Update version for v9.0.0-rc3 release
[qemu/kevin.git] / dump / dump.c
blob84064d890d2cf6df5c7e92e974f6e823988ad855
1 /*
2 * QEMU dump
4 * Copyright Fujitsu, Corp. 2011, 2012
6 * Authors:
7 * Wen Congyang <wency@cn.fujitsu.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qemu/cutils.h"
16 #include "elf.h"
17 #include "qemu/bswap.h"
18 #include "exec/target_page.h"
19 #include "monitor/monitor.h"
20 #include "sysemu/dump.h"
21 #include "sysemu/runstate.h"
22 #include "sysemu/cpus.h"
23 #include "qapi/error.h"
24 #include "qapi/qapi-commands-dump.h"
25 #include "qapi/qapi-events-dump.h"
26 #include "qapi/qmp/qerror.h"
27 #include "qemu/error-report.h"
28 #include "qemu/main-loop.h"
29 #include "hw/misc/vmcoreinfo.h"
30 #include "migration/blocker.h"
31 #include "hw/core/cpu.h"
32 #include "win_dump.h"
34 #include <zlib.h>
35 #ifdef CONFIG_LZO
36 #include <lzo/lzo1x.h>
37 #endif
38 #ifdef CONFIG_SNAPPY
39 #include <snappy-c.h>
40 #endif
41 #ifndef ELF_MACHINE_UNAME
42 #define ELF_MACHINE_UNAME "Unknown"
43 #endif
45 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */
47 static Error *dump_migration_blocker;
49 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \
50 ((DIV_ROUND_UP((hdr_size), 4) + \
51 DIV_ROUND_UP((name_size), 4) + \
52 DIV_ROUND_UP((desc_size), 4)) * 4)
54 static inline bool dump_is_64bit(DumpState *s)
56 return s->dump_info.d_class == ELFCLASS64;
59 static inline bool dump_has_filter(DumpState *s)
61 return s->filter_area_length > 0;
64 uint16_t cpu_to_dump16(DumpState *s, uint16_t val)
66 if (s->dump_info.d_endian == ELFDATA2LSB) {
67 val = cpu_to_le16(val);
68 } else {
69 val = cpu_to_be16(val);
72 return val;
75 uint32_t cpu_to_dump32(DumpState *s, uint32_t val)
77 if (s->dump_info.d_endian == ELFDATA2LSB) {
78 val = cpu_to_le32(val);
79 } else {
80 val = cpu_to_be32(val);
83 return val;
86 uint64_t cpu_to_dump64(DumpState *s, uint64_t val)
88 if (s->dump_info.d_endian == ELFDATA2LSB) {
89 val = cpu_to_le64(val);
90 } else {
91 val = cpu_to_be64(val);
94 return val;
97 static int dump_cleanup(DumpState *s)
99 if (s->dump_info.arch_cleanup_fn) {
100 s->dump_info.arch_cleanup_fn(s);
103 guest_phys_blocks_free(&s->guest_phys_blocks);
104 memory_mapping_list_free(&s->list);
105 close(s->fd);
106 g_free(s->guest_note);
107 g_clear_pointer(&s->string_table_buf, g_array_unref);
108 s->guest_note = NULL;
109 if (s->resume) {
110 if (s->detached) {
111 bql_lock();
113 vm_start();
114 if (s->detached) {
115 bql_unlock();
118 migrate_del_blocker(&dump_migration_blocker);
120 return 0;
123 static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
125 DumpState *s = opaque;
126 size_t written_size;
128 written_size = qemu_write_full(s->fd, buf, size);
129 if (written_size != size) {
130 return -errno;
133 return 0;
136 static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header)
139 * phnum in the elf header is 16 bit, if we have more segments we
140 * set phnum to PN_XNUM and write the real number of segments to a
141 * special section.
143 uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
145 memset(elf_header, 0, sizeof(Elf64_Ehdr));
146 memcpy(elf_header, ELFMAG, SELFMAG);
147 elf_header->e_ident[EI_CLASS] = ELFCLASS64;
148 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
149 elf_header->e_ident[EI_VERSION] = EV_CURRENT;
150 elf_header->e_type = cpu_to_dump16(s, ET_CORE);
151 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
152 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
153 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
154 elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset);
155 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr));
156 elf_header->e_phnum = cpu_to_dump16(s, phnum);
157 elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset);
158 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr));
159 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
160 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
163 static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header)
166 * phnum in the elf header is 16 bit, if we have more segments we
167 * set phnum to PN_XNUM and write the real number of segments to a
168 * special section.
170 uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
172 memset(elf_header, 0, sizeof(Elf32_Ehdr));
173 memcpy(elf_header, ELFMAG, SELFMAG);
174 elf_header->e_ident[EI_CLASS] = ELFCLASS32;
175 elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
176 elf_header->e_ident[EI_VERSION] = EV_CURRENT;
177 elf_header->e_type = cpu_to_dump16(s, ET_CORE);
178 elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
179 elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
180 elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
181 elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset);
182 elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr));
183 elf_header->e_phnum = cpu_to_dump16(s, phnum);
184 elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset);
185 elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr));
186 elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
187 elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
190 static void write_elf_header(DumpState *s, Error **errp)
192 Elf32_Ehdr elf32_header;
193 Elf64_Ehdr elf64_header;
194 size_t header_size;
195 void *header_ptr;
196 int ret;
198 /* The NULL header and the shstrtab are always defined */
199 assert(s->shdr_num >= 2);
200 if (dump_is_64bit(s)) {
201 prepare_elf64_header(s, &elf64_header);
202 header_size = sizeof(elf64_header);
203 header_ptr = &elf64_header;
204 } else {
205 prepare_elf32_header(s, &elf32_header);
206 header_size = sizeof(elf32_header);
207 header_ptr = &elf32_header;
210 ret = fd_write_vmcore(header_ptr, header_size, s);
211 if (ret < 0) {
212 error_setg_errno(errp, -ret, "dump: failed to write elf header");
216 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
217 int phdr_index, hwaddr offset,
218 hwaddr filesz, Error **errp)
220 Elf64_Phdr phdr;
221 int ret;
223 memset(&phdr, 0, sizeof(Elf64_Phdr));
224 phdr.p_type = cpu_to_dump32(s, PT_LOAD);
225 phdr.p_offset = cpu_to_dump64(s, offset);
226 phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr);
227 phdr.p_filesz = cpu_to_dump64(s, filesz);
228 phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length);
229 phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
231 assert(memory_mapping->length >= filesz);
233 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
234 if (ret < 0) {
235 error_setg_errno(errp, -ret,
236 "dump: failed to write program header table");
240 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
241 int phdr_index, hwaddr offset,
242 hwaddr filesz, Error **errp)
244 Elf32_Phdr phdr;
245 int ret;
247 memset(&phdr, 0, sizeof(Elf32_Phdr));
248 phdr.p_type = cpu_to_dump32(s, PT_LOAD);
249 phdr.p_offset = cpu_to_dump32(s, offset);
250 phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr);
251 phdr.p_filesz = cpu_to_dump32(s, filesz);
252 phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length);
253 phdr.p_vaddr =
254 cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
256 assert(memory_mapping->length >= filesz);
258 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
259 if (ret < 0) {
260 error_setg_errno(errp, -ret,
261 "dump: failed to write program header table");
265 static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr)
267 memset(phdr, 0, sizeof(*phdr));
268 phdr->p_type = cpu_to_dump32(s, PT_NOTE);
269 phdr->p_offset = cpu_to_dump64(s, s->note_offset);
270 phdr->p_paddr = 0;
271 phdr->p_filesz = cpu_to_dump64(s, s->note_size);
272 phdr->p_memsz = cpu_to_dump64(s, s->note_size);
273 phdr->p_vaddr = 0;
276 static inline int cpu_index(CPUState *cpu)
278 return cpu->cpu_index + 1;
281 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s,
282 Error **errp)
284 int ret;
286 if (s->guest_note) {
287 ret = f(s->guest_note, s->guest_note_size, s);
288 if (ret < 0) {
289 error_setg(errp, "dump: failed to write guest note");
294 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s,
295 Error **errp)
297 CPUState *cpu;
298 int ret;
299 int id;
301 CPU_FOREACH(cpu) {
302 id = cpu_index(cpu);
303 ret = cpu_write_elf64_note(f, cpu, id, s);
304 if (ret < 0) {
305 error_setg(errp, "dump: failed to write elf notes");
306 return;
310 CPU_FOREACH(cpu) {
311 ret = cpu_write_elf64_qemunote(f, cpu, s);
312 if (ret < 0) {
313 error_setg(errp, "dump: failed to write CPU status");
314 return;
318 write_guest_note(f, s, errp);
321 static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr)
323 memset(phdr, 0, sizeof(*phdr));
324 phdr->p_type = cpu_to_dump32(s, PT_NOTE);
325 phdr->p_offset = cpu_to_dump32(s, s->note_offset);
326 phdr->p_paddr = 0;
327 phdr->p_filesz = cpu_to_dump32(s, s->note_size);
328 phdr->p_memsz = cpu_to_dump32(s, s->note_size);
329 phdr->p_vaddr = 0;
332 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s,
333 Error **errp)
335 CPUState *cpu;
336 int ret;
337 int id;
339 CPU_FOREACH(cpu) {
340 id = cpu_index(cpu);
341 ret = cpu_write_elf32_note(f, cpu, id, s);
342 if (ret < 0) {
343 error_setg(errp, "dump: failed to write elf notes");
344 return;
348 CPU_FOREACH(cpu) {
349 ret = cpu_write_elf32_qemunote(f, cpu, s);
350 if (ret < 0) {
351 error_setg(errp, "dump: failed to write CPU status");
352 return;
356 write_guest_note(f, s, errp);
359 static void write_elf_phdr_note(DumpState *s, Error **errp)
361 Elf32_Phdr phdr32;
362 Elf64_Phdr phdr64;
363 void *phdr;
364 size_t size;
365 int ret;
367 if (dump_is_64bit(s)) {
368 prepare_elf64_phdr_note(s, &phdr64);
369 size = sizeof(phdr64);
370 phdr = &phdr64;
371 } else {
372 prepare_elf32_phdr_note(s, &phdr32);
373 size = sizeof(phdr32);
374 phdr = &phdr32;
377 ret = fd_write_vmcore(phdr, size, s);
378 if (ret < 0) {
379 error_setg_errno(errp, -ret,
380 "dump: failed to write program header table");
384 static void prepare_elf_section_hdr_zero(DumpState *s)
386 if (dump_is_64bit(s)) {
387 Elf64_Shdr *shdr64 = s->elf_section_hdrs;
389 shdr64->sh_info = cpu_to_dump32(s, s->phdr_num);
390 } else {
391 Elf32_Shdr *shdr32 = s->elf_section_hdrs;
393 shdr32->sh_info = cpu_to_dump32(s, s->phdr_num);
397 static void prepare_elf_section_hdr_string(DumpState *s, void *buff)
399 uint64_t index = s->string_table_buf->len;
400 const char strtab[] = ".shstrtab";
401 Elf32_Shdr shdr32 = {};
402 Elf64_Shdr shdr64 = {};
403 int shdr_size;
404 void *shdr;
406 g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab));
407 if (dump_is_64bit(s)) {
408 shdr_size = sizeof(Elf64_Shdr);
409 shdr64.sh_type = SHT_STRTAB;
410 shdr64.sh_offset = s->section_offset + s->elf_section_data_size;
411 shdr64.sh_name = index;
412 shdr64.sh_size = s->string_table_buf->len;
413 shdr = &shdr64;
414 } else {
415 shdr_size = sizeof(Elf32_Shdr);
416 shdr32.sh_type = SHT_STRTAB;
417 shdr32.sh_offset = s->section_offset + s->elf_section_data_size;
418 shdr32.sh_name = index;
419 shdr32.sh_size = s->string_table_buf->len;
420 shdr = &shdr32;
422 memcpy(buff, shdr, shdr_size);
425 static bool prepare_elf_section_hdrs(DumpState *s, Error **errp)
427 size_t len, sizeof_shdr;
428 void *buff_hdr;
431 * Section ordering:
432 * - HDR zero
433 * - Arch section hdrs
434 * - String table hdr
436 sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
437 len = sizeof_shdr * s->shdr_num;
438 s->elf_section_hdrs = g_malloc0(len);
439 buff_hdr = s->elf_section_hdrs;
442 * The first section header is ALWAYS a special initial section
443 * header.
445 * The header should be 0 with one exception being that if
446 * phdr_num is PN_XNUM then the sh_info field contains the real
447 * number of segment entries.
449 * As we zero allocate the buffer we will only need to modify
450 * sh_info for the PN_XNUM case.
452 if (s->phdr_num >= PN_XNUM) {
453 prepare_elf_section_hdr_zero(s);
455 buff_hdr += sizeof_shdr;
457 /* Add architecture defined section headers */
458 if (s->dump_info.arch_sections_write_hdr_fn
459 && s->shdr_num > 2) {
460 buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr);
462 if (s->shdr_num >= SHN_LORESERVE) {
463 error_setg_errno(errp, EINVAL,
464 "dump: too many architecture defined sections");
465 return false;
470 * String table is the last section since strings are added via
471 * arch_sections_write_hdr().
473 prepare_elf_section_hdr_string(s, buff_hdr);
474 return true;
477 static void write_elf_section_headers(DumpState *s, Error **errp)
479 size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
480 int ret;
482 if (!prepare_elf_section_hdrs(s, errp)) {
483 return;
486 ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s);
487 if (ret < 0) {
488 error_setg_errno(errp, -ret, "dump: failed to write section headers");
491 g_free(s->elf_section_hdrs);
494 static void write_elf_sections(DumpState *s, Error **errp)
496 int ret;
498 if (s->elf_section_data_size) {
499 /* Write architecture section data */
500 ret = fd_write_vmcore(s->elf_section_data,
501 s->elf_section_data_size, s);
502 if (ret < 0) {
503 error_setg_errno(errp, -ret,
504 "dump: failed to write architecture section data");
505 return;
509 /* Write string table */
510 ret = fd_write_vmcore(s->string_table_buf->data,
511 s->string_table_buf->len, s);
512 if (ret < 0) {
513 error_setg_errno(errp, -ret, "dump: failed to write string table data");
517 static void write_data(DumpState *s, void *buf, int length, Error **errp)
519 int ret;
521 ret = fd_write_vmcore(buf, length, s);
522 if (ret < 0) {
523 error_setg_errno(errp, -ret, "dump: failed to save memory");
524 } else {
525 s->written_size += length;
529 /* write the memory to vmcore. 1 page per I/O. */
530 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
531 int64_t size, Error **errp)
533 ERRP_GUARD();
534 int64_t i;
536 for (i = 0; i < size / s->dump_info.page_size; i++) {
537 write_data(s, block->host_addr + start + i * s->dump_info.page_size,
538 s->dump_info.page_size, errp);
539 if (*errp) {
540 return;
544 if ((size % s->dump_info.page_size) != 0) {
545 write_data(s, block->host_addr + start + i * s->dump_info.page_size,
546 size % s->dump_info.page_size, errp);
547 if (*errp) {
548 return;
553 /* get the memory's offset and size in the vmcore */
554 static void get_offset_range(hwaddr phys_addr,
555 ram_addr_t mapping_length,
556 DumpState *s,
557 hwaddr *p_offset,
558 hwaddr *p_filesz)
560 GuestPhysBlock *block;
561 hwaddr offset = s->memory_offset;
562 int64_t size_in_block, start;
564 /* When the memory is not stored into vmcore, offset will be -1 */
565 *p_offset = -1;
566 *p_filesz = 0;
568 if (dump_has_filter(s)) {
569 if (phys_addr < s->filter_area_begin ||
570 phys_addr >= s->filter_area_begin + s->filter_area_length) {
571 return;
575 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
576 if (dump_has_filter(s)) {
577 if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
578 block->target_end <= s->filter_area_begin) {
579 /* This block is out of the range */
580 continue;
583 if (s->filter_area_begin <= block->target_start) {
584 start = block->target_start;
585 } else {
586 start = s->filter_area_begin;
589 size_in_block = block->target_end - start;
590 if (s->filter_area_begin + s->filter_area_length < block->target_end) {
591 size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length);
593 } else {
594 start = block->target_start;
595 size_in_block = block->target_end - block->target_start;
598 if (phys_addr >= start && phys_addr < start + size_in_block) {
599 *p_offset = phys_addr - start + offset;
601 /* The offset range mapped from the vmcore file must not spill over
602 * the GuestPhysBlock, clamp it. The rest of the mapping will be
603 * zero-filled in memory at load time; see
604 * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
606 *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
607 mapping_length :
608 size_in_block - (phys_addr - start);
609 return;
612 offset += size_in_block;
616 static void write_elf_phdr_loads(DumpState *s, Error **errp)
618 ERRP_GUARD();
619 hwaddr offset, filesz;
620 MemoryMapping *memory_mapping;
621 uint32_t phdr_index = 1;
623 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
624 get_offset_range(memory_mapping->phys_addr,
625 memory_mapping->length,
626 s, &offset, &filesz);
627 if (dump_is_64bit(s)) {
628 write_elf64_load(s, memory_mapping, phdr_index++, offset,
629 filesz, errp);
630 } else {
631 write_elf32_load(s, memory_mapping, phdr_index++, offset,
632 filesz, errp);
635 if (*errp) {
636 return;
639 if (phdr_index >= s->phdr_num) {
640 break;
645 static void write_elf_notes(DumpState *s, Error **errp)
647 if (dump_is_64bit(s)) {
648 write_elf64_notes(fd_write_vmcore, s, errp);
649 } else {
650 write_elf32_notes(fd_write_vmcore, s, errp);
654 /* write elf header, PT_NOTE and elf note to vmcore. */
655 static void dump_begin(DumpState *s, Error **errp)
657 ERRP_GUARD();
660 * the vmcore's format is:
661 * --------------
662 * | elf header |
663 * --------------
664 * | sctn_hdr |
665 * --------------
666 * | PT_NOTE |
667 * --------------
668 * | PT_LOAD |
669 * --------------
670 * | ...... |
671 * --------------
672 * | PT_LOAD |
673 * --------------
674 * | elf note |
675 * --------------
676 * | memory |
677 * --------------
679 * we only know where the memory is saved after we write elf note into
680 * vmcore.
683 /* write elf header to vmcore */
684 write_elf_header(s, errp);
685 if (*errp) {
686 return;
689 /* write section headers to vmcore */
690 write_elf_section_headers(s, errp);
691 if (*errp) {
692 return;
695 /* write PT_NOTE to vmcore */
696 write_elf_phdr_note(s, errp);
697 if (*errp) {
698 return;
701 /* write all PT_LOADs to vmcore */
702 write_elf_phdr_loads(s, errp);
703 if (*errp) {
704 return;
707 /* write notes to vmcore */
708 write_elf_notes(s, errp);
711 int64_t dump_filtered_memblock_size(GuestPhysBlock *block,
712 int64_t filter_area_start,
713 int64_t filter_area_length)
715 int64_t size, left, right;
717 /* No filter, return full size */
718 if (!filter_area_length) {
719 return block->target_end - block->target_start;
722 /* calculate the overlapped region. */
723 left = MAX(filter_area_start, block->target_start);
724 right = MIN(filter_area_start + filter_area_length, block->target_end);
725 size = right - left;
726 size = size > 0 ? size : 0;
728 return size;
731 int64_t dump_filtered_memblock_start(GuestPhysBlock *block,
732 int64_t filter_area_start,
733 int64_t filter_area_length)
735 if (filter_area_length) {
736 /* return -1 if the block is not within filter area */
737 if (block->target_start >= filter_area_start + filter_area_length ||
738 block->target_end <= filter_area_start) {
739 return -1;
742 if (filter_area_start > block->target_start) {
743 return filter_area_start - block->target_start;
747 return 0;
750 /* write all memory to vmcore */
751 static void dump_iterate(DumpState *s, Error **errp)
753 ERRP_GUARD();
754 GuestPhysBlock *block;
755 int64_t memblock_size, memblock_start;
757 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
758 memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length);
759 if (memblock_start == -1) {
760 continue;
763 memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length);
765 /* Write the memory to file */
766 write_memory(s, block, memblock_start, memblock_size, errp);
767 if (*errp) {
768 return;
773 static void dump_end(DumpState *s, Error **errp)
775 int rc;
777 if (s->elf_section_data_size) {
778 s->elf_section_data = g_malloc0(s->elf_section_data_size);
781 /* Adds the architecture defined section data to s->elf_section_data */
782 if (s->dump_info.arch_sections_write_fn &&
783 s->elf_section_data_size) {
784 rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data);
785 if (rc) {
786 error_setg_errno(errp, rc,
787 "dump: failed to get arch section data");
788 g_free(s->elf_section_data);
789 return;
793 /* write sections to vmcore */
794 write_elf_sections(s, errp);
797 static void create_vmcore(DumpState *s, Error **errp)
799 ERRP_GUARD();
801 dump_begin(s, errp);
802 if (*errp) {
803 return;
806 /* Iterate over memory and dump it to file */
807 dump_iterate(s, errp);
808 if (*errp) {
809 return;
812 /* Write the section data */
813 dump_end(s, errp);
816 static int write_start_flat_header(DumpState *s)
818 MakedumpfileHeader *mh;
819 int ret = 0;
821 if (s->kdump_raw) {
822 return 0;
825 QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
826 mh = g_malloc0(MAX_SIZE_MDF_HEADER);
828 memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
829 MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
831 mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
832 mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
834 size_t written_size;
835 written_size = qemu_write_full(s->fd, mh, MAX_SIZE_MDF_HEADER);
836 if (written_size != MAX_SIZE_MDF_HEADER) {
837 ret = -1;
840 g_free(mh);
841 return ret;
844 static int write_end_flat_header(DumpState *s)
846 MakedumpfileDataHeader mdh;
848 if (s->kdump_raw) {
849 return 0;
852 mdh.offset = END_FLAG_FLAT_HEADER;
853 mdh.buf_size = END_FLAG_FLAT_HEADER;
855 size_t written_size;
856 written_size = qemu_write_full(s->fd, &mdh, sizeof(mdh));
857 if (written_size != sizeof(mdh)) {
858 return -1;
861 return 0;
864 static int write_buffer(DumpState *s, off_t offset, const void *buf, size_t size)
866 size_t written_size;
867 MakedumpfileDataHeader mdh;
868 off_t seek_loc;
870 if (s->kdump_raw) {
871 seek_loc = lseek(s->fd, offset, SEEK_SET);
872 if (seek_loc == (off_t) -1) {
873 return -1;
875 } else {
876 mdh.offset = cpu_to_be64(offset);
877 mdh.buf_size = cpu_to_be64(size);
879 written_size = qemu_write_full(s->fd, &mdh, sizeof(mdh));
880 if (written_size != sizeof(mdh)) {
881 return -1;
885 written_size = qemu_write_full(s->fd, buf, size);
886 if (written_size != size) {
887 return -1;
890 return 0;
893 static int buf_write_note(const void *buf, size_t size, void *opaque)
895 DumpState *s = opaque;
897 /* note_buf is not enough */
898 if (s->note_buf_offset + size > s->note_size) {
899 return -1;
902 memcpy(s->note_buf + s->note_buf_offset, buf, size);
904 s->note_buf_offset += size;
906 return 0;
910 * This function retrieves various sizes from an elf header.
912 * @note has to be a valid ELF note. The return sizes are unmodified
913 * (not padded or rounded up to be multiple of 4).
915 static void get_note_sizes(DumpState *s, const void *note,
916 uint64_t *note_head_size,
917 uint64_t *name_size,
918 uint64_t *desc_size)
920 uint64_t note_head_sz;
921 uint64_t name_sz;
922 uint64_t desc_sz;
924 if (dump_is_64bit(s)) {
925 const Elf64_Nhdr *hdr = note;
926 note_head_sz = sizeof(Elf64_Nhdr);
927 name_sz = cpu_to_dump64(s, hdr->n_namesz);
928 desc_sz = cpu_to_dump64(s, hdr->n_descsz);
929 } else {
930 const Elf32_Nhdr *hdr = note;
931 note_head_sz = sizeof(Elf32_Nhdr);
932 name_sz = cpu_to_dump32(s, hdr->n_namesz);
933 desc_sz = cpu_to_dump32(s, hdr->n_descsz);
936 if (note_head_size) {
937 *note_head_size = note_head_sz;
939 if (name_size) {
940 *name_size = name_sz;
942 if (desc_size) {
943 *desc_size = desc_sz;
947 static bool note_name_equal(DumpState *s,
948 const uint8_t *note, const char *name)
950 int len = strlen(name) + 1;
951 uint64_t head_size, name_size;
953 get_note_sizes(s, note, &head_size, &name_size, NULL);
954 head_size = ROUND_UP(head_size, 4);
956 return name_size == len && memcmp(note + head_size, name, len) == 0;
959 /* write common header, sub header and elf note to vmcore */
960 static void create_header32(DumpState *s, Error **errp)
962 ERRP_GUARD();
963 DiskDumpHeader32 *dh = NULL;
964 KdumpSubHeader32 *kh = NULL;
965 size_t size;
966 uint32_t block_size;
967 uint32_t sub_hdr_size;
968 uint32_t bitmap_blocks;
969 uint32_t status = 0;
970 uint64_t offset_note;
972 /* write common header, the version of kdump-compressed format is 6th */
973 size = sizeof(DiskDumpHeader32);
974 dh = g_malloc0(size);
976 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
977 dh->header_version = cpu_to_dump32(s, 6);
978 block_size = s->dump_info.page_size;
979 dh->block_size = cpu_to_dump32(s, block_size);
980 sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
981 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
982 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
983 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
984 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
985 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
986 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
987 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
988 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
990 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
991 status |= DUMP_DH_COMPRESSED_ZLIB;
993 #ifdef CONFIG_LZO
994 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
995 status |= DUMP_DH_COMPRESSED_LZO;
997 #endif
998 #ifdef CONFIG_SNAPPY
999 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
1000 status |= DUMP_DH_COMPRESSED_SNAPPY;
1002 #endif
1003 dh->status = cpu_to_dump32(s, status);
1005 if (write_buffer(s, 0, dh, size) < 0) {
1006 error_setg(errp, "dump: failed to write disk dump header");
1007 goto out;
1010 /* write sub header */
1011 size = sizeof(KdumpSubHeader32);
1012 kh = g_malloc0(size);
1014 /* 64bit max_mapnr_64 */
1015 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1016 kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base);
1017 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1019 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1020 if (s->guest_note &&
1021 note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1022 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1024 get_note_sizes(s, s->guest_note,
1025 &hsize, &name_size, &size_vmcoreinfo_desc);
1026 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1027 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1028 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1029 kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc);
1032 kh->offset_note = cpu_to_dump64(s, offset_note);
1033 kh->note_size = cpu_to_dump32(s, s->note_size);
1035 if (write_buffer(s, DISKDUMP_HEADER_BLOCKS *
1036 block_size, kh, size) < 0) {
1037 error_setg(errp, "dump: failed to write kdump sub header");
1038 goto out;
1041 /* write note */
1042 s->note_buf = g_malloc0(s->note_size);
1043 s->note_buf_offset = 0;
1045 /* use s->note_buf to store notes temporarily */
1046 write_elf32_notes(buf_write_note, s, errp);
1047 if (*errp) {
1048 goto out;
1050 if (write_buffer(s, offset_note, s->note_buf,
1051 s->note_size) < 0) {
1052 error_setg(errp, "dump: failed to write notes");
1053 goto out;
1056 /* get offset of dump_bitmap */
1057 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1058 block_size;
1060 /* get offset of page */
1061 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1062 block_size;
1064 out:
1065 g_free(dh);
1066 g_free(kh);
1067 g_free(s->note_buf);
1070 /* write common header, sub header and elf note to vmcore */
1071 static void create_header64(DumpState *s, Error **errp)
1073 ERRP_GUARD();
1074 DiskDumpHeader64 *dh = NULL;
1075 KdumpSubHeader64 *kh = NULL;
1076 size_t size;
1077 uint32_t block_size;
1078 uint32_t sub_hdr_size;
1079 uint32_t bitmap_blocks;
1080 uint32_t status = 0;
1081 uint64_t offset_note;
1083 /* write common header, the version of kdump-compressed format is 6th */
1084 size = sizeof(DiskDumpHeader64);
1085 dh = g_malloc0(size);
1087 memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
1088 dh->header_version = cpu_to_dump32(s, 6);
1089 block_size = s->dump_info.page_size;
1090 dh->block_size = cpu_to_dump32(s, block_size);
1091 sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
1092 sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
1093 dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
1094 /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
1095 dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
1096 dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
1097 bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
1098 dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
1099 strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
1101 if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
1102 status |= DUMP_DH_COMPRESSED_ZLIB;
1104 #ifdef CONFIG_LZO
1105 if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
1106 status |= DUMP_DH_COMPRESSED_LZO;
1108 #endif
1109 #ifdef CONFIG_SNAPPY
1110 if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
1111 status |= DUMP_DH_COMPRESSED_SNAPPY;
1113 #endif
1114 dh->status = cpu_to_dump32(s, status);
1116 if (write_buffer(s, 0, dh, size) < 0) {
1117 error_setg(errp, "dump: failed to write disk dump header");
1118 goto out;
1121 /* write sub header */
1122 size = sizeof(KdumpSubHeader64);
1123 kh = g_malloc0(size);
1125 /* 64bit max_mapnr_64 */
1126 kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
1127 kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base);
1128 kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
1130 offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
1131 if (s->guest_note &&
1132 note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1133 uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
1135 get_note_sizes(s, s->guest_note,
1136 &hsize, &name_size, &size_vmcoreinfo_desc);
1137 offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
1138 (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
1139 kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
1140 kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc);
1143 kh->offset_note = cpu_to_dump64(s, offset_note);
1144 kh->note_size = cpu_to_dump64(s, s->note_size);
1146 if (write_buffer(s, DISKDUMP_HEADER_BLOCKS *
1147 block_size, kh, size) < 0) {
1148 error_setg(errp, "dump: failed to write kdump sub header");
1149 goto out;
1152 /* write note */
1153 s->note_buf = g_malloc0(s->note_size);
1154 s->note_buf_offset = 0;
1156 /* use s->note_buf to store notes temporarily */
1157 write_elf64_notes(buf_write_note, s, errp);
1158 if (*errp) {
1159 goto out;
1162 if (write_buffer(s, offset_note, s->note_buf,
1163 s->note_size) < 0) {
1164 error_setg(errp, "dump: failed to write notes");
1165 goto out;
1168 /* get offset of dump_bitmap */
1169 s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
1170 block_size;
1172 /* get offset of page */
1173 s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
1174 block_size;
1176 out:
1177 g_free(dh);
1178 g_free(kh);
1179 g_free(s->note_buf);
1182 static void write_dump_header(DumpState *s, Error **errp)
1184 if (dump_is_64bit(s)) {
1185 create_header64(s, errp);
1186 } else {
1187 create_header32(s, errp);
1191 static size_t dump_bitmap_get_bufsize(DumpState *s)
1193 return s->dump_info.page_size;
1197 * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
1198 * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
1199 * set_dump_bitmap will always leave the recently set bit un-sync. And setting
1200 * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
1201 * vmcore, ie. synchronizing un-sync bit into vmcore.
1203 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
1204 uint8_t *buf, DumpState *s)
1206 off_t old_offset, new_offset;
1207 off_t offset_bitmap1, offset_bitmap2;
1208 uint32_t byte, bit;
1209 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1210 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1212 /* should not set the previous place */
1213 assert(last_pfn <= pfn);
1216 * if the bit needed to be set is not cached in buf, flush the data in buf
1217 * to vmcore firstly.
1218 * making new_offset be bigger than old_offset can also sync remained data
1219 * into vmcore.
1221 old_offset = bitmap_bufsize * (last_pfn / bits_per_buf);
1222 new_offset = bitmap_bufsize * (pfn / bits_per_buf);
1224 while (old_offset < new_offset) {
1225 /* calculate the offset and write dump_bitmap */
1226 offset_bitmap1 = s->offset_dump_bitmap + old_offset;
1227 if (write_buffer(s, offset_bitmap1, buf,
1228 bitmap_bufsize) < 0) {
1229 return -1;
1232 /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
1233 offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
1234 old_offset;
1235 if (write_buffer(s, offset_bitmap2, buf,
1236 bitmap_bufsize) < 0) {
1237 return -1;
1240 memset(buf, 0, bitmap_bufsize);
1241 old_offset += bitmap_bufsize;
1244 /* get the exact place of the bit in the buf, and set it */
1245 byte = (pfn % bits_per_buf) / CHAR_BIT;
1246 bit = (pfn % bits_per_buf) % CHAR_BIT;
1247 if (value) {
1248 buf[byte] |= 1u << bit;
1249 } else {
1250 buf[byte] &= ~(1u << bit);
1253 return 0;
1256 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr)
1258 int target_page_shift = ctz32(s->dump_info.page_size);
1260 return (addr >> target_page_shift) - ARCH_PFN_OFFSET;
1263 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn)
1265 int target_page_shift = ctz32(s->dump_info.page_size);
1267 return (pfn + ARCH_PFN_OFFSET) << target_page_shift;
1271 * Return the page frame number and the page content in *bufptr. bufptr can be
1272 * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated
1273 * memory. This is not necessarily the memory returned.
1275 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
1276 uint8_t **bufptr, DumpState *s)
1278 GuestPhysBlock *block = *blockptr;
1279 uint32_t page_size = s->dump_info.page_size;
1280 uint8_t *buf = NULL, *hbuf;
1281 hwaddr addr;
1283 /* block == NULL means the start of the iteration */
1284 if (!block) {
1285 block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
1286 *blockptr = block;
1287 addr = block->target_start;
1288 *pfnptr = dump_paddr_to_pfn(s, addr);
1289 } else {
1290 *pfnptr += 1;
1291 addr = dump_pfn_to_paddr(s, *pfnptr);
1293 assert(block != NULL);
1295 while (1) {
1296 if (addr >= block->target_start && addr < block->target_end) {
1297 size_t n = MIN(block->target_end - addr, page_size - addr % page_size);
1298 hbuf = block->host_addr + (addr - block->target_start);
1299 if (!buf) {
1300 if (n == page_size) {
1301 /* this is a whole target page, go for it */
1302 assert(addr % page_size == 0);
1303 buf = hbuf;
1304 break;
1305 } else if (bufptr) {
1306 assert(*bufptr);
1307 buf = *bufptr;
1308 memset(buf, 0, page_size);
1309 } else {
1310 return true;
1314 memcpy(buf + addr % page_size, hbuf, n);
1315 addr += n;
1316 if (addr % page_size == 0 || addr >= block->target_end) {
1317 /* we filled up the page or the current block is finished */
1318 break;
1320 } else {
1321 /* the next page is in the next block */
1322 *blockptr = block = QTAILQ_NEXT(block, next);
1323 if (!block) {
1324 break;
1327 addr = block->target_start;
1328 /* are we still in the same page? */
1329 if (dump_paddr_to_pfn(s, addr) != *pfnptr) {
1330 if (buf) {
1331 /* no, but we already filled something earlier, return it */
1332 break;
1333 } else {
1334 /* else continue from there */
1335 *pfnptr = dump_paddr_to_pfn(s, addr);
1341 if (bufptr) {
1342 *bufptr = buf;
1345 return buf != NULL;
1348 static void write_dump_bitmap(DumpState *s, Error **errp)
1350 int ret = 0;
1351 uint64_t last_pfn, pfn;
1352 void *dump_bitmap_buf;
1353 size_t num_dumpable;
1354 GuestPhysBlock *block_iter = NULL;
1355 size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
1356 size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
1358 /* dump_bitmap_buf is used to store dump_bitmap temporarily */
1359 dump_bitmap_buf = g_malloc0(bitmap_bufsize);
1361 num_dumpable = 0;
1362 last_pfn = 0;
1365 * exam memory page by page, and set the bit in dump_bitmap corresponded
1366 * to the existing page.
1368 while (get_next_page(&block_iter, &pfn, NULL, s)) {
1369 ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
1370 if (ret < 0) {
1371 error_setg(errp, "dump: failed to set dump_bitmap");
1372 goto out;
1375 last_pfn = pfn;
1376 num_dumpable++;
1380 * set_dump_bitmap will always leave the recently set bit un-sync. Here we
1381 * set the remaining bits from last_pfn to the end of the bitmap buffer to
1382 * 0. With those set, the un-sync bit will be synchronized into the vmcore.
1384 if (num_dumpable > 0) {
1385 ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false,
1386 dump_bitmap_buf, s);
1387 if (ret < 0) {
1388 error_setg(errp, "dump: failed to sync dump_bitmap");
1389 goto out;
1393 /* number of dumpable pages that will be dumped later */
1394 s->num_dumpable = num_dumpable;
1396 out:
1397 g_free(dump_bitmap_buf);
1400 static void prepare_data_cache(DataCache *data_cache, DumpState *s,
1401 off_t offset)
1403 data_cache->state = s;
1404 data_cache->data_size = 0;
1405 data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s);
1406 data_cache->buf = g_malloc0(data_cache->buf_size);
1407 data_cache->offset = offset;
1410 static int write_cache(DataCache *dc, const void *buf, size_t size,
1411 bool flag_sync)
1414 * dc->buf_size should not be less than size, otherwise dc will never be
1415 * enough
1417 assert(size <= dc->buf_size);
1420 * if flag_sync is set, synchronize data in dc->buf into vmcore.
1421 * otherwise check if the space is enough for caching data in buf, if not,
1422 * write the data in dc->buf to dc->state->fd and reset dc->buf
1424 if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
1425 (flag_sync && dc->data_size > 0)) {
1426 if (write_buffer(dc->state, dc->offset, dc->buf, dc->data_size) < 0) {
1427 return -1;
1430 dc->offset += dc->data_size;
1431 dc->data_size = 0;
1434 if (!flag_sync) {
1435 memcpy(dc->buf + dc->data_size, buf, size);
1436 dc->data_size += size;
1439 return 0;
1442 static void free_data_cache(DataCache *data_cache)
1444 g_free(data_cache->buf);
1447 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
1449 switch (flag_compress) {
1450 case DUMP_DH_COMPRESSED_ZLIB:
1451 return compressBound(page_size);
1453 case DUMP_DH_COMPRESSED_LZO:
1455 * LZO will expand incompressible data by a little amount. Please check
1456 * the following URL to see the expansion calculation:
1457 * http://www.oberhumer.com/opensource/lzo/lzofaq.php
1459 return page_size + page_size / 16 + 64 + 3;
1461 #ifdef CONFIG_SNAPPY
1462 case DUMP_DH_COMPRESSED_SNAPPY:
1463 return snappy_max_compressed_length(page_size);
1464 #endif
1466 return 0;
1469 static void write_dump_pages(DumpState *s, Error **errp)
1471 int ret = 0;
1472 DataCache page_desc, page_data;
1473 size_t len_buf_out, size_out;
1474 #ifdef CONFIG_LZO
1475 lzo_bytep wrkmem = NULL;
1476 #endif
1477 uint8_t *buf_out = NULL;
1478 off_t offset_desc, offset_data;
1479 PageDescriptor pd, pd_zero;
1480 uint8_t *buf;
1481 GuestPhysBlock *block_iter = NULL;
1482 uint64_t pfn_iter;
1483 g_autofree uint8_t *page = NULL;
1485 /* get offset of page_desc and page_data in dump file */
1486 offset_desc = s->offset_page;
1487 offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
1489 prepare_data_cache(&page_desc, s, offset_desc);
1490 prepare_data_cache(&page_data, s, offset_data);
1492 /* prepare buffer to store compressed data */
1493 len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress);
1494 assert(len_buf_out != 0);
1496 #ifdef CONFIG_LZO
1497 wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
1498 #endif
1500 buf_out = g_malloc(len_buf_out);
1503 * init zero page's page_desc and page_data, because every zero page
1504 * uses the same page_data
1506 pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size);
1507 pd_zero.flags = cpu_to_dump32(s, 0);
1508 pd_zero.offset = cpu_to_dump64(s, offset_data);
1509 pd_zero.page_flags = cpu_to_dump64(s, 0);
1510 buf = g_malloc0(s->dump_info.page_size);
1511 ret = write_cache(&page_data, buf, s->dump_info.page_size, false);
1512 g_free(buf);
1513 if (ret < 0) {
1514 error_setg(errp, "dump: failed to write page data (zero page)");
1515 goto out;
1518 offset_data += s->dump_info.page_size;
1519 page = g_malloc(s->dump_info.page_size);
1522 * dump memory to vmcore page by page. zero page will all be resided in the
1523 * first page of page section
1525 for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) {
1526 /* check zero page */
1527 if (buffer_is_zero(buf, s->dump_info.page_size)) {
1528 ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
1529 false);
1530 if (ret < 0) {
1531 error_setg(errp, "dump: failed to write page desc");
1532 goto out;
1534 } else {
1536 * not zero page, then:
1537 * 1. compress the page
1538 * 2. write the compressed page into the cache of page_data
1539 * 3. get page desc of the compressed page and write it into the
1540 * cache of page_desc
1542 * only one compression format will be used here, for
1543 * s->flag_compress is set. But when compression fails to work,
1544 * we fall back to save in plaintext.
1546 size_out = len_buf_out;
1547 if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
1548 (compress2(buf_out, (uLongf *)&size_out, buf,
1549 s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) &&
1550 (size_out < s->dump_info.page_size)) {
1551 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB);
1552 pd.size = cpu_to_dump32(s, size_out);
1554 ret = write_cache(&page_data, buf_out, size_out, false);
1555 if (ret < 0) {
1556 error_setg(errp, "dump: failed to write page data");
1557 goto out;
1559 #ifdef CONFIG_LZO
1560 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
1561 (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out,
1562 (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
1563 (size_out < s->dump_info.page_size)) {
1564 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO);
1565 pd.size = cpu_to_dump32(s, size_out);
1567 ret = write_cache(&page_data, buf_out, size_out, false);
1568 if (ret < 0) {
1569 error_setg(errp, "dump: failed to write page data");
1570 goto out;
1572 #endif
1573 #ifdef CONFIG_SNAPPY
1574 } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
1575 (snappy_compress((char *)buf, s->dump_info.page_size,
1576 (char *)buf_out, &size_out) == SNAPPY_OK) &&
1577 (size_out < s->dump_info.page_size)) {
1578 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY);
1579 pd.size = cpu_to_dump32(s, size_out);
1581 ret = write_cache(&page_data, buf_out, size_out, false);
1582 if (ret < 0) {
1583 error_setg(errp, "dump: failed to write page data");
1584 goto out;
1586 #endif
1587 } else {
1589 * fall back to save in plaintext, size_out should be
1590 * assigned the target's page size
1592 pd.flags = cpu_to_dump32(s, 0);
1593 size_out = s->dump_info.page_size;
1594 pd.size = cpu_to_dump32(s, size_out);
1596 ret = write_cache(&page_data, buf,
1597 s->dump_info.page_size, false);
1598 if (ret < 0) {
1599 error_setg(errp, "dump: failed to write page data");
1600 goto out;
1604 /* get and write page desc here */
1605 pd.page_flags = cpu_to_dump64(s, 0);
1606 pd.offset = cpu_to_dump64(s, offset_data);
1607 offset_data += size_out;
1609 ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
1610 if (ret < 0) {
1611 error_setg(errp, "dump: failed to write page desc");
1612 goto out;
1615 s->written_size += s->dump_info.page_size;
1618 ret = write_cache(&page_desc, NULL, 0, true);
1619 if (ret < 0) {
1620 error_setg(errp, "dump: failed to sync cache for page_desc");
1621 goto out;
1623 ret = write_cache(&page_data, NULL, 0, true);
1624 if (ret < 0) {
1625 error_setg(errp, "dump: failed to sync cache for page_data");
1626 goto out;
1629 out:
1630 free_data_cache(&page_desc);
1631 free_data_cache(&page_data);
1633 #ifdef CONFIG_LZO
1634 g_free(wrkmem);
1635 #endif
1637 g_free(buf_out);
1640 static void create_kdump_vmcore(DumpState *s, Error **errp)
1642 ERRP_GUARD();
1643 int ret;
1646 * the kdump-compressed format is:
1647 * File offset
1648 * +------------------------------------------+ 0x0
1649 * | main header (struct disk_dump_header) |
1650 * |------------------------------------------+ block 1
1651 * | sub header (struct kdump_sub_header) |
1652 * |------------------------------------------+ block 2
1653 * | 1st-dump_bitmap |
1654 * |------------------------------------------+ block 2 + X blocks
1655 * | 2nd-dump_bitmap | (aligned by block)
1656 * |------------------------------------------+ block 2 + 2 * X blocks
1657 * | page desc for pfn 0 (struct page_desc) | (aligned by block)
1658 * | page desc for pfn 1 (struct page_desc) |
1659 * | : |
1660 * |------------------------------------------| (not aligned by block)
1661 * | page data (pfn 0) |
1662 * | page data (pfn 1) |
1663 * | : |
1664 * +------------------------------------------+
1667 ret = write_start_flat_header(s);
1668 if (ret < 0) {
1669 error_setg(errp, "dump: failed to write start flat header");
1670 return;
1673 write_dump_header(s, errp);
1674 if (*errp) {
1675 return;
1678 write_dump_bitmap(s, errp);
1679 if (*errp) {
1680 return;
1683 write_dump_pages(s, errp);
1684 if (*errp) {
1685 return;
1688 ret = write_end_flat_header(s);
1689 if (ret < 0) {
1690 error_setg(errp, "dump: failed to write end flat header");
1691 return;
1695 static void get_max_mapnr(DumpState *s)
1697 GuestPhysBlock *last_block;
1699 last_block = QTAILQ_LAST(&s->guest_phys_blocks.head);
1700 s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end);
1703 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE };
1705 static void dump_state_prepare(DumpState *s)
1707 /* zero the struct, setting status to active */
1708 *s = (DumpState) { .status = DUMP_STATUS_ACTIVE };
1711 bool qemu_system_dump_in_progress(void)
1713 DumpState *state = &dump_state_global;
1714 return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE);
1718 * calculate total size of memory to be dumped (taking filter into
1719 * account.)
1721 static int64_t dump_calculate_size(DumpState *s)
1723 GuestPhysBlock *block;
1724 int64_t total = 0;
1726 QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
1727 total += dump_filtered_memblock_size(block,
1728 s->filter_area_begin,
1729 s->filter_area_length);
1732 return total;
1735 static void vmcoreinfo_update_phys_base(DumpState *s)
1737 uint64_t size, note_head_size, name_size, phys_base;
1738 char **lines;
1739 uint8_t *vmci;
1740 size_t i;
1742 if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) {
1743 return;
1746 get_note_sizes(s, s->guest_note, &note_head_size, &name_size, &size);
1747 note_head_size = ROUND_UP(note_head_size, 4);
1749 vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4);
1750 *(vmci + size) = '\0';
1752 lines = g_strsplit((char *)vmci, "\n", -1);
1753 for (i = 0; lines[i]; i++) {
1754 const char *prefix = NULL;
1756 if (s->dump_info.d_machine == EM_X86_64) {
1757 prefix = "NUMBER(phys_base)=";
1758 } else if (s->dump_info.d_machine == EM_AARCH64) {
1759 prefix = "NUMBER(PHYS_OFFSET)=";
1762 if (prefix && g_str_has_prefix(lines[i], prefix)) {
1763 if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16,
1764 &phys_base) < 0) {
1765 warn_report("Failed to read %s", prefix);
1766 } else {
1767 s->dump_info.phys_base = phys_base;
1769 break;
1773 g_strfreev(lines);
1776 static void dump_init(DumpState *s, int fd, bool has_format,
1777 DumpGuestMemoryFormat format, bool paging, bool has_filter,
1778 int64_t begin, int64_t length, bool kdump_raw,
1779 Error **errp)
1781 ERRP_GUARD();
1782 VMCoreInfoState *vmci = vmcoreinfo_find();
1783 CPUState *cpu;
1784 int nr_cpus;
1785 int ret;
1787 s->has_format = has_format;
1788 s->format = format;
1789 s->written_size = 0;
1790 s->kdump_raw = kdump_raw;
1792 /* kdump-compressed is conflict with paging and filter */
1793 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1794 assert(!paging && !has_filter);
1797 if (runstate_is_running()) {
1798 vm_stop(RUN_STATE_SAVE_VM);
1799 s->resume = true;
1800 } else {
1801 s->resume = false;
1804 /* If we use KVM, we should synchronize the registers before we get dump
1805 * info or physmap info.
1807 cpu_synchronize_all_states();
1808 nr_cpus = 0;
1809 CPU_FOREACH(cpu) {
1810 nr_cpus++;
1813 s->fd = fd;
1814 if (has_filter && !length) {
1815 error_setg(errp, "parameter 'length' expects a non-zero size");
1816 goto cleanup;
1818 s->filter_area_begin = begin;
1819 s->filter_area_length = length;
1821 /* First index is 0, it's the special null name */
1822 s->string_table_buf = g_array_new(FALSE, TRUE, 1);
1824 * Allocate the null name, due to the clearing option set to true
1825 * it will be 0.
1827 g_array_set_size(s->string_table_buf, 1);
1829 memory_mapping_list_init(&s->list);
1831 guest_phys_blocks_init(&s->guest_phys_blocks);
1832 guest_phys_blocks_append(&s->guest_phys_blocks);
1833 s->total_size = dump_calculate_size(s);
1834 #ifdef DEBUG_DUMP_GUEST_MEMORY
1835 fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size);
1836 #endif
1838 /* it does not make sense to dump non-existent memory */
1839 if (!s->total_size) {
1840 error_setg(errp, "dump: no guest memory to dump");
1841 goto cleanup;
1844 /* get dump info: endian, class and architecture.
1845 * If the target architecture is not supported, cpu_get_dump_info() will
1846 * return -1.
1848 ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
1849 if (ret < 0) {
1850 error_setg(errp,
1851 "dumping guest memory is not supported on this target");
1852 goto cleanup;
1855 if (!s->dump_info.page_size) {
1856 s->dump_info.page_size = qemu_target_page_size();
1859 s->note_size = cpu_get_note_size(s->dump_info.d_class,
1860 s->dump_info.d_machine, nr_cpus);
1861 assert(s->note_size >= 0);
1864 * The goal of this block is to (a) update the previously guessed
1865 * phys_base, (b) copy the guest note out of the guest.
1866 * Failure to do so is not fatal for dumping.
1868 if (vmci) {
1869 uint64_t addr, note_head_size, name_size, desc_size;
1870 uint32_t size;
1871 uint16_t guest_format;
1873 note_head_size = dump_is_64bit(s) ?
1874 sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr);
1876 guest_format = le16_to_cpu(vmci->vmcoreinfo.guest_format);
1877 size = le32_to_cpu(vmci->vmcoreinfo.size);
1878 addr = le64_to_cpu(vmci->vmcoreinfo.paddr);
1879 if (!vmci->has_vmcoreinfo) {
1880 warn_report("guest note is not present");
1881 } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) {
1882 warn_report("guest note size is invalid: %" PRIu32, size);
1883 } else if (guest_format != FW_CFG_VMCOREINFO_FORMAT_ELF) {
1884 warn_report("guest note format is unsupported: %" PRIu16, guest_format);
1885 } else {
1886 s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */
1887 cpu_physical_memory_read(addr, s->guest_note, size);
1889 get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size);
1890 s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size,
1891 desc_size);
1892 if (name_size > MAX_GUEST_NOTE_SIZE ||
1893 desc_size > MAX_GUEST_NOTE_SIZE ||
1894 s->guest_note_size > size) {
1895 warn_report("Invalid guest note header");
1896 g_free(s->guest_note);
1897 s->guest_note = NULL;
1898 } else {
1899 vmcoreinfo_update_phys_base(s);
1900 s->note_size += s->guest_note_size;
1905 /* get memory mapping */
1906 if (paging) {
1907 qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp);
1908 if (*errp) {
1909 goto cleanup;
1911 } else {
1912 qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
1915 s->nr_cpus = nr_cpus;
1917 get_max_mapnr(s);
1919 uint64_t tmp;
1920 tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT),
1921 s->dump_info.page_size);
1922 s->len_dump_bitmap = tmp * s->dump_info.page_size;
1924 /* init for kdump-compressed format */
1925 if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
1926 switch (format) {
1927 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
1928 s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
1929 break;
1931 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
1932 #ifdef CONFIG_LZO
1933 if (lzo_init() != LZO_E_OK) {
1934 error_setg(errp, "failed to initialize the LZO library");
1935 goto cleanup;
1937 #endif
1938 s->flag_compress = DUMP_DH_COMPRESSED_LZO;
1939 break;
1941 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
1942 s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
1943 break;
1945 default:
1946 s->flag_compress = 0;
1949 return;
1952 if (dump_has_filter(s)) {
1953 memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length);
1957 * The first section header is always a special one in which most
1958 * fields are 0. The section header string table is also always
1959 * set.
1961 s->shdr_num = 2;
1964 * Adds the number of architecture sections to shdr_num and sets
1965 * elf_section_data_size so we know the offsets and sizes of all
1966 * parts.
1968 if (s->dump_info.arch_sections_add_fn) {
1969 s->dump_info.arch_sections_add_fn(s);
1973 * calculate shdr_num so we know the offsets and sizes of all
1974 * parts.
1975 * Calculate phdr_num
1977 * The absolute maximum amount of phdrs is UINT32_MAX - 1 as
1978 * sh_info is 32 bit. There's special handling once we go over
1979 * UINT16_MAX - 1 but that is handled in the ehdr and section
1980 * code.
1982 s->phdr_num = 1; /* Reserve PT_NOTE */
1983 if (s->list.num <= UINT32_MAX - 1) {
1984 s->phdr_num += s->list.num;
1985 } else {
1986 s->phdr_num = UINT32_MAX;
1990 * Now that the number of section and program headers is known we
1991 * can calculate the offsets of the headers and data.
1993 if (dump_is_64bit(s)) {
1994 s->shdr_offset = sizeof(Elf64_Ehdr);
1995 s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num;
1996 s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num;
1997 } else {
1998 s->shdr_offset = sizeof(Elf32_Ehdr);
1999 s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num;
2000 s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num;
2002 s->memory_offset = s->note_offset + s->note_size;
2003 s->section_offset = s->memory_offset + s->total_size;
2005 return;
2007 cleanup:
2008 dump_cleanup(s);
2011 /* this operation might be time consuming. */
2012 static void dump_process(DumpState *s, Error **errp)
2014 ERRP_GUARD();
2015 DumpQueryResult *result = NULL;
2017 if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
2018 create_win_dump(s, errp);
2019 } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
2020 create_kdump_vmcore(s, errp);
2021 } else {
2022 create_vmcore(s, errp);
2025 /* make sure status is written after written_size updates */
2026 smp_wmb();
2027 qatomic_set(&s->status,
2028 (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED));
2030 /* send DUMP_COMPLETED message (unconditionally) */
2031 result = qmp_query_dump(NULL);
2032 /* should never fail */
2033 assert(result);
2034 qapi_event_send_dump_completed(result,
2035 *errp ? error_get_pretty(*errp) : NULL);
2036 qapi_free_DumpQueryResult(result);
2038 dump_cleanup(s);
2041 static void *dump_thread(void *data)
2043 DumpState *s = (DumpState *)data;
2044 dump_process(s, NULL);
2045 return NULL;
2048 DumpQueryResult *qmp_query_dump(Error **errp)
2050 DumpQueryResult *result = g_new(DumpQueryResult, 1);
2051 DumpState *state = &dump_state_global;
2052 result->status = qatomic_read(&state->status);
2053 /* make sure we are reading status and written_size in order */
2054 smp_rmb();
2055 result->completed = state->written_size;
2056 result->total = state->total_size;
2057 return result;
2060 void qmp_dump_guest_memory(bool paging, const char *protocol,
2061 bool has_detach, bool detach,
2062 bool has_begin, int64_t begin,
2063 bool has_length, int64_t length,
2064 bool has_format, DumpGuestMemoryFormat format,
2065 Error **errp)
2067 ERRP_GUARD();
2068 const char *p;
2069 int fd;
2070 DumpState *s;
2071 bool detach_p = false;
2072 bool kdump_raw = false;
2074 if (runstate_check(RUN_STATE_INMIGRATE)) {
2075 error_setg(errp, "Dump not allowed during incoming migration.");
2076 return;
2079 /* if there is a dump in background, we should wait until the dump
2080 * finished */
2081 if (qemu_system_dump_in_progress()) {
2082 error_setg(errp, "There is a dump in process, please wait.");
2083 return;
2087 * externally, we represent kdump-raw-* as separate formats, but internally
2088 * they are handled the same, except for the "raw" flag
2090 if (has_format) {
2091 switch (format) {
2092 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB:
2093 format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB;
2094 kdump_raw = true;
2095 break;
2096 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO:
2097 format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO;
2098 kdump_raw = true;
2099 break;
2100 case DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY:
2101 format = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY;
2102 kdump_raw = true;
2103 break;
2104 default:
2105 break;
2110 * kdump-compressed format need the whole memory dumped, so paging or
2111 * filter is not supported here.
2113 if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
2114 (paging || has_begin || has_length)) {
2115 error_setg(errp, "kdump-compressed format doesn't support paging or "
2116 "filter");
2117 return;
2119 if (has_begin && !has_length) {
2120 error_setg(errp, QERR_MISSING_PARAMETER, "length");
2121 return;
2123 if (!has_begin && has_length) {
2124 error_setg(errp, QERR_MISSING_PARAMETER, "begin");
2125 return;
2127 if (has_detach) {
2128 detach_p = detach;
2131 /* check whether lzo/snappy is supported */
2132 #ifndef CONFIG_LZO
2133 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
2134 error_setg(errp, "kdump-lzo is not available now");
2135 return;
2137 #endif
2139 #ifndef CONFIG_SNAPPY
2140 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
2141 error_setg(errp, "kdump-snappy is not available now");
2142 return;
2144 #endif
2146 if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP
2147 && !win_dump_available(errp)) {
2148 return;
2151 if (strstart(protocol, "fd:", &p)) {
2152 fd = monitor_get_fd(monitor_cur(), p, errp);
2153 if (fd == -1) {
2154 return;
2156 } else if (strstart(protocol, "file:", &p)) {
2157 fd = qemu_create(p, O_WRONLY | O_TRUNC | O_BINARY, S_IRUSR, errp);
2158 if (fd < 0) {
2159 return;
2161 } else {
2162 error_setg(errp,
2163 "parameter 'protocol' must start with 'file:' or 'fd:'");
2164 return;
2166 if (kdump_raw && lseek(fd, 0, SEEK_CUR) == (off_t) -1) {
2167 close(fd);
2168 error_setg(errp, "kdump-raw formats require a seekable file");
2169 return;
2172 if (!dump_migration_blocker) {
2173 error_setg(&dump_migration_blocker,
2174 "Live migration disabled: dump-guest-memory in progress");
2178 * Allows even for -only-migratable, but forbid migration during the
2179 * process of dump guest memory.
2181 if (migrate_add_blocker_internal(&dump_migration_blocker, errp)) {
2182 /* Remember to release the fd before passing it over to dump state */
2183 close(fd);
2184 return;
2187 s = &dump_state_global;
2188 dump_state_prepare(s);
2190 dump_init(s, fd, has_format, format, paging, has_begin,
2191 begin, length, kdump_raw, errp);
2192 if (*errp) {
2193 qatomic_set(&s->status, DUMP_STATUS_FAILED);
2194 return;
2197 if (detach_p) {
2198 /* detached dump */
2199 s->detached = true;
2200 qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread,
2201 s, QEMU_THREAD_DETACHED);
2202 } else {
2203 /* sync dump */
2204 dump_process(s, errp);
2208 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
2210 DumpGuestMemoryCapability *cap =
2211 g_new0(DumpGuestMemoryCapability, 1);
2212 DumpGuestMemoryFormatList **tail = &cap->formats;
2214 /* elf is always available */
2215 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF);
2217 /* kdump-zlib is always available */
2218 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB);
2219 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_ZLIB);
2221 /* add new item if kdump-lzo is available */
2222 #ifdef CONFIG_LZO
2223 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO);
2224 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_LZO);
2225 #endif
2227 /* add new item if kdump-snappy is available */
2228 #ifdef CONFIG_SNAPPY
2229 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY);
2230 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_RAW_SNAPPY);
2231 #endif
2233 if (win_dump_available(NULL)) {
2234 QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP);
2237 return cap;