = extract32(insn, 5, 5);
10817 int opcode = extract32(insn, 11, 5);
10818 int immb = extract32(insn, 16, 3);
10819 int immh = extract32(insn, 19, 4);
10820 bool is_u = extract32(insn, 29, 1);
10821 bool is_q = extract32(insn, 30, 1);
10823 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10824 assert(immh != 0);
10826 switch (opcode) {
10827 case 0x08: /* SRI */
10828 if (!is_u) {
10829 unallocated_encoding(s);
10830 return;
10832 /* fall through */
10833 case 0x00: /* SSHR / USHR */
10834 case 0x02: /* SSRA / USRA (accumulate) */
10835 case 0x04: /* SRSHR / URSHR (rounding) */
10836 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10837 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10838 break;
10839 case 0x0a: /* SHL / SLI */
10840 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10841 break;
10842 case 0x10: /* SHRN */
10843 case 0x11: /* RSHRN / SQRSHRUN */
10844 if (is_u) {
10845 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10846 opcode, rn, rd);
10847 } else {
10848 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10850 break;
10851 case 0x12: /* SQSHRN / UQSHRN */
10852 case 0x13: /* SQRSHRN / UQRSHRN */
10853 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10854 opcode, rn, rd);
10855 break;
10856 case 0x14: /* SSHLL / USHLL */
10857 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10858 break;
10859 case 0x1c: /* SCVTF / UCVTF */
10860 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10861 opcode, rn, rd);
10862 break;
10863 case 0xc: /* SQSHLU */
10864 if (!is_u) {
10865 unallocated_encoding(s);
10866 return;
10868 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10869 break;
10870 case 0xe: /* SQSHL, UQSHL */
10871 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10872 break;
10873 case 0x1f: /* FCVTZS/ FCVTZU */
10874 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10875 return;
10876 default:
10877 unallocated_encoding(s);
10878 return;
10882 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
10883 int size, int rn, int rd)
10885 /* Handle 2-reg-misc ops which are widening (so each size element
10886 * in the source becomes a 2*size element in the destination.
10887 * The only instruction like this is FCVTL.
10889 int pass;
10891 if (size == 3) {
10892 /* 32 -> 64 bit fp conversion */
10893 TCGv_i64 tcg_res[2];
10894 int srcelt = is_q ? 2 : 0;
10896 for (pass = 0; pass < 2; pass++) {
10897 TCGv_i32 tcg_op = tcg_temp_new_i32();
10898 tcg_res[pass] = tcg_temp_new_i64();
10900 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
10901 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
10903 for (pass = 0; pass < 2; pass++) {
10904 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10906 } else {
10907 /* 16 -> 32 bit fp conversion */
10908 int srcelt = is_q ? 4 : 0;
10909 TCGv_i32 tcg_res[4];
10910 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10911 TCGv_i32 ahp = get_ahp_flag();
10913 for (pass = 0; pass < 4; pass++) {
10914 tcg_res[pass] = tcg_temp_new_i32();
10916 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
10917 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
10918 fpst, ahp);
10920 for (pass = 0; pass < 4; pass++) {
10921 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10926 static void handle_rev(DisasContext *s, int opcode, bool u,
10927 bool is_q, int size, int rn, int rd)
10929 int op = (opcode << 1) | u;
10930 int opsz = op + size;
10931 int grp_size = 3 - opsz;
10932 int dsize = is_q ? 128 : 64;
10933 int i;
10935 if (opsz >= 3) {
10936 unallocated_encoding(s);
10937 return;
10940 if (!fp_access_check(s)) {
10941 return;
10944 if (size == 0) {
10945 /* Special case bytes, use bswap op on each group of elements */
10946 int groups = dsize / (8 << grp_size);
10948 for (i = 0; i < groups; i++) {
10949 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
10951 read_vec_element(s, tcg_tmp, rn, i, grp_size);
10952 switch (grp_size) {
10953 case MO_16:
10954 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
10955 break;
10956 case MO_32:
10957 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
10958 break;
10959 case MO_64:
10960 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
10961 break;
10962 default:
10963 g_assert_not_reached();
10965 write_vec_element(s, tcg_tmp, rd, i, grp_size);
10967 clear_vec_high(s, is_q, rd);
10968 } else {
10969 int revmask = (1 << grp_size) - 1;
10970 int esize = 8 << size;
10971 int elements = dsize / esize;
10972 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10973 TCGv_i64 tcg_rd[2];
10975 for (i = 0; i < 2; i++) {
10976 tcg_rd[i] = tcg_temp_new_i64();
10977 tcg_gen_movi_i64(tcg_rd[i], 0);
10980 for (i = 0; i < elements; i++) {
10981 int e_rev = (i & 0xf) ^ revmask;
10982 int w = (e_rev * esize) / 64;
10983 int o = (e_rev * esize) % 64;
10985 read_vec_element(s, tcg_rn, rn, i, size);
10986 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
10989 for (i = 0; i < 2; i++) {
10990 write_vec_element(s, tcg_rd[i], rd, i, MO_64);
10992 clear_vec_high(s, true, rd);
10996 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
10997 bool is_q, int size, int rn, int rd)
10999 /* Implement the pairwise operations from 2-misc:
11000 * SADDLP, UADDLP, SADALP, UADALP.
11001 * These all add pairs of elements in the input to produce a
11002 * double-width result element in the output (possibly accumulating).
11004 bool accum = (opcode == 0x6);
11005 int maxpass = is_q ? 2 : 1;
11006 int pass;
11007 TCGv_i64 tcg_res[2];
11009 if (size == 2) {
11010 /* 32 + 32 -> 64 op */
11011 MemOp memop = size + (u ? 0 : MO_SIGN);
11013 for (pass = 0; pass < maxpass; pass++) {
11014 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11015 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11017 tcg_res[pass] = tcg_temp_new_i64();
11019 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11020 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11021 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11022 if (accum) {
11023 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11024 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11027 } else {
11028 for (pass = 0; pass < maxpass; pass++) {
11029 TCGv_i64 tcg_op = tcg_temp_new_i64();
11030 NeonGenOne64OpFn *genfn;
11031 static NeonGenOne64OpFn * const fns[2][2] = {
11032 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11033 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11036 genfn = fns[size][u];
11038 tcg_res[pass] = tcg_temp_new_i64();
11040 read_vec_element(s, tcg_op, rn, pass, MO_64);
11041 genfn(tcg_res[pass], tcg_op);
11043 if (accum) {
11044 read_vec_element(s, tcg_op, rd, pass, MO_64);
11045 if (size == 0) {
11046 gen_helper_neon_addl_u16(tcg_res[pass],
11047 tcg_res[pass], tcg_op);
11048 } else {
11049 gen_helper_neon_addl_u32(tcg_res[pass],
11050 tcg_res[pass], tcg_op);
11055 if (!is_q) {
11056 tcg_res[1] = tcg_constant_i64(0);
11058 for (pass = 0; pass < 2; pass++) {
11059 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11063 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11065 /* Implement SHLL and SHLL2 */
11066 int pass;
11067 int part = is_q ? 2 : 0;
11068 TCGv_i64 tcg_res[2];
11070 for (pass = 0; pass < 2; pass++) {
11071 static NeonGenWidenFn * const widenfns[3] = {
11072 gen_helper_neon_widen_u8,
11073 gen_helper_neon_widen_u16,
11074 tcg_gen_extu_i32_i64,
11076 NeonGenWidenFn *widenfn = widenfns[size];
11077 TCGv_i32 tcg_op = tcg_temp_new_i32();
11079 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11080 tcg_res[pass] = tcg_temp_new_i64();
11081 widenfn(tcg_res[pass], tcg_op);
11082 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11085 for (pass = 0; pass < 2; pass++) {
11086 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11090 /* AdvSIMD two reg misc
11091 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11092 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11093 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11094 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11096 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11098 int size = extract32(insn, 22, 2);
11099 int opcode = extract32(insn, 12, 5);
11100 bool u = extract32(insn, 29, 1);
11101 bool is_q = extract32(insn, 30, 1);
11102 int rn = extract32(insn, 5, 5);
11103 int rd = extract32(insn, 0, 5);
11104 bool need_fpstatus = false;
11105 int rmode = -1;
11106 TCGv_i32 tcg_rmode;
11107 TCGv_ptr tcg_fpstatus;
11109 switch (opcode) {
11110 case 0x0: /* REV64, REV32 */
11111 case 0x1: /* REV16 */
11112 handle_rev(s, opcode, u, is_q, size, rn, rd);
11113 return;
11114 case 0x5: /* CNT, NOT, RBIT */
11115 if (u && size == 0) {
11116 /* NOT */
11117 break;
11118 } else if (u && size == 1) {
11119 /* RBIT */
11120 break;
11121 } else if (!u && size == 0) {
11122 /* CNT */
11123 break;
11125 unallocated_encoding(s);
11126 return;
11127 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11128 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11129 if (size == 3) {
11130 unallocated_encoding(s);
11131 return;
11133 if (!fp_access_check(s)) {
11134 return;
11137 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11138 return;
11139 case 0x4: /* CLS, CLZ */
11140 if (size == 3) {
11141 unallocated_encoding(s);
11142 return;
11144 break;
11145 case 0x2: /* SADDLP, UADDLP */
11146 case 0x6: /* SADALP, UADALP */
11147 if (size == 3) {
11148 unallocated_encoding(s);
11149 return;
11151 if (!fp_access_check(s)) {
11152 return;
11154 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11155 return;
11156 case 0x13: /* SHLL, SHLL2 */
11157 if (u == 0 || size == 3) {
11158 unallocated_encoding(s);
11159 return;
11161 if (!fp_access_check(s)) {
11162 return;
11164 handle_shll(s, is_q, size, rn, rd);
11165 return;
11166 case 0xa: /* CMLT */
11167 if (u == 1) {
11168 unallocated_encoding(s);
11169 return;
11171 /* fall through */
11172 case 0x8: /* CMGT, CMGE */
11173 case 0x9: /* CMEQ, CMLE */
11174 case 0xb: /* ABS, NEG */
11175 if (size == 3 && !is_q) {
11176 unallocated_encoding(s);
11177 return;
11179 break;
11180 case 0x7: /* SQABS, SQNEG */
11181 if (size == 3 && !is_q) {
11182 unallocated_encoding(s);
11183 return;
11185 break;
11186 case 0xc ... 0xf:
11187 case 0x16 ... 0x1f:
11189 /* Floating point: U, size[1] and opcode indicate operation;
11190 * size[0] indicates single or double precision.
11192 int is_double = extract32(size, 0, 1);
11193 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11194 size = is_double ? 3 : 2;
11195 switch (opcode) {
11196 case 0x2f: /* FABS */
11197 case 0x6f: /* FNEG */
11198 if (size == 3 && !is_q) {
11199 unallocated_encoding(s);
11200 return;
11202 break;
11203 case 0x1d: /* SCVTF */
11204 case 0x5d: /* UCVTF */
11206 bool is_signed = (opcode == 0x1d) ? true : false;
11207 int elements = is_double ? 2 : is_q ? 4 : 2;
11208 if (is_double && !is_q) {
11209 unallocated_encoding(s);
11210 return;
11212 if (!fp_access_check(s)) {
11213 return;
11215 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11216 return;
11218 case 0x2c: /* FCMGT (zero) */
11219 case 0x2d: /* FCMEQ (zero) */
11220 case 0x2e: /* FCMLT (zero) */
11221 case 0x6c: /* FCMGE (zero) */
11222 case 0x6d: /* FCMLE (zero) */
11223 if (size == 3 && !is_q) {
11224 unallocated_encoding(s);
11225 return;
11227 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11228 return;
11229 case 0x7f: /* FSQRT */
11230 if (size == 3 && !is_q) {
11231 unallocated_encoding(s);
11232 return;
11234 break;
11235 case 0x1a: /* FCVTNS */
11236 case 0x1b: /* FCVTMS */
11237 case 0x3a: /* FCVTPS */
11238 case 0x3b: /* FCVTZS */
11239 case 0x5a: /* FCVTNU */
11240 case 0x5b: /* FCVTMU */
11241 case 0x7a: /* FCVTPU */
11242 case 0x7b: /* FCVTZU */
11243 need_fpstatus = true;
11244 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11245 if (size == 3 && !is_q) {
11246 unallocated_encoding(s);
11247 return;
11249 break;
11250 case 0x5c: /* FCVTAU */
11251 case 0x1c: /* FCVTAS */
11252 need_fpstatus = true;
11253 rmode = FPROUNDING_TIEAWAY;
11254 if (size == 3 && !is_q) {
11255 unallocated_encoding(s);
11256 return;
11258 break;
11259 case 0x3c: /* URECPE */
11260 if (size == 3) {
11261 unallocated_encoding(s);
11262 return;
11264 /* fall through */
11265 case 0x3d: /* FRECPE */
11266 case 0x7d: /* FRSQRTE */
11267 if (size == 3 && !is_q) {
11268 unallocated_encoding(s);
11269 return;
11271 if (!fp_access_check(s)) {
11272 return;
11274 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11275 return;
11276 case 0x56: /* FCVTXN, FCVTXN2 */
11277 if (size == 2) {
11278 unallocated_encoding(s);
11279 return;
11281 /* fall through */
11282 case 0x16: /* FCVTN, FCVTN2 */
11283 /* handle_2misc_narrow does a 2*size -> size operation, but these
11284 * instructions encode the source size rather than dest size.
11286 if (!fp_access_check(s)) {
11287 return;
11289 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11290 return;
11291 case 0x36: /* BFCVTN, BFCVTN2 */
11292 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11293 unallocated_encoding(s);
11294 return;
11296 if (!fp_access_check(s)) {
11297 return;
11299 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11300 return;
11301 case 0x17: /* FCVTL, FCVTL2 */
11302 if (!fp_access_check(s)) {
11303 return;
11305 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11306 return;
11307 case 0x18: /* FRINTN */
11308 case 0x19: /* FRINTM */
11309 case 0x38: /* FRINTP */
11310 case 0x39: /* FRINTZ */
11311 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11312 /* fall through */
11313 case 0x59: /* FRINTX */
11314 case 0x79: /* FRINTI */
11315 need_fpstatus = true;
11316 if (size == 3 && !is_q) {
11317 unallocated_encoding(s);
11318 return;
11320 break;
11321 case 0x58: /* FRINTA */
11322 rmode = FPROUNDING_TIEAWAY;
11323 need_fpstatus = true;
11324 if (size == 3 && !is_q) {
11325 unallocated_encoding(s);
11326 return;
11328 break;
11329 case 0x7c: /* URSQRTE */
11330 if (size == 3) {
11331 unallocated_encoding(s);
11332 return;
11334 break;
11335 case 0x1e: /* FRINT32Z */
11336 case 0x1f: /* FRINT64Z */
11337 rmode = FPROUNDING_ZERO;
11338 /* fall through */
11339 case 0x5e: /* FRINT32X */
11340 case 0x5f: /* FRINT64X */
11341 need_fpstatus = true;
11342 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11343 unallocated_encoding(s);
11344 return;
11346 break;
11347 default:
11348 unallocated_encoding(s);
11349 return;
11351 break;
11353 default:
11354 case 0x3: /* SUQADD, USQADD */
11355 unallocated_encoding(s);
11356 return;
11359 if (!fp_access_check(s)) {
11360 return;
11363 if (need_fpstatus || rmode >= 0) {
11364 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11365 } else {
11366 tcg_fpstatus = NULL;
11368 if (rmode >= 0) {
11369 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11370 } else {
11371 tcg_rmode = NULL;
11374 switch (opcode) {
11375 case 0x5:
11376 if (u && size == 0) { /* NOT */
11377 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11378 return;
11380 break;
11381 case 0x8: /* CMGT, CMGE */
11382 if (u) {
11383 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11384 } else {
11385 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11387 return;
11388 case 0x9: /* CMEQ, CMLE */
11389 if (u) {
11390 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11391 } else {
11392 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11394 return;
11395 case 0xa: /* CMLT */
11396 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11397 return;
11398 case 0xb:
11399 if (u) { /* ABS, NEG */
11400 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11401 } else {
11402 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11404 return;
11407 if (size == 3) {
11408 /* All 64-bit element operations can be shared with scalar 2misc */
11409 int pass;
11411 /* Coverity claims (size == 3 && !is_q) has been eliminated
11412 * from all paths leading to here.
11414 tcg_debug_assert(is_q);
11415 for (pass = 0; pass < 2; pass++) {
11416 TCGv_i64 tcg_op = tcg_temp_new_i64();
11417 TCGv_i64 tcg_res = tcg_temp_new_i64();
11419 read_vec_element(s, tcg_op, rn, pass, MO_64);
11421 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11422 tcg_rmode, tcg_fpstatus);
11424 write_vec_element(s, tcg_res, rd, pass, MO_64);
11426 } else {
11427 int pass;
11429 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11430 TCGv_i32 tcg_op = tcg_temp_new_i32();
11431 TCGv_i32 tcg_res = tcg_temp_new_i32();
11433 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11435 if (size == 2) {
11436 /* Special cases for 32 bit elements */
11437 switch (opcode) {
11438 case 0x4: /* CLS */
11439 if (u) {
11440 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11441 } else {
11442 tcg_gen_clrsb_i32(tcg_res, tcg_op);
11444 break;
11445 case 0x7: /* SQABS, SQNEG */
11446 if (u) {
11447 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11448 } else {
11449 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11451 break;
11452 case 0x2f: /* FABS */
11453 gen_vfp_abss(tcg_res, tcg_op);
11454 break;
11455 case 0x6f: /* FNEG */
11456 gen_vfp_negs(tcg_res, tcg_op);
11457 break;
11458 case 0x7f: /* FSQRT */
11459 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11460 break;
11461 case 0x1a: /* FCVTNS */
11462 case 0x1b: /* FCVTMS */
11463 case 0x1c: /* FCVTAS */
11464 case 0x3a: /* FCVTPS */
11465 case 0x3b: /* FCVTZS */
11466 gen_helper_vfp_tosls(tcg_res, tcg_op,
11467 tcg_constant_i32(0), tcg_fpstatus);
11468 break;
11469 case 0x5a: /* FCVTNU */
11470 case 0x5b: /* FCVTMU */
11471 case 0x5c: /* FCVTAU */
11472 case 0x7a: /* FCVTPU */
11473 case 0x7b: /* FCVTZU */
11474 gen_helper_vfp_touls(tcg_res, tcg_op,
11475 tcg_constant_i32(0), tcg_fpstatus);
11476 break;
11477 case 0x18: /* FRINTN */
11478 case 0x19: /* FRINTM */
11479 case 0x38: /* FRINTP */
11480 case 0x39: /* FRINTZ */
11481 case 0x58: /* FRINTA */
11482 case 0x79: /* FRINTI */
11483 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11484 break;
11485 case 0x59: /* FRINTX */
11486 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11487 break;
11488 case 0x7c: /* URSQRTE */
11489 gen_helper_rsqrte_u32(tcg_res, tcg_op);
11490 break;
11491 case 0x1e: /* FRINT32Z */
11492 case 0x5e: /* FRINT32X */
11493 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11494 break;
11495 case 0x1f: /* FRINT64Z */
11496 case 0x5f: /* FRINT64X */
11497 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11498 break;
11499 default:
11500 g_assert_not_reached();
11502 } else {
11503 /* Use helpers for 8 and 16 bit elements */
11504 switch (opcode) {
11505 case 0x5: /* CNT, RBIT */
11506 /* For these two insns size is part of the opcode specifier
11507 * (handled earlier); they always operate on byte elements.
11509 if (u) {
11510 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11511 } else {
11512 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11514 break;
11515 case 0x7: /* SQABS, SQNEG */
11517 NeonGenOneOpEnvFn *genfn;
11518 static NeonGenOneOpEnvFn * const fns[2][2] = {
11519 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11520 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11522 genfn = fns[size][u];
11523 genfn(tcg_res, tcg_env, tcg_op);
11524 break;
11526 case 0x4: /* CLS, CLZ */
11527 if (u) {
11528 if (size == 0) {
11529 gen_helper_neon_clz_u8(tcg_res, tcg_op);
11530 } else {
11531 gen_helper_neon_clz_u16(tcg_res, tcg_op);
11533 } else {
11534 if (size == 0) {
11535 gen_helper_neon_cls_s8(tcg_res, tcg_op);
11536 } else {
11537 gen_helper_neon_cls_s16(tcg_res, tcg_op);
11540 break;
11541 default:
11542 g_assert_not_reached();
11546 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11549 clear_vec_high(s, is_q, rd);
11551 if (tcg_rmode) {
11552 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11556 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11558 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
11559 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11560 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
11561 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11562 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11563 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11565 * This actually covers two groups where scalar access is governed by
11566 * bit 28. A bunch of the instructions (float to integral) only exist
11567 * in the vector form and are un-allocated for the scalar decode. Also
11568 * in the scalar decode Q is always 1.
11570 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11572 int fpop, opcode, a, u;
11573 int rn, rd;
11574 bool is_q;
11575 bool is_scalar;
11576 bool only_in_vector = false;
11578 int pass;
11579 TCGv_i32 tcg_rmode = NULL;
11580 TCGv_ptr tcg_fpstatus = NULL;
11581 bool need_fpst = true;
11582 int rmode = -1;
11584 if (!dc_isar_feature(aa64_fp16, s)) {
11585 unallocated_encoding(s);
11586 return;
11589 rd = extract32(insn, 0, 5);
11590 rn = extract32(insn, 5, 5);
11592 a = extract32(insn, 23, 1);
11593 u = extract32(insn, 29, 1);
11594 is_scalar = extract32(insn, 28, 1);
11595 is_q = extract32(insn, 30, 1);
11597 opcode = extract32(insn, 12, 5);
11598 fpop = deposit32(opcode, 5, 1, a);
11599 fpop = deposit32(fpop, 6, 1, u);
11601 switch (fpop) {
11602 case 0x1d: /* SCVTF */
11603 case 0x5d: /* UCVTF */
11605 int elements;
11607 if (is_scalar) {
11608 elements = 1;
11609 } else {
11610 elements = (is_q ? 8 : 4);
11613 if (!fp_access_check(s)) {
11614 return;
11616 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11617 return;
11619 break;
11620 case 0x2c: /* FCMGT (zero) */
11621 case 0x2d: /* FCMEQ (zero) */
11622 case 0x2e: /* FCMLT (zero) */
11623 case 0x6c: /* FCMGE (zero) */
11624 case 0x6d: /* FCMLE (zero) */
11625 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11626 return;
11627 case 0x3d: /* FRECPE */
11628 case 0x3f: /* FRECPX */
11629 break;
11630 case 0x18: /* FRINTN */
11631 only_in_vector = true;
11632 rmode = FPROUNDING_TIEEVEN;
11633 break;
11634 case 0x19: /* FRINTM */
11635 only_in_vector = true;
11636 rmode = FPROUNDING_NEGINF;
11637 break;
11638 case 0x38: /* FRINTP */
11639 only_in_vector = true;
11640 rmode = FPROUNDING_POSINF;
11641 break;
11642 case 0x39: /* FRINTZ */
11643 only_in_vector = true;
11644 rmode = FPROUNDING_ZERO;
11645 break;
11646 case 0x58: /* FRINTA */
11647 only_in_vector = true;
11648 rmode = FPROUNDING_TIEAWAY;
11649 break;
11650 case 0x59: /* FRINTX */
11651 case 0x79: /* FRINTI */
11652 only_in_vector = true;
11653 /* current rounding mode */
11654 break;
11655 case 0x1a: /* FCVTNS */
11656 rmode = FPROUNDING_TIEEVEN;
11657 break;
11658 case 0x1b: /* FCVTMS */
11659 rmode = FPROUNDING_NEGINF;
11660 break;
11661 case 0x1c: /* FCVTAS */
11662 rmode = FPROUNDING_TIEAWAY;
11663 break;
11664 case 0x3a: /* FCVTPS */
11665 rmode = FPROUNDING_POSINF;
11666 break;
11667 case 0x3b: /* FCVTZS */
11668 rmode = FPROUNDING_ZERO;
11669 break;
11670 case 0x5a: /* FCVTNU */
11671 rmode = FPROUNDING_TIEEVEN;
11672 break;
11673 case 0x5b: /* FCVTMU */
11674 rmode = FPROUNDING_NEGINF;
11675 break;
11676 case 0x5c: /* FCVTAU */
11677 rmode = FPROUNDING_TIEAWAY;
11678 break;
11679 case 0x7a: /* FCVTPU */
11680 rmode = FPROUNDING_POSINF;
11681 break;
11682 case 0x7b: /* FCVTZU */
11683 rmode = FPROUNDING_ZERO;
11684 break;
11685 case 0x2f: /* FABS */
11686 case 0x6f: /* FNEG */
11687 need_fpst = false;
11688 break;
11689 case 0x7d: /* FRSQRTE */
11690 case 0x7f: /* FSQRT (vector) */
11691 break;
11692 default:
11693 unallocated_encoding(s);
11694 return;
11698 /* Check additional constraints for the scalar encoding */
11699 if (is_scalar) {
11700 if (!is_q) {
11701 unallocated_encoding(s);
11702 return;
11704 /* FRINTxx is only in the vector form */
11705 if (only_in_vector) {
11706 unallocated_encoding(s);
11707 return;
11711 if (!fp_access_check(s)) {
11712 return;
11715 if (rmode >= 0 || need_fpst) {
11716 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11719 if (rmode >= 0) {
11720 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11723 if (is_scalar) {
11724 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11725 TCGv_i32 tcg_res = tcg_temp_new_i32();
11727 switch (fpop) {
11728 case 0x1a: /* FCVTNS */
11729 case 0x1b: /* FCVTMS */
11730 case 0x1c: /* FCVTAS */
11731 case 0x3a: /* FCVTPS */
11732 case 0x3b: /* FCVTZS */
11733 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11734 break;
11735 case 0x3d: /* FRECPE */
11736 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11737 break;
11738 case 0x3f: /* FRECPX */
11739 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11740 break;
11741 case 0x5a: /* FCVTNU */
11742 case 0x5b: /* FCVTMU */
11743 case 0x5c: /* FCVTAU */
11744 case 0x7a: /* FCVTPU */
11745 case 0x7b: /* FCVTZU */
11746 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11747 break;
11748 case 0x6f: /* FNEG */
11749 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11750 break;
11751 case 0x7d: /* FRSQRTE */
11752 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11753 break;
11754 default:
11755 g_assert_not_reached();
11758 /* limit any sign extension going on */
11759 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11760 write_fp_sreg(s, rd, tcg_res);
11761 } else {
11762 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11763 TCGv_i32 tcg_op = tcg_temp_new_i32();
11764 TCGv_i32 tcg_res = tcg_temp_new_i32();
11766 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11768 switch (fpop) {
11769 case 0x1a: /* FCVTNS */
11770 case 0x1b: /* FCVTMS */
11771 case 0x1c: /* FCVTAS */
11772 case 0x3a: /* FCVTPS */
11773 case 0x3b: /* FCVTZS */
11774 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11775 break;
11776 case 0x3d: /* FRECPE */
11777 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11778 break;
11779 case 0x5a: /* FCVTNU */
11780 case 0x5b: /* FCVTMU */
11781 case 0x5c: /* FCVTAU */
11782 case 0x7a: /* FCVTPU */
11783 case 0x7b: /* FCVTZU */
11784 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11785 break;
11786 case 0x18: /* FRINTN */
11787 case 0x19: /* FRINTM */
11788 case 0x38: /* FRINTP */
11789 case 0x39: /* FRINTZ */
11790 case 0x58: /* FRINTA */
11791 case 0x79: /* FRINTI */
11792 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11793 break;
11794 case 0x59: /* FRINTX */
11795 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11796 break;
11797 case 0x2f: /* FABS */
11798 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11799 break;
11800 case 0x6f: /* FNEG */
11801 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11802 break;
11803 case 0x7d: /* FRSQRTE */
11804 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11805 break;
11806 case 0x7f: /* FSQRT */
11807 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11808 break;
11809 default:
11810 g_assert_not_reached();
11813 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11816 clear_vec_high(s, is_q, rd);
11819 if (tcg_rmode) {
11820 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11824 /* C3.6 Data processing - SIMD, inc Crypto
11826 * As the decode gets a little complex we are using a table based
11827 * approach for this part of the decode.
11829 static const AArch64DecodeTable data_proc_simd[] = {
11830 /* pattern , mask , fn */
11831 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
11832 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
11833 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
11834 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
11835 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
11836 { 0x0e000000, 0xbf208c00, disas_simd_tb },
11837 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
11838 { 0x2e000000, 0xbf208400, disas_simd_ext },
11839 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
11840 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
11841 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
11842 { 0x00000000, 0x00000000, NULL }
11845 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
11847 /* Note that this is called with all non-FP cases from
11848 * table C3-6 so it must UNDEF for entries not specifically
11849 * allocated to instructions in that table.
11851 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
11852 if (fn) {
11853 fn(s, insn);
11854 } else {
11855 unallocated_encoding(s);
11859 /* C3.6 Data processing - SIMD and floating point */
11860 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
11862 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
11863 disas_data_proc_fp(s, insn);
11864 } else {
11865 /* SIMD, including crypto */
11866 disas_data_proc_simd(s, insn);
11870 static bool trans_OK(DisasContext *s, arg_OK *a)
11872 return true;
11875 static bool trans_FAIL(DisasContext *s, arg_OK *a)
11877 s->is_nonstreaming = true;
11878 return true;
11882 * is_guarded_page:
11883 * @env: The cpu environment
11884 * @s: The DisasContext
11886 * Return true if the page is guarded.
11888 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
11890 uint64_t addr = s->base.pc_first;
11891 #ifdef CONFIG_USER_ONLY
11892 return page_get_flags(addr) & PAGE_BTI;
11893 #else
11894 CPUTLBEntryFull *full;
11895 void *host;
11896 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
11897 int flags;
11900 * We test this immediately after reading an insn, which means
11901 * that the TLB entry must be present and valid, and thus this
11902 * access will never raise an exception.
11904 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
11905 false, &host, &full, 0);
11906 assert(!(flags & TLB_INVALID_MASK));
11908 return full->extra.arm.guarded;
11909 #endif
11913 * btype_destination_ok:
11914 * @insn: The instruction at the branch destination
11915 * @bt: SCTLR_ELx.BT
11916 * @btype: PSTATE.BTYPE, and is non-zero
11918 * On a guarded page, there are a limited number of insns
11919 * that may be present at the branch target:
11920 * - branch target identifiers,
11921 * - paciasp, pacibsp,
11922 * - BRK insn
11923 * - HLT insn
11924 * Anything else causes a Branch Target Exception.
11926 * Return true if the branch is compatible, false to raise BTITRAP.
11928 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
11930 if ((insn & 0xfffff01fu) == 0xd503201fu) {
11931 /* HINT space */
11932 switch (extract32(insn, 5, 7)) {
11933 case 0b011001: /* PACIASP */
11934 case 0b011011: /* PACIBSP */
11936 * If SCTLR_ELx.BT, then PACI*SP are not compatible
11937 * with btype == 3. Otherwise all btype are ok.
11939 return !bt || btype != 3;
11940 case 0b100000: /* BTI */
11941 /* Not compatible with any btype. */
11942 return false;
11943 case 0b100010: /* BTI c */
11944 /* Not compatible with btype == 3 */
11945 return btype != 3;
11946 case 0b100100: /* BTI j */
11947 /* Not compatible with btype == 2 */
11948 return btype != 2;
11949 case 0b100110: /* BTI jc */
11950 /* Compatible with any btype. */
11951 return true;
11953 } else {
11954 switch (insn & 0xffe0001fu) {
11955 case 0xd4200000u: /* BRK */
11956 case 0xd4400000u: /* HLT */
11957 /* Give priority to the breakpoint exception. */
11958 return true;
11961 return false;
11964 /* C3.1 A64 instruction index by encoding */
11965 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
11967 switch (extract32(insn, 25, 4)) {
11968 case 0x5:
11969 case 0xd: /* Data processing - register */
11970 disas_data_proc_reg(s, insn);
11971 break;
11972 case 0x7:
11973 case 0xf: /* Data processing - SIMD and floating point */
11974 disas_data_proc_simd_fp(s, insn);
11975 break;
11976 default:
11977 unallocated_encoding(s);
11978 break;
11982 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
11983 CPUState *cpu)
11985 DisasContext *dc = container_of(dcbase, DisasContext, base);
11986 CPUARMState *env = cpu_env(cpu);
11987 ARMCPU *arm_cpu = env_archcpu(env);
11988 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
11989 int bound, core_mmu_idx;
11991 dc->isar = &arm_cpu->isar;
11992 dc->condjmp = 0;
11993 dc->pc_save = dc->base.pc_first;
11994 dc->aarch64 = true;
11995 dc->thumb = false;
11996 dc->sctlr_b = 0;
11997 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
11998 dc->condexec_mask = 0;
11999 dc->condexec_cond = 0;
12000 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
12001 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
12002 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
12003 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
12004 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
12005 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
12006 #if !defined(CONFIG_USER_ONLY)
12007 dc->user = (dc->current_el == 0);
12008 #endif
12009 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
12010 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
12011 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
12012 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
12013 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
12014 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
12015 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
12016 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
12017 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
12018 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
12019 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
12020 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
12021 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
12022 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12023 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12024 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12025 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12026 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12027 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12028 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12029 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12030 dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12031 dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12032 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12033 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12034 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12035 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12036 dc->vec_len = 0;
12037 dc->vec_stride = 0;
12038 dc->cp_regs = arm_cpu->cp_regs;
12039 dc->features = env->features;
12040 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12041 dc->gm_blocksize = arm_cpu->gm_blocksize;
12043 #ifdef CONFIG_USER_ONLY
12044 /* In sve_probe_page, we assume TBI is enabled. */
12045 tcg_debug_assert(dc->tbid & 1);
12046 #endif
12048 dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12050 /* Single step state. The code-generation logic here is:
12051 * SS_ACTIVE == 0:
12052 * generate code with no special handling for single-stepping (except
12053 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12054 * this happens anyway because those changes are all system register or
12055 * PSTATE writes).
12056 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12057 * emit code for one insn
12058 * emit code to clear PSTATE.SS
12059 * emit code to generate software step exception for completed step
12060 * end TB (as usual for having generated an exception)
12061 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12062 * emit code to generate a software step exception
12063 * end the TB
12065 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12066 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12067 dc->is_ldex = false;
12069 /* Bound the number of insns to execute to those left on the page. */
12070 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12072 /* If architectural single step active, limit to 1. */
12073 if (dc->ss_active) {
12074 bound = 1;
12076 dc->base.max_insns = MIN(dc->base.max_insns, bound);
12079 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12083 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12085 DisasContext *dc = container_of(dcbase, DisasContext, base);
12086 target_ulong pc_arg = dc->base.pc_next;
12088 if (tb_cflags(dcbase->tb) & CF_PCREL) {
12089 pc_arg &= ~TARGET_PAGE_MASK;
12091 tcg_gen_insn_start(pc_arg, 0, 0);
12092 dc->insn_start_updated = false;
12095 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12097 DisasContext *s = container_of(dcbase, DisasContext, base);
12098 CPUARMState *env = cpu_env(cpu);
12099 uint64_t pc = s->base.pc_next;
12100 uint32_t insn;
12102 /* Singlestep exceptions have the highest priority. */
12103 if (s->ss_active && !s->pstate_ss) {
12104 /* Singlestep state is Active-pending.
12105 * If we're in this state at the start of a TB then either
12106 * a) we just took an exception to an EL which is being debugged
12107 * and this is the first insn in the exception handler
12108 * b) debug exceptions were masked and we just unmasked them
12109 * without changing EL (eg by clearing PSTATE.D)
12110 * In either case we're going to take a swstep exception in the
12111 * "did not step an insn" case, and so the syndrome ISV and EX
12112 * bits should be zero.
12114 assert(s->base.num_insns == 1);
12115 gen_swstep_exception(s, 0, 0);
12116 s->base.is_jmp = DISAS_NORETURN;
12117 s->base.pc_next = pc + 4;
12118 return;
12121 if (pc & 3) {
12123 * PC alignment fault. This has priority over the instruction abort
12124 * that we would receive from a translation fault via arm_ldl_code.
12125 * This should only be possible after an indirect branch, at the
12126 * start of the TB.
12128 assert(s->base.num_insns == 1);
12129 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12130 s->base.is_jmp = DISAS_NORETURN;
12131 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12132 return;
12135 s->pc_curr = pc;
12136 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12137 s->insn = insn;
12138 s->base.pc_next = pc + 4;
12140 s->fp_access_checked = false;
12141 s->sve_access_checked = false;
12143 if (s->pstate_il) {
12145 * Illegal execution state. This has priority over BTI
12146 * exceptions, but comes after instruction abort exceptions.
12148 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12149 return;
12152 if (dc_isar_feature(aa64_bti, s)) {
12153 if (s->base.num_insns == 1) {
12155 * At the first insn of the TB, compute s->guarded_page.
12156 * We delayed computing this until successfully reading
12157 * the first insn of the TB, above. This (mostly) ensures
12158 * that the softmmu tlb entry has been populated, and the
12159 * page table GP bit is available.
12161 * Note that we need to compute this even if btype == 0,
12162 * because this value is used for BR instructions later
12163 * where ENV is not available.
12165 s->guarded_page = is_guarded_page(env, s);
12167 /* First insn can have btype set to non-zero. */
12168 tcg_debug_assert(s->btype >= 0);
12171 * Note that the Branch Target Exception has fairly high
12172 * priority -- below debugging exceptions but above most
12173 * everything else. This allows us to handle this now
12174 * instead of waiting until the insn is otherwise decoded.
12176 if (s->btype != 0
12177 && s->guarded_page
12178 && !btype_destination_ok(insn, s->bt, s->btype)) {
12179 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
12180 return;
12182 } else {
12183 /* Not the first insn: btype must be 0. */
12184 tcg_debug_assert(s->btype == 0);
12188 s->is_nonstreaming = false;
12189 if (s->sme_trap_nonstreaming) {
12190 disas_sme_fa64(s, insn);
12193 if (!disas_a64(s, insn) &&
12194 !disas_sme(s, insn) &&
12195 !disas_sve(s, insn)) {
12196 disas_a64_legacy(s, insn);
12200 * After execution of most insns, btype is reset to 0.
12201 * Note that we set btype == -1 when the insn sets btype.
12203 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12204 reset_btype(s);
12208 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12210 DisasContext *dc = container_of(dcbase, DisasContext, base);
12212 if (unlikely(dc->ss_active)) {
12213 /* Note that this means single stepping WFI doesn't halt the CPU.
12214 * For conditional branch insns this is harmless unreachable code as
12215 * gen_goto_tb() has already handled emitting the debug exception
12216 * (and thus a tb-jump is not possible when singlestepping).
12218 switch (dc->base.is_jmp) {
12219 default:
12220 gen_a64_update_pc(dc, 4);
12221 /* fall through */
12222 case DISAS_EXIT:
12223 case DISAS_JUMP:
12224 gen_step_complete_exception(dc);
12225 break;
12226 case DISAS_NORETURN:
12227 break;
12229 } else {
12230 switch (dc->base.is_jmp) {
12231 case DISAS_NEXT:
12232 case DISAS_TOO_MANY:
12233 gen_goto_tb(dc, 1, 4);
12234 break;
12235 default:
12236 case DISAS_UPDATE_EXIT:
12237 gen_a64_update_pc(dc, 4);
12238 /* fall through */
12239 case DISAS_EXIT:
12240 tcg_gen_exit_tb(NULL, 0);
12241 break;
12242 case DISAS_UPDATE_NOCHAIN:
12243 gen_a64_update_pc(dc, 4);
12244 /* fall through */
12245 case DISAS_JUMP:
12246 tcg_gen_lookup_and_goto_ptr();
12247 break;
12248 case DISAS_NORETURN:
12249 case DISAS_SWI:
12250 break;
12251 case DISAS_WFE:
12252 gen_a64_update_pc(dc, 4);
12253 gen_helper_wfe(tcg_env);
12254 break;
12255 case DISAS_YIELD:
12256 gen_a64_update_pc(dc, 4);
12257 gen_helper_yield(tcg_env);
12258 break;
12259 case DISAS_WFI:
12261 * This is a special case because we don't want to just halt
12262 * the CPU if trying to debug across a WFI.
12264 gen_a64_update_pc(dc, 4);
12265 gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12267 * The helper doesn't necessarily throw an exception, but we
12268 * must go back to the main loop to check for interrupts anyway.
12270 tcg_gen_exit_tb(NULL, 0);
12271 break;
12276 const TranslatorOps aarch64_translator_ops = {
12277 .init_disas_context = aarch64_tr_init_disas_context,
12278 .tb_start = aarch64_tr_tb_start,
12279 .insn_start = aarch64_tr_insn_start,
12280 .translate_insn = aarch64_tr_translate_insn,
12281 .tb_stop = aarch64_tr_tb_stop,