4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
9 #include "qemu/osdep.h"
11 #include "internals.h"
12 #include "cpu-features.h"
13 #include "gdbstub/helpers.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/bitops.h"
18 #include "exec/exec-all.h"
19 #include "exec/page-protection.h"
21 #include "exec/cpu_ldst.h"
22 #include "semihosting/common-semi.h"
24 #if !defined(CONFIG_USER_ONLY)
25 #include "hw/intc/armv7m_nvic.h"
28 static void v7m_msr_xpsr(CPUARMState
*env
, uint32_t mask
,
29 uint32_t reg
, uint32_t val
)
31 /* Only APSR is actually writable */
33 uint32_t apsrmask
= 0;
36 apsrmask
|= XPSR_NZCV
| XPSR_Q
;
38 if ((mask
& 4) && arm_feature(env
, ARM_FEATURE_THUMB_DSP
)) {
41 xpsr_write(env
, val
, apsrmask
);
45 static uint32_t v7m_mrs_xpsr(CPUARMState
*env
, uint32_t reg
, unsigned el
)
49 if ((reg
& 1) && el
) {
50 mask
|= XPSR_EXCP
; /* IPSR (unpriv. reads as zero) */
53 mask
|= XPSR_NZCV
| XPSR_Q
; /* APSR */
54 if (arm_feature(env
, ARM_FEATURE_THUMB_DSP
)) {
58 /* EPSR reads as zero */
59 return xpsr_read(env
) & mask
;
62 uint32_t arm_v7m_mrs_control(CPUARMState
*env
, uint32_t secure
)
64 uint32_t value
= env
->v7m
.control
[secure
];
67 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
68 value
|= env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
;
73 #ifdef CONFIG_USER_ONLY
75 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t maskreg
, uint32_t val
)
77 uint32_t mask
= extract32(maskreg
, 8, 4);
78 uint32_t reg
= extract32(maskreg
, 0, 8);
81 case 0 ... 7: /* xPSR sub-fields */
82 v7m_msr_xpsr(env
, mask
, reg
, val
);
84 case 20: /* CONTROL */
85 /* There are no sub-fields that are actually writable from EL0. */
88 /* Unprivileged writes to other registers are ignored */
93 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
96 case 0 ... 7: /* xPSR sub-fields */
97 return v7m_mrs_xpsr(env
, reg
, 0);
98 case 20: /* CONTROL */
99 return arm_v7m_mrs_control(env
, 0);
101 /* Unprivileged reads others as zero. */
106 void HELPER(v7m_bxns
)(CPUARMState
*env
, uint32_t dest
)
108 /* translate.c should never generate calls here in user-only mode */
109 g_assert_not_reached();
112 void HELPER(v7m_blxns
)(CPUARMState
*env
, uint32_t dest
)
114 /* translate.c should never generate calls here in user-only mode */
115 g_assert_not_reached();
118 void HELPER(v7m_preserve_fp_state
)(CPUARMState
*env
)
120 /* translate.c should never generate calls here in user-only mode */
121 g_assert_not_reached();
124 void HELPER(v7m_vlstm
)(CPUARMState
*env
, uint32_t fptr
)
126 /* translate.c should never generate calls here in user-only mode */
127 g_assert_not_reached();
130 void HELPER(v7m_vlldm
)(CPUARMState
*env
, uint32_t fptr
)
132 /* translate.c should never generate calls here in user-only mode */
133 g_assert_not_reached();
136 uint32_t HELPER(v7m_tt
)(CPUARMState
*env
, uint32_t addr
, uint32_t op
)
139 * The TT instructions can be used by unprivileged code, but in
140 * user-only emulation we don't have the MPU.
141 * Luckily since we know we are NonSecure unprivileged (and that in
142 * turn means that the A flag wasn't specified), all the bits in the
143 * register must be zero:
144 * IREGION: 0 because IRVALID is 0
145 * IRVALID: 0 because NS
149 * RW: 0 because unpriv and A flag not set
150 * R: 0 because unpriv and A flag not set
151 * SRVALID: 0 because NS
152 * MRVALID: 0 because unpriv and A flag not set
153 * SREGION: 0 because SRVALID is 0
154 * MREGION: 0 because MRVALID is 0
159 ARMMMUIdx
arm_v7m_mmu_idx_for_secstate(CPUARMState
*env
, bool secstate
)
161 return ARMMMUIdx_MUser
;
164 #else /* !CONFIG_USER_ONLY */
166 static ARMMMUIdx
arm_v7m_mmu_idx_all(CPUARMState
*env
,
167 bool secstate
, bool priv
, bool negpri
)
169 ARMMMUIdx mmu_idx
= ARM_MMU_IDX_M
;
172 mmu_idx
|= ARM_MMU_IDX_M_PRIV
;
176 mmu_idx
|= ARM_MMU_IDX_M_NEGPRI
;
180 mmu_idx
|= ARM_MMU_IDX_M_S
;
186 static ARMMMUIdx
arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState
*env
,
187 bool secstate
, bool priv
)
189 bool negpri
= armv7m_nvic_neg_prio_requested(env
->nvic
, secstate
);
191 return arm_v7m_mmu_idx_all(env
, secstate
, priv
, negpri
);
194 /* Return the MMU index for a v7M CPU in the specified security state */
195 ARMMMUIdx
arm_v7m_mmu_idx_for_secstate(CPUARMState
*env
, bool secstate
)
197 bool priv
= arm_v7m_is_handler_mode(env
) ||
198 !(env
->v7m
.control
[secstate
] & 1);
200 return arm_v7m_mmu_idx_for_secstate_and_priv(env
, secstate
, priv
);
204 * What kind of stack write are we doing? This affects how exceptions
205 * generated during the stacking are treated.
207 typedef enum StackingMode
{
213 static bool v7m_stack_write(ARMCPU
*cpu
, uint32_t addr
, uint32_t value
,
214 ARMMMUIdx mmu_idx
, StackingMode mode
)
216 CPUState
*cs
= CPU(cpu
);
217 CPUARMState
*env
= &cpu
->env
;
219 GetPhysAddrResult res
= {};
220 ARMMMUFaultInfo fi
= {};
221 bool secure
= mmu_idx
& ARM_MMU_IDX_M_S
;
225 if (get_phys_addr(env
, addr
, MMU_DATA_STORE
, 0, mmu_idx
, &res
, &fi
)) {
226 /* MPU/SAU lookup failed */
227 if (fi
.type
== ARMFault_QEMU_SFault
) {
228 if (mode
== STACK_LAZYFP
) {
229 qemu_log_mask(CPU_LOG_INT
,
230 "...SecureFault with SFSR.LSPERR "
231 "during lazy stacking\n");
232 env
->v7m
.sfsr
|= R_V7M_SFSR_LSPERR_MASK
;
234 qemu_log_mask(CPU_LOG_INT
,
235 "...SecureFault with SFSR.AUVIOL "
236 "during stacking\n");
237 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
;
239 env
->v7m
.sfsr
|= R_V7M_SFSR_SFARVALID_MASK
;
240 env
->v7m
.sfar
= addr
;
241 exc
= ARMV7M_EXCP_SECURE
;
244 if (mode
== STACK_LAZYFP
) {
245 qemu_log_mask(CPU_LOG_INT
,
246 "...MemManageFault with CFSR.MLSPERR\n");
247 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MLSPERR_MASK
;
249 qemu_log_mask(CPU_LOG_INT
,
250 "...MemManageFault with CFSR.MSTKERR\n");
251 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MSTKERR_MASK
;
253 exc
= ARMV7M_EXCP_MEM
;
258 address_space_stl_le(arm_addressspace(cs
, res
.f
.attrs
), res
.f
.phys_addr
,
259 value
, res
.f
.attrs
, &txres
);
260 if (txres
!= MEMTX_OK
) {
261 /* BusFault trying to write the data */
262 if (mode
== STACK_LAZYFP
) {
263 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.LSPERR\n");
264 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_LSPERR_MASK
;
266 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.STKERR\n");
267 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_STKERR_MASK
;
269 exc
= ARMV7M_EXCP_BUS
;
277 * By pending the exception at this point we are making
278 * the IMPDEF choice "overridden exceptions pended" (see the
279 * MergeExcInfo() pseudocode). The other choice would be to not
280 * pend them now and then make a choice about which to throw away
281 * later if we have two derived exceptions.
282 * The only case when we must not pend the exception but instead
283 * throw it away is if we are doing the push of the callee registers
284 * and we've already generated a derived exception (this is indicated
285 * by the caller passing STACK_IGNFAULTS). Even in this case we will
286 * still update the fault status registers.
290 armv7m_nvic_set_pending_derived(env
->nvic
, exc
, exc_secure
);
293 armv7m_nvic_set_pending_lazyfp(env
->nvic
, exc
, exc_secure
);
295 case STACK_IGNFAULTS
:
301 static bool v7m_stack_read(ARMCPU
*cpu
, uint32_t *dest
, uint32_t addr
,
304 CPUState
*cs
= CPU(cpu
);
305 CPUARMState
*env
= &cpu
->env
;
307 GetPhysAddrResult res
= {};
308 ARMMMUFaultInfo fi
= {};
309 bool secure
= mmu_idx
& ARM_MMU_IDX_M_S
;
314 if (get_phys_addr(env
, addr
, MMU_DATA_LOAD
, 0, mmu_idx
, &res
, &fi
)) {
315 /* MPU/SAU lookup failed */
316 if (fi
.type
== ARMFault_QEMU_SFault
) {
317 qemu_log_mask(CPU_LOG_INT
,
318 "...SecureFault with SFSR.AUVIOL during unstack\n");
319 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
| R_V7M_SFSR_SFARVALID_MASK
;
320 env
->v7m
.sfar
= addr
;
321 exc
= ARMV7M_EXCP_SECURE
;
324 qemu_log_mask(CPU_LOG_INT
,
325 "...MemManageFault with CFSR.MUNSTKERR\n");
326 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MUNSTKERR_MASK
;
327 exc
= ARMV7M_EXCP_MEM
;
333 value
= address_space_ldl(arm_addressspace(cs
, res
.f
.attrs
),
334 res
.f
.phys_addr
, res
.f
.attrs
, &txres
);
335 if (txres
!= MEMTX_OK
) {
336 /* BusFault trying to read the data */
337 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.UNSTKERR\n");
338 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_UNSTKERR_MASK
;
339 exc
= ARMV7M_EXCP_BUS
;
349 * By pending the exception at this point we are making
350 * the IMPDEF choice "overridden exceptions pended" (see the
351 * MergeExcInfo() pseudocode). The other choice would be to not
352 * pend them now and then make a choice about which to throw away
353 * later if we have two derived exceptions.
355 armv7m_nvic_set_pending(env
->nvic
, exc
, exc_secure
);
359 void HELPER(v7m_preserve_fp_state
)(CPUARMState
*env
)
362 * Preserve FP state (because LSPACT was set and we are about
363 * to execute an FP instruction). This corresponds to the
364 * PreserveFPState() pseudocode.
365 * We may throw an exception if the stacking fails.
367 ARMCPU
*cpu
= env_archcpu(env
);
368 bool is_secure
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
369 bool negpri
= !(env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_HFRDY_MASK
);
370 bool is_priv
= !(env
->v7m
.fpccr
[is_secure
] & R_V7M_FPCCR_USER_MASK
);
371 bool splimviol
= env
->v7m
.fpccr
[is_secure
] & R_V7M_FPCCR_SPLIMVIOL_MASK
;
372 uint32_t fpcar
= env
->v7m
.fpcar
[is_secure
];
373 bool stacked_ok
= true;
374 bool ts
= is_secure
&& (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
);
377 /* Take the BQL as we are going to touch the NVIC */
380 /* Check the background context had access to the FPU */
381 if (!v7m_cpacr_pass(env
, is_secure
, is_priv
)) {
382 armv7m_nvic_set_pending_lazyfp(env
->nvic
, ARMV7M_EXCP_USAGE
, is_secure
);
383 env
->v7m
.cfsr
[is_secure
] |= R_V7M_CFSR_NOCP_MASK
;
385 } else if (!is_secure
&& !extract32(env
->v7m
.nsacr
, 10, 1)) {
386 armv7m_nvic_set_pending_lazyfp(env
->nvic
, ARMV7M_EXCP_USAGE
, M_REG_S
);
387 env
->v7m
.cfsr
[M_REG_S
] |= R_V7M_CFSR_NOCP_MASK
;
391 if (!splimviol
&& stacked_ok
) {
392 /* We only stack if the stack limit wasn't violated */
396 mmu_idx
= arm_v7m_mmu_idx_all(env
, is_secure
, is_priv
, negpri
);
397 for (i
= 0; i
< (ts
? 32 : 16); i
+= 2) {
398 uint64_t dn
= *aa32_vfp_dreg(env
, i
/ 2);
399 uint32_t faddr
= fpcar
+ 4 * i
;
400 uint32_t slo
= extract64(dn
, 0, 32);
401 uint32_t shi
= extract64(dn
, 32, 32);
404 faddr
+= 8; /* skip the slot for the FPSCR/VPR */
406 stacked_ok
= stacked_ok
&&
407 v7m_stack_write(cpu
, faddr
, slo
, mmu_idx
, STACK_LAZYFP
) &&
408 v7m_stack_write(cpu
, faddr
+ 4, shi
, mmu_idx
, STACK_LAZYFP
);
411 stacked_ok
= stacked_ok
&&
412 v7m_stack_write(cpu
, fpcar
+ 0x40,
413 vfp_get_fpscr(env
), mmu_idx
, STACK_LAZYFP
);
414 if (cpu_isar_feature(aa32_mve
, cpu
)) {
415 stacked_ok
= stacked_ok
&&
416 v7m_stack_write(cpu
, fpcar
+ 0x44,
417 env
->v7m
.vpr
, mmu_idx
, STACK_LAZYFP
);
422 * We definitely pended an exception, but it's possible that it
423 * might not be able to be taken now. If its priority permits us
424 * to take it now, then we must not update the LSPACT or FP regs,
425 * but instead jump out to take the exception immediately.
426 * If it's just pending and won't be taken until the current
427 * handler exits, then we do update LSPACT and the FP regs.
429 take_exception
= !stacked_ok
&&
430 armv7m_nvic_can_take_pending_exception(env
->nvic
);
434 if (take_exception
) {
435 raise_exception_ra(env
, EXCP_LAZYFP
, 0, 1, GETPC());
438 env
->v7m
.fpccr
[is_secure
] &= ~R_V7M_FPCCR_LSPACT_MASK
;
441 /* Clear s0 to s31 and the FPSCR and VPR */
444 for (i
= 0; i
< 32; i
+= 2) {
445 *aa32_vfp_dreg(env
, i
/ 2) = 0;
447 vfp_set_fpscr(env
, 0);
448 if (cpu_isar_feature(aa32_mve
, cpu
)) {
453 * Otherwise s0 to s15, FPSCR and VPR are UNKNOWN; we choose to leave them
459 * Write to v7M CONTROL.SPSEL bit for the specified security bank.
460 * This may change the current stack pointer between Main and Process
461 * stack pointers if it is done for the CONTROL register for the current
464 static void write_v7m_control_spsel_for_secstate(CPUARMState
*env
,
468 bool old_is_psp
= v7m_using_psp(env
);
470 env
->v7m
.control
[secstate
] =
471 deposit32(env
->v7m
.control
[secstate
],
472 R_V7M_CONTROL_SPSEL_SHIFT
,
473 R_V7M_CONTROL_SPSEL_LENGTH
, new_spsel
);
475 if (secstate
== env
->v7m
.secure
) {
476 bool new_is_psp
= v7m_using_psp(env
);
479 if (old_is_psp
!= new_is_psp
) {
480 tmp
= env
->v7m
.other_sp
;
481 env
->v7m
.other_sp
= env
->regs
[13];
488 * Write to v7M CONTROL.SPSEL bit. This may change the current
489 * stack pointer between Main and Process stack pointers.
491 static void write_v7m_control_spsel(CPUARMState
*env
, bool new_spsel
)
493 write_v7m_control_spsel_for_secstate(env
, new_spsel
, env
->v7m
.secure
);
496 void write_v7m_exception(CPUARMState
*env
, uint32_t new_exc
)
499 * Write a new value to v7m.exception, thus transitioning into or out
500 * of Handler mode; this may result in a change of active stack pointer.
502 bool new_is_psp
, old_is_psp
= v7m_using_psp(env
);
505 env
->v7m
.exception
= new_exc
;
507 new_is_psp
= v7m_using_psp(env
);
509 if (old_is_psp
!= new_is_psp
) {
510 tmp
= env
->v7m
.other_sp
;
511 env
->v7m
.other_sp
= env
->regs
[13];
516 /* Switch M profile security state between NS and S */
517 static void switch_v7m_security_state(CPUARMState
*env
, bool new_secstate
)
519 uint32_t new_ss_msp
, new_ss_psp
;
521 if (env
->v7m
.secure
== new_secstate
) {
526 * All the banked state is accessed by looking at env->v7m.secure
527 * except for the stack pointer; rearrange the SP appropriately.
529 new_ss_msp
= env
->v7m
.other_ss_msp
;
530 new_ss_psp
= env
->v7m
.other_ss_psp
;
532 if (v7m_using_psp(env
)) {
533 env
->v7m
.other_ss_psp
= env
->regs
[13];
534 env
->v7m
.other_ss_msp
= env
->v7m
.other_sp
;
536 env
->v7m
.other_ss_msp
= env
->regs
[13];
537 env
->v7m
.other_ss_psp
= env
->v7m
.other_sp
;
540 env
->v7m
.secure
= new_secstate
;
542 if (v7m_using_psp(env
)) {
543 env
->regs
[13] = new_ss_psp
;
544 env
->v7m
.other_sp
= new_ss_msp
;
546 env
->regs
[13] = new_ss_msp
;
547 env
->v7m
.other_sp
= new_ss_psp
;
551 void HELPER(v7m_bxns
)(CPUARMState
*env
, uint32_t dest
)
555 * - if the return value is a magic value, do exception return (like BX)
556 * - otherwise bit 0 of the return value is the target security state
560 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
561 /* Covers FNC_RETURN and EXC_RETURN magic */
562 min_magic
= FNC_RETURN_MIN_MAGIC
;
564 /* EXC_RETURN magic only */
565 min_magic
= EXC_RETURN_MIN_MAGIC
;
568 if (dest
>= min_magic
) {
570 * This is an exception return magic value; put it where
571 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
572 * Note that if we ever add gen_ss_advance() singlestep support to
573 * M profile this should count as an "instruction execution complete"
574 * event (compare gen_bx_excret_final_code()).
576 env
->regs
[15] = dest
& ~1;
577 env
->thumb
= dest
& 1;
578 HELPER(exception_internal
)(env
, EXCP_EXCEPTION_EXIT
);
582 /* translate.c should have made BXNS UNDEF unless we're secure */
583 assert(env
->v7m
.secure
);
586 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
588 switch_v7m_security_state(env
, dest
& 1);
590 env
->regs
[15] = dest
& ~1;
591 arm_rebuild_hflags(env
);
594 void HELPER(v7m_blxns
)(CPUARMState
*env
, uint32_t dest
)
598 * - bit 0 of the destination address is the target security state
601 /* At this point regs[15] is the address just after the BLXNS */
602 uint32_t nextinst
= env
->regs
[15] | 1;
603 uint32_t sp
= env
->regs
[13] - 8;
606 /* translate.c will have made BLXNS UNDEF unless we're secure */
607 assert(env
->v7m
.secure
);
611 * Target is Secure, so this is just a normal BLX,
612 * except that the low bit doesn't indicate Thumb/not.
614 env
->regs
[14] = nextinst
;
616 env
->regs
[15] = dest
& ~1;
620 /* Target is non-secure: first push a stack frame */
621 if (!QEMU_IS_ALIGNED(sp
, 8)) {
622 qemu_log_mask(LOG_GUEST_ERROR
,
623 "BLXNS with misaligned SP is UNPREDICTABLE\n");
626 if (sp
< v7m_sp_limit(env
)) {
627 raise_exception(env
, EXCP_STKOF
, 0, 1);
630 saved_psr
= env
->v7m
.exception
;
631 if (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
) {
632 saved_psr
|= XPSR_SFPA
;
635 /* Note that these stores can throw exceptions on MPU faults */
636 cpu_stl_data_ra(env
, sp
, nextinst
, GETPC());
637 cpu_stl_data_ra(env
, sp
+ 4, saved_psr
, GETPC());
640 env
->regs
[14] = 0xfeffffff;
641 if (arm_v7m_is_handler_mode(env
)) {
643 * Write a dummy value to IPSR, to avoid leaking the current secure
644 * exception number to non-secure code. This is guaranteed not
645 * to cause write_v7m_exception() to actually change stacks.
647 write_v7m_exception(env
, 1);
649 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
650 switch_v7m_security_state(env
, 0);
652 env
->regs
[15] = dest
;
653 arm_rebuild_hflags(env
);
656 static bool arm_v7m_load_vector(ARMCPU
*cpu
, int exc
, bool targets_secure
,
659 CPUState
*cs
= CPU(cpu
);
660 CPUARMState
*env
= &cpu
->env
;
662 uint32_t addr
= env
->v7m
.vecbase
[targets_secure
] + exc
* 4;
663 uint32_t vector_entry
;
664 MemTxAttrs attrs
= {};
668 qemu_log_mask(CPU_LOG_INT
,
669 "...loading from element %d of %s vector table at 0x%x\n",
670 exc
, targets_secure
? "secure" : "non-secure", addr
);
672 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, targets_secure
, true);
675 * We don't do a get_phys_addr() here because the rules for vector
676 * loads are special: they always use the default memory map, and
677 * the default memory map permits reads from all addresses.
678 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
679 * that we want this special case which would always say "yes",
680 * we just do the SAU lookup here followed by a direct physical load.
682 attrs
.secure
= targets_secure
;
685 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
686 V8M_SAttributes sattrs
= {};
688 v8m_security_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
,
689 targets_secure
, &sattrs
);
691 attrs
.secure
= false;
692 } else if (!targets_secure
) {
694 * NS access to S memory: the underlying exception which we escalate
695 * to HardFault is SecureFault, which always targets Secure.
702 vector_entry
= address_space_ldl(arm_addressspace(cs
, attrs
), addr
,
704 if (result
!= MEMTX_OK
) {
706 * Underlying exception is BusFault: its target security state
707 * depends on BFHFNMINS.
709 exc_secure
= !(cpu
->env
.v7m
.aircr
& R_V7M_AIRCR_BFHFNMINS_MASK
);
712 *pvec
= vector_entry
;
713 qemu_log_mask(CPU_LOG_INT
, "...loaded new PC 0x%x\n", *pvec
);
718 * All vector table fetch fails are reported as HardFault, with
719 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
720 * technically the underlying exception is a SecureFault or BusFault
721 * that is escalated to HardFault.) This is a terminal exception,
722 * so we will either take the HardFault immediately or else enter
723 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
724 * The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
725 * secure); otherwise it targets the same security state as the
726 * underlying exception.
727 * In v8.1M HardFaults from vector table fetch fails don't set FORCED.
729 if (!(cpu
->env
.v7m
.aircr
& R_V7M_AIRCR_BFHFNMINS_MASK
)) {
732 env
->v7m
.hfsr
|= R_V7M_HFSR_VECTTBL_MASK
;
733 if (!arm_feature(env
, ARM_FEATURE_V8_1M
)) {
734 env
->v7m
.hfsr
|= R_V7M_HFSR_FORCED_MASK
;
736 armv7m_nvic_set_pending_derived(env
->nvic
, ARMV7M_EXCP_HARD
, exc_secure
);
740 static uint32_t v7m_integrity_sig(CPUARMState
*env
, uint32_t lr
)
743 * Return the integrity signature value for the callee-saves
744 * stack frame section. @lr is the exception return payload/LR value
745 * whose FType bit forms bit 0 of the signature if FP is present.
747 uint32_t sig
= 0xfefa125a;
749 if (!cpu_isar_feature(aa32_vfp_simd
, env_archcpu(env
))
750 || (lr
& R_V7M_EXCRET_FTYPE_MASK
)) {
756 static bool v7m_push_callee_stack(ARMCPU
*cpu
, uint32_t lr
, bool dotailchain
,
760 * For v8M, push the callee-saves register part of the stack frame.
761 * Compare the v8M pseudocode PushCalleeStack().
762 * In the tailchaining case this may not be the current stack.
764 CPUARMState
*env
= &cpu
->env
;
765 uint32_t *frame_sp_p
;
772 StackingMode smode
= ignore_faults
? STACK_IGNFAULTS
: STACK_NORMAL
;
775 bool mode
= lr
& R_V7M_EXCRET_MODE_MASK
;
776 bool priv
= !(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_NPRIV_MASK
) ||
779 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, M_REG_S
, priv
);
780 frame_sp_p
= arm_v7m_get_sp_ptr(env
, M_REG_S
, mode
,
781 lr
& R_V7M_EXCRET_SPSEL_MASK
);
782 want_psp
= mode
&& (lr
& R_V7M_EXCRET_SPSEL_MASK
);
784 limit
= env
->v7m
.psplim
[M_REG_S
];
786 limit
= env
->v7m
.msplim
[M_REG_S
];
789 mmu_idx
= arm_mmu_idx(env
);
790 frame_sp_p
= &env
->regs
[13];
791 limit
= v7m_sp_limit(env
);
794 frameptr
= *frame_sp_p
- 0x28;
795 if (frameptr
< limit
) {
797 * Stack limit failure: set SP to the limit value, and generate
798 * STKOF UsageFault. Stack pushes below the limit must not be
799 * performed. It is IMPDEF whether pushes above the limit are
800 * performed; we choose not to.
802 qemu_log_mask(CPU_LOG_INT
,
803 "...STKOF during callee-saves register stacking\n");
804 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
805 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
812 * Write as much of the stack frame as we can. A write failure may
813 * cause us to pend a derived exception.
815 sig
= v7m_integrity_sig(env
, lr
);
817 v7m_stack_write(cpu
, frameptr
, sig
, mmu_idx
, smode
) &&
818 v7m_stack_write(cpu
, frameptr
+ 0x8, env
->regs
[4], mmu_idx
, smode
) &&
819 v7m_stack_write(cpu
, frameptr
+ 0xc, env
->regs
[5], mmu_idx
, smode
) &&
820 v7m_stack_write(cpu
, frameptr
+ 0x10, env
->regs
[6], mmu_idx
, smode
) &&
821 v7m_stack_write(cpu
, frameptr
+ 0x14, env
->regs
[7], mmu_idx
, smode
) &&
822 v7m_stack_write(cpu
, frameptr
+ 0x18, env
->regs
[8], mmu_idx
, smode
) &&
823 v7m_stack_write(cpu
, frameptr
+ 0x1c, env
->regs
[9], mmu_idx
, smode
) &&
824 v7m_stack_write(cpu
, frameptr
+ 0x20, env
->regs
[10], mmu_idx
, smode
) &&
825 v7m_stack_write(cpu
, frameptr
+ 0x24, env
->regs
[11], mmu_idx
, smode
);
827 /* Update SP regardless of whether any of the stack accesses failed. */
828 *frame_sp_p
= frameptr
;
833 static void v7m_exception_taken(ARMCPU
*cpu
, uint32_t lr
, bool dotailchain
,
834 bool ignore_stackfaults
)
837 * Do the "take the exception" parts of exception entry,
838 * but not the pushing of state to the stack. This is
839 * similar to the pseudocode ExceptionTaken() function.
841 CPUARMState
*env
= &cpu
->env
;
845 bool push_failed
= false;
847 armv7m_nvic_get_pending_irq_info(env
->nvic
, &exc
, &targets_secure
);
848 qemu_log_mask(CPU_LOG_INT
, "...taking pending %s exception %d\n",
849 targets_secure
? "secure" : "nonsecure", exc
);
852 /* Sanitize LR FType and PREFIX bits */
853 if (!cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
854 lr
|= R_V7M_EXCRET_FTYPE_MASK
;
856 lr
= deposit32(lr
, 24, 8, 0xff);
859 if (arm_feature(env
, ARM_FEATURE_V8
)) {
860 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
861 (lr
& R_V7M_EXCRET_S_MASK
)) {
863 * The background code (the owner of the registers in the
864 * exception frame) is Secure. This means it may either already
865 * have or now needs to push callee-saves registers.
867 if (targets_secure
) {
868 if (dotailchain
&& !(lr
& R_V7M_EXCRET_ES_MASK
)) {
870 * We took an exception from Secure to NonSecure
871 * (which means the callee-saved registers got stacked)
872 * and are now tailchaining to a Secure exception.
873 * Clear DCRS so eventual return from this Secure
874 * exception unstacks the callee-saved registers.
876 lr
&= ~R_V7M_EXCRET_DCRS_MASK
;
880 * We're going to a non-secure exception; push the
881 * callee-saves registers to the stack now, if they're
884 if (lr
& R_V7M_EXCRET_DCRS_MASK
&&
885 !(dotailchain
&& !(lr
& R_V7M_EXCRET_ES_MASK
))) {
886 push_failed
= v7m_push_callee_stack(cpu
, lr
, dotailchain
,
889 lr
|= R_V7M_EXCRET_DCRS_MASK
;
893 lr
&= ~R_V7M_EXCRET_ES_MASK
;
894 if (targets_secure
) {
895 lr
|= R_V7M_EXCRET_ES_MASK
;
897 lr
&= ~R_V7M_EXCRET_SPSEL_MASK
;
898 if (env
->v7m
.control
[targets_secure
] & R_V7M_CONTROL_SPSEL_MASK
) {
899 lr
|= R_V7M_EXCRET_SPSEL_MASK
;
903 * Clear registers if necessary to prevent non-secure exception
904 * code being able to see register values from secure code.
905 * Where register values become architecturally UNKNOWN we leave
906 * them with their previous values. v8.1M is tighter than v8.0M
907 * here and always zeroes the caller-saved registers regardless
908 * of the security state the exception is targeting.
910 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
911 if (!targets_secure
|| arm_feature(env
, ARM_FEATURE_V8_1M
)) {
913 * Always clear the caller-saved registers (they have been
914 * pushed to the stack earlier in v7m_push_stack()).
915 * Clear callee-saved registers if the background code is
916 * Secure (in which case these regs were saved in
917 * v7m_push_callee_stack()).
921 * r4..r11 are callee-saves, zero only if background
922 * state was Secure (EXCRET.S == 1) and exception
923 * targets Non-secure state
925 bool zero_callee_saves
= !targets_secure
&&
926 (lr
& R_V7M_EXCRET_S_MASK
);
928 for (i
= 0; i
< 13; i
++) {
929 if (i
< 4 || i
> 11 || zero_callee_saves
) {
934 xpsr_write(env
, 0, XPSR_NZCV
| XPSR_Q
| XPSR_GE
| XPSR_IT
);
939 if (push_failed
&& !ignore_stackfaults
) {
941 * Derived exception on callee-saves register stacking:
942 * we might now want to take a different exception which
943 * targets a different security state, so try again from the top.
945 qemu_log_mask(CPU_LOG_INT
,
946 "...derived exception on callee-saves register stacking");
947 v7m_exception_taken(cpu
, lr
, true, true);
951 if (!arm_v7m_load_vector(cpu
, exc
, targets_secure
, &addr
)) {
952 /* Vector load failed: derived exception */
953 qemu_log_mask(CPU_LOG_INT
, "...derived exception on vector table load");
954 v7m_exception_taken(cpu
, lr
, true, true);
959 * Now we've done everything that might cause a derived exception
960 * we can go ahead and activate whichever exception we're going to
961 * take (which might now be the derived exception).
963 armv7m_nvic_acknowledge_irq(env
->nvic
);
965 /* Switch to target security state -- must do this before writing SPSEL */
966 switch_v7m_security_state(env
, targets_secure
);
967 write_v7m_control_spsel(env
, 0);
968 arm_clear_exclusive(env
);
969 /* Clear SFPA and FPCA (has no effect if no FPU) */
970 env
->v7m
.control
[M_REG_S
] &=
971 ~(R_V7M_CONTROL_FPCA_MASK
| R_V7M_CONTROL_SFPA_MASK
);
973 env
->condexec_bits
= 0;
975 env
->regs
[15] = addr
& 0xfffffffe;
976 env
->thumb
= addr
& 1;
977 arm_rebuild_hflags(env
);
980 static void v7m_update_fpccr(CPUARMState
*env
, uint32_t frameptr
,
984 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
985 * that we will need later in order to do lazy FP reg stacking.
987 bool is_secure
= env
->v7m
.secure
;
988 NVICState
*nvic
= env
->nvic
;
990 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
991 * are banked and we want to update the bit in the bank for the
992 * current security state; and in one case we want to specifically
993 * update the NS banked version of a bit even if we are secure.
995 uint32_t *fpccr_s
= &env
->v7m
.fpccr
[M_REG_S
];
996 uint32_t *fpccr_ns
= &env
->v7m
.fpccr
[M_REG_NS
];
997 uint32_t *fpccr
= &env
->v7m
.fpccr
[is_secure
];
998 bool hfrdy
, bfrdy
, mmrdy
, ns_ufrdy
, s_ufrdy
, sfrdy
, monrdy
;
1000 env
->v7m
.fpcar
[is_secure
] = frameptr
& ~0x7;
1002 if (apply_splim
&& arm_feature(env
, ARM_FEATURE_V8
)) {
1004 uint32_t splim
= v7m_sp_limit(env
);
1005 bool ign
= armv7m_nvic_neg_prio_requested(nvic
, is_secure
) &&
1006 (env
->v7m
.ccr
[is_secure
] & R_V7M_CCR_STKOFHFNMIGN_MASK
);
1008 splimviol
= !ign
&& frameptr
< splim
;
1009 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, SPLIMVIOL
, splimviol
);
1012 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, LSPACT
, 1);
1014 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, S
, is_secure
);
1016 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, USER
, arm_current_el(env
) == 0);
1018 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, THREAD
,
1019 !arm_v7m_is_handler_mode(env
));
1021 hfrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_HARD
, false);
1022 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, HFRDY
, hfrdy
);
1024 bfrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_BUS
, false);
1025 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, BFRDY
, bfrdy
);
1027 mmrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_MEM
, is_secure
);
1028 *fpccr
= FIELD_DP32(*fpccr
, V7M_FPCCR
, MMRDY
, mmrdy
);
1030 ns_ufrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_USAGE
, false);
1031 *fpccr_ns
= FIELD_DP32(*fpccr_ns
, V7M_FPCCR
, UFRDY
, ns_ufrdy
);
1033 monrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_DEBUG
, false);
1034 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, MONRDY
, monrdy
);
1036 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1037 s_ufrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_USAGE
, true);
1038 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, UFRDY
, s_ufrdy
);
1040 sfrdy
= armv7m_nvic_get_ready_status(nvic
, ARMV7M_EXCP_SECURE
, false);
1041 *fpccr_s
= FIELD_DP32(*fpccr_s
, V7M_FPCCR
, SFRDY
, sfrdy
);
1045 void HELPER(v7m_vlstm
)(CPUARMState
*env
, uint32_t fptr
)
1047 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
1048 ARMCPU
*cpu
= env_archcpu(env
);
1049 bool s
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
1050 bool lspact
= env
->v7m
.fpccr
[s
] & R_V7M_FPCCR_LSPACT_MASK
;
1051 uintptr_t ra
= GETPC();
1053 assert(env
->v7m
.secure
);
1055 if (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)) {
1059 /* Check access to the coprocessor is permitted */
1060 if (!v7m_cpacr_pass(env
, true, arm_current_el(env
) != 0)) {
1061 raise_exception_ra(env
, EXCP_NOCP
, 0, 1, GETPC());
1065 /* LSPACT should not be active when there is active FP state */
1066 raise_exception_ra(env
, EXCP_LSERR
, 0, 1, GETPC());
1070 raise_exception_ra(env
, EXCP_UNALIGNED
, 0, 1, GETPC());
1074 * Note that we do not use v7m_stack_write() here, because the
1075 * accesses should not set the FSR bits for stacking errors if they
1076 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
1077 * or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
1080 if (!(env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPEN_MASK
)) {
1081 bool ts
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
;
1084 for (i
= 0; i
< (ts
? 32 : 16); i
+= 2) {
1085 uint64_t dn
= *aa32_vfp_dreg(env
, i
/ 2);
1086 uint32_t faddr
= fptr
+ 4 * i
;
1087 uint32_t slo
= extract64(dn
, 0, 32);
1088 uint32_t shi
= extract64(dn
, 32, 32);
1091 faddr
+= 8; /* skip the slot for the FPSCR */
1093 cpu_stl_data_ra(env
, faddr
, slo
, ra
);
1094 cpu_stl_data_ra(env
, faddr
+ 4, shi
, ra
);
1096 cpu_stl_data_ra(env
, fptr
+ 0x40, vfp_get_fpscr(env
), ra
);
1097 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1098 cpu_stl_data_ra(env
, fptr
+ 0x44, env
->v7m
.vpr
, ra
);
1102 * If TS is 0 then s0 to s15, FPSCR and VPR are UNKNOWN; we choose to
1103 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
1106 for (i
= 0; i
< 32; i
+= 2) {
1107 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1109 vfp_set_fpscr(env
, 0);
1110 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1115 v7m_update_fpccr(env
, fptr
, false);
1118 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_FPCA_MASK
;
1121 void HELPER(v7m_vlldm
)(CPUARMState
*env
, uint32_t fptr
)
1123 ARMCPU
*cpu
= env_archcpu(env
);
1124 uintptr_t ra
= GETPC();
1126 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
1127 assert(env
->v7m
.secure
);
1129 if (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)) {
1133 /* Check access to the coprocessor is permitted */
1134 if (!v7m_cpacr_pass(env
, true, arm_current_el(env
) != 0)) {
1135 raise_exception_ra(env
, EXCP_NOCP
, 0, 1, GETPC());
1138 if (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPACT_MASK
) {
1139 /* State in FP is still valid */
1140 env
->v7m
.fpccr
[M_REG_S
] &= ~R_V7M_FPCCR_LSPACT_MASK
;
1142 bool ts
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
;
1147 raise_exception_ra(env
, EXCP_UNALIGNED
, 0, 1, GETPC());
1150 for (i
= 0; i
< (ts
? 32 : 16); i
+= 2) {
1153 uint32_t faddr
= fptr
+ 4 * i
;
1156 faddr
+= 8; /* skip the slot for the FPSCR and VPR */
1159 slo
= cpu_ldl_data_ra(env
, faddr
, ra
);
1160 shi
= cpu_ldl_data_ra(env
, faddr
+ 4, ra
);
1162 dn
= (uint64_t) shi
<< 32 | slo
;
1163 *aa32_vfp_dreg(env
, i
/ 2) = dn
;
1165 fpscr
= cpu_ldl_data_ra(env
, fptr
+ 0x40, ra
);
1166 vfp_set_fpscr(env
, fpscr
);
1167 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1168 env
->v7m
.vpr
= cpu_ldl_data_ra(env
, fptr
+ 0x44, ra
);
1172 env
->v7m
.control
[M_REG_S
] |= R_V7M_CONTROL_FPCA_MASK
;
1175 static bool v7m_push_stack(ARMCPU
*cpu
)
1178 * Do the "set up stack frame" part of exception entry,
1179 * similar to pseudocode PushStack().
1180 * Return true if we generate a derived exception (and so
1181 * should ignore further stack faults trying to process
1182 * that derived exception.)
1184 bool stacked_ok
= true, limitviol
= false;
1185 CPUARMState
*env
= &cpu
->env
;
1186 uint32_t xpsr
= xpsr_read(env
);
1187 uint32_t frameptr
= env
->regs
[13];
1188 ARMMMUIdx mmu_idx
= arm_mmu_idx(env
);
1190 bool nsacr_cp10
= extract32(env
->v7m
.nsacr
, 10, 1);
1192 if ((env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
) &&
1193 (env
->v7m
.secure
|| nsacr_cp10
)) {
1194 if (env
->v7m
.secure
&&
1195 env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
) {
1204 /* Align stack pointer if the guest wants that */
1205 if ((frameptr
& 4) &&
1206 (env
->v7m
.ccr
[env
->v7m
.secure
] & R_V7M_CCR_STKALIGN_MASK
)) {
1208 xpsr
|= XPSR_SPREALIGN
;
1212 if (env
->v7m
.secure
&&
1213 (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)) {
1217 frameptr
-= framesize
;
1219 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1220 uint32_t limit
= v7m_sp_limit(env
);
1222 if (frameptr
< limit
) {
1224 * Stack limit failure: set SP to the limit value, and generate
1225 * STKOF UsageFault. Stack pushes below the limit must not be
1226 * performed. It is IMPDEF whether pushes above the limit are
1227 * performed; we choose not to.
1229 qemu_log_mask(CPU_LOG_INT
,
1230 "...STKOF during stacking\n");
1231 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
1232 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1234 env
->regs
[13] = limit
;
1236 * We won't try to perform any further memory accesses but
1237 * we must continue through the following code to check for
1238 * permission faults during FPU state preservation, and we
1239 * must update FPCCR if lazy stacking is enabled.
1247 * Write as much of the stack frame as we can. If we fail a stack
1248 * write this will result in a derived exception being pended
1249 * (which may be taken in preference to the one we started with
1250 * if it has higher priority).
1252 stacked_ok
= stacked_ok
&&
1253 v7m_stack_write(cpu
, frameptr
, env
->regs
[0], mmu_idx
, STACK_NORMAL
) &&
1254 v7m_stack_write(cpu
, frameptr
+ 4, env
->regs
[1],
1255 mmu_idx
, STACK_NORMAL
) &&
1256 v7m_stack_write(cpu
, frameptr
+ 8, env
->regs
[2],
1257 mmu_idx
, STACK_NORMAL
) &&
1258 v7m_stack_write(cpu
, frameptr
+ 12, env
->regs
[3],
1259 mmu_idx
, STACK_NORMAL
) &&
1260 v7m_stack_write(cpu
, frameptr
+ 16, env
->regs
[12],
1261 mmu_idx
, STACK_NORMAL
) &&
1262 v7m_stack_write(cpu
, frameptr
+ 20, env
->regs
[14],
1263 mmu_idx
, STACK_NORMAL
) &&
1264 v7m_stack_write(cpu
, frameptr
+ 24, env
->regs
[15],
1265 mmu_idx
, STACK_NORMAL
) &&
1266 v7m_stack_write(cpu
, frameptr
+ 28, xpsr
, mmu_idx
, STACK_NORMAL
);
1268 if (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
) {
1269 /* FPU is active, try to save its registers */
1270 bool fpccr_s
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
1271 bool lspact
= env
->v7m
.fpccr
[fpccr_s
] & R_V7M_FPCCR_LSPACT_MASK
;
1273 if (lspact
&& arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1274 qemu_log_mask(CPU_LOG_INT
,
1275 "...SecureFault because LSPACT and FPCA both set\n");
1276 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
1277 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1278 } else if (!env
->v7m
.secure
&& !nsacr_cp10
) {
1279 qemu_log_mask(CPU_LOG_INT
,
1280 "...Secure UsageFault with CFSR.NOCP because "
1281 "NSACR.CP10 prevents stacking FP regs\n");
1282 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, M_REG_S
);
1283 env
->v7m
.cfsr
[M_REG_S
] |= R_V7M_CFSR_NOCP_MASK
;
1285 if (!(env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPEN_MASK
)) {
1286 /* Lazy stacking disabled, save registers now */
1288 bool cpacr_pass
= v7m_cpacr_pass(env
, env
->v7m
.secure
,
1289 arm_current_el(env
) != 0);
1291 if (stacked_ok
&& !cpacr_pass
) {
1293 * Take UsageFault if CPACR forbids access. The pseudocode
1294 * here does a full CheckCPEnabled() but we know the NSACR
1295 * check can never fail as we have already handled that.
1297 qemu_log_mask(CPU_LOG_INT
,
1298 "...UsageFault with CFSR.NOCP because "
1299 "CPACR.CP10 prevents stacking FP regs\n");
1300 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1302 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_NOCP_MASK
;
1306 for (i
= 0; i
< ((framesize
== 0xa8) ? 32 : 16); i
+= 2) {
1307 uint64_t dn
= *aa32_vfp_dreg(env
, i
/ 2);
1308 uint32_t faddr
= frameptr
+ 0x20 + 4 * i
;
1309 uint32_t slo
= extract64(dn
, 0, 32);
1310 uint32_t shi
= extract64(dn
, 32, 32);
1313 faddr
+= 8; /* skip the slot for the FPSCR and VPR */
1315 stacked_ok
= stacked_ok
&&
1316 v7m_stack_write(cpu
, faddr
, slo
,
1317 mmu_idx
, STACK_NORMAL
) &&
1318 v7m_stack_write(cpu
, faddr
+ 4, shi
,
1319 mmu_idx
, STACK_NORMAL
);
1321 stacked_ok
= stacked_ok
&&
1322 v7m_stack_write(cpu
, frameptr
+ 0x60,
1323 vfp_get_fpscr(env
), mmu_idx
, STACK_NORMAL
);
1324 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1325 stacked_ok
= stacked_ok
&&
1326 v7m_stack_write(cpu
, frameptr
+ 0x64,
1327 env
->v7m
.vpr
, mmu_idx
, STACK_NORMAL
);
1330 for (i
= 0; i
< ((framesize
== 0xa8) ? 32 : 16); i
+= 2) {
1331 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1333 vfp_set_fpscr(env
, 0);
1334 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1339 /* Lazy stacking enabled, save necessary info to stack later */
1340 v7m_update_fpccr(env
, frameptr
+ 0x20, true);
1346 * If we broke a stack limit then SP was already updated earlier;
1347 * otherwise we update SP regardless of whether any of the stack
1348 * accesses failed or we took some other kind of fault.
1351 env
->regs
[13] = frameptr
;
1357 static void do_v7m_exception_exit(ARMCPU
*cpu
)
1359 CPUARMState
*env
= &cpu
->env
;
1361 uint32_t xpsr
, xpsr_mask
;
1362 bool ufault
= false;
1363 bool sfault
= false;
1364 bool return_to_sp_process
;
1365 bool return_to_handler
;
1366 bool rettobase
= false;
1367 bool exc_secure
= false;
1368 bool return_to_secure
;
1370 bool restore_s16_s31
= false;
1373 * If we're not in Handler mode then jumps to magic exception-exit
1374 * addresses don't have magic behaviour. However for the v8M
1375 * security extensions the magic secure-function-return has to
1376 * work in thread mode too, so to avoid doing an extra check in
1377 * the generated code we allow exception-exit magic to also cause the
1378 * internal exception and bring us here in thread mode. Correct code
1379 * will never try to do this (the following insn fetch will always
1380 * fault) so we the overhead of having taken an unnecessary exception
1383 if (!arm_v7m_is_handler_mode(env
)) {
1388 * In the spec pseudocode ExceptionReturn() is called directly
1389 * from BXWritePC() and gets the full target PC value including
1390 * bit zero. In QEMU's implementation we treat it as a normal
1391 * jump-to-register (which is then caught later on), and so split
1392 * the target value up between env->regs[15] and env->thumb in
1393 * gen_bx(). Reconstitute it.
1395 excret
= env
->regs
[15];
1400 qemu_log_mask(CPU_LOG_INT
, "Exception return: magic PC %" PRIx32
1401 " previous exception %d\n",
1402 excret
, env
->v7m
.exception
);
1404 if ((excret
& R_V7M_EXCRET_RES1_MASK
) != R_V7M_EXCRET_RES1_MASK
) {
1405 qemu_log_mask(LOG_GUEST_ERROR
, "M profile: zero high bits in exception "
1406 "exit PC value 0x%" PRIx32
" are UNPREDICTABLE\n",
1410 ftype
= excret
& R_V7M_EXCRET_FTYPE_MASK
;
1412 if (!ftype
&& !cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
1413 qemu_log_mask(LOG_GUEST_ERROR
, "M profile: zero FTYPE in exception "
1414 "exit PC value 0x%" PRIx32
" is UNPREDICTABLE "
1415 "if FPU not present\n",
1420 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1422 * EXC_RETURN.ES validation check (R_SMFL). We must do this before
1423 * we pick which FAULTMASK to clear.
1425 if (!env
->v7m
.secure
&&
1426 ((excret
& R_V7M_EXCRET_ES_MASK
) ||
1427 !(excret
& R_V7M_EXCRET_DCRS_MASK
))) {
1429 /* For all other purposes, treat ES as 0 (R_HXSR) */
1430 excret
&= ~R_V7M_EXCRET_ES_MASK
;
1432 exc_secure
= excret
& R_V7M_EXCRET_ES_MASK
;
1435 if (env
->v7m
.exception
!= ARMV7M_EXCP_NMI
) {
1437 * Auto-clear FAULTMASK on return from other than NMI.
1438 * If the security extension is implemented then this only
1439 * happens if the raw execution priority is >= 0; the
1440 * value of the ES bit in the exception return value indicates
1441 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
1443 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1444 if (armv7m_nvic_raw_execution_priority(env
->nvic
) >= 0) {
1445 env
->v7m
.faultmask
[exc_secure
] = 0;
1448 env
->v7m
.faultmask
[M_REG_NS
] = 0;
1452 switch (armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
,
1455 /* attempt to exit an exception that isn't active */
1459 /* still an irq active now */
1463 * We returned to base exception level, no nesting.
1464 * (In the pseudocode this is written using "NestedActivation != 1"
1465 * where we have 'rettobase == false'.)
1470 g_assert_not_reached();
1473 return_to_handler
= !(excret
& R_V7M_EXCRET_MODE_MASK
);
1474 return_to_sp_process
= excret
& R_V7M_EXCRET_SPSEL_MASK
;
1475 return_to_secure
= arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
1476 (excret
& R_V7M_EXCRET_S_MASK
);
1478 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1479 if (!arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1481 * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
1482 * we choose to take the UsageFault.
1484 if ((excret
& R_V7M_EXCRET_S_MASK
) ||
1485 (excret
& R_V7M_EXCRET_ES_MASK
) ||
1486 !(excret
& R_V7M_EXCRET_DCRS_MASK
)) {
1490 if (excret
& R_V7M_EXCRET_RES0_MASK
) {
1494 /* For v7M we only recognize certain combinations of the low bits */
1495 switch (excret
& 0xf) {
1496 case 1: /* Return to Handler */
1498 case 13: /* Return to Thread using Process stack */
1499 case 9: /* Return to Thread using Main stack */
1501 * We only need to check NONBASETHRDENA for v7M, because in
1502 * v8M this bit does not exist (it is RES1).
1505 !(env
->v7m
.ccr
[env
->v7m
.secure
] &
1506 R_V7M_CCR_NONBASETHRDENA_MASK
)) {
1516 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
1517 * Handler mode (and will be until we write the new XPSR.Interrupt
1518 * field) this does not switch around the current stack pointer.
1519 * We must do this before we do any kind of tailchaining, including
1520 * for the derived exceptions on integrity check failures, or we will
1521 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
1523 write_v7m_control_spsel_for_secstate(env
, return_to_sp_process
, exc_secure
);
1526 * Clear scratch FP values left in caller saved registers; this
1527 * must happen before any kind of tail chaining.
1529 if ((env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_CLRONRET_MASK
) &&
1530 (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
)) {
1531 if (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPACT_MASK
) {
1532 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
1533 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1534 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
1535 "stackframe: error during lazy state deactivation\n");
1536 v7m_exception_taken(cpu
, excret
, true, false);
1539 if (arm_feature(env
, ARM_FEATURE_V8_1M
)) {
1540 /* v8.1M adds this NOCP check */
1541 bool nsacr_pass
= exc_secure
||
1542 extract32(env
->v7m
.nsacr
, 10, 1);
1543 bool cpacr_pass
= v7m_cpacr_pass(env
, exc_secure
, true);
1545 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, true);
1546 env
->v7m
.cfsr
[M_REG_S
] |= R_V7M_CFSR_NOCP_MASK
;
1547 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
1548 "stackframe: NSACR prevents clearing FPU registers\n");
1549 v7m_exception_taken(cpu
, excret
, true, false);
1551 } else if (!cpacr_pass
) {
1552 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1554 env
->v7m
.cfsr
[exc_secure
] |= R_V7M_CFSR_NOCP_MASK
;
1555 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
1556 "stackframe: CPACR prevents clearing FPU registers\n");
1557 v7m_exception_taken(cpu
, excret
, true, false);
1561 /* Clear s0..s15, FPSCR and VPR */
1564 for (i
= 0; i
< 16; i
+= 2) {
1565 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1567 vfp_set_fpscr(env
, 0);
1568 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1575 env
->v7m
.sfsr
|= R_V7M_SFSR_INVER_MASK
;
1576 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1577 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
1578 "stackframe: failed EXC_RETURN.ES validity check\n");
1579 v7m_exception_taken(cpu
, excret
, true, false);
1585 * Bad exception return: instead of popping the exception
1586 * stack, directly take a usage fault on the current stack.
1588 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1589 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
1590 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
1591 "stackframe: failed exception return integrity check\n");
1592 v7m_exception_taken(cpu
, excret
, true, false);
1597 * Tailchaining: if there is currently a pending exception that
1598 * is high enough priority to preempt execution at the level we're
1599 * about to return to, then just directly take that exception now,
1600 * avoiding an unstack-and-then-stack. Note that now we have
1601 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
1602 * our current execution priority is already the execution priority we are
1603 * returning to -- none of the state we would unstack or set based on
1604 * the EXCRET value affects it.
1606 if (armv7m_nvic_can_take_pending_exception(env
->nvic
)) {
1607 qemu_log_mask(CPU_LOG_INT
, "...tailchaining to pending exception\n");
1608 v7m_exception_taken(cpu
, excret
, true, false);
1612 switch_v7m_security_state(env
, return_to_secure
);
1616 * The stack pointer we should be reading the exception frame from
1617 * depends on bits in the magic exception return type value (and
1618 * for v8M isn't necessarily the stack pointer we will eventually
1619 * end up resuming execution with). Get a pointer to the location
1620 * in the CPU state struct where the SP we need is currently being
1621 * stored; we will use and modify it in place.
1622 * We use this limited C variable scope so we don't accidentally
1623 * use 'frame_sp_p' after we do something that makes it invalid.
1625 bool spsel
= env
->v7m
.control
[return_to_secure
] & R_V7M_CONTROL_SPSEL_MASK
;
1626 uint32_t *frame_sp_p
= arm_v7m_get_sp_ptr(env
, return_to_secure
,
1627 !return_to_handler
, spsel
);
1628 uint32_t frameptr
= *frame_sp_p
;
1631 bool return_to_priv
= return_to_handler
||
1632 !(env
->v7m
.control
[return_to_secure
] & R_V7M_CONTROL_NPRIV_MASK
);
1634 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, return_to_secure
,
1637 if (!QEMU_IS_ALIGNED(frameptr
, 8) &&
1638 arm_feature(env
, ARM_FEATURE_V8
)) {
1639 qemu_log_mask(LOG_GUEST_ERROR
,
1640 "M profile exception return with non-8-aligned SP "
1641 "for destination state is UNPREDICTABLE\n");
1644 /* Do we need to pop callee-saved registers? */
1645 if (return_to_secure
&&
1646 ((excret
& R_V7M_EXCRET_ES_MASK
) == 0 ||
1647 (excret
& R_V7M_EXCRET_DCRS_MASK
) == 0)) {
1648 uint32_t actual_sig
;
1650 pop_ok
= v7m_stack_read(cpu
, &actual_sig
, frameptr
, mmu_idx
);
1652 if (pop_ok
&& v7m_integrity_sig(env
, excret
) != actual_sig
) {
1653 /* Take a SecureFault on the current stack */
1654 env
->v7m
.sfsr
|= R_V7M_SFSR_INVIS_MASK
;
1655 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1656 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
1657 "stackframe: failed exception return integrity "
1658 "signature check\n");
1659 v7m_exception_taken(cpu
, excret
, true, false);
1664 v7m_stack_read(cpu
, &env
->regs
[4], frameptr
+ 0x8, mmu_idx
) &&
1665 v7m_stack_read(cpu
, &env
->regs
[5], frameptr
+ 0xc, mmu_idx
) &&
1666 v7m_stack_read(cpu
, &env
->regs
[6], frameptr
+ 0x10, mmu_idx
) &&
1667 v7m_stack_read(cpu
, &env
->regs
[7], frameptr
+ 0x14, mmu_idx
) &&
1668 v7m_stack_read(cpu
, &env
->regs
[8], frameptr
+ 0x18, mmu_idx
) &&
1669 v7m_stack_read(cpu
, &env
->regs
[9], frameptr
+ 0x1c, mmu_idx
) &&
1670 v7m_stack_read(cpu
, &env
->regs
[10], frameptr
+ 0x20, mmu_idx
) &&
1671 v7m_stack_read(cpu
, &env
->regs
[11], frameptr
+ 0x24, mmu_idx
);
1678 v7m_stack_read(cpu
, &env
->regs
[0], frameptr
, mmu_idx
) &&
1679 v7m_stack_read(cpu
, &env
->regs
[1], frameptr
+ 0x4, mmu_idx
) &&
1680 v7m_stack_read(cpu
, &env
->regs
[2], frameptr
+ 0x8, mmu_idx
) &&
1681 v7m_stack_read(cpu
, &env
->regs
[3], frameptr
+ 0xc, mmu_idx
) &&
1682 v7m_stack_read(cpu
, &env
->regs
[12], frameptr
+ 0x10, mmu_idx
) &&
1683 v7m_stack_read(cpu
, &env
->regs
[14], frameptr
+ 0x14, mmu_idx
) &&
1684 v7m_stack_read(cpu
, &env
->regs
[15], frameptr
+ 0x18, mmu_idx
) &&
1685 v7m_stack_read(cpu
, &xpsr
, frameptr
+ 0x1c, mmu_idx
);
1689 * v7m_stack_read() pended a fault, so take it (as a tail
1690 * chained exception on the same stack frame)
1692 qemu_log_mask(CPU_LOG_INT
, "...derived exception on unstacking\n");
1693 v7m_exception_taken(cpu
, excret
, true, false);
1698 * Returning from an exception with a PC with bit 0 set is defined
1699 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
1700 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
1701 * the lsbit, and there are several RTOSes out there which incorrectly
1702 * assume the r15 in the stack frame should be a Thumb-style "lsbit
1703 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
1704 * complain about the badly behaved guest.
1706 if (env
->regs
[15] & 1) {
1707 env
->regs
[15] &= ~1U;
1708 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
1709 qemu_log_mask(LOG_GUEST_ERROR
,
1710 "M profile return from interrupt with misaligned "
1711 "PC is UNPREDICTABLE on v7M\n");
1715 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1717 * For v8M we have to check whether the xPSR exception field
1718 * matches the EXCRET value for return to handler/thread
1719 * before we commit to changing the SP and xPSR.
1721 bool will_be_handler
= (xpsr
& XPSR_EXCP
) != 0;
1722 if (return_to_handler
!= will_be_handler
) {
1724 * Take an INVPC UsageFault on the current stack.
1725 * By this point we will have switched to the security state
1726 * for the background state, so this UsageFault will target
1729 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1731 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1732 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
1733 "stackframe: failed exception return integrity "
1735 v7m_exception_taken(cpu
, excret
, true, false);
1741 /* FP present and we need to handle it */
1742 if (!return_to_secure
&&
1743 (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_LSPACT_MASK
)) {
1744 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
1745 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
1746 qemu_log_mask(CPU_LOG_INT
,
1747 "...taking SecureFault on existing stackframe: "
1748 "Secure LSPACT set but exception return is "
1749 "not to secure state\n");
1750 v7m_exception_taken(cpu
, excret
, true, false);
1754 restore_s16_s31
= return_to_secure
&&
1755 (env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_TS_MASK
);
1757 if (env
->v7m
.fpccr
[return_to_secure
] & R_V7M_FPCCR_LSPACT_MASK
) {
1758 /* State in FPU is still valid, just clear LSPACT */
1759 env
->v7m
.fpccr
[return_to_secure
] &= ~R_V7M_FPCCR_LSPACT_MASK
;
1763 bool cpacr_pass
, nsacr_pass
;
1765 cpacr_pass
= v7m_cpacr_pass(env
, return_to_secure
,
1767 nsacr_pass
= return_to_secure
||
1768 extract32(env
->v7m
.nsacr
, 10, 1);
1771 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1773 env
->v7m
.cfsr
[return_to_secure
] |= R_V7M_CFSR_NOCP_MASK
;
1774 qemu_log_mask(CPU_LOG_INT
,
1775 "...taking UsageFault on existing "
1776 "stackframe: CPACR.CP10 prevents unstacking "
1778 v7m_exception_taken(cpu
, excret
, true, false);
1780 } else if (!nsacr_pass
) {
1781 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, true);
1782 env
->v7m
.cfsr
[M_REG_S
] |= R_V7M_CFSR_INVPC_MASK
;
1783 qemu_log_mask(CPU_LOG_INT
,
1784 "...taking Secure UsageFault on existing "
1785 "stackframe: NSACR.CP10 prevents unstacking "
1787 v7m_exception_taken(cpu
, excret
, true, false);
1791 for (i
= 0; i
< (restore_s16_s31
? 32 : 16); i
+= 2) {
1794 uint32_t faddr
= frameptr
+ 0x20 + 4 * i
;
1797 faddr
+= 8; /* Skip the slot for the FPSCR and VPR */
1801 v7m_stack_read(cpu
, &slo
, faddr
, mmu_idx
) &&
1802 v7m_stack_read(cpu
, &shi
, faddr
+ 4, mmu_idx
);
1808 dn
= (uint64_t)shi
<< 32 | slo
;
1809 *aa32_vfp_dreg(env
, i
/ 2) = dn
;
1812 v7m_stack_read(cpu
, &fpscr
, frameptr
+ 0x60, mmu_idx
);
1814 vfp_set_fpscr(env
, fpscr
);
1816 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1818 v7m_stack_read(cpu
, &env
->v7m
.vpr
,
1819 frameptr
+ 0x64, mmu_idx
);
1823 * These regs are 0 if security extension present;
1824 * otherwise merely UNKNOWN. We zero always.
1826 for (i
= 0; i
< (restore_s16_s31
? 32 : 16); i
+= 2) {
1827 *aa32_vfp_dreg(env
, i
/ 2) = 0;
1829 vfp_set_fpscr(env
, 0);
1830 if (cpu_isar_feature(aa32_mve
, cpu
)) {
1836 env
->v7m
.control
[M_REG_S
] = FIELD_DP32(env
->v7m
.control
[M_REG_S
],
1837 V7M_CONTROL
, FPCA
, !ftype
);
1839 /* Commit to consuming the stack frame */
1843 if (restore_s16_s31
) {
1848 * Undo stack alignment (the SPREALIGN bit indicates that the original
1849 * pre-exception SP was not 8-aligned and we added a padding word to
1850 * align it, so we undo this by ORing in the bit that increases it
1851 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
1852 * would work too but a logical OR is how the pseudocode specifies it.)
1854 if (xpsr
& XPSR_SPREALIGN
) {
1857 *frame_sp_p
= frameptr
;
1860 xpsr_mask
= ~(XPSR_SPREALIGN
| XPSR_SFPA
);
1861 if (!arm_feature(env
, ARM_FEATURE_THUMB_DSP
)) {
1862 xpsr_mask
&= ~XPSR_GE
;
1864 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
1865 xpsr_write(env
, xpsr
, xpsr_mask
);
1867 if (env
->v7m
.secure
) {
1868 bool sfpa
= xpsr
& XPSR_SFPA
;
1870 env
->v7m
.control
[M_REG_S
] = FIELD_DP32(env
->v7m
.control
[M_REG_S
],
1871 V7M_CONTROL
, SFPA
, sfpa
);
1875 * The restored xPSR exception field will be zero if we're
1876 * resuming in Thread mode. If that doesn't match what the
1877 * exception return excret specified then this is a UsageFault.
1878 * v7M requires we make this check here; v8M did it earlier.
1880 if (return_to_handler
!= arm_v7m_is_handler_mode(env
)) {
1882 * Take an INVPC UsageFault by pushing the stack again;
1883 * we know we're v7M so this is never a Secure UsageFault.
1885 bool ignore_stackfaults
;
1887 assert(!arm_feature(env
, ARM_FEATURE_V8
));
1888 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, false);
1889 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1890 ignore_stackfaults
= v7m_push_stack(cpu
);
1891 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on new stackframe: "
1892 "failed exception return integrity check\n");
1893 v7m_exception_taken(cpu
, excret
, false, ignore_stackfaults
);
1897 /* Otherwise, we have a successful exception exit. */
1898 arm_clear_exclusive(env
);
1899 arm_rebuild_hflags(env
);
1900 qemu_log_mask(CPU_LOG_INT
, "...successful exception return\n");
1903 static bool do_v7m_function_return(ARMCPU
*cpu
)
1906 * v8M security extensions magic function return.
1908 * (1) throw an exception (longjump)
1909 * (2) return true if we successfully handled the function return
1910 * (3) return false if we failed a consistency check and have
1911 * pended a UsageFault that needs to be taken now
1913 * At this point the magic return value is split between env->regs[15]
1914 * and env->thumb. We don't bother to reconstitute it because we don't
1915 * need it (all values are handled the same way).
1917 CPUARMState
*env
= &cpu
->env
;
1918 uint32_t newpc
, newpsr
, newpsr_exc
;
1920 qemu_log_mask(CPU_LOG_INT
, "...really v7M secure function return\n");
1923 bool threadmode
, spsel
;
1926 uint32_t *frame_sp_p
;
1929 /* Pull the return address and IPSR from the Secure stack */
1930 threadmode
= !arm_v7m_is_handler_mode(env
);
1931 spsel
= env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SPSEL_MASK
;
1933 frame_sp_p
= arm_v7m_get_sp_ptr(env
, true, threadmode
, spsel
);
1934 frameptr
= *frame_sp_p
;
1937 * These loads may throw an exception (for MPU faults). We want to
1938 * do them as secure, so work out what MMU index that is.
1940 mmu_idx
= arm_v7m_mmu_idx_for_secstate(env
, true);
1941 oi
= make_memop_idx(MO_LEUL
, arm_to_core_mmu_idx(mmu_idx
));
1942 newpc
= cpu_ldl_mmu(env
, frameptr
, oi
, 0);
1943 newpsr
= cpu_ldl_mmu(env
, frameptr
+ 4, oi
, 0);
1945 /* Consistency checks on new IPSR */
1946 newpsr_exc
= newpsr
& XPSR_EXCP
;
1947 if (!((env
->v7m
.exception
== 0 && newpsr_exc
== 0) ||
1948 (env
->v7m
.exception
== 1 && newpsr_exc
!= 0))) {
1949 /* Pend the fault and tell our caller to take it */
1950 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
1951 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
1953 qemu_log_mask(CPU_LOG_INT
,
1954 "...taking INVPC UsageFault: "
1955 "IPSR consistency check failed\n");
1959 *frame_sp_p
= frameptr
+ 8;
1962 /* This invalidates frame_sp_p */
1963 switch_v7m_security_state(env
, true);
1964 env
->v7m
.exception
= newpsr_exc
;
1965 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
1966 if (newpsr
& XPSR_SFPA
) {
1967 env
->v7m
.control
[M_REG_S
] |= R_V7M_CONTROL_SFPA_MASK
;
1969 xpsr_write(env
, 0, XPSR_IT
);
1970 env
->thumb
= newpc
& 1;
1971 env
->regs
[15] = newpc
& ~1;
1972 arm_rebuild_hflags(env
);
1974 qemu_log_mask(CPU_LOG_INT
, "...function return successful\n");
1978 static bool v7m_read_half_insn(ARMCPU
*cpu
, ARMMMUIdx mmu_idx
, bool secure
,
1979 uint32_t addr
, uint16_t *insn
)
1982 * Load a 16-bit portion of a v7M instruction, returning true on success,
1983 * or false on failure (in which case we will have pended the appropriate
1985 * We need to do the instruction fetch's MPU and SAU checks
1986 * like this because there is no MMU index that would allow
1987 * doing the load with a single function call. Instead we must
1988 * first check that the security attributes permit the load
1989 * and that they don't mismatch on the two halves of the instruction,
1990 * and then we do the load as a secure load (ie using the security
1991 * attributes of the address, not the CPU, as architecturally required).
1993 CPUState
*cs
= CPU(cpu
);
1994 CPUARMState
*env
= &cpu
->env
;
1995 V8M_SAttributes sattrs
= {};
1996 GetPhysAddrResult res
= {};
1997 ARMMMUFaultInfo fi
= {};
2000 v8m_security_lookup(env
, addr
, MMU_INST_FETCH
, mmu_idx
, secure
, &sattrs
);
2001 if (!sattrs
.nsc
|| sattrs
.ns
) {
2003 * This must be the second half of the insn, and it straddles a
2004 * region boundary with the second half not being S&NSC.
2006 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
2007 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
2008 qemu_log_mask(CPU_LOG_INT
,
2009 "...really SecureFault with SFSR.INVEP\n");
2012 if (get_phys_addr(env
, addr
, MMU_INST_FETCH
, 0, mmu_idx
, &res
, &fi
)) {
2013 /* the MPU lookup failed */
2014 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_IACCVIOL_MASK
;
2015 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
, env
->v7m
.secure
);
2016 qemu_log_mask(CPU_LOG_INT
, "...really MemManage with CFSR.IACCVIOL\n");
2019 *insn
= address_space_lduw_le(arm_addressspace(cs
, res
.f
.attrs
),
2020 res
.f
.phys_addr
, res
.f
.attrs
, &txres
);
2021 if (txres
!= MEMTX_OK
) {
2022 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_IBUSERR_MASK
;
2023 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_BUS
, false);
2024 qemu_log_mask(CPU_LOG_INT
, "...really BusFault with CFSR.IBUSERR\n");
2030 static bool v7m_read_sg_stack_word(ARMCPU
*cpu
, ARMMMUIdx mmu_idx
,
2031 uint32_t addr
, uint32_t *spdata
)
2034 * Read a word of data from the stack for the SG instruction,
2035 * writing the value into *spdata. If the load succeeds, return
2036 * true; otherwise pend an appropriate exception and return false.
2037 * (We can't use data load helpers here that throw an exception
2038 * because of the context we're called in, which is halfway through
2039 * arm_v7m_cpu_do_interrupt().)
2041 CPUState
*cs
= CPU(cpu
);
2042 CPUARMState
*env
= &cpu
->env
;
2044 GetPhysAddrResult res
= {};
2045 ARMMMUFaultInfo fi
= {};
2048 if (get_phys_addr(env
, addr
, MMU_DATA_LOAD
, 0, mmu_idx
, &res
, &fi
)) {
2049 /* MPU/SAU lookup failed */
2050 if (fi
.type
== ARMFault_QEMU_SFault
) {
2051 qemu_log_mask(CPU_LOG_INT
,
2052 "...SecureFault during stack word read\n");
2053 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
| R_V7M_SFSR_SFARVALID_MASK
;
2054 env
->v7m
.sfar
= addr
;
2055 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
2057 qemu_log_mask(CPU_LOG_INT
,
2058 "...MemManageFault during stack word read\n");
2059 env
->v7m
.cfsr
[M_REG_S
] |= R_V7M_CFSR_DACCVIOL_MASK
|
2060 R_V7M_CFSR_MMARVALID_MASK
;
2061 env
->v7m
.mmfar
[M_REG_S
] = addr
;
2062 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
, false);
2066 value
= address_space_ldl(arm_addressspace(cs
, res
.f
.attrs
),
2067 res
.f
.phys_addr
, res
.f
.attrs
, &txres
);
2068 if (txres
!= MEMTX_OK
) {
2069 /* BusFault trying to read the data */
2070 qemu_log_mask(CPU_LOG_INT
,
2071 "...BusFault during stack word read\n");
2072 env
->v7m
.cfsr
[M_REG_NS
] |=
2073 (R_V7M_CFSR_PRECISERR_MASK
| R_V7M_CFSR_BFARVALID_MASK
);
2074 env
->v7m
.bfar
= addr
;
2075 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_BUS
, false);
2083 static bool v7m_handle_execute_nsc(ARMCPU
*cpu
)
2086 * Check whether this attempt to execute code in a Secure & NS-Callable
2087 * memory region is for an SG instruction; if so, then emulate the
2088 * effect of the SG instruction and return true. Otherwise pend
2089 * the correct kind of exception and return false.
2091 CPUARMState
*env
= &cpu
->env
;
2096 * We should never get here unless get_phys_addr_pmsav8() caused
2097 * an exception for NS executing in S&NSC memory.
2099 assert(!env
->v7m
.secure
);
2100 assert(arm_feature(env
, ARM_FEATURE_M_SECURITY
));
2102 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
2103 mmu_idx
= arm_v7m_mmu_idx_for_secstate(env
, true);
2105 if (!v7m_read_half_insn(cpu
, mmu_idx
, true, env
->regs
[15], &insn
)) {
2113 if (insn
!= 0xe97f) {
2115 * Not an SG instruction first half (we choose the IMPDEF
2116 * early-SG-check option).
2121 if (!v7m_read_half_insn(cpu
, mmu_idx
, true, env
->regs
[15] + 2, &insn
)) {
2125 if (insn
!= 0xe97f) {
2127 * Not an SG instruction second half (yes, both halves of the SG
2128 * insn have the same hex value)
2134 * OK, we have confirmed that we really have an SG instruction.
2135 * We know we're NS in S memory so don't need to repeat those checks.
2137 qemu_log_mask(CPU_LOG_INT
, "...really an SG instruction at 0x%08" PRIx32
2138 ", executing it\n", env
->regs
[15]);
2140 if (cpu_isar_feature(aa32_m_sec_state
, cpu
) &&
2141 !arm_v7m_is_handler_mode(env
)) {
2143 * v8.1M exception stack frame integrity check. Note that we
2144 * must perform the memory access even if CCR_S.TRD is zero
2145 * and we aren't going to check what the data loaded is.
2147 uint32_t spdata
, sp
;
2150 * We know we are currently NS, so the S stack pointers must be
2151 * in other_ss_{psp,msp}, not in regs[13]/other_sp.
2153 sp
= v7m_using_psp(env
) ? env
->v7m
.other_ss_psp
: env
->v7m
.other_ss_msp
;
2154 if (!v7m_read_sg_stack_word(cpu
, mmu_idx
, sp
, &spdata
)) {
2155 /* Stack access failed and an exception has been pended */
2159 if (env
->v7m
.ccr
[M_REG_S
] & R_V7M_CCR_TRD_MASK
) {
2160 if (((spdata
& ~1) == 0xfefa125a) ||
2161 !(env
->v7m
.control
[M_REG_S
] & 1)) {
2167 env
->regs
[14] &= ~1;
2168 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
2169 switch_v7m_security_state(env
, true);
2170 xpsr_write(env
, 0, XPSR_IT
);
2172 arm_rebuild_hflags(env
);
2176 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
2177 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
2178 qemu_log_mask(CPU_LOG_INT
,
2179 "...really SecureFault with SFSR.INVEP\n");
2183 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
2185 ARMCPU
*cpu
= ARM_CPU(cs
);
2186 CPUARMState
*env
= &cpu
->env
;
2188 bool ignore_stackfaults
;
2190 arm_log_exception(cs
);
2193 * For exceptions we just mark as pending on the NVIC, and let that
2196 switch (cs
->exception_index
) {
2198 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2199 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_UNDEFINSTR_MASK
;
2204 * NOCP might be directed to something other than the current
2205 * security state if this fault is because of NSACR; we indicate
2206 * the target security state using exception.target_el.
2208 int target_secstate
;
2210 if (env
->exception
.target_el
== 3) {
2211 target_secstate
= M_REG_S
;
2213 target_secstate
= env
->v7m
.secure
;
2215 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, target_secstate
);
2216 env
->v7m
.cfsr
[target_secstate
] |= R_V7M_CFSR_NOCP_MASK
;
2220 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2221 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVSTATE_MASK
;
2224 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2225 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
2228 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
2229 env
->v7m
.sfsr
|= R_V7M_SFSR_LSERR_MASK
;
2231 case EXCP_UNALIGNED
:
2232 /* Unaligned faults reported by M-profile aware code */
2233 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2234 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_UNALIGNED_MASK
;
2236 case EXCP_DIVBYZERO
:
2237 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
2238 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_DIVBYZERO_MASK
;
2241 /* The PC already points to the next instruction. */
2242 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
, env
->v7m
.secure
);
2244 case EXCP_PREFETCH_ABORT
:
2245 case EXCP_DATA_ABORT
:
2247 * Note that for M profile we don't have a guest facing FSR, but
2248 * the env->exception.fsr will be populated by the code that
2249 * raises the fault, in the A profile short-descriptor format.
2251 * Log the exception.vaddress now regardless of subtype, because
2252 * logging below only logs it when it goes into a guest visible
2255 qemu_log_mask(CPU_LOG_INT
, "...at fault address 0x%x\n",
2256 (uint32_t)env
->exception
.vaddress
);
2257 switch (env
->exception
.fsr
& 0xf) {
2258 case M_FAKE_FSR_NSC_EXEC
:
2260 * Exception generated when we try to execute code at an address
2261 * which is marked as Secure & Non-Secure Callable and the CPU
2262 * is in the Non-Secure state. The only instruction which can
2263 * be executed like this is SG (and that only if both halves of
2264 * the SG instruction have the same security attributes.)
2265 * Everything else must generate an INVEP SecureFault, so we
2266 * emulate the SG instruction here.
2268 if (v7m_handle_execute_nsc(cpu
)) {
2272 case M_FAKE_FSR_SFAULT
:
2274 * Various flavours of SecureFault for attempts to execute or
2275 * access data in the wrong security state.
2277 switch (cs
->exception_index
) {
2278 case EXCP_PREFETCH_ABORT
:
2279 if (env
->v7m
.secure
) {
2280 env
->v7m
.sfsr
|= R_V7M_SFSR_INVTRAN_MASK
;
2281 qemu_log_mask(CPU_LOG_INT
,
2282 "...really SecureFault with SFSR.INVTRAN\n");
2284 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
2285 qemu_log_mask(CPU_LOG_INT
,
2286 "...really SecureFault with SFSR.INVEP\n");
2289 case EXCP_DATA_ABORT
:
2290 /* This must be an NS access to S memory */
2291 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
;
2292 qemu_log_mask(CPU_LOG_INT
,
2293 "...really SecureFault with SFSR.AUVIOL\n");
2296 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
2298 case 0x8: /* External Abort */
2299 switch (cs
->exception_index
) {
2300 case EXCP_PREFETCH_ABORT
:
2301 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_IBUSERR_MASK
;
2302 qemu_log_mask(CPU_LOG_INT
, "...with CFSR.IBUSERR\n");
2304 case EXCP_DATA_ABORT
:
2305 env
->v7m
.cfsr
[M_REG_NS
] |=
2306 (R_V7M_CFSR_PRECISERR_MASK
| R_V7M_CFSR_BFARVALID_MASK
);
2307 env
->v7m
.bfar
= env
->exception
.vaddress
;
2308 qemu_log_mask(CPU_LOG_INT
,
2309 "...with CFSR.PRECISERR and BFAR 0x%x\n",
2313 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_BUS
, false);
2315 case 0x1: /* Alignment fault reported by generic code */
2316 qemu_log_mask(CPU_LOG_INT
,
2317 "...really UsageFault with UFSR.UNALIGNED\n");
2318 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_UNALIGNED_MASK
;
2319 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
2324 * All other FSR values are either MPU faults or "can't happen
2325 * for M profile" cases.
2327 switch (cs
->exception_index
) {
2328 case EXCP_PREFETCH_ABORT
:
2329 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_IACCVIOL_MASK
;
2330 qemu_log_mask(CPU_LOG_INT
, "...with CFSR.IACCVIOL\n");
2332 case EXCP_DATA_ABORT
:
2333 env
->v7m
.cfsr
[env
->v7m
.secure
] |=
2334 (R_V7M_CFSR_DACCVIOL_MASK
| R_V7M_CFSR_MMARVALID_MASK
);
2335 env
->v7m
.mmfar
[env
->v7m
.secure
] = env
->exception
.vaddress
;
2336 qemu_log_mask(CPU_LOG_INT
,
2337 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
2338 env
->v7m
.mmfar
[env
->v7m
.secure
]);
2341 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
,
2347 qemu_log_mask(CPU_LOG_INT
,
2348 "...handling as semihosting call 0x%x\n",
2351 do_common_semihosting(cs
);
2353 g_assert_not_reached();
2355 env
->regs
[15] += env
->thumb
? 2 : 4;
2358 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
, false);
2362 case EXCP_EXCEPTION_EXIT
:
2363 if (env
->regs
[15] < EXC_RETURN_MIN_MAGIC
) {
2364 /* Must be v8M security extension function return */
2365 assert(env
->regs
[15] >= FNC_RETURN_MIN_MAGIC
);
2366 assert(arm_feature(env
, ARM_FEATURE_M_SECURITY
));
2367 if (do_v7m_function_return(cpu
)) {
2371 do_v7m_exception_exit(cpu
);
2377 * We already pended the specific exception in the NVIC in the
2378 * v7m_preserve_fp_state() helper function.
2382 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
2383 return; /* Never happens. Keep compiler happy. */
2386 if (arm_feature(env
, ARM_FEATURE_V8
)) {
2387 lr
= R_V7M_EXCRET_RES1_MASK
|
2388 R_V7M_EXCRET_DCRS_MASK
;
2390 * The S bit indicates whether we should return to Secure
2391 * or NonSecure (ie our current state).
2392 * The ES bit indicates whether we're taking this exception
2393 * to Secure or NonSecure (ie our target state). We set it
2394 * later, in v7m_exception_taken().
2395 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
2396 * This corresponds to the ARM ARM pseudocode for v8M setting
2397 * some LR bits in PushStack() and some in ExceptionTaken();
2398 * the distinction matters for the tailchain cases where we
2399 * can take an exception without pushing the stack.
2401 if (env
->v7m
.secure
) {
2402 lr
|= R_V7M_EXCRET_S_MASK
;
2405 lr
= R_V7M_EXCRET_RES1_MASK
|
2406 R_V7M_EXCRET_S_MASK
|
2407 R_V7M_EXCRET_DCRS_MASK
|
2408 R_V7M_EXCRET_ES_MASK
;
2409 if (env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
) {
2410 lr
|= R_V7M_EXCRET_SPSEL_MASK
;
2413 if (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
)) {
2414 lr
|= R_V7M_EXCRET_FTYPE_MASK
;
2416 if (!arm_v7m_is_handler_mode(env
)) {
2417 lr
|= R_V7M_EXCRET_MODE_MASK
;
2420 ignore_stackfaults
= v7m_push_stack(cpu
);
2421 v7m_exception_taken(cpu
, lr
, false, ignore_stackfaults
);
2424 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
2426 unsigned el
= arm_current_el(env
);
2428 /* First handle registers which unprivileged can read */
2430 case 0 ... 7: /* xPSR sub-fields */
2431 return v7m_mrs_xpsr(env
, reg
, el
);
2432 case 20: /* CONTROL */
2433 return arm_v7m_mrs_control(env
, env
->v7m
.secure
);
2434 case 0x94: /* CONTROL_NS */
2436 * We have to handle this here because unprivileged Secure code
2437 * can read the NS CONTROL register.
2439 if (!env
->v7m
.secure
) {
2442 return env
->v7m
.control
[M_REG_NS
] |
2443 (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
);
2447 return 0; /* unprivileged reads others as zero */
2450 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
2452 case 0x88: /* MSP_NS */
2453 if (!env
->v7m
.secure
) {
2456 return env
->v7m
.other_ss_msp
;
2457 case 0x89: /* PSP_NS */
2458 if (!env
->v7m
.secure
) {
2461 return env
->v7m
.other_ss_psp
;
2462 case 0x8a: /* MSPLIM_NS */
2463 if (!env
->v7m
.secure
) {
2466 return env
->v7m
.msplim
[M_REG_NS
];
2467 case 0x8b: /* PSPLIM_NS */
2468 if (!env
->v7m
.secure
) {
2471 return env
->v7m
.psplim
[M_REG_NS
];
2472 case 0x90: /* PRIMASK_NS */
2473 if (!env
->v7m
.secure
) {
2476 return env
->v7m
.primask
[M_REG_NS
];
2477 case 0x91: /* BASEPRI_NS */
2478 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2481 if (!env
->v7m
.secure
) {
2484 return env
->v7m
.basepri
[M_REG_NS
];
2485 case 0x93: /* FAULTMASK_NS */
2486 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2489 if (!env
->v7m
.secure
) {
2492 return env
->v7m
.faultmask
[M_REG_NS
];
2493 case 0x98: /* SP_NS */
2496 * This gives the non-secure SP selected based on whether we're
2497 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2499 bool spsel
= env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
;
2501 if (!env
->v7m
.secure
) {
2504 if (!arm_v7m_is_handler_mode(env
) && spsel
) {
2505 return env
->v7m
.other_ss_psp
;
2507 return env
->v7m
.other_ss_msp
;
2517 return v7m_using_psp(env
) ? env
->v7m
.other_sp
: env
->regs
[13];
2519 return v7m_using_psp(env
) ? env
->regs
[13] : env
->v7m
.other_sp
;
2520 case 10: /* MSPLIM */
2521 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2524 return env
->v7m
.msplim
[env
->v7m
.secure
];
2525 case 11: /* PSPLIM */
2526 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2529 return env
->v7m
.psplim
[env
->v7m
.secure
];
2530 case 16: /* PRIMASK */
2531 return env
->v7m
.primask
[env
->v7m
.secure
];
2532 case 17: /* BASEPRI */
2533 case 18: /* BASEPRI_MAX */
2534 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2537 return env
->v7m
.basepri
[env
->v7m
.secure
];
2538 case 19: /* FAULTMASK */
2539 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2542 return env
->v7m
.faultmask
[env
->v7m
.secure
];
2545 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to read unknown special"
2546 " register %d\n", reg
);
2551 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t maskreg
, uint32_t val
)
2554 * We're passed bits [11..0] of the instruction; extract
2555 * SYSm and the mask bits.
2556 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
2557 * we choose to treat them as if the mask bits were valid.
2558 * NB that the pseudocode 'mask' variable is bits [11..10],
2559 * whereas ours is [11..8].
2561 uint32_t mask
= extract32(maskreg
, 8, 4);
2562 uint32_t reg
= extract32(maskreg
, 0, 8);
2563 int cur_el
= arm_current_el(env
);
2565 if (cur_el
== 0 && reg
> 7 && reg
!= 20) {
2567 * only xPSR sub-fields and CONTROL.SFPA may be written by
2573 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
2575 case 0x88: /* MSP_NS */
2576 if (!env
->v7m
.secure
) {
2579 env
->v7m
.other_ss_msp
= val
& ~3;
2581 case 0x89: /* PSP_NS */
2582 if (!env
->v7m
.secure
) {
2585 env
->v7m
.other_ss_psp
= val
& ~3;
2587 case 0x8a: /* MSPLIM_NS */
2588 if (!env
->v7m
.secure
) {
2591 env
->v7m
.msplim
[M_REG_NS
] = val
& ~7;
2593 case 0x8b: /* PSPLIM_NS */
2594 if (!env
->v7m
.secure
) {
2597 env
->v7m
.psplim
[M_REG_NS
] = val
& ~7;
2599 case 0x90: /* PRIMASK_NS */
2600 if (!env
->v7m
.secure
) {
2603 env
->v7m
.primask
[M_REG_NS
] = val
& 1;
2605 case 0x91: /* BASEPRI_NS */
2606 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2609 if (!env
->v7m
.secure
) {
2612 env
->v7m
.basepri
[M_REG_NS
] = val
& 0xff;
2614 case 0x93: /* FAULTMASK_NS */
2615 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2618 if (!env
->v7m
.secure
) {
2621 env
->v7m
.faultmask
[M_REG_NS
] = val
& 1;
2623 case 0x94: /* CONTROL_NS */
2624 if (!env
->v7m
.secure
) {
2627 write_v7m_control_spsel_for_secstate(env
,
2628 val
& R_V7M_CONTROL_SPSEL_MASK
,
2630 if (arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2631 env
->v7m
.control
[M_REG_NS
] &= ~R_V7M_CONTROL_NPRIV_MASK
;
2632 env
->v7m
.control
[M_REG_NS
] |= val
& R_V7M_CONTROL_NPRIV_MASK
;
2635 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
2636 * RES0 if the FPU is not present, and is stored in the S bank
2638 if (cpu_isar_feature(aa32_vfp_simd
, env_archcpu(env
)) &&
2639 extract32(env
->v7m
.nsacr
, 10, 1)) {
2640 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_FPCA_MASK
;
2641 env
->v7m
.control
[M_REG_S
] |= val
& R_V7M_CONTROL_FPCA_MASK
;
2644 case 0x98: /* SP_NS */
2647 * This gives the non-secure SP selected based on whether we're
2648 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2650 bool spsel
= env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
;
2651 bool is_psp
= !arm_v7m_is_handler_mode(env
) && spsel
;
2654 if (!env
->v7m
.secure
) {
2658 limit
= is_psp
? env
->v7m
.psplim
[false] : env
->v7m
.msplim
[false];
2663 raise_exception_ra(env
, EXCP_STKOF
, 0, 1, GETPC());
2667 env
->v7m
.other_ss_psp
= val
;
2669 env
->v7m
.other_ss_msp
= val
;
2679 case 0 ... 7: /* xPSR sub-fields */
2680 v7m_msr_xpsr(env
, mask
, reg
, val
);
2683 if (v7m_using_psp(env
)) {
2684 env
->v7m
.other_sp
= val
& ~3;
2686 env
->regs
[13] = val
& ~3;
2690 if (v7m_using_psp(env
)) {
2691 env
->regs
[13] = val
& ~3;
2693 env
->v7m
.other_sp
= val
& ~3;
2696 case 10: /* MSPLIM */
2697 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2700 env
->v7m
.msplim
[env
->v7m
.secure
] = val
& ~7;
2702 case 11: /* PSPLIM */
2703 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2706 env
->v7m
.psplim
[env
->v7m
.secure
] = val
& ~7;
2708 case 16: /* PRIMASK */
2709 env
->v7m
.primask
[env
->v7m
.secure
] = val
& 1;
2711 case 17: /* BASEPRI */
2712 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2715 env
->v7m
.basepri
[env
->v7m
.secure
] = val
& 0xff;
2717 case 18: /* BASEPRI_MAX */
2718 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2722 if (val
!= 0 && (val
< env
->v7m
.basepri
[env
->v7m
.secure
]
2723 || env
->v7m
.basepri
[env
->v7m
.secure
] == 0)) {
2724 env
->v7m
.basepri
[env
->v7m
.secure
] = val
;
2727 case 19: /* FAULTMASK */
2728 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2731 env
->v7m
.faultmask
[env
->v7m
.secure
] = val
& 1;
2733 case 20: /* CONTROL */
2735 * Writing to the SPSEL bit only has an effect if we are in
2736 * thread mode; other bits can be updated by any privileged code.
2737 * write_v7m_control_spsel() deals with updating the SPSEL bit in
2738 * env->v7m.control, so we only need update the others.
2739 * For v7M, we must just ignore explicit writes to SPSEL in handler
2740 * mode; for v8M the write is permitted but will have no effect.
2741 * All these bits are writes-ignored from non-privileged code,
2744 if (cur_el
> 0 && (arm_feature(env
, ARM_FEATURE_V8
) ||
2745 !arm_v7m_is_handler_mode(env
))) {
2746 write_v7m_control_spsel(env
, (val
& R_V7M_CONTROL_SPSEL_MASK
) != 0);
2748 if (cur_el
> 0 && arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
2749 env
->v7m
.control
[env
->v7m
.secure
] &= ~R_V7M_CONTROL_NPRIV_MASK
;
2750 env
->v7m
.control
[env
->v7m
.secure
] |= val
& R_V7M_CONTROL_NPRIV_MASK
;
2752 if (cpu_isar_feature(aa32_vfp_simd
, env_archcpu(env
))) {
2754 * SFPA is RAZ/WI from NS or if no FPU.
2755 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
2756 * Both are stored in the S bank.
2758 if (env
->v7m
.secure
) {
2759 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
2760 env
->v7m
.control
[M_REG_S
] |= val
& R_V7M_CONTROL_SFPA_MASK
;
2763 (env
->v7m
.secure
|| !arm_feature(env
, ARM_FEATURE_M_SECURITY
) ||
2764 extract32(env
->v7m
.nsacr
, 10, 1))) {
2765 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_FPCA_MASK
;
2766 env
->v7m
.control
[M_REG_S
] |= val
& R_V7M_CONTROL_FPCA_MASK
;
2772 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to write unknown special"
2773 " register %d\n", reg
);
2778 uint32_t HELPER(v7m_tt
)(CPUARMState
*env
, uint32_t addr
, uint32_t op
)
2780 /* Implement the TT instruction. op is bits [7:6] of the insn. */
2781 bool forceunpriv
= op
& 1;
2783 V8M_SAttributes sattrs
= {};
2785 bool r
, rw
, nsr
, nsrw
, mrvalid
;
2789 bool targetsec
= env
->v7m
.secure
;
2792 * Work out what the security state and privilege level we're
2793 * interested in is...
2796 targetsec
= !targetsec
;
2802 targetpriv
= arm_v7m_is_handler_mode(env
) ||
2803 !(env
->v7m
.control
[targetsec
] & R_V7M_CONTROL_NPRIV_MASK
);
2806 /* ...and then figure out which MMU index this is */
2807 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, targetsec
, targetpriv
);
2810 * We know that the MPU and SAU don't care about the access type
2811 * for our purposes beyond that we don't want to claim to be
2812 * an insn fetch, so we arbitrarily call this a read.
2816 * MPU region info only available for privileged or if
2817 * inspecting the other MPU state.
2819 if (arm_current_el(env
) != 0 || alt
) {
2820 GetPhysAddrResult res
= {};
2821 ARMMMUFaultInfo fi
= {};
2823 /* We can ignore the return value as prot is always set */
2824 pmsav8_mpu_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, targetsec
,
2825 &res
, &fi
, &mregion
);
2826 if (mregion
== -1) {
2832 r
= res
.f
.prot
& PAGE_READ
;
2833 rw
= res
.f
.prot
& PAGE_WRITE
;
2841 if (env
->v7m
.secure
) {
2842 v8m_security_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
,
2843 targetsec
, &sattrs
);
2844 nsr
= sattrs
.ns
&& r
;
2845 nsrw
= sattrs
.ns
&& rw
;
2852 tt_resp
= (sattrs
.iregion
<< 24) |
2853 (sattrs
.irvalid
<< 23) |
2854 ((!sattrs
.ns
) << 22) |
2859 (sattrs
.srvalid
<< 17) |
2861 (sattrs
.sregion
<< 8) |
2867 #endif /* !CONFIG_USER_ONLY */
2869 uint32_t *arm_v7m_get_sp_ptr(CPUARMState
*env
, bool secure
, bool threadmode
,
2873 * Return a pointer to the location where we currently store the
2874 * stack pointer for the requested security state and thread mode.
2875 * This pointer will become invalid if the CPU state is updated
2876 * such that the stack pointers are switched around (eg changing
2877 * the SPSEL control bit).
2878 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
2879 * Unlike that pseudocode, we require the caller to pass us in the
2880 * SPSEL control bit value; this is because we also use this
2881 * function in handling of pushing of the callee-saves registers
2882 * part of the v8M stack frame (pseudocode PushCalleeStack()),
2883 * and in the tailchain codepath the SPSEL bit comes from the exception
2884 * return magic LR value from the previous exception. The pseudocode
2885 * opencodes the stack-selection in PushCalleeStack(), but we prefer
2886 * to make this utility function generic enough to do the job.
2888 bool want_psp
= threadmode
&& spsel
;
2890 if (secure
== env
->v7m
.secure
) {
2891 if (want_psp
== v7m_using_psp(env
)) {
2892 return &env
->regs
[13];
2894 return &env
->v7m
.other_sp
;
2898 return &env
->v7m
.other_ss_psp
;
2900 return &env
->v7m
.other_ss_msp
;